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Abstract

The KEM/DEM hybrid encryption paradigm combines the efficiency and large message
space of secret key encryption with the advantages of public key cryptography. Due to
its simplicity and flexibility, the approach has ever since gained increased popularity and
has been successfully adapted in encryption standards. In hybrid public key encryption
(PKE), first a key encapsulation mechanism (KEM) is used to fix a random session key
that is then fed into a highly efficient data encapsulation mechanism (DEM) to encrypt the
actual message. A composition theorem states that if both the KEM and the DEM have the
highest level of security (i.e. security against chosen-ciphertext attacks), then so does the
hybrid PKE scheme. It is not known if these strong security requirements on the KEM and
DEM are also neccessary, nor if such general composition theorems exist for weaker levels
of security. In this work we study neccessary and sufficient conditions on the security of the
KEM and the DEM in order to guarantee a hybrid PKE scheme with a certain given level
of security. More precisely, using nine different security notions for KEMs, ten for DEMs,
and six for PKE schemes we completely characterize which combinations lead to a secure
hybrid PKE scheme (by proving a composition theorem) and which do not (by providing
counterexamples). Furthermore, as an independent result, we revisit and extend prior work
on the relation among security notions for KEMs and DEMs.

1 Introduction

Public key encryption (PKE) schemes (in contrast to symmetric ones) usually have restricted
message spaces, meaning that each ciphertext can hide only a limited amount of plaintext bits.
This greatly limits their application since in practice one typically wants to efficiently encrypt
large amounts of data. One way of solving this problem is by using a hybrid encryption scheme
consisting of a (asymmetric) public-key part to encrypt a key plus a (symmetric) secret-key part
to encrypt the actual data. For the first part one uses a key encapsulation mechanism (KEM)
to produce a random symmetric key K together with a ciphertext. For the second part this
symmetric key K is then used to encrypt the data using a highly efficient data encapsulation
mechanism (DEM), such as AES. This popular approach is often referred to as the “KEM /DEM
paradigm” and was first formalized by Cramer and Shoup [23, §].

This KEM/DEM paradigm is a simple way of constructing efficient and practical public key
encryption schemes, and so has received a lot of attention in literature. Due to his simplicity
and flexibility this modular approach is incorporated in many new standards for encryption
(see, e.g., [24, 20, 9]) and many KEMs have been proposed in the literature (see, e.g., [22,
23, 8, 10, 6, 15]). A natural question when dealing with this paradigm is how the security of



the individual KEM and DEM parts relates to the security of the resulting hybrid public key
encryption scheme. This question is quite broad since there are a lot of different security notions
for the three components of the paradigm to consider. As an example, the strongest security
notion one usually considers is denoted as indistinguishability under chosen ciphertext attacks
(IND-CCAZ2) [21]. Cramer and Shoup [8] already proved that chosen-ciphertext security for the
KEM and the DEM part is a sufficient condition to obtain a chosen-ciphertext secure hybrid
PKE scheme. The first natural question is if one can relax the general security requirements
made to KEM or DEM part and yet still obtain a chosen-ciphertext secure hybrid PKE scheme.
This question is in particular motivated by the hybrid encryption scheme by Kurosawa and
Desmedt [16, 1] which is chosen-ciphertext secure as a hybrid PKE scheme whereas its KEM
part alone was recently shown not to be chosen-ciphertext secure [13]. A more general problem
is to study the necessary and sufficient conditions for the KEM and the DEM part to obtain
a hybrid PKE scheme that is secure with respect to possibly weaker notions (e.g., IND-CPA,
NM-CCAL1).

OVERVIEW OF OUR MAIN CONTRIBUTION. The main result of this paper is to solve the above
open problem. We characterize the necessary and sufficient conditions that the KEM and the
DEM must satisfy in order to lead to a secure hybrid PKE scheme. Our characterization is
complete with respect to the considered security notions for KEMs, DEMs, and PKE schemes
(that will be introduced in the next paragraph) and the hierarchies implied by these notions.
For fixed security levels of the KEM and the DEM we show which security level for the hybrid
PKE scheme can be guaranteed (by proving a corresponding hybrid composition theorem) and
which not (by presenting a concrete counterexample).

To prove our results, we can in some places make use of established techniques [3, 14], whereas
in other cases we need to introduce new proof machinery.

CONSIDERED SECURITY NOTIONS FOR KEMS, DEMs, AND PKE scHEMES. Correcting prob-
lems we encountered in earlier attempts [17, 19], we propose a new notion of non-malleability
for KEMs which we call weak non-malleability (wNM). In combination with the three standard
attacks forms this leads to the respective notions of wWNM-CPA, wNM-CCA1, and wNM-CCA2.
Furthermore, we also consider a stronger notion of non-malleability that was independently pro-
posed in a recent paper by Nagao, Manabe, and Okamoto [18] which we denote by strong non-
malleability (sNM). Our nine considered notions for KEMs are therefore {wNM,sNM, IND}-
{CPA,CCA1,CCA2}. Similar to [3] we provide a complete characterization of the relations
between the above notions.

For DEMs we consider the standard notions of {NM, IND}-{CPA, CCA1,CCA2}. Further-
more, we add the two attack forms of one-time (OT) and one-time chosen-ciphertext (OTCCA)
security. Adding these new notions (that originate from [8] and do not give an adversary access
to an encryption oracle), which we will see later, is motivated by the hybrid PKE approach. The
ten considered notions for DEMs are thus {NM, IND}-{OT, OTCCA,CPA, CCA1,CCA2}. We
provide a complete characterization of the relations between the above notions. This revisits
and extends existing results by Katz and Yung [14] by considering a stronger (and arguably
more natural) notion of non-malleability and by adding the attack form of OTCCA.

For PKE schemes we consider the six standard notions of {NM, IND}-{CPA, CCA1, CCA2}
which were classified in [3].

We now discuss our results in more detail.



DEM IND-{OT,CPA,CCA1} | NM-{OT,CPA,CCA1} | IND-{OTCCA,CCA2}
KEM
{IND-CPA, > IND-CPA > IND-CPA > IND-CPA
wNM-CPA} < IND-CCA1,NM-CPA | < IND-CCA1,NM-CPA | < IND-CCA1,NM-CPA
sNM-CPA > IND-CPA > NM-CPA m > NM-CPA
< IND-CCA1,NM-CPA | < IND-CCAL1 < IND-CCA1 (5.7)
{IND-CCA1, > IND-CCA1 (5.1) > IND-CCA1 > IND-CCA1
wNM-CCA1, | < NM-CPA < NM-CPA < NM-CPA (5.4)
wNM-CCA2}
sNM-CCA1 > IND-CCA1 > NM-CCA1 (5.2) > NM-CCA1
< NM-CPA < IND-CCA2 < IND-CCA2 (5.8)
IND-CCA2 > IND-CCA1 > NM-CCA1 > IND-CCA2 [§]
< NM-CPA (5.5) < IND-CCAZ2 (5.6)
Figure 1: Sufficient and necessary conditions for hybrid encryption. The results are given

in set-notation: all positive results hold with respect to the weakest possible combination of
KEM/DEM in the set, whereas negative results hold with respect to the strongest combination.

1.1 Sufficient and necessary conditions for hybrid encryption

We give a characterization of the necessary and sufficient conditions required from the KEM and
the DEM in order to achieve secure hybrid PKE schemes in Figure [1. The symbol “>” is used
for positive implications, meaning that any combination of a KEM and a DEM with the stated
levels of security leads to a hybrid PKE scheme with the level of security stated after the symbol
“>”. On the other hand, the symbol “<” is used for negative results, meaning that there exists
some combination of a KEM and a DEM satisfying the stated security notions such that the
resulting hybrid PKE scheme does not satisfy the security notion stated after the symbol “<”.

In the table, there are eight key results, those with a number attached in brackets, which
refers to the theorem where we prove the corresponding result. We deduce the rest of results
from these key results, by using the security hierarchies of KEMs, DEMs and PKE schemes,
i.e. the relations between the different security notions for each of these primitives (that are
summarized in Figures 2, (3] and [4, respectively). Here positive results propagate to the right
and down, whereas negative results propagate to the top and left. E.g., the fact that the PKE
scheme resulting from a wNM-CCA1 KEM combined with a NM-CPA DEM is IND-CPA secure,
can be deduced from its IND-CCA1 security

We now turn to a discussion of our main results from Figure [1. The first surprising fact is
that it is possible to group notions for DEMs and KEMs that achieve exactly the same security
level for the resulting hybrid scheme, even though the primitives themselves can be separated.
For example, with an IND-OT secure DEM one can reach the same level of security as with an
IND-CCA1 DEM. Naively, one may expect that the proof of [8] carries over to show that a X-Y
secure KEM in combination with a X-Y secure DEM also yields a X-Y secure hybrid scheme.
This intuition is only true for X € {IND,sNM} (Theorems [5.1, 5.2 and [5.3) but it is wrong
for X = wNM (Theorems 5.6 and [5.4). Most importantly, our table shows that the sufficient
conditions on the KEM and the DEM in the composition theorem from [8] are also necessary: an

LAll of our key results are unconditional. However, during propagation, some results may lose their uncondi-
tionality: e.g., IND-CPA KEM+IND-CPA DEM < NM-CPA PKE is deduced from IND-CCA2 KEM + IND-CPA
DEM < NM-CPA PKE and hence implicitly assumes the existence of an IND-CCA2 secure KEM. This is standard
practice, see, e.g., [3].
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Figure 2: Implications and separations between the various security notions for KEMs. Here
“X — Y” means that X-security implies Y-security, and “X - Y” means that X-security does
not necessarily imply Y-security (i.e., that if there is at all a scheme which is X-secure, then
there is also one which is X-secure, but not Y-secure). The characterization is complete, i.e. for
each two notions either an implication or a separation can be derived from the diagram.

IND-CCA2 secure hybrid scheme can only be guaranteed if both, the KEM and the DEM, have
the highest security level (i.e. IND-CCA2 for KEM and IND-OTCCA for DEM). Any attempt
to weaken the KEM to wNM-CCA2/sNM CCA1 or the DEM to NM-CCA1 may yield a hybrid
PKE scheme that is no longer IND-CCA2 (Theorems 5.4/ /5.8 and Theorem 5.6, respectively).
Furthermore, even the strongest possible KEM in combination with a weak DEM (or vice-versa)
only provides a relatively weak hybrid PKE scheme (Theorems 5.5 and [5.7).

On the positive side, an IND-CCA1 KEM and an IND-OT DEM already yields an IND-
CCA1 hybrid scheme (Theorem 5.1). Furthermore, a sSNM-CCA1 KEM plus a NM-OT DEM
implies a NM-CCA1 hybrid scheme (Theorem 5.2).

For proving these results, we use new as well as established techniques: e.g., the proof of
Theorem (5.5 basically transports a counterexample used in [3] to separate two security notions
for public key encryption to the hybrid setting. Conversely, e.g., Theorems and 5.8 use
a new DEM modification which introduces new, “weak” DEM keys. This does not harm the
stand-alone security of the DEM in any way, but only makes sense in our specific KEM/DEM
setting where the DEM keys produced by the KEM may be “vulnerable”.

1.2 Security notions for Key Encapsulation Mechanisms and their relation

We revisit some previous attempts to define non-malleability for KEMs [17, 19] (denoted NM')
which we argue to have certain problems with the treatment of the key-space. (Furthermore
we prove one of the main theorems of [17, 19] about the equivalence between the notions of
IND-CCA2 and NM'-CCA2 to be wrong: we show that the Cramer-Shoup KEM [8] serves as
an example of a KEM that is IND-CCA2 but not NM'-CPA in the sense of [17,/19].) Building
on [11, 3] we revisit the security definitions of non-malleability for KEMs. Intuitively, in non-
malleability, an adversary is given a challenge ciphertext and is considered to be successful if
he is able to come up with a different ciphertext such that its decrypted key is “meaningfully
related” to the challenge key [11]. In the concrete security experiment for PKE schemes (and
DEMs) [3], an adversary against non-malleability first outputs a distribution of messages where
the challenge message (which is later encrypted in the challenge ciphertext) is sampled from.
This distribution may well be defined on two messages only. The situation is different for KEMs
where the key-space is always implicitly fixed. This is the reason why in our definition of non-
malleability for KEMs an adversary is not given control over the key-space (in contrast to what



was done in [17, 19]). These considerations lead to our new definition of non-malleability for
KEMs, that we call wINM.

A different and stronger definition of non-malleability for KEMs (which we denote by sNM)
has been independently proposed in [18] (also with the goal of correcting [17, 19]). The differ-
ence is that, roughly, in the non-malleability experiment the adversary is given some additional
information containing the challenge key in clear. We give a complete characterization of the
KEM hierarchy providing implications and separations between the nine different security no-
tions {IND, wNM, sNM}-{CPA, CCA1,CCA2}. Our resulting hierarchy is depicted in Figure [2.
By trivial reasons sNM always implies wNM. On the other hand we show that wNM-CCA2
does not even imply sNM-CPA. Here, a surprising result is that wNM-ATK strictly implies
IND-ATK for ATK € {CPA, CCA1} whereas the opposite is the case for ATK = CCA2. This is
analog to the case of DEMs (using the non-malleability definition from [14]) but in contrast to
what happens with PKE schemes, where for CCA2 attacks indistinguishability is in fact equiv-
alent to non-mealleability (cf. Figure[4). On the other hand, when the stronger notion sNM is
considered, then this equivalence between sSNM-CCA2 and IND-CCA2 is also valid for KEMs,
as proved in [18].

TWO DIFFERENT NOTIONS OF NON-MALLEABILITY. There are two different definitions of non-
malleability, wNM and sNM, and a priori it is not clear which one should be prefered over
the other. We think that our definition of non-malleability (wNM) follows closer the original
motivation from [11,3]. On the other hand, the stronger definition from [18] seems to be more
useful in practice: if we use the security of hybrid encryption as a natural assesment of a “good
security notion” for non-malleability it seems desirable to have that non-malleability of the KEM
and DEM implies non-malleability of the hyrbid PKE scheme. One of our results is that this is
the case for the stronger definition sNM, whereas this is not true for wINM.

1.3 Security notions for Data Encapsulation Mechanisms and their relation

Katz and Yung [14] define 18 different security notions for DEMs and give a complete hierarchy of
their relations. We consider eight of their notions ({IND,NM}-{OT, CPA, CCA1, CCA2}) and
additionally add two more notions ({IND,NM}-OTCCA) where IND-OTCCA was originally
introduced in [8]. The motivation of considering the additional notions comes from hybrid
encryption paradigm: as showed in [8], IND-OTCCA security is sufficient for a DEM to yield
an IND-CCA2 secure hybrid scheme when combined with an IND-CCA2 secure KEM. Here we
consider a different and stronger notion of non-malleability which we think does more capture
the original idea behind non-malleability [11] than the one from [14]. (In fact the scheme
from [14, Proof of Theorem 7] whose ciphertext simply consist of the “authenticated plaintext”
is non-malleable in the sense of [14] but is intuitively completely insecure.) We remark that this
stronger notion of non-malleability is already mentioned (but not used) in [14].

We give a complete characterization of the DEM hierarchy providing implications and sep-
arations between the different security notions. Our resulting hierarchy is depicted in Figure (3.
We remark that by using a stronger notion of non-malleability our hierarchy looks different from
the one obtained in [14] (where NM-CCA2 was shown to be strictly weaker than IND-CCA2).

Even though the main result of this work is the characterization of the necessary and suffi-
cient conditions for the security of hybrid PKE schemes, we think that our results concerning
definitions and security hierarchies of KEMs and DEMs may be of independent interest.
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Figure 3: Implications and separations between the various security notions for DEMs.

1.4 Further results

There are many subtle issues to take into account when defining non-malleability [11,/4, 3]. For
non-malleability one intuitively requires that, given a challenge ciphertext, the adversary can
not come up with another vector of ciphertexts such that the plaintext vector relates to the
challenge plaintext. Compared to the definition originally given in [3] we consider a stronger
definition of non-malleability for PKE schemes, where the vector of ciphertexts may also contain
invalid ciphertexts, that was also used in a recent update [5] of the electronic version of [4]. As
an additional result we show a separation between the two notions of non-malleability for PKE
schemes. In fact, (an extension of) our separation result has recently been integrated into [5].

2 Security Definitions

In this section we formally introduce different security notions from PKE schemes, KEMs, and
DEMs.

We first need to introduce some common notation. If z is a string, then |x| denotes its
length, while if S is a set then |S| denotes its size. If k& € N then 1¥ denotes the string of &
ones. If S is a set then s <~ S denotes the operation of picking an element s of S uniformly at
random. We write A(z,y,...) to indicate that A is an algorithm with inputs z,y,... and by
& A(z,y,...) we denote the operation of running A with inputs (z,y,...) and letting z be the
output. We write A01’02"“(az, Y,...) to indicate that 4 is an algorithm with inputs z,y, ... and
access to oracles O1,0s,... and by z & AC1:02 (4 ) we denote the operation of running
A with inputs (z,y,...) and access to oracles O1,Os,..., and letting z be the output.

2.1 Public Key Encryption

A public key encryption (PKE) scheme PKE = (PKE.Kg, PKE.Enc, PKE.Dec) consists of three
polynomial-time algorithms. Via (pk, sk) <~ PKE.Kg(1*) the randomized key-generation algo-
rithm produces keys for security parameter k& € N; via C & PKE.Enc(pk, m) a message m is
encrypted under public key pk, producing a ciphertext C; via {m, L} « PKE.Dec(sk, C) the
possessor of secret key sk decrypts ciphertext C to get back a message or receives the special
symbol | that stands for rejection.

For consistency, we require Pr [ PKE.Dec(sk, PKE.Enc(pk,m)) =m] =1 for all k¥ € N and all
message m, where the probability is taken over the choice of (pk, sk) & PKE.Kg(1*) and the



coins of all the algorithms in the expression above.

2.1.1 PKE Indistinguishability

Definition 2.1 Let PKE = (PKE.Kg, PKE.Enc,PKE.Dec) be a public-key encryption scheme
and let F = (Fi, F2) be an adversary. For atk € {cpa, ccal, cca2}, we define the advantage of
F as

AdVRET R (k) = |Pr | Bxphig 3 (k) = 1] — Pr | Expli 0k = 1|

)

where, for b € {0,1},

g];g;’r}d— atk-b (k)
(pk, sk) < PKE.Kg(1%)
(St,mo,m1) < Fr10 (pk)
C* & PKE.Enc(pk, my)

v & FEeU (e st

Return ¢’

Experiment Exp

and the oracles DEC; and DECy are defined as

atk DECl(-) DECQ(-)

cpa € €

ccal DEM.Dec(K,-) e

cca? DEM.Dec(K,:) DEM.Dec(K, ")

with the restriction that F5 is not allowed to query the oracle DECo(-) on the target ciphertext
c*.

A public key encryption scheme PKE is said to be indistinguishable against ATK attacks
(IND-ATK) if the advantage function Advg,@g@_ﬁi_atk(k) is a mnegligible function in k for all
polynomial-time adversaries F.

2.1.2 PKE Non-Malleability

We will denote vectors in boldface, as in C. We denote by |C| the number of components in C,
and by C[i] the ith component, such that C = (C[1],..., C[|C|]). We stress that in particular
we also consider the empty vector. We write C = ¢ if |[C|] = 0. We use the natural notation
C € C to indicate C = CJi] for 1 < i < |C|. It will also be convenient to extend decryption to
vectors where the operation is performed componentwise, namely by M = (M[1],..., M[|C|]) <«
PKE.Dec(sk, C) we mean that M[i] « PKE.Dec(sk, C[i]) for 1 <i < |C]|.

We will consider relations of arity ¢, where ¢ will be polynomial in the security parameter k.
By writing R(M, M) we mean R(M,M]1],..., M|t —1]).

FORMALIZATION OF NON-MALLEABILITY. Non-malleability was introduced in [11] and subse-
quently refined [3,/12]. The goal of an adversary in an non-malleability experiment is, given a
ciphertext C, to come up with a vector of ciphertexts C whose decryption M is meaningfully
related to K, where K is the key that corresponds to C'. Here meaningfully related means that
R(M ,M) holds for some relation R. The question is how one can exactly measure the advantage

2Relaxations are possible, see, e.g., [12, Comments after Def. 5.1.1], and do not affect our results.



of an adversary. We will use the definition from [3] which considers an experiment involving the
adversary.

Let F = (Fi1,F2) be an adversary. In the first stage of the attack F; gets the public key
pk and returns a description of a message space, described by a message sampling algorithm
M. (The message space must be valid, i.e. it gives non-zero probability only to strings of
one particular length.) In the second stage of the attack F» obtains an encryption C of a
message M; which is drawn randomly using the message sampling algorithm M. Then adver-
sary JFo returns a ciphertext vector C together with a relation R. The adversary hopes that
R(M;,M) is different from R(Mp, M) for an independently uniformly chosen My € M, where
M «— PKE.Dec(sk,C). We thus say that F is successful if R(M;, M) holds with probability
significantly different than R(Mp, M). The restriction to F’s output is that C' ¢ C and that R
is polynomial-time computable.

Definition 2.2 Let F = (Fi,F2) be an adversary. For atk € {cpa, ccal, cca2}, we define the
advantage of F as

ARG () = [Pr [ Exphig 5" (k) = 1] — Pr [ Explig"r "0k = 1],

where, for b € {0,1},

Experiment Exp@@&n]@- atk-b (k)

(pk, sk) < PKE.Kg(1¥)

(St, M) & 7750 (pk)

mg,mt & M; C* & PKE.Enc(pk, m?)

(R,C) & FE0) (o st

M — PKE.Dec(sk, C)

If C* ¢ C and R(mj, M) then return 1 else return 0

and the oracles DEC; and DEC, are defined as in Definition[2.1, again with the restriction that As
is not allowed to query DECy for C*. In the experiment M is again a probability distribution on
the space of messages, and m £ M denotes the choice of a message following this distrubtion.
We insist that M is valid, i.e. that |My| = |M;| for any My, M; that are given non-zero probability
in M.

A public key encryption scheme PKE is said to be non-malleable against ATK attacks (NM-
ATK) if the advantage function Adv%&?}n “ (k) is a negligible function in k for all polynomial-
time adversaries F.

DIFFERENCES TO THE DEFINITION FROM [3]. In contrast to [3] (and following [12]) we do
not require the ciphertexts in C to be valid. In particular this also includes the case where
all ciphertexts Cli] may decrypt to L. If some ciphertexts are valid and others are not, the
adversary may be taking some action on the valid ones. This makes the definition (strictly)
stronger and captures more the intuitive idea behind non-malleability.

The recent update [5] of the electronic version of [4] also considers and relates two definitions
of non-malleability, each of them in a version in which the adversary automatically “loses” if C
contains an invalid ciphertext (these notions are called SNM-ATK* resp. CNM-ATK* in [5]),
and in more relaxed versions like the one we focus on here (called SNM-ATK resp. CNM-ATK
in [5]). With these formalizations, we can prove that actually CNM-CPA is strictly stronger



NM-CPA NM-CCA1 7 NM-CCA2

S

IND-CPA IND-CCA1 IND-CCA2

Figure 4: Implications and separations between the various security notions for PKE schemes
from [3].

than CNM-CPA*, using the example in Appendix [A. Actually, [5] gives an extension to the
example from Appendix /A that shows that not even CNM-CCA1* implies CNM-CPA.

We stress that all the results from [3] are still valid with respect to our stronger non-
malleability notion. Furthermore we also allow the adversary to output empty ciphertext vectors
C = . Since an adversary is given the possibility to encrypt this is clearly equivalent to not
allowing empty ciphertext vectors in the public-key setting. But it will turn out to be a crucial
detail for the case of symmetric encryption.

The relations among all these different security notions for public key encryption schemes
were established in [3]. They are summarized in Figure [4.

2.2 Public Key Encapsulation Mechanisms

A public-key encapsulation mechanism KEM = (KEM.Kg, KEM.Enc, KEM.Dec) with associated
key-space KeySp(k) (which we assume to be KeySp(k) = {0,1}%*) where kl(k) is the key-
length) consists of three polynomial-time algorithms. Via (pk, sk) & KEM.Kg(1*) the ran-

domized key-generation algorithm produces keys for security parameter k£ € N; via (K, C) &
KEM.Enc(1%, pk), a key K € KeySp(k) together with a ciphertext C is created; via {K, L
} «— KEM.Dec(sk, C) the possessor of secret key sk decrypts ciphertext C to get back a key

or the rejection symbol L. For consistency, we require that for all £k € N, and all (K, C) &
KEM.Enc(1*, pk) we have Pr[KEM.Dec(sk, C) = K] = 1, where the probability is taken over

the choice of (pk, sk) <~ KEM.Kg(1*), and the coins of all the algorithms in the expression above.

2.2.1 KEM Indistinguishability

The notion of indistinguishablity of KEMs against CCA2 attacks was established in [8]. Using
the ideas from Section it is straightforward to also extend it to CPA and CCA1 attacks.

Definition 2.3 Let A = (Aj,.A3) be an adversary. For atk € {cpa, ccal, ccal2}, we define the
advantage of A as

Adv i o (k) =

I

Pr [Exp];ég"{i%'atk'l(k) = 1} —Pr [Exp%ﬁ%'atk'o(l{) = 1}

where, for b € {0, 1},



%m:[iff_ atk-b (k)

(pk, sk) < KEM.Kg(1¥)

st < AFOO (pk)

K& & KeySp(k) ; (K7, C*) & KEM.Enc(pk)
K* — Ky

b & A0 ok, o K*, St)

Return o’

Experiment Exp

and the oracles DEC; and DECy are defined as

atk DEC; () DEC,(-)

cpa € €

ceal KEM.Dec(sk,-) ¢

cca KEM.Dec(sk,-) KEM.Dec(sk,-)

with the restriction that A is not allowed to query DECy(-) on the target ciphertext C*.
A key encapsulation mechanism KEM is said to be indistinguishable against ATK attacks
(IND-ATK) if the advantage function AdvEem-imd-atk gy ig 5 negligible function in k for all

. . KEM A
polynomial-time adversaries A.

2.2.2 KEM Non-Malleability

Defining non mealleability for KEMs needs some care and it turns out that an existing defini-
tion from [17,19] has a problem in the treatment of the key-space (more details are given in
Appendix B). In the PKE case the adversary in the first stage has to output a description of the
message space M. This models the situation where an adversary may attack only a specific set
of plaintexts such as the two messages “yes” and “no”. With a KEM, the situation is different.
A KEM is used to create ciphertexts for random keys, where the keys are uniformly distributed
over some fixed key-space (whose description is contained in the public key). In general there is
no efficient way to create a ciphertext for an arbitrary key. Therefore it is unreasonable to let
the adversary define a key distribution C since the challenger would not be able to efficiently
sample pairs of keys and ciphertexts where the keys are drawn according to K. We rather define
K to be the sampling algorithm that returns a key uniformly distributed over {0,1}*, just as
KEM.Enc(pk) should do.

Definition 2.4 Let A = (A;,.A3) be an adversary. For atk € {cpa, ccal, cca2}, we define the
advantage of A as

Advlg () = [pr [Bxplgg e () = 1] - Pr [ Bxplgsi () = 1]

)

where, for b € {0, 1},

Experiment Exp’;&”ﬂ‘{wﬁm- atk—b( k)

(pk, sk) <~ KEM.Kg(1%)

St & AEC ) (pr)

K & KeySp(k) ; (K7, C*) < KEM.Enc(pk)

(R,C) & AP0 (o, st)

K «— KEM.Dec(sk, C)

If C* ¢ C and R(Kj;,K) then return 1 else return 0

10



and the oracles DEC; and DECs are defined as in Definition [2.3.

A key encapsulation mechanism KEM is said to be weakly non-malleable against ATK attacks
(wNM-ATK) if the advantage function Adv’;é”mfjm'“tk(k) is a negligible function in k for all
polynomial-time adversaries A.

A STRONGER DEFINITION OF NON-MALLEABILITY FOR KEMS. Nagao, Manabe, and Okamoto [18]
independently proposed a different and stronger definition of non-malleability. The difference is
that in the non-mealleability security experiment the adversary As is given additional informa-
tion in form of the tuple X, where X consists of the elements K and K7 in a random order.
More precisely, the input of adversary Aj is replaced with (C*, X, St), where X & (K* K )
for a random bit ¢ that is hidden from A. We call the resulting notion strong non-malleability
against ATK attacks (sSNM-ATK). Trivially, we have that sNM-ATK security implies wNM-ATK
security, for ATK € {CPA,CCA1, CCA2}.

2.3 Data Encapsulation Mechanisms

A (stateless) data encapsulation mechanism DEM = (DEM.Kg, DEM.Enc, DEM.Dec) consists

of three polynomial-time algorithms. Via K & DEM.Kg(1%) the randomized key-generation
algorithm produces a uniformly distributed key K € {0,1}* for security parameter k € N; via
c & DEM.Enc(K, m) a message m is encrypted under the key K; via {M, L} «— DEM.Dec(K, C)
a possessor of the key K decrypts the ciphertext C to get back a message or the special rejec-
tion symbol L. For consistency, we require that for all £ € N, and all message m, we have
Pr[DEM.Dec(K,DEM.Enc(K, m)) = m] = 1, where the probability is taken over the choice of

K& DEM.Kg(1%), and the coins of all the algorithms in the expression above.

2.3.1 DEM Indistinguishability

It is well known how to define indistinguishability against CPA, CCA1, and CCA2 attacks for
DEMs [2]. The important fact to notice is that in the security definition of CPA for DEMs an
adversary is also given access to an encryption oracle. This models the ability of the adversary
to encrypt arbitrary messages under the (unknown) symmetric key. Note that this encryption
oracle was not neccessary for the case of public-key encryption since there the knowledge of the
public key is sufficient to perform encryption of arbitrary messages.

We consider two more attack forms which we call one-time attacks (OT) and one-time
(adaptive) chosen-ciphertext attacks (OTCCA). OT attacks correspond to passive attacks and
OTCCA attacks correspond to adaptive chosen-ciphertext attacks in [8, Sec 7.2.1]. More con-
cretely, OT attacks are CPA attacks where the adversary is not given an encryption oracle.
OTCCA attacks are OT attacks where in the second stage the adversary is given access to a
decryption oracle. Note that in one-time attacks the adversary is not given an encryption oracle,
nor is he given any oracle access in the first stage.

Definition 2.5 Let B = (By,B2) be an adversary. For atk € {ot, otcca, cpa, ccal, cca2}, define
the advantage of B as

)

Advigrn et (k) = [Pr [ Explyfi s (k) = 1] = Pr [Expiii- () = 1]

where, for b € {0, 1},

11



%&gﬂ:[i%d— atk-b (k)

K < DEM.Kg(1*)
(St, Mo, My) < BECODECC) (1
C* & DEM.Enc(K, M,)

% (i BgNC(-),DECQ(.)(C*7 St)
Return b’

Experiment Exp

and the oracles ENC, DECy, and DECy are defined as

ENC(-) DEC () DECs(-)
ot € € €
otcca € € DEM.Dec(K, -)
cpa DEM.Enc(K,-) e €

ccal DEM.Enc(K,-) DEM.Dec(K,-) «
cca2 DEM.Enc(K,-) DEM.Dec(K,-) DEM.Dec(K,-)

with the restriction that B is not allowed to query the oracle DECy(-) on the target ciphertext
c*.

A data encapsulation mechanism DEM is said to be indistinguishable against ATK attacks
(IND-ATK) if the advantage function Adv%c%”ﬁ7%d_“tk(k) is a negligible function in £ for all
polynomial-time adversaries B.

For clarification we note that in [14] different natation is used for attack forms on DEMs:
OT is P0-C0, CPA is P2-C0, CCA1 is P2-C1, and CCA2 is P2-C2, whereas OTCCA was not
considered.

2.3.2 DEM Non-Malleability

Definition 2.6 Let B = (B1,B2) be an adversary. For atk € {ot, otcca, cpa, ccal, ccal}, we
define the advantage of B as

dem-nm-atk
Adv DEM B (k) =

Pr | Expsyi a1 (k) = 1| = Pr | Explya=o®0(k) =1

Y

where, for b € {0,1},

dem-nm-atk-b
a0

K & DEM.Kg(1%)

(St, M) & BErCOPER0) (1)

mE,mt & M; C* & DEM.Enc(K, m?)

(R,C) pa BSNC(')vDEcz(')(C* St)

M «— DEM.Dec(K, C)

If C* ¢ C and R(mj, M) then return 1 else return 0

Experiment Exp

and the oracles ENC, DEC1, and DECy are defined as in Definition In the experiment M is a
probability distribution on the space of messages, and m & M denotes the choice of a message
following this distribution.

Note that as in the previous definitions, we allow invalid ciphertexts in C as well as an empty
C. This leads to a relatively strict definition of non-malleability, but we think that this best
reflects the intuition behind. It should not be possible to have a “secure” system which is only
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secure because the adversary cannot come up with a valid encryption of anything. Consider,
e.g., a DEM which in every encryption leaks the complete plaintext, but authenticates every
encryption so that no adversary can come up with a valid ciphertext without knowing the secret
key. This scheme is trivially secure w.r.t. a non-malleability notion that requires the adversary
to come up with a valid, non-empty ciphertext vector. (In fact, this is precisely the example
from [14, Proof of Theorem 7].) We believe that this “security” is intuitively not justified.

A data encapsulation mechanism DEM is said to be non-malleable against ATK attacks
(NM-ATK) if the advantage function Advg)egﬂ:ﬁg'“tk (k) is a negligible function in k for all
polynomial-time adversaries B.

EXISTENCE OF DEMSs. It is well known that a one-time pad [25] is an IND-OT DEM that
therefore exist unconditionally. Also, by adding a one-time MAC to an arbitrary IND-OT DEM,
we obtain an IND-OTCCA DEM [8]. Thus, IND-OTCCA DEMs also exist unconditionally. See
also [14] for a direct construction of a DEM unconditionally secure in the sense of IND-OTCCA.

On the other hand, IND-CPA/IND-CCA2 secure DEMs are only known to exist on the
assumption that one-way functions exist. This was first explicitly noted in [11].

3 Relations among Key Encapsulation Mechanisms

We state more formally the results summarized in Figure [2 and provide proofs. One would
expect that all proofs from the PKE setting carry more or less over to the KEM setting. This
is only the case for the stronger notion sNM of non-malleability, but not if we consider the
weaker notion of wNM (recall that sSNM-ATK security implies wNM-ATK security, for ATK €
{CPA,CCA1,CCA2}). Namely, as it happens in the PKE setting, sSNM-CCA2 and IND-CCA2
are equivalent notions, as it has been proved in [18]. On the other hand, we will show that
wNM-CCA2 security does not even imply SNM-CPA security. These two results directly imply
that wNM-CCAZ2 is strictly weaker than IND-CCA2 for KEMs.

Our first results shows that for KEMs, wNM implies IND for CPA and CCA1 attacks.
Interestingly the proof from [11, 3] does not carry over to the case of KEMs. The proof of the
following is in Section[3.1 and uses techniques different from [3].

Theorem 3.1 [wNM-CPA = IND-CPA, wNM-CCA1 = IND-CCAL1 | If a KEM is secure in
the sense of wWNM-ATK then it is secure in the sense of IND-ATK, for ATK € {CPA, CCA1}.

The next result (proved in Section 3.2) shows that wNM-CCA2 does not even imply sNM-CPA.
This in particular shows that for KEMs IND-CCA2 is strictly stronger than wNM-CCA2. This
is in sharp contrast to PKE schemes and DEMs (cf. Figure [4/ and Figure 3).

Theorem 3.2 [wNM-CCA2 # sNM-CPA ] If there exists a scheme KEM which is secure in
the sense of wWNM-CCAZ2, then there exists a scheme KEM " which is secure in the sense of
wNM-CCA2 but which is not secure in the sense of SNM-CPA.

The following shows that IND-CCA1 does not imply wNM-CPA for KEMs. The proof of the
following uses a modified version of the separation example from [3, Theorem 3.5] and is given
in Section [3.3.

Theorem 3.3 [IND-CCA1 # wNM-CPA ] If there exists a scheme KEM which is secure in the
sense of IND-CCA1, then there exists a scheme KEM " which is secure in the sense of IND-CCA1
but which is not secure in the sense of wNM-CPA.
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The proof of the following uses (an adaptation of) the separation example from [3, Theorem 3.6]
for PKE schemes and is omitted here.

Theorem 3.4 [sNM-CPA # IND-CCA1 ] If there exists a scheme KEM which is secure in the
sense of SNM-CPA, then there exists a scheme KEM " which is secure in the sense of SNM-CPA
but which is not secure in the sense of IND-CCAL.

The proofs of the following theorem uses (an adaptation to the KEM setting of) the separation
example from [3, Theorem 3.7] for PKE schemes, and is omitted here.

Theorem 3.5 [sNM-CCA1 # wNM-CCA2 | If there exists a scheme KEM which is secure
in the sense of SNM-CCA1, then there exists a scheme KEM " which is secure in the sense of
sNM-CCA1 but which is not secure in the sense of wNM-CCA2.

3.1 Proof of Theorem 3.1: wNM-CPA = IND-CPA, wNM-CCA1 = IND-CCA1

Assume KEM is secure in thewNM-ATK sense for ATK € {CPA, CCA1}. We will show it is
also secure in the sense of IND-ATK. Let B = (B1,B2) be an IND-ATK adversary attacking
KEM. We have to show that Advlggﬂ%d_atk(') is negliglible. To this end we will describe a
wNM-ATK adversary A = (A;,.Az) attacking KEM .

The intuition is that adversary Ay defines its relation R(-) using adversary By as a (black-
box) algorithm. More precisely, the relation is defined on the empty key vector K = € and only
takes one key K as input. R(K,¢) is defined as the output of B2 on key K, where As’s challenge

ciphertext C*, as well as the public key pk, and As’s randomness are hard-coded into Bs.

Alg. AT (pk) | Alg. Ax(pk, C*, St)
St & B (pk) | Define R(K) = Ba(pk, C*, K, 5t)
Return St Return (C =¢, R)

In the CCAL1 case, adversaries A; and 1 have access to an oracle DECq, where A; forwards B;’s
oracle queries to its oracle DEC;.

Note that Ay outputs an empty ciphertext vector C = . In the definition of the relation
R made by Ay the values pk, C*, St, and some randomness are hardcoded into R. Note that
R(K) is only defined on the challenge key K and the target ciphertext vector returned by As is
empty. If B is a PPT adversary then the relation R(-) is polynomial time computable.

Claim 3.6 For b € {0,1}, Pr [Exp’;égm'ﬁﬁm‘atk‘b(k) - 1} — Pr [Exp’gmy%d-atk-b(k) - 1}

Proof: Consider the output of As. Note that the relation over K} holds if and only if B
returns one, i.e. if By thinks that K* = K} fits to the challenge ciphertext C*. This exactly
coincides with the non-malleability experiment of A. In case b = 1, B does this correctly with

probability Pr [Exp’;&”mj[i%d'atk'l (k) =1 } and therefore the relation holds with exactly the same

probability showing that Pr [Expl;égm'{wjm'“tk'l(k) = 1] = Pr [Exp%”ﬂ?%d'“tk'l(k) = 1]. The
same argument holds for the case b = 0. 1

Now we can apply the claim to obtain Adv%ﬁ%ﬂl'atk (k) = Advl;g‘ﬂ:[wﬁm_“tk (k). Since KEM

is secure in the sense of wWNM-ATK we know that Adv%ﬂ}wﬁm'atk(k) is negliglible and hence
Advkem—ind—atk 7

xreat s (k) is negliglible, too.
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3.2 Proof of Theorem [3.2: wNM-CCA2 # sNM-CPA

As a technical tool, we first provide an equivalent formulation of the sNM notion for KEMSs.
This notion of non-malleability under parallel chosen-ciphertext attacks was introduced in [4] for
the PKE setting, and extended to the KEM setting in [18].

Definition 3.7 Let A = (A, A3, A3) be an adversary. For atk € {cpa, ccal, cca2}, we define
the advantage of A as

Advig k) = [Pr [Bxplr ) = 1] - Pr [Bxpl O = 1]]

where, for d € {0,1},

Experiment Expl;ég‘:[p o atk=d (k)

(pk, sk) < KEM.Kg(1¥)

St1 < ATV (pk)

K & KeySp(k) ; (K7, C*) & KEM.Enc(pk)
K* — K}

(Sta,C) & AFECV (0% K+, 5ty)

K & KEM.Dec(C)

d' & A3(K, Sty)

If (C* ¢ C) then return d’ else return 0

and the oracles DEC; and DECs are defined as in Definition [2.3.
A key encapsulation mechanism KEM is said to be PNM against ATK attacks if the ad-

kem-prm=-atk (1) is a negligible function in k for all polynomial-time adver-

vantage function Adv KEM A

saries A.

It has been proved in [18] that (a slightly different but equivalent formulation of) PNM-ATK
is equivalent to SNM-ATK for ATK € {CPA, CCA1, CCA2}. In the current proof, we are going
to use therefore the PNM-CPA notion instead of the equivalent SNM-CPA notion.

Assume there exists a wWNM-CCA2 secure scheme KEM = (KEM.Kg, KEM.Enc, KEM.Dec)
with key-space {0,1}¢ for some function ¢ = ¢(k) such that the length of the key-space 2°¢ is
super-polynomial in k.

We modify KEM into a new KEM KEM' = (KEM’.Kg, KEM'.Enc, KEM’.Dec) which is still
secure in the sense of wNM-CCA2 but not secure in the sense of PNM-CPA. We split the
keys generated by KEM.Enc in two parts of the same length ¢/2 (we assume ¢ to be even for
simplicity), denoting this fact as K = K1|| K. Concretely, we set KEM’.Kg = KEM.Kg and

Alg. KEM'.Enc(pk) Alg. KEM'.Dec(sk, C!||C3)
(K1||K2, C1) < KEM.Enc(pk) |  Ki||Ks < KEM.Dec(sk, C})
Return (K1||K2, 01||J_) If 02/ € {J_,KQ} then K = K1HK2 else K = L
Return K

Claim 3.8 KEM " is not secure in the sense of PNM-CPA.

Proof: In the PNM-CPA game the adversary As gets the challenge ciphertext C* = Cf||L,
together with a key K* = K||K2. The goal of the adversary is to guess if the key K* is the
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one encapsulated in C* (i.e. d = 1) or if it is a random key (i.e. d = 0). To do this, the
adversary can choose a vector of ciphertexts C to be decrypted. In this case, Ao chooses a
single ciphertext to be decrypted, which is Cy||K2. The result of decrypting this ciphertext,
K' = KEM'.Dec(sk, Cf||K2), is taken as input by As. If K’ = L then Az returns d' = 0;
otherwise, Aj returns d’ = 1.

Note that the final output of As is incorrect only if the key K* = K;||K; received by Aj
is not the key encapsulated in C* (that is, if K* is a random key, independent from C*)
but on the other hand the second half of the key, Ko, is equal to the second half of the key
encapsulated in C*. This happens with negligible probability; therefore, we have that the
advantage Adv?énm:ﬁT_atk(k) is almost 1 in this case, meaning that KEM' is not PNM-CPA
secure. |

Claim 3.9 KEM " is secure in the sense of WNM-CCA2.

Proof: Assume to the contrary that there exists a successful wNM-CCA2 adversary A’ =
(A}, Ay) against KEM ', Then we can use it to construct a successful wNM-CCA2 adversary
A= (A1, As) against KEM (leading therefore to a contradiction), as follows. In the first stage
Aj receives a public key pk, then it initializes A’ by sending the same pk to A}. When A’ makes
a decapsulation query to the oracle KEM'.Dec(sk, ) for a ciphertext C' = Cf||Cj, adversary A;
makes the query C = (Y to its oracle KEM.Dec(sk, -), obtaining as answer K;||Ka. If C) = Ko
or C§ = L, then A; sends K;||Ky to Al; otherwise it sends L to A}. We now describe Ay and
DEC),.

Alg. AF%(C*, St)

(T R') & A7 (C7||L, 81)
Fori e {1,...,|C|} do
Parse C'[i] as Gi||T;

Cli] — Cj if C; # C*

Alg. DECYF®(C)
Parse C' = (|| Cy
If C{ = C* then K «— L
else K < DECy(CY)
return K

Cl[i] < L otherwise

Define R(K,K) as R'(K,K'), where
K'[i] — K[i] if C; # C*,
K'[i] <« L otherwise.

Return (C, R)

After this first phase, As receives a challenge ciphertext C*, which encapsulates some key
K* = (KY, K3). We define the two events in the above execution of adversary A’.

E;: Cy = K for a query C’ = Cf||C} to DEC,(-).
E,: T; = K3 for an index 1 <7 < |C'|.
Let E = Eq V Es.

We claim that unless event E; happens adversary A perfectly simulates the view of A’. To verify
this consider a query C’ = Cf||C made to DEC,. The interesting case to consider is C] = C*.
Note that C" # C"™ and C{ = C* imply Cj # L. Therefore the only case where the answer L
is invalid would be Cj = K3.

Furthermore it is easy to verify that unless Eo happens, adversary A translates a correct cipher-
text/relation pair (C’, R') for KEM' into a correct ciphertext/relation pair (C, R) for KEM,
i.e. we have R'(K') & R(K).
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Thus,

Pr | Expler i () — 1|8 | = Pr | Explggs 2 (k) = 1]-E | (1)

for b € {0,1}.

Lemma 3.10 There exists a PPT adversary B against the wNM-CCA2 security of KEM such

that Advlggg\_ﬁgm_“w > Pr[E]/q(k) — 27%/? for some polynomial q(k).

Proof: Adversary B is defined like A with the difference that B uses the K3 part of the output
of A (from either the queries to DEC) or from C’) to break the non-malleability of KEM.
More precisely, B chooses in the beginning a random integer j € {1,...,q(k)}, where ¢(k) =
q1(k) + g2(k) and ¢1 (k) is an upper bound on the number of decapsulation queries A" makes and
g2(k) is an upper bound on the length of the ciphertext vector C’ output by A’.

The integer j corresponds to the (guessed) appearance of K in the queries of A’. If i < ¢y then
it uses the Cj of the ith decapsulation query to break the wNM-CCA2 security of KEM. If
i > ¢ then it uses Tj_4 from C’ returned by A’ to break the wNM-CCA2 security of KEM.
By definition of event E and since 7 is chosen uniformly and independently, we have that KJ
is guessed correctly with probability at least Pr[E]/q(k). Finally adversary B returns (C, R),

where C = € and R(K) returns true iff K’ = K. This implies Pr [Exp];é%nﬂj[wgm'““?'l(k) = 1} >

Pr[E]/q(k) and Pr [Exp%”mj[wgm_““?’o(k) = 1] — 27¢/2_ This proves the lemma by observing

Advkem— wnm-cca?

KEM B - KEM B KEM B

Pr[E] /g(k) — 2%/ .

Pr [Expkem—wnm—cm,@—l(k) _ 1} — Pr [Expkem—wnm—ccaQ—O(k) _ 1}

Vv

Using the previous lemma and (1), we complete the proof with
Ad kem-wnm-cca2 < P E kem-wnm-cca2-1 H=1-E| -P E kem-wnm-cca2-0 k) = 1|-E PrIE
Viorar A < |Pr RS (k) =1|= r| Exp i (k) =1-E || +Pr[E]
< Advl;gg;[z:ﬁm—cca? + q(k) . (Advkcgézmm:[u’zgm-cca,g + 2—0/2) ’

where the two terms on the right hand side are negligible by the security of KEM and since
q(k) is a polynomial and 27¢ is negligible by assumption. |

Theorem [3.2 in particular implies the interesting separation wNM-CCA2 %4 IND-CCA2. We
stress that this is only due to the fact that the size of the key-space {0,1}¢ of KEM is assumed
to be super-polynomial (resembled by the additive factor 27¢/2 in Lemma [3.10). On the other

hand, if the size of the key-space is only polynomial in k£ then we actually can prove wNM-CCA2
= IND-CCA2.

3.3 Proof of Theorem [3.3: IND-CCA1 A wNM-CPA

Assume there exists an IND-CCA1 secure scheme KEM = (KEM.Kg, KEM.Enc, KEM.Dec)
(since otherwise the theorem is vacuously true). We modify KEM into a new KEM KEM =
(KEM’.Kg, KEM’.Enc, KEM'.Dec) which is still secure in the sense of IND-CCA1 but not in the
sense of wWNM-CPA. Namely, we set KEM'.Kg = KEM.Kg and
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Alg. KEM'.Enc(pk) Alg. KEM'.Dec(sk, C")
(K, C) & KEM.Enc(pk) | Parse C' as P||C
' —0k||C K & KEM.Dec(sk, C)
Return (€', K) Return K & P

Now KEM' inherits the IND-CCA1 security of KEM, since any IND-CCA1 attack on KEM'
can be simulated in the IND-CCA1 attack setting on KEM (note that in the first phase, the
KEM decapsulation oracle is not restricted in any way, and thus, decapsulation of any KEM '
ciphertext can be performed using such a KEM decapsulation oracle).

However, KEM' is not secure in the sense of wWNM-CPA: an attacker receiving a challenge
ciphertext 0%|| C' can submit a forged ciphertext 1¥||C' (which decrypts to the bitwise complement
of the challenge message) together with the relation R(K, K2) that is fulfilled iff K5 is the bitwise
complement of Kj.

4 Relations among Data Encapsulation Mechanisms

We state more formally the results summarized in Figure 3] and provide proofs.

We first show that NM is strictly stronger than IND for all attacks forms. For CCA2 attacks
this is in contrast to [14] (recall that [14] uses a weaker notion of non-malleability). The proof
of the following is in Section [4.1.

Theorem 4.1 [NM-ATK = IND-ATK | If a DEM is secure in the sense of NM-ATK then it is
secure in the sense of IND-ATK, for any ATK € {OT, OTCCA, CPA, CCA1,CCA2}.

The proof of the following goes along the lines of [3, Theorem 3.3] (showing IND-CCA2 =
NM-CCAZ2) and is omitted here.

Theorem 4.2 [IND-OTCCA = NM-OTCCA, IND-CCA2 = NM-CCA2 | If a DEM is se-
cure in the sense of IND-ATK then it is secure in the sense of NM-ATK for any ATK €
{OTCCA, CCA2}.

Not too surprisingly even the stronger notion without access to an encryption oracle (IND-
OTCCA) does not imply the weakest notions with access to an encryption oracle (IND-CPA).
The following theorem follows from [14, Theorem 6].

Theorem 4.3 [IND-OTCCA # IND-CPA | There exists a DEM which is secure in the sense
of IND-OTCCA but which is not secure in the sense of IND-CPA.

The separating example from [3, Theorem 3.5] (showing IND-CCA1 % NM-CPA) extends
to show the following;:

Theorem 4.4 [IND-CCA1 % NM-OT | If there exists a scheme DEM which is secure in the
sense of IND-CCA1, then there exists a scheme DEM " which is secure in the sense of IND-CCA1
but not secure in the sense of NM-OT.

The separating example from [3, Theorem 3.7] (showing NM-CCA1 % NM-CCA2) extends
to show the following;:

Theorem 4.5 [NM-CCA1 % NM-OTCCA | If there exists a scheme DEM which is secure
in the sense of NM-CCA1, then there exists a scheme DEM’ which is secure in the sense of
NM-CCAT1 but not secure in the sense of NM-OTCCA.
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For completing the picture, we finally need to formulate a result from [3| for the secret key
case (however, the proof from [3] still applies):

Theorem 4.6 [NM-CPA # IND-CCAL1 | If there exists a scheme DEM which is secure in the
sense of NM-CPA, then there exists a scheme DEM " which is secure in the sense of NM-CPA
but not secure in the sense of IND-CCAL.

4.1 Proof of Theorem [4.1: NM-ATK = IND-ATK

For ATK € {CPA, CCA1,CCAZ2} this is essentially Theorem 3.1 from [3]. We focus on the case
ATK € {OT,OTCCA}.

Assume DEM is secure in the NM-ATK sense for ATK € {OT,OTCCA}. We will show it
is also secure in the sense of IND-ATK. Let B = (B1, B2) be an IND-ATK adversary attacking

DEM. We have to show that Advgfgmf%d'atk(-) is negliglible. To this end we will describe a

NM-ATK adversary A = (A, Ag) attacking DEM .

Alg. A;(1%) Alg. AgECQ(')(C*,St,mO,ml)
(mo, my, St) < By(1%) ¢ & BY% (g, my, C*, St)
M — {mg, m1} Define R(mg) :=1—¢, R(mq) :=c¢

Return (M, St, mg, m1) Return (C =¢, R)

In the OTCCA case, adversary By has access to an oracle DEC, which is simulated by A3 using
its own oracle DECy. Note that Ay outputs an empty ciphertext vector C = ¢.
It is easy to verify that adversary A perfectly simulates B’s view in the IND-ATK game.

Claim 4.7 Pr|Expgemnm-att-1(j) = 1] =Pr [Exp%ﬁ%d'“tk'b(k) = b].

Proof: By [3, Proposition 3.8] we may assume here, without loss of generality, that we have
mo # my for the two messages output by B;. Adversary A returns a relation R : {mg,m1} —
{0, 1} such that R(m) =1 if m = m. and R(m) = 0, otherwise. In the IND-ATK game we have
DEM.Dec(K, C*) = my, and therefore by definition of R, we have R(myp) =1 iff b=c. |

: dem-nm-atk-0/7.y _ 1 | —
Claim 4.8 Pr | Exp,; """ (k) = 1] =1/2.
Proof: This follows from an information theoretic argument since A does not have any infor-
mation about the message m € {mg, m1} in which the relation R is evaluated. |

Now we may apply the claims to obtain Adv%egm:[i%d_“tk(k) =2 Advd@egm:["j'“tk(k). Since

DEM is secure in the sense of IND-ATK we know that Adv d@egm_{”jzr atk () and hence Adv%ﬁ%‘i— atk (k)
is negliglible, too.

5 Necessary and Sufficient Conditions for Hybrid Encryption

Let KEM = (KEM.Kg, KEM.Enc, KEM.Dec) be a public-key encapsulation mechanism (KEM)
and DEM = (DEM.Kg, DEM.Enc, DEM.Dec) be a data encapsulation mechanism (DEM).

We assume that the two schemes are compatible in the sense that for all security parameters
k, we have that the KEM’s and the DEM’s key-space are equal. Then we can consider the
hybrid public key encryption scheme PXE gzas prar = (PKE.Kg, PKE.Enc, PKE.Dec) which is
constructed by combining KEM and DEM as follows:
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Alg. PKE.Kg(1¥) Alg. PKE.Enc(pk, M) Alg. PKE.Dec(sk, (C1, C2))
(pk, sk) & KEM.Kg(1F) | (K, C1) < KEM.Enc(pk) | K & KEM.Dec(sk, Ci)
Return (pk, sk) Cy & DEM.Enc(K, M) M & DEM.Dec(K, Cy)

Return (Ch, C9) Return M

We state more formally the results summarized in Figure[Iland provide proofs. The following
three results can be considered as the main composition theorems for hybrid encryption. They
show that, for X € {IND,sNM} security, a X-Y secure KEM and a X-Y’ secure DEM implies
a X-Y secure hybrid PKE scheme. Interestingly, in same cases we have that for Y’ a weaker
attack form than Y is sufficient.

Theorem 5.1 [IND-ATK KEM + IND-ATK’ DEM = IND-ATK PKE]| For ATK € {CPA,
CCA1,CCA2}, if KEM is a secure KEM under IND-ATK attacks and DEM is a secure DEM
under IND-ATK” attacks, then PKE gzar pras is a secure PKE scheme under IND-ATK attacks,
where for ATK € {CPA, CCA1}, ATK’ = OT and for ATK = CCA2, ATK' = OTCCA.

The CCA2 version of the proof can be found in Theorem 5 of [8]. The proofs for the other two
cases are almost identical and omitted here.
The following results are proved in Section [5.1]

Theorem 5.2 [sNM-CCA1 KEM + NM-OT DEM = NM-CCA1 PKE]| If KEM is a secure
KEM under sNM-CCA1 attacks and DEM is a secure DEM under NM-OT attacks, then
PKE grar,pra is a secure PKE scheme under NM-CCAL1 attacks.

Theorem 5.3 [sNM-CPA KEM + NM-OT DEM = NM-CPA PKE] If KEM is a secure KEM
under SNM-CPA attacks and DEM is a secure DEM under NM-OT attacks, then PKE KEM, DEM
is a secure PKE scheme under NM-CPA attacks.

Now we turn to negative results.

Theorem 5.4 [wNM-CCA2 KEM + IND-CCA2 DEM # NM-CPA PKE] Assume there exist
a scheme KEM which is secure in the sense of WNM-CCA2 and a scheme DEM which is secure
in the sense of IND-CCA2. Then there exist a scheme KEM " which is secure in the sense of
wNM-CCA2 and a scheme DEM’ which is secure in the sense of IND-CCA2, such that the
hybrid scheme PKE KEM' DEM’' is not secure in the sense of NM-CPA.

Theorem 5.5 [* KEM + IND-CCA1 DEM # NM-CPA PKE]| Assume there exists a scheme
DEM which is secure in the sense of IND-CCA1. Then there exists a scheme DEM’ which is
also secure in the sense of IND-CCA1, such that for any KEM (independently of its security
level), the hybrid scheme PKE KM, pES’ 1S DOt secure in the sense of NM-CPA.

Theorem 5.6 [« KEM + NM-CCA1 DEM # IND-CCA2 PKE]| Assume there exists a scheme
DEM which is secure in the sense of NM-CCA1. Then there exists a scheme DEM' which is
also secure in the sense of NM-CCA1, such that for any KEM (independently of its security
level), the hybrid scheme PKE KEM DEM' is not secure in the sense of IND-CCA2.

Theorem 5.7 [sNM-CPA KEM + IND-CCA2 DEM # IND-CCA1 PKE] Assume there exist
a scheme KEM which is secure in the sense of SNM-CPA and a scheme DEM which is secure
in the sense of IND-CCA2. Then there exist a scheme DEM’ which is secure in the sense of
sNM-CPA and a scheme DEM’ which is secure in the sense of IND-CCA2, such that the hybrid
scheme PKE KEM' DEM’ is not secure in the sense of IND-CCAL.
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Theorem 5.8 [sNM-CCA1 KEM + IND-CCA2 DEM # IND-CCA2 PKE] Assume there exist
a scheme KEM which is secure in the sense of SNM-CCA1 and a scheme DEM which is secure
in the sense of IND-CCA2. Then there exist a scheme DEM’ which is secure in the sense of
sNM-CCA1 and a scheme DEM’ which is secure in the sense of IND-CCAZ2, such that the hybrid
scheme PKE KEM' DEM' is not secure in the sense of IND-CCA2.

5.1 Proof of Theorem|5.2/and Theorem|5.3: sNM-CCA1 KEM + NM-OT DEM
= NM-CCA1 PKE, and sNM-CPA KEM + NM-OT DEM = NM-CPA PKE

For this proof we will use the notion of PNM-ATK security (equivalent to SsNM-ATK security)
described in Section[3.2. So first assume KEM to be sSNM-CCA1 secure (and thus PNM-CCA1
secure), and DEM to be NM-OT secure. Consider an adversary F = (F1, F2) on the NM-CCA1

. ~ . pke-nm-atk-b b
security of PKE grar prar- Denote the NM-CCA1 experiment Expwczm%m% #(k) by G{.

In G%, the challenge ciphertext C* is generated as C* = (CF, C3) for (K*, C}) & KEM.Enc(pk)
and C3 & DEM.Enc(K*,m}). In experiment G%, we modify the generation of the challenge ci-
phertext as follows: C* = (C,C3) for (K*,C%) <~ KEM.Enc(pk) and C§ < DEM.Enc(K~,m?)
with an independently chosen key K~ & {0,1}*. During the decryption of the ciphertext vector

C for evaluating the relation R, the KEM ciphertext C7 is always decapsulated as K~ (without
even running KEM.Dec). We claim:

Pr[Ggﬁl]%Pr[Glfﬂl} (2)

for b =0, 1 (denoting by X ~ Y that | X —Y| is negligible in k). To see this (for fixed b), construct
an adversary A on the PNM-CCA1 security of KEM, so that A = (A1, As, A3) simulates the
setting of game G§ resp. G4 for an internal simulation of Z. As a public key, A; relays its own
public key (for KEM) to Fi, and oracle queries from F; are answered using A;’s own oracle.
The key point is that Ag presents to Fa a challenge ciphertext C* = (Cf, C3) that is built from
Ay’s own challenge (K+,C*) as Cf «— Ct and C} < DEM.Enc(K ™+, m}).

Once F> outputs a ciphertext vector C along with a relation R, Ay translates this into
a ciphertext vector C’ for its own PNM-CCA1 setting and relays R along with KT as state
information to As. Specifically, C’ contains all KEM ciphertexts of C which are not equal to the
challenge KEM ciphertext C*. Finally, A3, on input (K*, R, K'), where K’ is the decapsulation
of C', outputs R(mj,M). Here, M is generated by decapsulating C with the keys in K’ and
using KT as the decapsulation of CT.

Now if A itself is run in Exp];g;nm_{p Z‘m_cml_d

Since KEM is PNM-CCAL1 secure, (2) follows.

Next we simulate Gl{ (with adversary F) inside a NM-OT adversary B on DEM . Here, B
chooses a PKE gzar prar keypair on its own for the experiment and answers all oracle queries
from F using this secret key. B relays F’s choice of message space and then uses its own NM-OT
challenge C* in F’s challenge ciphertext C* = (C}, C5) as C5. Relation R and ciphertext vector
C from F are translated as follows: if a ciphertext (C%,C%) € C has C% # Cf, it is decrypted
using the prepared keypair and hardcoded into R. But all C} with C% = Cf are collected and
output by B as its own ciphertext vector (as ciphertexts encrypted by the same unknown key
as C5 = C™).

Now the experiment Expdﬂ)egmz‘g_atk‘b is simply a reformulation of G4 (with adversary F).

By the NM-OT security of DEM , we thus have

, its output is that of G?fd when run with F.

Pr[G(l)—>1] %PI‘[G%—)l],
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and hence, using (2)),
PT[G8—>1] %PI’[G%—)l],

which shows PKE gzar pear secure.

The only difference in the CPA case is that F has no oracle access in the first phase; but
then the reductions above work fine with a KEM that is PNM-CPA secure and a DEM which
is NM-CPA secure.

5.2 Proof of Theorem wNM-CCA2 KEM + IND-CCA2 DEM # NM-CPA
PKE

Assume there exists a wWNM-CCA2 secure scheme KEM . We use the same modification KEM '
as in the proof of Theorem [3.2, where it was shown that KEM' is still wWNM-CCA2 secure.

With respect to the DEM part, assume now that there exists an IND-CCA2 secure scheme
DEM = (DEM.Kg, DEM.Enc, DEM.Dec), with key-space {0,1}*. We modify DEM into a new
DEM DEM' = (DEM’.Kg, DEM’.Enc, DEM’.Dec) (with key-space {0,1}2 so as to be compatible
with KEM') which is still secure in the sense of IND-CCA2. Again we split the keys K = K1|| K>
used by DEM in two parts of the same length.

Alg. DEM'.Kg(1*) | Alg. DEM".Enc(K, M) | Alg. DEM'.Dec(K, C")
K1 & DEM.Kg(1%) Parse K as K1||Ka Parse C' as C]||C} and K as K1||K»
Ky & {0,1}* ¢/ & DEM.Enc(Ky, M) | If C} = K5 then M « DEM.Dec(K7, C})
Return K = K || K> Cy — Ko else M «— L
Return ¢ = Cf||C4 Return M

Claim 5.9 DEM’ is secure in the sense of IND-CCAZ2.

Proof: We reduce an adversary B = (B},B5) on the IND-CCA2 security of DEM’ to an
adversary B = (B, Bz) on the IND-CCA2 security of DEM . The idea is that B internally runs
B and simply translates challenge ciphertext and oracle queries:

Alg B?NC1,DEC1(1IC) Alg B2ENC2,DECQ(C*, StHKg)
Ky & {0, 1} b & BENCPEC (o gp)
St & B’lENcll ’DEC/l(lk ) Return b

Return St||Ko

Here, oracle ENC, (M) returns ENCy(M)||K2. Oracle DECS(C]||C5) returns DECo(CY) if C) = Ko
and L otherwise. (Similarly for ENC, and DECS.) Note that this implies that B never queries
DEC), on its target ciphertext.

Now B’ gets identical views in the simulation inside B and in the IND-CCA2 experiment with
scheme DEM’. Hence
Adviy e (k) = Adv e (k)

and thus, DEM inherits the IND-CCA2 security of DEM. |

Claim 5.10 PKXE KEM DEM’ is not secure in the sense of NM-CPA.
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Proof: We construct a successful adversary F = (F1, F2) against PKE 401 pegy/- In the first
phase, Fi receives a public key pk and chooses the uniform distribution on the message space.
Then, in the second phase, F2 receives a challenge ciphertext for the hybrid PKE scheme,
ie. C* = (CY||Cy, C3||Cf) where (Ki||K2, C) & KEM.Enc(pk), Cf = C, C5 = 04/2, C; =
DEM.Enc(K1, M*) and C; = Ko, for some challenge message M ™.

Now, the ciphertext C' = (C7[|Cy, C5||CF) is also a valid ciphertext for PKE s/ pyq Which
encrypts the same message M*. Therefore, Fy can output (R, C'), where R(mq,mg) = 1 iff
m1 = meo. In the experiment with b = 1, where message M; in the evaluation of the relation
is the challenge message M*, the relation holds with probability one (message Ms is in both
experiments My = PKE.Dec(sk, C') = M*); on the other hand, in the experiment with b = 0,
where message M; in the evaluation of the relation is a uniform message, chosen independently
from M*, the relation only holds with probability one over the cardinality of the message space.
Therefore the adversary F is successful. |

This proof makes use of a malleability attack in which the adversary outputs the identity
relation. Although fine in our setting, the original non-malleability formulation [11] disallows
this. However, our example can be adapted such that instead of the identity relation, the “bitwise
complement” relation can be used. We omit the somewhat tedious proof, which requires further
modifications to both the KEM and the DEM part. (The idea is to have KEM’ output a key
K1||K2 upon decapsulation of ciphertexts (C1, K2), such that K7 is equal to K7 except for, say,
the most significant bit. On the other hand, DEM’ now uses this most significant bis of K7 to
determine whether to invert the plaintext upon decryption or not.)

5.3 Proof of Theorem 5.5: x KEM + IND-CCA1 DEM # NM-CPA PKE

For this, we can use the ideas in the proof of [3, Theorem 3.5]. Assume that there exists an
IND-CCAL1 secure scheme DEM = (DEM.Kg, DEM.Enc, DEM.Dec). We modify DEM into a
new DEM DEM' = (DEM’.Kg, DEM’.Enc, DEM’.Dec) which is still secure in the sense of IND-
CCA1. The new DEM DEM’ is defined as follows. Here we denote by m the bitwise complement
of the string m, namely the string obtained by flipping each bit of m.

Alg. DEM'.Kg(1*) | Alg. DEM".Enc(K,m) | Alg. DEM’.Dec(K, C')
K & DEM.Kg(1¥) | G < DEM.Enc(K,m) | Parse C' as C1]|Cs
Return K Cy & DEM.Enc(K,m) m «— DEM.Dec(K, C1)

Return C' = (4[| Cy Return L

The following was already proved in [3, Claim 3.10].

Claim 5.11 DEM ' is still secure in the sense of IND-CCAL.

Proof: Assume to the contrary that there exists a successful IND-CCA1 adversary B’ = (B}, Bj)
against DEM’, and let us use it to construct a successful IND-CCA1 adversary B = (B1,Bs)
against DEM , contradicting the fact that DEM is IND-CCAL1 secure.

A challenger generates K & DEM.Kg(1%), then B initializes adversary B’. In the first stage, B;

can make encryption and decryption queries, which are answered by B; as follows:

e To answer an encryption query for a message m, adversary 31 makes two queries to its
encryption oracle DEM.Enc(K, -), for messages m and . The concatenation of the two
obtained ciphertexts is the ciphertext that B; sends back to Bj.
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e To answer a decryption query for a ciphertext C’' = Cy||Cs, adversary By sends C} to its
decryption oracle, obtaining m < DEM.Dec(K, C}). The message is sent back to Bj.

Now B outputs two messages mo and my of the same length. B; chooses at random a
bit 6 € {0,1} and asks to its encryption oracle for the encryption of s, obtaining C5 «
DEM.Enc(K,m5). By outputs the same messages mg and mq to its challenger, who then com-
putes C} <« DEM.Enc(K, m;) and gives it as input to Bz, depending on the experiment b € {0, 1}.
The resulting challenge ciphertext that B gives to B is C™* = (Cf, C5). At the end, B) outputs
a bit ¢/. If b/ = ¢, then the output of By is also this bit J; otherwise, the output of By is simply
a random bit.

It is not difficult to see that Adv%ﬁ%d_ccal > %Advgfgm'{ifgcmz, which leads to the desired

contradiction. |
However, the attack from [3, Claim 3.9] carries over to the hybrid setting:

Claim 5.12 For any scheme KEM, PKE KEM DEM’ is not secure in the sense of NM-CPA.

Proof: Consider an arbitrary scheme KEM = (KEM.Kg, KEM.Enc, KEM.Dec). In effect, we can
easily construct a successful adversary F = (F1, F2) against the NM-CPA property of the hybrid
scheme: F receives a public key pk, resulting from (pk, sk) «+ KEM.Kg(1%); then it chooses the
uniform distribution on the message space, and receives a challenge ciphertext C* = (C1, Ca|| C3),
where (K, C1) & KEM.Enc(1*, pk), Cy = DEM.Enc(K, m*) and Cs = DEM.Enc(K, m¥), for some
uniform message m*. It is evident that C' = (Cy, C5]|C2) is a valid encryption of message m*
under the scheme PKE KEM DEM' - Therefore the adversary F can output (R, C), where C = C'

contains only one ciphertext, and the relation is defined as R(m,m’) =1 if and only if m’' = m.
In the real experiment (with b = 1), where m = m* in the evaluation of R, the relation holds
with probability one; on the other hand, in the b = 0 experiment we have that R is evaluated
on a uniform message m, independent from m*, and in m*, so the relation holds only with
probability one over the cardinality of the message space. |

5.4 Proof of Theorem 5.6: *x KEM + NM-CCA1 DEM # IND-CCA2 PKE

Assuming that there exists a NM-CCA1 secure scheme DEM = (DEM.Kg, DEM.Enc, DEM.Dec),
we modify DEM into a new DEM DEM' = (DEM’.Kg, DEM’.Enc, DEM’.Dec) which is still
secure in the sense of NM-CCA1. This modification is the same as the one proposed in Section
3.7 of [3] in order to prove that there exist (public key) encryption schemes which are NM-CCA1
secure but not NM-CCA2. Let F = {F¥ : k > 1} be a family of pseudo-random functions (this is
no extra assumption): each F¥ = {Fg : K € {0,1}*} is a finite collection of particular functions
Fr - {0,1}* — {0,1}*, indexed by a key K. We denote as ¢ the empty string. Again we split
the keys K = K, ||K5 used by DEM in two parts of the same length. The new scheme DEM’
is defined as follows.

Alg. DEM'Kg(1) Alg. DEM'.Enc(K,m) | Alg. DEM'.Dec(K, C)

K; < DEM.Kg(1*%) Parse K as Ki||K» Write K = K1|| K> and C' = b||C||2
Ky & {0,1}* C = DEM.Enc(K;,m) If b=0 and z = ¢, return DEM.Dec(K, C)
Return K = K1||K» Return ¢’ = 0[|C|le Else if b= 1 and z = ¢, return Fr,(C)

Else if b=1 and z = Fg,(C),
return DEM.Dec(K7, C)
Else return L
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The following has been proved in Section 3.7 of [3].
Claim 5.13 DEM’ is secure in the sense of NM-CCAL.

Again, DEM uses keys of length 2k, hence we need a KEM with key-space {0,1}2. (We
stress again that this is without loss of generality; one can always use a KEM with key-space
{0, 1}’“/ with “stretched security” parameter k' = 2k.) So for the rest of this proof, we assume
that KEM is any KEM with key-space {0, 1}2.

Similar to the proof of Theorem [5.5, the attack from [3, Claim 3.14] on DEM can be
transported to the hybrid setting.

Claim 5.14 For any scheme KEM, PKE KEM DEM' is not secure in the sense of IND-CCA2.

Proof: Consider an arbitrary KEM KEM = (KEM.Kg, KEM.Enc, KEM.Dec) and consider the
hybrid public key encryption scheme PKE KEM . DEM' - We are going to show that this hybrid
scheme is not secure in the sense of IND-CCA2. An adversary F against the IND-CCA2 property
of PKE Kol pEar’ Teceives a public key pk resulting from (pk, sk) «+ KEM.Kg(1¥); after the first

phase, it receives a challenge ciphertext C* = (Cy,0[| Ca||¢), where (Ky, C1) <~ KEM.Enc(1¥, pk)
and Cy = DEM.Enc(K1,my), for some message my, (with b = 0,1 depending on the IND experi-
ment) between two messages mg,mj chosen by F. In the following phase, the adversary F has
access to a decryption oracle for ciphertexts different from C*.

In particular, it can first ask for the decryption of (Ci, 1||C2||e), obtaining the value of Fg, (C).
Then it can ask for the decryption of (Ch, 1||Ca||Fk,(C)), obtaining DEM.Dec(K1, C') = m; and
thus breaking not only the IND security of the hybrid scheme, but also its one-wayness. Note
that none of these two submitted ciphertexts is equal to C*, as required. |

5.5 Proof of Theorem 5.7: sNM-CPA KEM + IND-CCA2 DEM # IND-CCA1
PKE

Assume there exists a SNM-CPA secure scheme KEM = (KEM.Kg, KEM.Enc, KEM.Dec). Once
again, it will be useful to assume that KEM has a key-space of {0,1}%*. Also we assume that
the secret keys sk of KEM are of the form sk = skil|...|[skyu) for sk; € {0,1}F and p(k) a
fixed polynomial. Both of these assumptions are without loss of generality.

We modify KEM into a new KEM KEM' = (KEM’.Kg, KEM’.Enc, KEM’.Dec) which is still
secure in the sense of NM-CPA. The modification is very similar to the one proposed in Section
3.6 of [3] for the case of PKE schemes.

(pk, sk) < KEM.Kg(1F) (K. C') & KEM.Enc(pk') Write sk’ = (sk,v) and C' = b||C

5 10,1}k Define C' = 0] C If b = 0 return. KEM.De.c(sk7 C)
U<,_${ ' ene , else if C'=vl|i for 1 < i < p(k) then
pk’ — pk Return (K, C') return 0| sk;
sk & (sk,v) else return 0%||v
Return (pk’, sk’)

Using the same techniques as in Section 3.6 of [3] for the case of PKE schemes, KEM " can
be proved to be secure in the sense of NM-CPA, whereas it is obviously insecure in the sense of
IND-CCA1.
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With respect to the DEM part, assume now that there exists an IND-CCA2 secure scheme
DEM = (DEM.Kg, DEM.Enc, DEM.Dec) (with key-space {0,1}2*, so that we can write K =
Ki||Ky for keys K1, Ky € {0,1}*). We modify DEM into a new DEM DEM' = (DEM' Kg,
DEM’.Enc, DEM’.Dec) which is still secure in the sense of IND-CCA2.

Alg. DEM'.Kg(1*) | Alg. DEM'.Enc(K,m) Alg. DEM'.Dec(K, C)
K & DEM.Kg(1%) | Write K = Ki[|K> Write K = K1||K>
Return K If K; = 0F then C = K&m | If K; = 0% then m = K@ C
Else C' & DEM.Enc(K,m) Else m « DEM.Dec(K, C)
Return C Return m

Now DEM' inherits DEM’s IND-CCA2 security, since the only difference between the two
schemes appears when DEM.Kg produces a 2k-bit key K such that the first k£ bits of K are
all zero (which happens only with negligible probability). Except for this negligible probability,
the advantages of an adversary against DEM and an adversary against DEM " are exactly the
same.

Claim 5.15 PKXE KEM' DEM’ is not secure in the sense of IND-CCAL.

Proof: An adversary F against the IND-CCA1 property of PKE KEM DEM’ receives a public
key pk’ resulting from (pk’, sk’) «— KEM.Kg'(1%). Recall that sk’ = (sk,v), where (pk’, sk') «
KEM.Kg(1%) and we write sk = sk1]|...||skp()-

In the first phase, F can ask decryption queries to an oracle; in particular, it can first ask for the
decryption of the hybrid ciphertext (1/|0]|0,02*). By definition of KEM ' the key encapsulated
in C" =1[/0]|0 is K = K, || Ky = 0%||v; by definition of DEM’, since K; = 0F, we have that the
decrypted message obtained from this query is m = K®0%* = K = 0*||v. Once F has obtained
the secret value of v, it can ask for the decryption of the ciphertexts (1||v||i,0%%), obtaining
as answers the messages 0F||sk;. Therefore, F is able to obtain the whole secret key sk’ of
the hybrid encryption scheme, even before receiving the challenge ciphertext. This means in
particular that PKE ggar prar 1 DOt IND-CCA1 secure. 1

5.6 Proof of Theorem sNM-CCA1 KEM + IND-CCA2 DEM = IND-CCA2
PKE

Assume there exists an sSNM-CCA1 secure scheme KEM = (KEM.Kg, KEM.Enc, KEM.Dec),
where we again assume that the key-space of KEM is {0, 1}2*. We start off by modifying KEM
into KEM' along the lines of the modification of the DEM in the proof of Theorem Namely,
if F'is a family of pseudo-random functions, we define:

Alg. KEM'.Kg(1) Alg. KEM'.Enc(pk) Alg. KEM'.Dec(sk’, C")
(pk, sk) < KEM.Kg(1F) (K, C) = KEM.Enc(pk') Write sk’ = sk|lu and C" = b||C||z
u s {01} C' —0]|C||e If b= 0 and z = ¢, return KEM.Dec(sk, C')
sk’ — sk||u Return (K’, C") else if b = 1 and z = ¢, return 0%||F,(O)
Return (pk, sk') else if b =1 and z = 0*||F,(C) then

return KEM.Dec(sk, C)
else return L
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Again, techniques from Section 3.7 of [3] show
Claim 5.16 KEM " is secure in the sense of SNM-CCA1.

Combined with the IND-CCA2 secure DEM DEM’ from the proof of Theorem 5.7, we
get a hybrid encryption scheme PKE = PKE KEM' DEM' - Now PKE is not IND-CCA2 secure.
Namely, a CCA2 attack on KEM’ along the lines of the CCA2 attack on DEM’ in the proof of
Theorem 5.6 can be carried out “through” the DEM DEM " just like in the proof of Theorem|5.7.
We omit the details.
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A  Poof that CNM-CPA* does not imply CNM-CPA

Let PKE = (PKE.Kg, PKE.Enc, PKE.Dec) be a CNM-CPA* secure public key encryption scheme.
(The notion of CNM-CPA* security is informally defined in Section 2.1, for a formal definition
cf. [5].) W.lo.g., we can assume that the secret keys of PKE always have length p(k) for a
polynomial p. We construct a scheme PKE’ = (PKE.Kg', PKE.Enc’, PKE.Dec') as follows:

Alg. PKE.Kg'(1%) Alg. PKE.Dec(sk’, C")
(pk, sk) < PKE.Kg(1%) Parse sk as ((ig, jo)b_,, sk)
Pick pairwise distinct Parse C' as b||C
ity -0k € {1,...,2k} | Ifb=0 then M’ & PKE.Dec(sk, C)
J1sedne1 < {0,1}2() else if C' = 14y for some £ then M’ — j,
g — sk ® DI ji else M' — 1
sk’ — ((ig, jo)5_y, sk) Return M’
Return (pk’ = pk, sk')

and PKE.Enc'(pk’, M) = 0||PKE.Enc(pk’, M). Tt is clear that PKE’ is a public key encryption
scheme. The idea of PKE’ is to let decryptions of a special form leak information on the
decryption key. In particular, a CNM-CPA adversary can, after receiving a challenge ciphertext
C"™, choose a ciphertext vector C" with C'[¢(] = (1,¢) (for ¢ = 1,...,2k). The relation R’ can
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then, using the decryption of C’, recover the secret key sk and, e.g., decrypt the (hardwired)
challenge ciphertext C"* and compare the decryption M’* to the relation’s first argument.

However, such an attack is obviously not possible with the CNM-CPA* notion, since such a
C’ contains invalid ciphertexts (in the sense that they decrypt to L). More generally, we prove
that PKE’ inherits the CNM-CPA* security of PKE, which shows the overall statement.

Claim A.1 If PKE is CNM-CPA* secure, then so is the scheme PKE’ built from PKE as
described above.

Proof: Let 7' = (F|, F}) be a CNM-CPA* adversary on PKE'. We construct a CNM-CPA*
adversary F = (F1, F2) on PKE from F’ such that F is successful if F' is.

The idea is that F internally runs F’ and only needs to translate to and from the different
interface of PKE’. For this, F| can be left unchanged (i.e., F; = F}), and F» is defined as
follows:

Alg. F»(C*, St)

(R, C') & Fy(C™, St)

Pick pairwise distinct iy,...,9; € {1,...,2k}

Ji gk < {0, 1370

For v e {1,...,|C'|} do
Parse C'[v] as b,||C,
If b, = 0 then Clv] «— C,
else If C,, = i, for some ¢, then C[v] < PKE.Enc(pk, j¢)
else C[v] & PKE.Enc(pk, 1)

Return (St, M)

By definition of F, the view of F’ in the CNM-CPA* experiment for scheme PKE’ and in F’s
simulation of the CNM-CPA* experiment for scheme PKE is the same. Hence, by definition of
the CNM-CPA* experiment, the output distribution of the experiment with adversary F’ and
scheme PKE’ is the same as that of the CNM-CPA* experiment with F and PKE, provided
that either

e C’ contains an invalid ciphertext (in which case the experiment output is forced to false),
or that

e C’ does not contain all ciphertexts (1,4y) for i = 1,...,k (in which case the decryption of
C’ is identically distributed in both experiments).

But since the i, are chosen independently from F’ in both experiments, F’ has negligible chance
of coming up with a ciphertext vector C’ that contains only valid ciphertexts, but all the (1,4).
(For this, 7’ would have to guess {i¢}5_;.)

So the experiment output with adversary 7’ and scheme PKE’ and that of the experiment with
F and PKE differ only negligibly. In other words, F is successful if F' is. |
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B The notion of non-malleability for KEMs from [17, 19]

Definition B.1 Weak non-malleability in the sense of Nagao, Manabe, and Okamoto [17,19]
(that we will denote as NM') is defined as in Definition [2.4 where the security experiment

kem-wnm-~-atk-b

Expcrari (k) is modified as follows (all changes are marked with a framed box).

Experiment Exp*em-wnm- atk-b( k)

KEM , A

(pk, sk) < KEM.Kg(1¥)

(st. ) & ATV ph)

K & K (Kf, C*) & KEM.Enc(pk) A KT € K
(R,C) & AF=0(C, s1)

K «— KEM.Dec(sk, C)

If C* ¢ C and R(Kj},K) then return 1 else return 0

Again, a key encapsulation mechanism KEM is said to be NM' against ATK attacks if the
respective advantage function is a negligible function in & for all polynomial-time adversaries A.

Actually the definition from [17, 19] is ambiguous and leaves some room for interpretation. In

particular it is not clear how the statement “(K}, C*) <&~ KEM.Enc(pk) A K* € K” should be
understood. Our interpretation is that the encapsulation algorithm is run with the additional
requirement that the generated random key should be chosen according to the distribution /C.

One of the main theorems in [17,19] is that in the case of CCA2 adversaries, the notions of
NM’ and IND are equivalent, i.e. that IND-CCA2 < NM'-CCA2. For the proof, [19] refers to
the second author’s master thesis but we now explain some difficulties one encounters proving
this result by showing a counterexample separating IND-CCA2 from NM'-CCA2.

As a separating example we use the Cramer-Shoup key encapsulation mechanism [7] which
is well-known to be IND-CCA2 [23]. We assume a cyclic group G of prime order p and two
generators gi,g2 € G. Furthermore let TCR : G x G — Z, be a target collision-resistant hash
function [7].

Alg. KEM.Kg(pk) Alg. KEM.Enc(pk) Alg. KEM.Dec(sk, C)
$1,x2,y1,y2,2<in T Lp;clgl; C2 gy Write C' = (c1, ¢2,¢3)
c—gitgs?; d— gi'gy t «— TCR(c1, o) 5 c3 — (ctd)" t «+ TCR(cq, c2)

h — gt C « (c1,¢c2,c3); K« h" Check if 11521192 = ¢
pk = (g91,92,¢,d,h) Return (C, K) If not, return L

sk = (w1, 22,1, Y2,2) Else return K « ¢f

Return (pk, sk)

As the following attack shows, the Cramer Shoup key-encapsulation scheme is not NM’-CPA
secure (and therefore in particular not NM'-CCA2). The idea is that, given the public-key
(containing the value h = ¢%), an attacker can choose the key distribution K as {h,h?} (both
chosen with probability 1/2) which limits the randomness used for the challenge ciphertext C*
to either 7 =1 or r = 2. The result is that the element c; = g} of the challenge ciphertext is in
the set {g1,9%}. This can clearly be used by an adversary to break the NM’ — CPA security of
the scheme.
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