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Abstract. KEM (Key Encapsulation Mechanism) was introduced by Shoup to formalize the asymmet-
ric encryption specified for key distribution in ISO standards on public-key encryption. Shoup defined
the “semantic security (IND) against adaptively chosen ciphertext attacks (CCA2)” as a desirable se-
curity notion of KEM. This paper introduces ”non- malleability (NM)” of KEM, a stronger security
notion than IND. We provide three definitions of NM, and show that these three definitions are equiva-
lent. We then show that NM-CCA2 KEM is equivalent to IND-CCA2 KEM. That is, we show that NM
is equivalent to IND under CCA2 attacks, although NM is stronger than IND in the definition (or under
some attacks like CCA1). In addition, this paper defines the universally composable (UC) security of
KEM and shows that NM-CCA2 KEM is equivalent to UC KEM.

1 Introduction

The Key Encapsulation Mechanism (KEM), a key distribution mechanism in public-key cryptosystems,
was proposed by Shoup for ISO standards on public-key encryption [8]. The difference between KEM
and public-key encryption (PKE) is as follows: PKE’s encryption procedure, on input plaintextM and
receiverR’s public-keyPKR, outputs ciphertextC, while KEM’s encryption procedure, on input receiver
R’s public-keyPKR, outputs ciphertextC and keyK, whereC is sent toR, andK is kept secret inside the
sender, and employed in the subsequent process of data encryption. PKE’s decryption procedure, on input
C and secret-keySKR, outputs plaintextM , while KEM’s decryption procedure, on inputC and secret-key
SKR, outputs keyK. Although KEM is a mechanism for key distribution and the applications of KEM are
not specified, the most typical application is hybrid encryption, where a key shared via KEM is employed
for symmetric-key encryption.

Shoup defined the security, “indistinguishable (or semantically secure) (IND) against adaptively chosen-
ciphertext attacks (CCA2),” for KEM. Although this security notion is considered to be feasible for KEM,
we may define a stronger security notion than Shoup’s, and such a stronger security notion could be more
feasible for KEM.

In this paper, we investigate two stronger security notions for KEM. One is “non- malleability (NM)”
and the other is “universal composability (UC)”.

NM was introduced for PKE [4, 1, 2] as a stronger security notion than IND, but a straightforwardly
analogous definition of NM for KEM is not successful3, since the message space of PKE can be flexibly
specified, while the key space of KEM is, in general, hard to specify flexibly (i.e., it may be hard to restrict
the output of the encryption function of KEM into a small key space).

This paper gives the first feasible (three) definitions of NM for KEM; they are not so straightforwardly
analogous to those of NM for PKE, and no key space is treated explicitly in our definitions. We then show
that these three definitions are equivalent.

3 A straightforwardly analogous definition of NM for KEM in [6, 7] has a problem in the treatment of the key space.
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It is easily obtained from one of the definitions of NM that NM-CCA2 KEM is equivalent to IND-CCA2
KEM. That is, we can now realize that Shoup’s definition, IND-CCA2, is as feasible as NM-CCA2, whereas
NM is stronger than IND in the definition.

In addition, this paper investigates another stronger definition, the universally composable (UC) of
KEM. The framework of UC was introduced by Canetti [3] and it guarantees very strong security, i.e.,
preserves stand-alone security in any type of composition with other primitives and protocols.

This paper defines the UC security of KEM, i.e., the ideal functionality of KEM. We then show that
NM-CCA2 (i.e., IND-CCA2) KEM is equivalent to UC KEM.

Remark: Very recently, a weaker security notion of non-malleability than our NM definitions has been
introduced and investigated in [5].

2 Preliminaries

2.1 Notations

N is the set of natural numbers andR is the set of real numbers.⊥ denotes the null string.
A function f : N → R is negligible ink, if for every constantc > 0, there exists integerkc such that

f(k) < k−c for all k > kc. Hereafter, we often usef < ε(k) to mean thatf is negligible ink. On the other
hand, we usef > µ(k) to mean thatf is not negligible ink. i.e., functionf : N→ R is not negligible ink,
if there exists a constantc > 0 such that for every integerkc, there existsk > kc such thatf(k) > k−c.

WhenA is a probabilistic machine or algorithm,A(x) denotes the random variable ofA’s output on

inputx. Then,y
R← A(x) denotes thaty is randomly selected fromA(x) according to its distribution. When

A is a set,y
U← A denotes thaty is uniformly selected fromA. WhenA is a value,y ← A denotes thaty is

set asA.
We write vectors in boldface, as inx. We also denote the number of components inx by |x|, and the

i-th component byx[i], so thatx = (x[1], · · · , x[|x|]). We denote a component of a vector as x∈ x or x
6∈ x, which means, respectively, that x is in or is not in the set{ x[i] : 1 ≤ i ≤ |x|}. We can simply write
x ← D(y) as the shorthand form of1 ≤ i ≤ | y | x[i] ← D(y[i]). We will consider a relation,Rel, of t
variables. Rather than writingRel(x1, · · · , xt), we writeRel(x, x), meaning the first argument is special
and the rest are bunched into vectorx with |x| = t− 1.

2.2 Key Encapsulation Mechanism

Definition of Key Encapsulation Mechanism We recall the standard notion of key encapsulation mech-
anism, KEM, which was formalized by Shoup in [8]. A KEM scheme is the triple of algorithms,Σ =
(G, E ,D), where

1. G, the key generation algorithm, is a probabilistic polynomial time (PPT) algorithm that takes a security
parameterk ∈ N (provided in unary) and returns a pair(pk, sk) of matching public and secret keys.

2. E , the key encryption algorithm, is a PPT algorithm that takes as input public keypk and outputs a
key/ciphertext pair(K∗, C∗).

3. D, the decryption algorithm, is a deterministic polynomial time algorithm that takes as input secret key
sk and ciphertextC∗, and outputs keyK∗ or⊥ (⊥ implies that the ciphertext is invalid).

We require that for all(pk, sk) output by key generation algorithmG and for all (K∗, C∗) output by
key encryption algorithmE(pk), D(sk, C∗) = K∗ holds. Here, the length of the key,|K∗|, is specified by
l(k), wherek is the security parameter.

Attack types of KEM From the standard notion of attack types, we consider the following three attack
types of KEM; CPA, CCA1, and CCA2. CPA means “Chosen Plaintext Attacks,” where an adversary is
allowed to access only an encryption oracle, not any decryption oracle. CCA1 means “Chosen Ciphertext
Attacks,” where an adversary is allowed to access both encryption and decryption oracles, but the adversary
cannot access the decryption oracle after getting the target ciphertext. CCA2 means “Adaptive Chosen
Ciphertext Attacks,” where an adversary is allowed to access both encryption and decryption oracles even
after the adversary is given the target ciphertext.
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Definition of Indistinguishability for KEM The indistinguishability (IND) of KEM was defined by Shoup
[8]. We use “IND-ATK-KEM” to describe the security notion of indistinguishability for KEM against ATK
∈ {CPA,CCA1, CCA2}. “IND-KEM” is used to focus on the indistinguishability of KEM without regard
to attack type. If it is clear from the context that IND-ATK-KEM (and IND-KEM) is used for KEM, we
will call it IND-ATK (and IND) for simplicity.

To clarify the indistinguishability of public key encryption (PKE), we may use IND-ATK-PKE and
IND-PKE.

AdvIND-ATK
A,Σ (k) ≡ Pr[ExptIND-ATK

A,Σ (k) = 1]− 1
2

,

where
ExptIND-ATK

A,Σ (k)

(pk, sk) R← G(1k); s
R← AO1

1 (pk);
(K∗, C∗) R← E(pk); R

U← {0, 1}l(k); b
U← {0, 1};

X←
{

K∗, if b = 0
R, if b = 1

g
R← AO2

2 (s, X,C∗)
return 1, iff g = b

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 = D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 = D(sk, ·) andO2 = D(sk, ·).

Fig. 1.Advantage of IND-ATK-KEM

Definition 1. Let Σ be aKEM, A = (A1, A2) be an adversary, andk ∈ N be a security parameter. For
ATK∈ {CPA, CCA1, CCA2}, AdvIND-ATK

A,Σ (k) is defined in Fig. 1. We say thatΣ is IND-ATK-KEM, if
for any adversaryA ∈ P, AdvIND-ATK

A,Σ (k) is negligible ink, where ATK∈ {CPA, CCA1, CCA2}, and
P denotes a class of polynomial-time bounded machines.

2.3 Universal Composability

The notion of universal composability (UC) was introduced by Canetti [3]. In this notion, we consider the
real life world and the ideal process world. In the real life world, there are an adversaryA and a protocolπ
which realizes a functionality among some parties. On the other hand, in the ideal process world, there are
a simulatorS that simulates the real life world, an ideal functionalityF , and dummy parties. We consider
an environmentZ which tries to distinguish the real life world from the ideal process world.

Informally, we describe the universally composable security notion as follows: (For more details, see
[3].)

The Real Life World Let REALπ,A,Z(k, z, r) denote the output of environmentZ when interacting with
adversaryA and partiesP1, . . ., Pn running protocolπ on security parameterk, inputz and random input
r = (rZ , rA, r1 . . . rn) (z andrZ for Z, rA for A, ri for partyPi). Let REALπ,A,Z(k, z) denote the random
variable describingREALπ,A,Z(k, z, r) whenr is uniformly chosen.
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The Ideal Process World Let IDEALF,S,Z(k, z, r) denote the output of environmentZ after interacting
in the ideal process world with adversaryS and ideal functionalityF , on security parameterk, input z,
and random inputr = (rZ , rS , rF ) (z andrZ for Z, rS for S, rF for F). Let IDEALF,S,Z(k, z) denote the
random variable describingIDEALF,S,Z(k, z, r) whenr is uniformly chosen.

The Security Framework of UC Let F be an ideal functionality and letπ be a protocol. We say thatπ
UC-realizesF , if for any adversaryA ∈ P there exists a simulatorS ∈ P such that for any environmentZ
∈ P,

IDEALF,S,Z(k, z) ≈ REALπ,A,Z(k, z),

where≈ denotes statistically indistinguishable ink andP denotes a class of polynomial-time bounded
machines.

3 Three Non-Malleability Definitions of KEM

3.1 Definition of SNM-ATK-KEM

KEM Σ is called “SNM-ATK-KEM” in the sense thatΣ is secure in thesimulation based non-malleability
(SNM) for each attack type ATK∈ {CPA, CCA1, CCA2}.
Definition 2. Let Σ be KEM, Rel be a relation,A = (A1, A2) be an adversary,S = (S1, S2) be an
algorithm (the “simulator”), andk ∈ N be a security parameter. For ATK∈ {CPA, CCA1, CCA2}, we
defineAdvSNM-ATK

A,S,Σ (Rel, k) in Fig. 2. We say thatΣ is SNM-ATK-KEM, if for any adversaryA ∈ P and all
relationsRel computable inP, there exists simulatorS ∈ P such thatAdvSNM-ATK

A,S,Σ (Rel, k) is negligible
in k , where ATK∈ {CPA, CCA1, CCA2}, andP denotes a class of polynomial-time bounded machines.

Note that adversaryA2 is not allowed to pose the challenge ciphertextC∗ to its decryption oracle in the
case of CCA2.

In the attack scenario of SNM for public key encryption (PKE), SNM-PKE, the adversary can decide
the message space [2]. Note that such a message space in the scenario is introduced to make SNM-PKE to
be compatible with IND-PKE (i.e., to make SNM-PKE to imply IND-PKE), in whose attack scenario the
adversary can decide a pair of messages (a message space).

In contrast, in the attack scenario of IND-KEM, a correct key or a random value along with the target
ciphertext is given to the adversary. To make SNM-KEM compatible with IND-KEM, our SNM-KEM’s
attack scenario gives the adversary a randomly-ordered pair of a correct key and a random value.

Two additional minor differences between SNM-KEM and SNM-PKE are:

1. SimulatorS also gets access to the decryption oracle when ATK allows to do so.
2. RelationR takes state informations calculated not byA1 or S1 but byA2 or S2 in SNM-KEM.

3.2 CNM-ATK-KEM

A KEM Σ is called “CNM-ATK-KEM” in the sense thatΣ is secure in thecomparison based non-
malleability(CNM) for each attack type ATK∈ {CPA, CCA1, CCA2}.
Definition 3. LetΣ beKEM, A = (A1, A2) be an adversary, andk ∈ N be a security parameter. For ATK
∈ {CPA,CCA1, CCA2}, we defineAdvCNM-ATK

A,Σ (k) in Fig. 3. We say thatΣ is CNM-ATK-KEM, if for
any adversaryA ∈ P, AdvCNM-ATK

A,Σ (k) is negligible ink, where ATK∈ {CPA, CCA1, CCA2}, andP
denotes a class of polynomial-time bounded machines.

Note that adversaryA2 is not allowed to ask its oracle to decrypt the challenge ciphertextC∗ in the case
of CCA2.

Similar to SNM-KEM, our CNM-KEM’s attack scenario gives the adversary a randomly-ordered pair
of a correct key and a random value to make CNM-KEM compatible with IND-KEM.
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AdvSNM-ATK
A,S,Σ (Rel, k) ≡

Pr[ExptSNM-ATK
A,Σ (Rel, k) = 1]− Pr[ExptSNM-ATK

S,Σ (Rel, k) = 1],
where

ExptSNM-ATK
A,Σ (Rel, k) ExptSNM-ATK

S,Σ (Rel, k)

(pk, sk) R← G(1k) (pk, sk) R← G(1k)
s1

R← AO1
1 (pk) s1

R← SO1
1 (pk)

(K∗, C∗) R← E(pk) R∗ U← {0, 1}l(k)

R
U← {0, 1}l(k) R

U← {0, 1}l(k)

b
U← {0, 1} b

U← {0, 1}
X←(r0, r1), where X←(r0, r1), where{

if b = 0, then r0←K∗ and r1←R

if b = 1, then r0←R and r1←K∗

{
if b = 0, then r0←R∗ and r1←R

if b = 1, then r0←R and r1←R∗

(s2, C) R← AO2
2 (X, s1, C

∗) (s2, C) R← SO2
2 (X, s1)

K←D(sk, C) K←D(sk, C)
return 1, iff (C∗ 6∈ C) ∧ Rel(K∗,K, s2) return 1, iff Rel(R∗,K, s2)

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 = D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 = D(sk, ·) andO2 = D(sk, ·).

Fig. 2.Advantage of SNM-ATK-KEM

3.3 PNM-ATK-KEM

KEM Σ is called “PNM-ATK-KEM” in the sense thatΣ is secure in theparallel chosen-ciphertext attack
based non-malleability(PNM) for each attack type ATK∈ {CPA, CCA1, CCA2}.
Definition 4. Let Σ be aKEM, A = (A1, A2, A3) be an adversary, andk ∈ N be a security parameter.
For ATK ∈ {CPA, CCA1, CCA2}, we defineAdvPNM-ATK

A,Σ (k) in Fig. 4. We say thatΣ is PNM-ATK-
KEM, if for any adversaryA ∈ P, AdvPNM-ATK

A,Σ (k) is negligible ink, wherek is a security parameter,
ATK∈ {CPA,CCA1, CCA2}, andP denotes a class of polynomial-time bounded machines.

Note that adversaryA2 is not allowed to ask its oracle to decrypt the challenge ciphertextC∗ in the case
of CCA2.

In the PNM defintion, the non-malleability property is captured by the indistinguishability under the
parallel chosen-ciphertext attack such thatA2 outputs a vector of ciphertextC and its decryption resultK
is given toA3.

4 Equivalence of the Three Non-Malleability Definitions

Here, we prove the equivalence of the three non-malleability definitions.

Theorem 1 For any ATK∈ {CPA, CCA1, CCA2}, if KEM Σ is CNM-ATK-KEM, thenΣ is SNM-ATK-
KEM.

Theorem 2 For any ATK∈ {CPA, CCA1, CCA2}, if KEM Σ is SNM-ATK-KEM, thenΣ is PNM-ATK-
KEM.

Theorem 3 For any ATK∈ {CPA,CCA1, CCA2}, if KEM Σ is PNM-ATK-KEM, thenΣ is CNM-ATK-
KEM.
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AdvCNM-ATK
A,Σ (k) ≡ Pr[ExptCNM-ATK

A,Σ (k) = 1]− Pr[Ẽxpt
CNM-ATK

A,Σ (k) = 1],

where
ExptCNM-ATK

A,Σ (k) Ẽxpt
CNM-ATK

A,Σ (k)

(pk, sk) R← G(1k) (pk, sk) R← G(1k)
s

R← AO1
1 (pk) s

R← AO1
1 (pk)

(K∗, C∗) R← E(pk) (K∗, C∗) R← E(pk)
R∗ U← {0, 1}l(k)

R
U← {0, 1}l(k) R

U← {0, 1}l(k)

b
U← {0, 1} b

U← {0, 1}
X ← (r0, r1), where X←(r0, r1), where{

if b = 0, then r0←K∗ and r1←R

if b = 1, then r0←R and r1←K∗

{
if b = 0, then r0←R∗ and r1←R

if b = 1, then r0←R and r1←R∗

(Rel, C) R← AO2
2 (X, s, C∗) (Rel, C) R← AO2

2 (X, s, C∗)
K←D(sk, C) K←D(sk, C)
return 1, iff (C∗ 6∈ C) ∧ Rel(K∗,K) return 1, iff (C∗ 6∈ C) ∧ Rel(R∗, K)

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 = D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 = D(sk, ·) andO2 = D(sk, ·).

Fig. 3. Advantage of CNM-ATK-KEM

4.1 Proof of Theorem 1:

Proof. We prove that KEMΣ is not CNM-ATK-KEM if Σ is not SNM-ATK-KEM. More precisely, we
show that if there exist adversaryA and relationRel such thatAdvSNM-ATK

A,S,Σ (Rel, k) is not negligible ink
for any simulator S, then there exists adversaryB such thatAdvCNM-ATK

B,Σ (k) is not negligible ink, where
k is a security parameter and ATK∈ {CPA,CCA1, CCA2}.

Let A = (A1, A2) be an adversary for SNM-ATK. First, we construct a CNM-ATK adversaryB =
(B1, B2) using SNM-ATK adversaryA in Fig. 5. From the construction ofB, we obtain the following
equivalence for allk ∈ N:

Pr[ExptSNM-ATK
A,Σ (Rel, k) = 1] = Pr[ExptCNM-ATK

B,Σ (k) = 1]. (4.1)

We then construct SNM-ATK simulator̂S = (Ŝ1, Ŝ2) using SNM-ATK adversaryA as shown in Fig.
6.

From the construction ofB usingA, and the construction of̂S, we obtain the following equivalence for
all k ∈ N:

Pr[ExptSNM-ATK
Ŝ,Σ

(Rel, k) = 1] = Pr[Ẽxpt
CNM-ATK

B,Σ (k) = 1]. (4.2)

The assumption (for contradiction) that, for anyS, AdvSNM-ATK
A,S,Σ (Rel, k) > µ(k) impliesAdvSNM-ATK

A,Ŝ,Σ
(Rel, k) >

µ(k) (for specificŜ). From this inequality and Eqs.(4.1) and (4.2), we obtain

AdvCNM-ATK
B,Σ (k) = Pr[ExptCNM-ATK

B,Σ (k) = 1]− Pr[Ẽxpt
CNM-ATK

B,Σ (k) = 1]

= Pr[ExptSNM-ATK
A,Σ (Rel, k) = 1]− Pr[ExptSNM-ATK

Ŝ,Σ
(Rel, k) = 1]

= AdvSNM-ATK
A,Ŝ,Σ

(Rel, k) > µ(k).
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AdvPNM-ATK
A,Σ (k) ≡ Pr[ExptPNM-ATK

A,Σ (k) = 1]− 1
2

,

where
ExptPNM-ATK

A,Σ (k)

(pk, sk) R← G(1k); s1
R← AO1

1 (pk);
(K∗, C∗) R← E(pk); R

U← {0, 1}l(k); b
U← {0, 1};

X←
{

K∗, if b = 0
R, if b = 1

(s2,C) R← AO2
2 (X, s1, C

∗)
K←D(sk, C)
g

R← A3(s2, K)
return 1, iff (C∗ 6∈ C) ∧ (g = b)

and
If ATK = CPA, thenO1 = ⊥ andO2 = ⊥.
If ATK = CCA1, thenO1 = D(sk, ·) andO2 = ⊥.
If ATK = CCA2, thenO1 = D(sk, ·) andO2 = D(sk, ·).

Fig. 4.Advantage of PNM-ATK-KEM

BO1
1 (pk) BO2

2 (X, s,C∗),

t1
R← AO1

1 (pk) (s2, C) R← AO2
2 (X, s,C∗)

s←t1 DefineRel′ by Rel′(a, b) = 1,
returns iff Rel(a, b, s2) = 1

return (Rel′, C)

Fig. 5.CNM-ATK adversaryB using SNM-ATK adversaryA.

¤

4.2 Proof of Theorem 2:

Proof. We prove that KEMΣ is not SNM-ATK-KEM if Σ is not PNM-ATK-KEM. More precisely, we
show that if there exists adversaryA such thatAdvPNM-ATK

A,Σ (k) is not negligible ink, then there exist
adversaryB and relationRel for any simulatorS such thatAdvSNM-ATK

B,S,Σ (Rel, k) is not negligible ink,
wherek is a security parameter and ATK∈ {CPA, CCA1, CCA2}.

Let A = (A1, A2, A3) be an adversary for PNM-ATK. First, we construct SNM-ATK adversaryB =
(B1, B2) and relationRel using PNM-ATK adversaryA as shown in Fig. 7. Here, we say eventBad occurs
iff Y is not an element ofX. From the construction ofB, we obtain the following equivalence for allk ∈ N:

Pr[ExptPNM-ATK
A,Σ (k) = 1] = Pr[ExptSNM-ATK

B,Σ (Rel, k) = 1] (4.3)

By Eq.(4.5), we show that, given relationRel, for any simulatorS, the success probability ofExptSNM-ATK
S,Σ (Rel, k)

is at most12 .
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ŜO1
1 (pk) ŜO2

2 (X, s1)

t1
R← AO1

1 (pk) (K∗, C∗) R← E(pk)
s1←t1 (s2, C) R← AO2

2 (X, s1, C
∗)

returns1 return(s2,C)

Fig. 6.SNM-ATK simulatorŜ using SNM-ATK adversaryA.

BO1
1 (pk)

t1
R← AO1

1 (pk)
s1 ← t1

return s1

BO2
2 (X, s1, C

∗), where s1 = t1 and X = (r0, r1)

(t2, C) R← AO2
2 (r0, t1, C

∗)
Choose random coinsσ for A3.

s2 ← (t2, σ,X)
return(s2,C)

Rel(Y, K, s2), where s2 = (t2, σ,X)

If Y is not an element ofX, return 0.

If Y = r0, then b = 0. Otherwise, b = 1.

g←A3(t2, K; σ)
return 1, iff b = g

Fig. 7.SNM-ATK adversaryB and RelationRel using PNM-ATK adversaryA.

Pr[ExptSNM-ATK
S,Σ (Rel, k) = 1] = Pr[g = b ∧ ¬Bad]

= Pr[b = 0 ∧ g = 0 ∧ ¬Bad] + Pr[b = 1 ∧ g = 1 ∧ ¬Bad]
= Pr[b = 0 ∧ ¬Bad]× Pr[g = 0|b = 0 ∧ ¬Bad]

+Pr[b = 1 ∧ ¬Bad]× Pr[g = 1|b = 1 ∧ ¬Bad]
≤ 1

2
× Pr[g = 0|b = 0 ∧ ¬Bad] +

1
2
× Pr[g = 1|b = 1 ∧ ¬Bad]

=
1
2
× (Pr[g = 0] + Pr[g = 1]) (4.4)

(becauseb andBad are independent ofg)

=
1
2

(4.5)
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By applying Eqs. (4.3) and (4.5) in the above-mentioned assumption thatAdvPNM-ATK
A,Σ (k) > µ(k), we

obtain:

AdvSNM-ATK
B,S,Σ (Rel, k) = Pr[ExptSNM-ATK

B,Σ (Rel, k) = 1]− Pr[ExptSNM-ATK
S,Σ (Rel, k) = 1]

≥ Pr[ExptPNM-ATK
A,Σ (k) = 1]− 1

2
= AdvPNM-ATK

A,Σ (k) > µ(k).

¤

4.3 Proof of Theorem 3:

Proof. We prove that KEMΣ is not PNM-ATK-KEM if Σ is not CNM-ATK-KEM. More precisely, we
show that if there exists adversaryA such thatAdvCNM-ATK

A,Σ (k) is not negligible ink, then there exists
adversaryB such thatAdvPNM-ATK

B,Σ (k) is not negligible ink, wherek is a security parameter and ATK
∈ {CPA, CCA1, CCA2}.

LetA = (A1, A2) be an adversary for CNM-ATK. We construct PNM-ATK adversaryB = (B1, B2, B3)
using CNM-ATK adversaryA as shown in Fig. 8. From the construction ofB, we obtain

BO1
1 (pk)

t
R← AO1

1 (pk)
s1 ← t

return s1

BO2
2 (X, s1, C

∗), wheres1 = t andX = K∗ or R

R′ U← {0, 1}l(k)

c
U← {0, 1}

X ′ ←
{

(R′, X), if c = 0
(X, R′), if c = 1

(Rel, C) R← AO2
2 (X ′, s1, C

∗)
s2 ← (Rel, X)

return(s2,C)

B3(s2, K), wheres2 = (Rel, X)

If Rel(X, K), then g ← 0,

otherwise g ← 1
return g

Fig. 8.PNM-ATK adversaryB using CNM-ATK adversaryA.
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Pr[ExptPNM-ATK
B,Σ (k) = 1]

= Pr[b = g]
= Pr[b = 0∧g = 0] + Pr[b = 1∧g = 1])
= Pr[b = 0]×Pr[g = 0|b = 0] + Pr[b = 1]×Pr[g = 1|b = 1]

=
1
2

Pr[ExptCNM-ATK
A,Σ (k) = 1] +

1
2
(1− Pr[Ẽxpt

CNM-ATK

A,Σ (k) = 1])

=
1
2
(Pr[ExptCNM-ATK

A,Σ (k) = 1]− Pr[Ẽxpt
CNM-ATK

A,Σ (k) = 1]) +
1
2
.

That is,

Pr[ExptPNM-ATK
B,Σ (k) = 1]− 1

2

=
1
2
(Pr[ExptCNM-ATK

A,Σ (k) = 1]− Pr[Ẽxpt
CNM-ATK

A,Σ (k) = 1])

=
1
2
AdvCNM-ATK

A,Σ (k). (4.6)

By applying Eq.(4.6) in the above-mentioned assumption thatAdvCNM-ATK
A,Σ (k) > µ(k), we obtain

AdvPNM-ATK
B,Σ (k) =

1
2
AdvCNM-ATK

A,Σ (k) > µ(k)/2.

¤

4.4 Equivalence of the Three Non-Malleability Definitions

From Theorems 1, 2 and 3, we immediately obtain the equivalence of the three non-malleable definitions,
SNM-ATK-KEM, CNM-ATK-KEM and PNM-ATK-KEM. Hereafter, we use NM-ATK-KEM for the three
non-malleable definitions. If it is clear that NM-ATK-KEM is used for KEM, we will just call it NM-ATK.

5 IND-CCA2 KEM Is Equivalent to NM-CCA2 KEM

This section shows that non-malleability is equivalent to indistinguishability for KEM against adaptive
chosen ciphertext attacks (CCA2). For public-key encryption (PKE), it has been already proven that non-
malleability is equivalent to indistinguishability against CCA2 [1].

Theorem 4 KEM Σ is NM-CCA2-KEM, if and only ifΣ is IND-CCA2-KEM.

Proof. To prove this theorem, it is enough to show that PNM-CCA2-KEM is equivalent to IND-CCA2-
KEM. It is trivial from the definition thatKEM Σ is not IND-CCA2-KEM if Σ is not PNM-CCA2-
KEM. The opposite direction, thatΣ is not PNM-CCA2-KEM if Σ is not IND-CCA2-KEM, is also
easy as follows: LetA = (A1, A2) be an attacker for IND-CCA2-KEM. We then construct an attacker
B = (B1, B2, B3) for PNM-CCA2-KEM usingA such thatB1 executesA1, andB2 executesA2 which
outputsg and outputs(s2, C) such thats2 ← g andC is an arbitrary ciphertext.B3 outputss2(= g)
regardless of the value ofK. Clearly,B is an attacker for PNM-CCA2-KEM with the same advantage as
that ofA for IND-CCA2-KEM. ¤

6 UC KEM

Let Σ = (G, E ,D) be a key encapsulation mechanism (KEM). We define the key encapsulation mechanism
functionalityFKEM and protocolπΣ that is constructed from KEMΣ and has the same interface with the
environment asFKEM.

Definition 5. LetFKEM be the key encapsulation mechanism functionality shown in Fig.9, and letπΣ be
the key encapsulation mechanism protocol in Fig.10.

Here, note that there is no functionality of data transmission between parties inFKEM.



11

FunctionalityFKEM

FKEM which runs with adversaryS proceeds as follows:

Key Generation: Upon receiving (KEM.KeyGen, sid) from some partyD, verify that
sid=(D, sid′) for somesid′. If not, then ignore the request. Else, hand (KEM.KeyGen, sid)
to adversaryS. Upon receiving (Algorithms, sid, e, d) from S, wheree, d are descriptions
of PPT ITMs, output (Encryption Algorithm, sid, e) to D.

Encryption: Upon receiving (KEM.Encrypt, sid, e′) from any partyE, do: If e′ 6= e, or
decryptorD is corrupted, then executee′ and obtain(K∗, C∗0 ). Let (key, cip) ← (K∗, C∗0 ).
Else, obtain(K∗, C∗0 ) by e′ andR

U← {0, 1}l(k), then let (key, cip) ← (R, C∗0 ) and record
(key, cip). Output (Key and Ciphertext, sid, key, cip) to E.

Decryption: Upon receiving a value (KEM.Decrypt, sid, C∗0 ) from D (andD only), do: If
there is a recorded entry (K, C∗0 ) for someK then return (Shared Key, sid, K) to D. Else,
return (Shared Key, sid, d(C∗0 )) to D. (If threre are more than oneK recorded forC∗0 , then
output an error message.)

Fig. 9.Key Encapsulation Mechanism FunctionalityFKEM

Protocol πΣ

πΣ proceeds with partiesE andD as follows:

Key Generation: Upon input (KEM.KeyGen, sid), party D verifies thatsid=(D, sid′) for
somesid′. If not, then ignore the request. Else,D obtains public keypk and secret key
sk by running the algorithmG, and generatese ← E(pk, ·) andd ← D(sk, ·), then outputs
(Encryption Algorithm, sid, e).

Encryption: Upon input (KEM.Encrypt, sid, e), partyE obtains pair (key, cip) ← (K∗, C0
∗)

of a key and a ciphertext by running algorithme and outputs (Key and Ciphertext, sid,
key, cip).

Decryption: Upon input (KEM.Decrypt, sid, C0
∗), partyD (that hasd) obtainsK∗ ← d(C∗0 )

and outputs (Shared Key, sid, K∗).

Fig. 10.Key Encapsulation Mechanism ProtocolπΣ

7 UC KEM Is Equivalent to IND-CCA2 KEM

This section shows that KEMΣ is UC secure if and only ifΣ is IND-CCA2 (or NM-CCA2).

Theorem 5 Let Σ be a KEM scheme, andFKEM and πΣ be as described in Definition 5. ProtocolπΣ

UC-realizesFKEM with respect to non-adaptive adversaries, if and only ifΣ is IND-CCA2-KEM.

Proof.
(“Only if” part)

Let Σ = (G, E ,D) be a KEM scheme. We prove that ifΣ is not IND-CCA2-KEM, thenπΣ does
not UC-realizeFKEM. In more detail, we can construct environmentZ such that, for any ideal process
world adversary (simulator)S, Z can tell whether it is interacting withA andπΣ or with S and the ideal
protocol forFKEM, by using adversaryG that breaksΣ in the sense of IND-CCA2-KEM with not negligible
advantage (i.e.,AdvIND−CCA2

G,Σ (k) > µ(k)).
Z activates partiesE andD, and uses adversaryG as follows:
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1. Activates key receiverD with (KEM.KeyGen, sid) for sid=(D, 0), obtains encryption algorithme and
handse to G.

2. ActivatesE with (KEM.Encrypt, sid, e), and obtains (key, cip). Z choosesb
U← {0, 1} andR

U←
{0, 1}l(k). If b = 0, thenkey′ ← key. If b = 1, thenkey′ ← R. Z hands (key′, cip) to G as a target
pair of key and ciphertext in the IND-CCA2 game shown in Fig. 1.

3. WhenG asks its decryption oracle to decrypt ciphertextC† 6= cip, Z activatesD with input(KEM.Decrypt, sid, C†),
obtains keyK†, and handsK† to G.

4. WhenG outputsg ∈ {0, 1}, Z outputsg ⊕ b and halts.

Here note thatZ corrupts no party and interacts with no advesary.
WhenZ interacts withπΣ , the view ofG interacting withZ is exactly the same as that behaving in the

real IND-CCA2 game in Fig. 1. Therefore, in this case (sayReal), g = b with probability> 1
2 + µ(k).

In contrast, whenZ interacts with the ideal process world forFKEM, the view ofG interacting withZ
is independent ofb, sinceb is independent of (key′, cip) generated byZ in step 2 and is independent of the
decryption resultK† in step3 (askey′ andK† are random strings independent ofb). Hence, in this case
(sayIdeal), g = b with probability of exactly1

2 .
Thus,|Pr[Z → 0 | Real]− |Pr[Z → 0 | Ideal]| > µ(k).

(“If” part)
We show that ifπΣ does not UC-realizeFKEM, thenΣ is not IND-CCA2-KEM. To do so, we first

assume that for any simulatorS there exist a real world adversaryA and an environmentZ that distinguishes
with probability> 1

2 + µ(k) whether it interacts withS and the ideal process forFKEM or with A andπΣ .
We then show that there exists an IND-CCA2 attackerG againstΣ usingZ.

First we show thatZ can distinguish(A, πΣ) and(S,FKEM) only when no party is corrupted. Since we
are dealing with non-adaptive adversaries, there are three cases; Case 1: SenderE is corrupted (throughout
the protocol), Case 2: ReceiverR is corrupted (throughout the protocol), Case 3:E andD are uncorrupted.

In Case 1, we can construct simulatorS such that noZ can distinguish(A, πΣ) and (S,FKEM) as
follows:

1. WhenZ sends (KEM.KeyGen, sid) to D, D forwards it toFKEM. FKEM sends (KEM.KeyGen, sid)
to S, S computes (pk,sk) by running algorithmG, and generatese andd, wheree ← E(pk, ·) and
d ← D(sk, ·). S returns (Algorithms, sid, e, d) toFKEM.

2. WhenZ sends (KEM.Encrypt, sid, e) to the corrupted partyE (i.e., S), S receives the message and
sends it to the simulated copy ofA, which replies toS. S then returnsA’s reply (that may be⊥) to Z.

3. WhenZ sends (KEM.Decrypt, sid, C∗) toD, D forwards it toFKEM.FKEM then returns (Shared Key,
sid, d(C∗)), sinceE (i.e., S) sends no (KEM.Encrypt, sid, e) to FKEM, which records nothing as
(key, cip). Note that,S does not receive any message in this step.

In this case,Z cannot distinguish(A, πΣ) and(S,FKEM), because the message returned byS (usingA) as
E in the ideal world is the same as that returned byA asE in the real world, and (Shared Key, sid, d(C∗))
returned byFKEM is exactly the same as that returned byD in the real world.

In Case 2, we can also construct simulatorS such that noZ can distinguish(A, πΣ) and(S,FKEM) as
follows:

1. When Z sends (KEM.KeyGen, sid) to the corrupted partyD (i.e.,S), S receives the message and sends
it to the simulated copy ofA, which returns a reply message (that may be⊥) to S. S sends it toZ.

2. WhenZ sends (KEM.Encrypt, sid, e) to E, E forwards it toFKEM. FKEM generates a corresponding
pair (K∗, C∗) by executinge, sets(key, cip) ← (K∗, C∗) and returns (Key and Ciphertext, sid,
key, cip) to E, sinceD (i.e., S) sends no (KEM.KeyGen, sid) to FKEM, which records nothing as
encryption algorithme.

3. WhenZ sends (KEM.Decrypt, sid, C∗) to D (i.e.,S), S sends (KEM.Decrypt, sid, C∗) to A. A returns
a reply (that may be⊥) to S, which forwardsA’s reply toZ.

In this case,Z cannot distinguish(A, πΣ) and(S,FKEM), because the message returned byS (usingA) as
D in the ideal world is the same as that returned byA asD in the real world, and (Key and Ciphertext,
sid, key, cip) returned byFKEM is exactly the same as that returned byE in the real world.
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Thus,Z cannot distinguish the real/ideal worlds in Cases 1 and 2. Hereafter, we consider only Case 3:
E andD are uncorrupted.

Referring to the UC framework, three types of messages are sent fromZ to A. The first message type is
to corrupt either party, the second message type is to report on message sending, and the third message type
is to deliver some message. In our protocolπΣ , parties don’t send messages to each other over the network.
In addition, we consider the case that no party is corrupted. Therefore, there are no messages fromZ to A
(andS).

Since there exists at least one environmentZ that can distinguish the real life world from the ideal
process world for any simulatorS, we consider the following special simulatorS:

WhenS receives message (KEM.KeyGen, sid) fromFKEM, S runs key generation algorithmG, obtains
public keypk and secret keysk. S setse ← E(pk, ·) andd ← D(sk, ·), and returns (Algorithms, sid, e,
d) toFKEM.

We now show that we can construct adversaryG that breaks IND-CCA2-KEM by using the simulated
copy ofZ which distinguishes real/ideal worlds. To do so, we assume that there is an environmentZ such
that

|IDEALFKEM,S,Z(k, z)− REALπΣ ,A,Z(k, z)| > µ(k).

We then show thatG usingZ correctly guessesb in the IND-CCA2 game in Fig. 1 with probability of at
least12 + µ(k)/2`, where` is the total number of times the encryption oracle is invoked.

In the IND-CCA2 game,G, given a target public-key (encryption algorithm)e and a target pair(key, cip)
from the encryption oracle with private random bitb, is allowed to query the decryption oracle, and finally
outputsg, which isG’s guess ofb. G runsZ with the following simulated interaction as protocolπΣ /FKEM.

G acts as follows, whereK∗
i , C∗i andRi denote thei-th key, ciphertext and random value of the length

l(k), respectively:

1. WhenZ activates some partyD with (KEM.KeyGen, sid), G letsD output (Encryption Algorithms,
sid, e), wheree is the target public-key (encryption algorithm) forG in the IND-CCA2 game.

2. For the firsth − 1 times thatZ asks some partyE to generate (key, cip) with sid, G lets E return
(key, cip) ← (K∗

i , C∗i ) by using algorithme.
3. The h-th time thatZ asks to generate (key, cip) with sid, G queries its encryption oracle in the

IND-CCA2 game, and obtains corresponding pair(key, cip) ← (K∗
h, C∗h) (when b = 0) or non-

corresponding pair(key, cip) ← (Rh, C∗h) (when b = 1), whereRh
U← {0, 1}l(k). Accordingly,G

hands the pair of(key, cip) to Z.
4. For the remaining̀−h times thatZ asksE to generate (key, cip) with sid, G letsE return(key, cip) ←

(Ri, C∗i ), whereRi
U← {0, 1}l(k).

5. WheneverZ activates decryptorD with (KEM.Decrypt, sid, C∗), whereC∗ = C∗i for somei, G lets
D return the corresponding keyK∗

i for any i. If C∗ is different from allC∗i ’s, thenG posesC∗ to its
decryption oracle, obtains valuev, and letsD returnv to Z.

6. WhenZ halts,G outputs whateverZ outputs and halts.

We use a standard hybrid argument to analyze the success probability ofG in the IND-CCA2 game.
Forh ∈ {0, . . . , `}, let Envh be an event that for the firsth times thatZ asks some partyE to generate

(key, cip) with sid, E returns(key, cip) ← (K∗
i , C∗i ) by using algorithme and for the remaining̀−h times

thatZ asksE to generate (key, cip) with sid, E returns(key, cip) ←(Ri, C∗i ), whereRi
U← {0, 1}l(k). The

replies toZ from decryptorD are the same as those shown in step 5 above.
Let Hh bePr[Z → 1|Envh]. We then obtain the following inequality.

∑̀

h=1

|Hh −Hh−1| ≥ |H` −H0|. (7.1)

Here, from the construction ofHh it is clear that

H0 = IDEALFKEM,S,Z(k, z), (7.2)

H` = REALπΣ ,A,Z(k, z). (7.3)
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Therefore,

∑̀

h=1

|Hh −Hh−1| ≥ |H` −H0|

= |REALπΣ ,A,Z(k, z)− IDEALFKEM,S,Z(k, z)|
> µ(k). (7.4)

Then there exists someh ∈ {1, · · · `} that satisfies

|Hh −Hh−1| > µ(k)/`. (7.5)

Here, w.l.o.g., letHh−1 −Hh > µ(k)/`, since ifHh −Hh−1 > µ(k)/` for Z, we can obtainHh−1 −
Hh > µ(k)/` for Z∗, whereZ∗ outputs the opposite ofZ ’s output bit.

In step 3 ofG’s construction, ifG gets the corresponding pair of (K∗
h, C∗h) (whenb = 0), then the

probability thatZ outputs 1 is identical toHh. If, on the other hand,G gets the non-corresponding pair of
(Rh, C∗h) (whenb = 1), then the probability thatZ outputs 1 is identical toHh−1.

SinceG’s output followsZ ’s output,

Hh = Pr[g = 1|b = 0], (7.6)

Hh−1 = Pr[g = 1|b = 1], (7.7)

whereb is the private random bit of the encryption oracle in the IND-CCA2 game andg is G’s output (G’s
guess ofb).

SincePr[g = 1|b = 0] + Pr[g = 0|b = 0] = 1, we obtainPr[g = 0|b = 0] = 1− Pr[g = 1|b = 0].
Therefore, we obtainG’s success probability,Pr[ExptIND−CCA2

G,Σ (k) = 1], as follows:

Pr[ExptIND−CCA2
G,Σ (k) = 1]

= Pr[b = g]
= Pr[b = 0]× Pr[g = 0|b = 0] + Pr[b = 1]× Pr[g = 1|b = 1])

=
1
2
× (Pr[g = 0|b = 0] + Pr[g = 1|b = 1])

=
1
2
× (1− Pr[g = 1|b = 0] + Pr[g = 1|b = 1])

=
1
2
× (1−Hh + Hh−1)

>
1
2

+ µ(k)/2`.

That is,AdvIND−CCA2
G,Σ (k) > µ(k)/2`, which is not negligible ink since` is polynomially bounded ink. ¤
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