
An Analysis of the Hermes8 Stream Ciphers

Steve Babbage

1
, Carlos Cid

2
, Norbert Pramstaller

3
and Håvard Raddum

4

1
Vodafone Group R&D,

Newbury, United Kingdom

steve.babbage�vodafone.
om

2
Information Se
urity Group,

Royal Holloway, University of London

Egham, United Kingdom

arlos.
id�rhul.a
.uk

3
IAIK, Graz University of Te
hnology

Graz, Austria

norbert.pramstaller�iaik.tugraz.at

4
Dept. of Informati
s, The University of Bergen,

Bergen, Norway

haavardr�ii.uib.no

Abstra
t Hermes8 [6,7℄ is one of the stream
iphers submitted to the

ECRYPT Stream Cipher Proje
t (eSTREAM [3℄). In this paper we

present an analysis of the Hermes8 stream
iphers. In parti
ular, we

show an atta
k on the latest version of the
ipher (Hermes8F), whi
h

requires very few known keystream bytes and re
overs the
ipher se
ret

key in less than a se
ond on a normal PC. Furthermore, we make some

remarks on the
ipher's key s
hedule and dis
uss some properties of
i-

phers with similar algebrai
 stru
ture to Hermes8.

Keywords: Hermes8, Stream Cipher, Cryptanalysis.

1 Introdu
tion

Hermes8 is one of the 34 stream
iphers submitted to eSTREAM, the ECRYPT

Stream Cipher Proje
t [3℄. The
ipher has a simple byte-oriented design,
on-

sisting of substitutions and shifts of the state register bytes. Two versions of the

ipher have been proposed. Originally, the
ipher Hermes8 [6℄ was submitted as

andidate to eSTREAM. Although no weaknesses of Hermes8 were found dur-

ing the �rst phase of evaluation, the
ipher did not seem to present satisfa
tory

performan
e in either software or hardware [4℄. As a result, a slightly modi�ed

version of the
ipher, named Hermes8F [7℄, was submitted for
onsideration dur-

ing the se
ond phase of eSTREAM. In this paper we present an analysis of the

Hermes8 stream
iphers. In Se
tion 2 we present an alternative des
ription of

the Hermes8
iphers. Se
tion 3 des
ribes an atta
k against the latest version

of Hermes8. Se
tion 4
ontains some remarks on the key s
hedule of Hermes8,

while we dis
uss some algebrai
 properties of the
iphers in Se
tion 5.

2 Des
ription of Hermes8F

A

ording to [7℄, Hermes8F is a stream
ipher based on the Substitution� Per-

mutation network prin
iple. Hermes8F is de�ned for two di�erent key lengths:

Hermes8F-80 uses 80-bit keys, while Hermes8F-128 uses 128-bit keys. The
i-

pher uses two byte-oriented registers: a 17-byte state register and a 10-byte key

register (16 bytes for Hermes8F-128). Additionally, there is a single byte register

A

u, whi
h seems to have the use of a memory register (Figure 1). The di�u-

sion is provided by moving pointers through both registers, while non-linearity

is provided by the AES S-Box [2℄.

The main operation of the
ipher
onsists of the following steps:

1. XOR the value stored at A

u with a byte from the state register and a byte

from the key register;

2. Use the previous result as input for the AES S-Box;

3. Repla
e the state register value used in step 1. by the output of the S-Box;

4. Store the output of the S-Box also in A

u;

5. In
rement both the state and key register pointers (denoted by p1 and p2,
respe
tively).

Figure1. Hermes8F stream
ipher [7℄.

The steps above are performed at ea
h
lo
king. A round of the
ipher
onsists of

17
lo
kings. At every 7
lo
kings, two bytes of the key register are updated. The

updating fun
tion is also based on the AES S-Box (Se
tion 4). In the
ipher's

initialization, the en
ryption key is loaded into the key register, and the IV is

loaded into the state register. The register A

u starts with the zero byte as

ontent

1

. The initialization pro
ess
onsists of �ve rounds (i.e. 85
lo
kings),

1

In Hermes8, the initial value of A

u is key-dependent; see Se
tion 4.

and so all the state registers are updated �ve times before the
ipher enters

the normal mode of operation. The �rst bytes of the keystream are produ
ed

after two further rounds. The output
onsists of 8 bytes from the state register,

taken from alternating positions of the register. Further bytes of the output are

produ
ed at every two rounds. More details of the algorithm
an be found in [7℄.

2.1 Alternative Des
ription of Hermes8F

We note that it follows from the des
ription above that during the
ipher oper-

ation, the
ontents of the registers A

u and state[p1 − 1] are always the same.

Thus a more natural des
ription of Hermes8F is given in Figure 2. It
onsists of

the state register R, whi
h is represented as a feedba
k shift register of length

17, de�ned as

st
i = state[p1 + i] , 0 ≤ i ≤ 16,

where state[p1] is the byte addressed by pointer p1 at time t. This FSR is updated

a

ording to the following relations:

st+1
i = st

i+1 , 0 ≤ i ≤ 15,

st+1
16 = S(st

0 ⊕ st
16 ⊕ kt),

where the byte kt
is the output of the key register K at time t (that is, k[p2]),

and S represents the AES S-Box.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S

❄

✛✲

✛

✲

✛

✐

✐

p1

❄
State Register✲

A

u

❄

Key Register

. . .kt

p2

❄

Figure2. Hermes8F as a feedba
k shift register.

In our atta
k, we need to
onsider the reverse
ipher (
lo
king the genera-

tor ba
kwards, and so generating the keystream blo
ks in reverse order

2

). The

2

As pointed out by one of the anonymous referees, the ba
kward keystream was also

used in the atta
k des
ribed in [5℄.

relation of the feedba
k register of the reverse
ipher is given by

st
0 = S−1(st+1

16) ⊕ st
16 ⊕ kt

= S−1(st+1
16) ⊕ st+1

15 ⊕ kt.

The inverse
ipher is depi
ted in Figure 3.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S−1

❄

❄

❄✲

✛

✛✐

✐

p1

❄
State Register✛

A

u

❄

Key Register

. . .kt kt+1

p2

✻

Figure3. The inverse of Hermes8F.

3 Cryptanalysis of Hermes8F

The atta
k we des
ribe exploits two features of Hermes8F:

1. In
ontrast to the forward
ipher, the reverse
ipher has slow di�usion. (In

the forward
ipher, the new byte s16
ontributes to the feedba
k in the very

next
lo
k. But in the reverse
ipher, the new byte s0 has no in�uen
e on

the feedba
k until it has shifted all the way along to the s15 position.)

2. The IV does not a�e
t the key register.

Let us
onsider the keystream produ
ed by Hermes8F under a se
ret key and a

random IV, and let Bj be the jth set of 8 bytes output by the
ipher. Thus, if

we de�ne T = 34 · j + 85, we have

Bj = [sT
0 , sT

2 , sT
4 , sT

6 , sT
8 , sT

10, s
T
12, s

T
14].

Consider the �rst two sets of B1 and B2, for whi
h T is equal to 7 × 17 = 119
and 9 × 17 = 153 respe
tively. Suppose that in addition to the last two bytes of

B2 (that is, s153
12 and s153

14), we also know the values of s153
13 , k150

and k149
. Then

we have

S−1(s153
14) ⊕ s153

13 ⊕ k150 = S−1(s151
16) ⊕ s151

15 ⊕ k150 = s150
0 .

Likewise, we have that

S−1(s153
13) ⊕ s153

12 ⊕ k149 = S−1(s150
16) ⊕ s150

15 ⊕ k149 = s149
0 .

Now, assuming that we also know k133
, we have

S−1(s150
0) ⊕ s149

0 ⊕ k133 = S−1(s134
16) ⊕ s134

15 ⊕ k133 = s133
0 = s119

14 .

We note however that s119
14 is the last byte of B1.

Thus
onsider an atta
k where we guess on the values of k133, k149
and k150

and verify against the known byte s119
14 . The equation we have is

S−1(S−1(s153
14) ⊕ s153

13 ⊕ k150) ⊕ S−1(s153
13) ⊕ s153

12 ⊕ k149 ⊕ k133 = s119
14 , (1)

where the key bytes and s153
13 are unknown. By setting c1 = S−1(s153

14) ⊕ k150

and c2 = s153
12 ⊕ s119

14 ⊕ k149 ⊕ k133
the equation
an be more simply written as

S−1(s153
13 ⊕ c1) ⊕ S−1(s153

13) = c2. (2)

That is, a parti
ular guess of the three key bytes is possible if and only if an

input di�eren
e of c1 to S−1

an lead to an output di�eren
e of c2. We know that

S−1
is a�nely equivalent to the inverse mapping in GF(28), and thus it is rather

lose to being APN [9℄. This means that just under one half of all (c1, c2)-values
are possible, or equivalently that one half of the guesses of the three key bytes

remains as possible after
he
king them against (1).

Note that sin
e c2 depends on the sum k149 ⊕ k133
we
an never learn the

individual values of k149
and k133

this way, only the sum of them. Hen
e we are

not guessing on 3-byte values but only on 2-byte values, and the
omplexity of

guessing on
e is 216
and not 224

. By repeating the guessing for several IVs we

an remove all wrong guesses, and �nd two bytes of information - the values of

k150
and k149 ⊕ k133

.

The pro
ess above
an be repeated using the output bytes s153
12 and s153

10 to

obtain k148
and k147 ⊕ k131

, and so on, until we have 14 bytes of information

about the key register at times 121 ≤ t ≤ 150. For Hermes8F-80 it is then not

too hard to �nd the
ontents of the key register at a spe
i�
 time t, and we
an

run the key register ba
k to obtain the original en
ryption key.

The key register in Hermes8F-128 is 16 bytes long, and so after �nding the

14 bytes of information we will need to guess the values of the two remaining

bytes. For ea
h of these guesses we run the key register ba
k to the point where

the en
ryption key was loaded to obtain a
andidate for the en
ryption key. This

key is then used for generating a keystream with a known IV, and we
an verify

our guess against the
orresponding known keystream.

The atta
k requires no more than 16 bytes of output under a few (about 16)

distin
t IVs. In general, the
omplexity of the atta
k is of the order of 7 × 16 ×
216 < 223

very simple operations for Hermes8F-80 and 7×16×216+216 < 223
for

Hermes8F-128. The atta
k for Hermes8F-80 has been implemented on a normal

workstation and su

eeds in re
overing the key in less than a se
ond.

3.1 Analysis of Hermes8

We have
onsidered extending the atta
k presented above to the original Hermes8

ipher. The main di�eren
es between Hermes8 and Hermes8F are the length

of the state register (23 bytes and 37 bytes for Hermes8-80 and Hermes8-128,

respe
tively, against 17 bytes for Hermes8F), and the number of rounds between

ea
h output of the
ipher (three rounds for Hermes8 against two rounds for

Hermes8F). Some of the features that we have exploited in our atta
k, su
h as

the simpler representation of the generator as a shift register, slow di�usion of the

reverse
lo
king
ipher, and the fa
t that the key register is not IV-dependent,

apply also to Hermes8. The main di�
ulty in extending the atta
k to Hermes8

is the number of rounds between output of the
ipher. With three full rounds in

Hermes8 between ea
h output, the relations obtained
ontain a larger number of

unknown key and state register bytes. As the state register values are expe
ted to

be di�erent for ea
h IV used, we have not been able to obtain a simple equation

su
h as (2) to derive key bits. Therefore a simple extension of the atta
k does

not seem to work against Hermes8. We note however that the in
rease in the

length of the state register alone would in no way have strengthened the
ipher

against our atta
k.

4 Equivalent Keys in Hermes8

The key s
hedule for Hermes8 is des
ribed in detail in [6℄ and is illustrated in

Figure 4 (Hermes8F features a similar key s
heduling method [7℄). The
ipher's

designer presents a brief analysis of the key s
hedule and remarks the existen
e

of weak keys for Hermes8. More pre
isely, keys with equal byte patterns lead to

a repetition of byte values in the output of the key s
heduling method [6℄. In an

extreme
ase, the key de�ned as ki = 63
hex

, for 0 ≤ i ≤ 9, is invariant by the

key s
hedule, and it therefore always outputs the byte value 63
hex

(this follows

from the fa
t that S(00
hex

) = 63
hex

).

. k[p2] k[p3] k[p4] k[]

S S

❄

❄

❄ ❄

✲

✲

✛ ✲

✐

✐

p2

❄

Figure4. Hermes8 key s
hedule.

A further property of the Hermes8 key s
hedule that seemed to have been

overlooked by the designer is the existen
e of equivalent keys. These are keys that

for a given IV result in the same keystream. This is an immediate
onsequen
e of

the stru
ture of the key s
heduling method and the key-dependent initialization

of the pointers p1, p2, sr
, and the A

u register [6℄.

Consider a key k∗
, whi
h results from the byte-wise rotation of the key k.

In order to get the same keystream we have to ensure that for both keys, the

pointers p1, sr
, and the register A

u have the same value, that is p1k
= p1k∗

,

srck = srck∗
, and Accuk = Accuk∗

. Additionally, we require that the pointers p2k

and p2k∗
address the key register in su
h a way that the key s
heduling method

produ
es the same output for both keys. For instan
e,
onsider the 80-bit version

of Hermes8 and assume the 10-byte
ipher key is given by k = k0, . . . , k9. The

rotated key k∗ = k9, k0, . . . , k8 is equivalent to k if the following
onditions are

satis�ed:

ond. p1 : (k0 ⊕ k1 ⊕ k2) mod 23 = (k0 ⊕ k1 ⊕ k9) mod 23 (3)

ond. src : (k0 ⊕ k3 ⊕ k9) mod 7 = (k2 ⊕ k8 ⊕ k9) mod 7 (4)

ond. Accu : k6 ⊕ k7 ⊕ k8 = k5 ⊕ k6 ⊕ k7 (5)

ond. p2 : (k2 ⊕ k3 ⊕ k4) mod 10 = ((k3 ⊕ k4 ⊕ k5) mod 10) + 1 (6)

Condition (6) ensures that the output of the key s
hedule is the same for k and

k∗
. If, in addition, the remaining
onditions (3)-(5) are satis�ed, then the key

stream generation is equivalent for both keys k and k∗
. There are approximately

280−(8−log2(⌈
256

23
⌉))−(8−log2(⌈ 256

7
⌉))−8−(8−log2(⌈ 256

10
⌉)+log2(1.109)) ≈ 261

keys k satisfying the
onditions above, whi
h are therefore essentially equivalent

to the key k∗
obtained by a simple
y
li
 shift of its bytes. A similar analysis

an be done for other rotation values of the key k, giving us approximately

5 × 261 ≈ 263
pairs of equivalent keys. Although this represents a very small

fra
tion of an 80-bit key spa
e, the above argument shows however that Hermes8-

80 does not rea
h the theoreti
ally expe
ted entire 80-bit key spa
e. In fa
t, if

we assume that 80-bit en
ryption keys are randomly generated, we have that

approximately 263
keys e�e
tively o

ur with twi
e the expe
ted probability,

while 263
keys do not o

ur at all.

5 Algebrai
 Stru
ture

Given the highly algebrai
 stru
ture of Hermes8, it is natural to
onsider the

feasibility of algebrai
 atta
ks against the
ipher. The only two operations in

Hermes8 are the S-Box operation (whi
h is based on the inversion over GF(28))
and XOR. Thus at ea
h
lo
king, we
an express the resulting register updated

through a relation over GF(28) (whi
h in turn
an be des
ribed as a set of

multivariate quadrati
 equations over GF(2)). After a number of rounds we

should have enough equations to solve the system of equations and therefore

re
over the se
ret key. In our estimates however the size of the resulting system

appears to be too large to be solved in pra
ti
e. This is due to the large number

of
lo
kings between the
ipher output. However it may be possible that one
an

simplify some of the relations, or exploit this ri
h algebrai
 stru
ture in some

other way.

We note that the atta
k presented in se
tion 3
an also be mounted using a

more algebrai
 approa
h. Due to the algebrai
 stru
ture of the S-Box, the ex-

pressions
onsidered when des
ribing the atta
k
an also be written as a simple

system of multivariate equations. If we solve the system (e.g. by
omputing the

orresponding Gröbner basis under the appropriate monomial ordering), requir-

ing that the equations have solutions in GF(28), we obtain relations between

the key bytes. This
orresponds to the bit of information we derived from the

relation (2). If we repeat this pro
edure for a number of IVs, we should obtain

enough su
h relations to allow us to solve the resulting system and re
over the

respe
tive key bytes. Again, this approa
h does not seem to work with Hermes8,

as we have not been able to obtain relations on the key bytes alone (they always

involve at least one unknown register value, whi
h as noted in se
tion 3.1, should

hange with ea
h di�erent IV). Moreover, this algebrai
 approa
h does not seem

to be more e�
ient than the atta
k des
ribed early in this paper.

5.1 Algebrai
 Stru
ture of a Variant of Hermes8

In this se
tion we
onsider a slightly modi�ed version of Hermes8, to illustrate

how its highly algebrai
 stru
ture may be exploited. In this modi�ed version, we

remove the �nal a�ne transformation from the Sbox, so that the variant uses as

S-Box the modi�ed inversion in the Rijndael �eld only, that is S : x 7→ x254
. We

note that the only two operations of the
ipher (SBox and XOR)
orrespond to

the exponentiation and addition in the Rijndael �eld F ∼= GF(28), respe
tively.
We also know that the original AES S-Box is a�nely equivalent to the inversion,

and so this variant of Hermes8 should share mu
h of the se
urity properties with

the original Hermes8
ipher.

However the new
ipher presents a very interesting property. Let τ : F → K

be any isomorphism from F to a �eld K ∼= GF(28) (in parti
ular, we may have

K = F so that τ is an automorphism of F). Then we have

S(τ(x)) = τ(S(x)) and τ(x ⊕ y) = τ(x) ⊕ τ(y), ∀x, y ∈ F.

If we assume the simpli�ed version of initialization of the
ipher's pointers

(as with Hermes8F), we
an then use these relations to
onstru
t a very simple

hosen-key algebrai
 distinguisher against the
ipher. Let KS = E(k, IV) rep-

resent the keystream (of length m) generated by the
ipher using initialisation

ve
tor IV and en
ryption key k. Then we have

E(τ(k), τ(IV)) = τ(KS),

where τ(k) denotes the appli
ation of τ on ea
h byte of the en
ryption key k

(similar for τ(IV) and τ(KS)).

This property is
alled self-duality [1℄, and is similar to the
omplementation

property of DES [8℄. In parti
ular, it allows us to
onstru
t a simple method

that redu
es the key spa
e when performing exhaustive key sear
h, as following.

Let k be the se
ret en
ryption key to be sear
hed, so that an atta
ker has

a

ess to the en
ryption operation E(k, ·), and
an generate the keystream for

any IV . Let τ be an automorphism of F.

Prior to performing the exhaustive sear
h, the atta
ker partitions the key

spa
e into equivalen
e
lasses

k1 ≡ k2 ⇐⇒ k2 = τr(k1),

and given an IV ,
omputes the set of initialisation ve
tors

{IV, τ(IV), τ2(IV), . . . , τn−1(IV)},

where n is the order of τ . It
an now
ompute the set of keystreams of length m

(for m long enough)

KSi = τ−i(E(τ i(IV), k)) = E(IV, τ−i(k))

for i = 0, . . . , n − 1.
To perform the exhaustive key sear
h, for ea
h equivalen
e
lass of en
ryption

keys, the atta
ker sele
ts a key k′
and
omputes the keystream of length m K =

E(IV, k′). If K = KSi for some i, then τ i(k′) is a
andidate for the en
ryption

key k. Otherwise k is not in the equivalen
e
lass of k′
. This method should

redu
e the
omplexity of exhaustive key sear
h by a fa
tor of about n, and is

similar to the method that exploits the
omplementation property of DES (whi
h

uses the
omplementation map of order 2).

For a
on
rete example, let us
onsider the Frobenius automorphism de�ned

as τ : x 7→ x2
. Sin
e the order of τ is 8, this method should redu
e the
omplexity

of exhaustive key sear
h to the order of 277
operations (enabling key re
overy on

average in the order of 276
operations). From the many isomorphisms of �elds

of order 28
[10℄, this map seems to provide the best redu
tion for the key spa
e

sear
h.

We note however that this property and method of atta
k does not apply

to the original Hermes8
ipher, sin
e the a�ne operation in the SBox does not

ommute with the �eld isomorphisms.

6 Con
lusion

We presented in this paper an analysis of the Hermes8 [6℄ stream
ipher, and

some of its variants. In parti
ular, we showed how to mount an atta
k to re
over

the se
ret key for the latest version of the
ipher (Hermes8F-80) with
omplexity

of around the order of 223
operations, requiring a very small number of known

keystream bytes. Although we have not been able to extend the method of atta
k

used to the original version of Hermes8, we note that many of the features that

we have exploited - the simpler representation of the generator as a shift register,

slow di�usion of the reverse
lo
king
ipher, and the fa
t that the key register

is not IV-dependent - apply also to Hermes8. An interesting topi
 for further

resear
h is whether there are other stream
iphers that may have their se
urity

ompromised by analysis of the reverse
ipher, as with Hermer8F.

A
knowledgments

The work des
ribed in this paper has been supported in part by the Euro-

pean Commission through the IST Programme under Contra
t IST-2002-507932

ECRYPT. We would also like to thank Vin
ent Rijmen for his suggestion to
on-

sider the existen
e of equivalent keys for the Hermes8 stream
iphers.

Referen
es

1. E. Barkan and E. Biham. In How ManyWays Can YouWrite Rijndael?. Cryptology

ePrint Ar
hive 2002/157, 2002. http://eprint.ia
r.org/2002/157/.

2. J. Daemen and V. Rijmen. The Design of Rijndael. Springer�Verlag, 2002.

3. eSTREAM, the ECRYPT Stream Cipher Proje
t. http://www.e
rypt.eu.org/

stream/.

4. C. De Cannière. eSTREAM testing framework. http://www.e
rypt.eu.org/

stream/perf/.

5. J. Goli
. Iterative Probabilisti
 Cryptanalysis of RC4 Keystream Generator. In

E. Dawson, A. Clark and C. Boyd, editors, Information Se
urity and Priva
y,

5th Australasian Conferen
e, ACISP 2000, volume 1841 of LNCS, pages 220�233.

Springer�Verlag, 2000.

6. U. Kaiser. Hermes8 : A Low-Complexity Low-Power Stream Cipher. Cryptology

ePrint Ar
hive, Report 2006/019. http://eprint.ia
r.org/2006/019.pdf.

7. U. Kaiser. Hermes8F : A Low-Complexity Low-Power Stream Cipher. eSTREAM,

the ECRYPT Stream Cipher Proje
t, Se
ond Phase Ciphers. http://www.e
rypt.

eu.org/stream/p2
iphers/hermes8/hermes8f_p2.pdf.

8. A.J. Menezes, P.C. Van Oors
hot, and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1996.

9. K. Nyberg. Diferentially uniform mappings for
ryptography, Advan
es in Cryp-

tography, EUROCRYPT'93, LNCS 765, pp. 55�64, Springer�verlag, 1994.

10. H. Raddum. More Dual Rijndaels. In H. Dobbertin, V. Rijmen, and A. Sowa,

editors, Advan
ed En
ryption Standard - AES, Fourth International Conferen
e,

volume 3373 of LNCS, pages 142�147. Springer�Verlag, 2005.

