
On Expected Probabilistic Polynomial-Time Adversaries:

A suggestion for restricted de�nitions and their bene�ts

Oded Goldreich

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

August 16, 2006

Abstract

This paper concerns the possibility of developing a coherent theory of security when feasibility

is associated with expected probabilistic polynomial-time (expected PPT). The source of di�culty

is that the known de�nitions of expected PPT strategies (i.e., expected PPT interactive machines)

do not support natural results of the type presented below.

To overcome this di�culty, we suggest new de�nitions of expected PPT strategies, which

are more restrictive than the known de�nitions (but nevertheless extend the notion of expected

PPT non-interactive algorithms). We advocate the conceptual adequacy of these de�nitions,

and point out their technical advantages. Speci�cally, identifying a natural subclass of black-box

simulators, called normal, we prove the following two results:

1. Security proofs that refer to all strict PPT adversaries (and are proven via normal black-

box simulators), extend to provide security with respect to all adversaries that satisfy the

restricted de�nitions of expected PPT.

2. Security composition theorems of the type known for strict PPT hold for these restricted

de�nitions of expected PPT, where security means simulation by normal black-box simu-

lators.

Speci�cally, a normal black-box simulator is required to make an expected polynomial number

of steps, when given oracle access to any strategy, where each oracle call is counted as a single

step. This natural property is satis�es by most known simulators and is easy to verify.

Keywords: Zero-Knowledge, secure multi-party computation, protocol composition, black-box

simulation, reset attacks, expected probabilistic polynomial-time.



Contents

1 An Opinionated Introduction 2

1.1 The history of related de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 Towards new de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.3 The new de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.4 The main results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

1.5 Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2 The De�nitions 8

2.1 Known de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.2 New de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.3 Relating the de�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

3 Results for Zero-Knowledge 11

3.1 Simulating expected PPT adversaries : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.2 Sequential composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4 Results for General Secure Protocols 14

4.1 Simulating expected PPT adversaries : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

4.2 Sequential composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.3 Concurrent composition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

5 Conclusions and Open Problems 21

Bibliography 23

1



1 An Opinionated Introduction

The title of this introduction and the use of �rst person singular are meant to indicate that this in-

troduction is more opinionated than is customary in our �eld. Nevertheless, I will try to distinguish

facts from my opinions by use of adequate phrases.

In my opinion, the �rst question that should be asked when suggesting and/or reviewing a

de�nition is what is the purpose of the de�nition. When reviewing an existing de�nition, a good

way to start is to look into the history of the de�nition, since the purpose may be more transparent

in the initial works than in follow-up ones.

Before turning to the history and beyond, let me state that I assume that the reader is fa-

miliar with the notion of zero-knowledge and the underlying simulation paradigm (see, e.g., [G01,

Sec. 4.3.1]). In fact, some familiarity with general secure multi-party computation (e.g., at the

overview level of [G04, Sec. 7.1]) is also useful. Indeed, this paper is not intended for the novice: it

deals with subtle issues that the novice may (or even should) ignore.

1.1 The history of related de�nitions

To the best of my recall, the �rst appearance in cryptography of the notion of expected (rather

than strict) probabilistic polynomial-time was in the seminal work of Goldwasser, Micali, and

Racko� [GMR]. The reason was that the simulators presented in that paper (for the Quadratic

Residuosity and the Quadratic Non-Residuosity interactive proofs) were only shown to run in

expected probabilistic polynomial-time.

1

Recall that these simulators were used in order to simulate

the interaction of arbitrary strict probabilistic polynomial-time (adversarial) veri�ers with the

honest prover.

At �rst, the discrepancy between the expected probabilistic polynomial-time allowed to the

simulator and the restriction of the adversary to strict probabilistic polynomial-time did not bother

anybody. One reason for this lack of concern seems to be that everybody was overwhelmed by the

new fascinating notion of zero-knowledge proofs, its mere feasibility and its wide applicability

(as demonstrated by [GMR, GMW]). But as time passed, some researchers became bothered

by this discrepancy, which seemed to violate (at least to some extent) the intuition underlying

the de�nition of zero-knowledge. Speci�cally, relating the complexity of the simulation to the

complexity of the adversary is the essence of the simulation paradigm and the key to the conclusion

that the adversary gains noting by the interaction (since it can obtain the same, essentially as easily,

without any interaction). But may we consider expected polynomial-time and strict (probabilistic)

polynomial-time as being the same complexity?

The original feeling was that the discrepancy between strict and expected polynomial-time is

not very signi�cant, and I do hold this view to this very day. After all, everybody seems quite

happy with replacing one polynomial (bound of the running time) by another, at least as a very

�rst approximation of the intuitive notion of similar complexity.

2

Still, I cannot deny that there

1

Note that while a small de�nitional variation (cf. [G01, Sec. 4.3.1.1] versus [G01, Sec. 4.3.1.6]) su�ces for

obtaining a strict probabilistic polynomial-time (perfect) simulation for the QR protocol, this does not seem to be

the case when the QNR protocol is concerned. The same dichotomy is manifested between the Graph Isomorphism

and Graph 3-Colorability protocols (of [GMW]) on one hand and the constant-round zero-knowledge proof of [GK96]

on the other hand. The dichotomy arises from two di�erent simulation techniques; the �rst is tailored for \challenge-

response" protocols, while the second refers to the use of \proofs-of-knowledge" (which may be implicit and trivial

(as in [GK96])).

2

It is telling that my advocacy of knowledge tightness [G01, Sec. 4.4.4.2], a notion aimed at quantitatively bounding

the ratio of the running times of the simulator and adversary, has never gain much attention. (And yes, I am aware

of the recent work of Micali and Pass [MP06] that introduces and advocates an even more re�ned notion.)

2



is something unpleasing about this discrepancy. Following [KL05], let me refer to this issue as an

aesthetic consideration.

Jumping ahead in time, let me mention a more acute consideration articulated in [KL05]: A dif-

ferent handling of adversaries and simulations (e.g., the discrepancy between expected polynomial-

time and strict probabilistic polynomial-time) raises technical di�culties and, in particular, stands

in the way of various desired composition theorems (e.g., of the type presented in [GO94, C00]).

But let me get back to the story.

Faced with the aforementioned aesthetic consideration, a few researchers suggested a simple

solution: extending the treatment of adversaries to ones running in expected polynomial-time.

This suggestion raised a few problems, the �rst being how to de�ne expected polynomial-time

interactive machines? (In addition, there are other problems, which I will discussed later.)

Feige's proposal [F90] was to consider the running-time of the adversary when it interacts with

the honest party that it attacks, and require that the adversary runs in expected polynomial-time

(in such a random interaction). My own proposal was to allow only adversaries that run in ex-

pected polynomial-time regardless with whom they interact; that is, the adversary is required to

run in expected polynomial-time when interacting with any other strategy (even an uncomputable

one). Feige objected to my proposal saying that it unduly restricts the adversary, which is designed

to attack a speci�c strategy and thus should be e�cient only when attacking this strategy. My

own feeling was that it is far more important to maintain a coherent theory by using a \stand-

alone" notion of expected polynomial-time; that is, a notion that categorizes strategies regardless of

their aim (e.g., without reference to whether or not these strategies model adversaries (and which

strategies these adversaries attack)). The rationale underlying this feeling is discussed in Sec-

tion 1.2. (Furthermore, Feige's de�nition also extend the standard de�nition of strict probabilistic

polynomial-time adversaries by allowing adversaries that may not even halt when interacting with

strategies other the those they were designed to attack (see proof of Proposition 5).)

In any case, a major problem regarding the suggestion of extending the treatment of adversaries

to ones running in expected polynomial-time is whether such an extension is at all possible. One

speci�c key question is whether known simulators can handle expected polynomial-time adversaries.

As pointed out in [KL05], in some cases (e.g., the simulator of [GK96]), the answer is negative

even if one uses the more restricted notion of expected polynomial-time adversaries (which refers

to interaction with any possible strategy). Another important question is whether composition

theorems that are known to hold for strict probabilistic polynomial-time (strategies and simulators)

can be extended to the case of expected polynomial-time (strategies and simulators).

Indeed, the \question of composition" became a major concern in the 1990's and motivated a

re-examination of many aspects of the theory of cryptography. Here I refer speci�cally to the Se-

quential Composition Theorem of Canetti [C00], which supports modular construction of protocols,

and to the Concurrent Composition Theorem of Canetti [C01], which is aimed at preserving security

in settings where numerous executions of arbitrary protocols are taking place concurrently. These

composition results were obtained when modeling adversaries as strict probabilistic polynomial-

time strategies and allowing only strict probabilistic polynomial-time simulators. One consequence

of the lack of analogous results for the case of expected polynomial-time was that the modular

construction of secure protocol had to avoid protocols that were only known to be simulateable in

expected polynomial-time.

3

Recently, Katz and Lindell [KL05] initiated a study of the possibility of simulating expected

polynomial-time adversaries and/or obtaining composition theorems (or su�ciently good alter-

3

For example, relatively e�cient proofs-of-knowledge (which only guarantee expected polynomial-time extraction)

were avoided (e.g., in [G04, Sec. 7.4.1.3]) and strong proofs-of-knowledge (cf. [G01, Sec. 4.7.6]) were used instead.

3



natives) for the expected polynomial-time case. They showed that in sometimes (e.g., when the

simulator satis�es some additional properties and/or under some super-polynomial intractability

assumptions) such partial results can be obtained.

4

These results do not provide a \free" transfor-

mation from the strict probabilistic polynomial-time model to the expected polynomial-time model,

where \free" means without referring to additional assumptions. In my opinion, as long as this is

the state of a�airs, one better look for alternative directions.

1.2 Towards new de�nitions

My starting point (or thesis) is that we should not care about expected polynomial-time adversaries

per se. As hinted by my historical account, researchers were perfectly happy with strict probabilistic

polynomial-time adversaries and would have probably remained so if it were not for the introduction

of expected polynomial-time simulators. Indeed, at the end of the day, the user (especially a non-

sophisticated one) should care about what an adversary can obtained within a speci�c time (or

various possible amounts of work), where the term `obtain' incorporates also a quanti�cation of the

success probability. I claim that our goal as researchers is to provide such statements (or rather

techniques for providing such statements), and that expected polynomial-time machines may appear

in the analysis only as intermediate steps (or mental experiments).

My thesis is further enforced by the confusing and unintuitive nature of expected running-time

especially when applied in the context of cryptography

5

and by numerous annoying phenomena re-

lated to expected time complexity. In particular, note that, unlike strict polynomial-time, expected

polynomial-time is a highly non-robust notion that is not preserved under changes of computational

model and standard algorithmic compositions.

6

These \features" are an artifact of the \bad in-

teraction" between the expectation operator and many non-linear operators: for example, for a

random variable X, we cannot upper-bound E[X

2

] as a function of E[X]. Thus, if X is a random

variable that represents the running-time of some process � (where the probability space is that of

the internal coin tosses of �), then we cannot bound the expected running-time of various modest

variants of � (e.g., which square its running-time) in terms of the expected running-time of �. (See

Footnote 19, which refers to a natural case in which this problem arises.)

The foregoing reservations regarding expected polynomial-time are of lesser concern when ex-

pected running-time is only used as an intermediate step (rather than as a �nal statement). Taking

this approach to its extreme, I claim that for this purpose (of an intermediate step) it is legitimate

to use any (reasonable) de�nition of expected polynomial-time strategies, and that among such

possibilities we better select a de�nition that supports the desired results (e.g., simulation of cor-

responding adversaries and composition theorems). Thus, we should seek a de�nition of expected

4

Roughly speaking, one of their results provides a transformation of some simulators that handle strict probabilis-

tic polynomial-time adversaries into simulators that handle expected polynomial-time adversaries, while assuming

that the original simulator's queries are strongly indistinguishable from the messages of the real protocol. Another

result provides a composition theorem for expected polynomial-time simulators (which handle strict probabilistic

polynomial-time adversaries), while relying on strongly pseudorandom functions. In both cases, the term strong

refers to versions of computational indistinguishability that are required to hold with respect to super-polynomial-

time observers. This means that for obtaining (ordinary) computational security, somewhere along the way, one needs

to make a super-polynomial-time intractability assumption. Also note that the simulators constructed in [KL05] use

the corresponding adversaries in a \slightly non-black-box" manner in the sense that they terminate executions (of

these adversaries) that exceed a speci�c number of steps.

5

Indeed, things become even worse if we bear in mind the need to keep track of both the running-time and the

success probability (which should be calculated with respect to various strict time bounds). That is, I claim that

providing only the expected running-time and the overall success probability is quite meaningless, since the success

is likely to be correlated with the running-time.

6

See analogous discussion of average-case complexity in [G97].

4



polynomial-time strategies that enjoys the following properties:

1. The de�nition should include all strict probabilistic polynomial-time strategies (but should

not extend \much beyond that"; e.g., super-polynomial-time computations may only occur

with negligible probability).

2. When applied to non-interactive strategies (i.e., stand-alone algorithms) the de�nition of

expected polynomial-time strategies should yield the standard notion of expected polynomial-

time.

This property is not only a matter of aesthetic considerations but is rather important for

composition theorems (as desired in Property 3b). Furthermore, when applied to the context

of zero-knowledge, the current property implies that expected polynomial-time simulators are

deemed admissible by this de�nition.

7

3. The de�nition should allow to derive the results that we seek:

(a) Known simulators that handle strict probabilistic polynomial-time adversaries should

also handle adversaries that satisfy the de�nition.

8

(b) The de�nition should support natural composition theorems (e.g., of the type proven by

Canetti [C00]).

With the foregoing properties in mind, let me suggest a couple of new de�nitions of expected

polynomial-time strategies. These de�nitions will be more restrictive than the existing de�nitions

of this notion (which were reviewed in Section 1.1).

1.3 The new de�nitions

Looking at the problem of simulating an \expected polynomial-time" adversary (cf. [KL05]), it

becomes evident that the source of trouble is the fact that the bound on the running-time of

the adversary (w.r.t any real interaction) is no longer guaranteed when the adversary is invoked

by a simulator. The point being that the queries made by the simulator may have a di�erent

distribution than the messages sent in any real interaction (especially, since some of these queries

may not appear in the transcript output by the simulator). Furthermore, the simulator is resetting

the adversary, which may allow it to �nd queries that are correlated to the adversary's internal

coin tosses in ways that are unlikely to happen in any real interaction (see examples in [KL05]

and in the proof of Proposition 5). Such queries may cause the adversary to run for a number of

steps that is not polynomial on the average. Indeed, this problem does not occur in case of strict

probabilistic polynomial-time adversaries because in that case we have an absolute bound on the

number of steps taken by the adversary, regardless of which messages it receives.

Let me stress that assuming that the adversary runs in expected polynomial-time when inter-

acting with any other party does not solve the problem, because the distribution of the simulator's

queries may not correspond to the distribution of an interaction with any standard interactive

machine. The simulator's queries correspond to a \reset attack" on the adversary, where reset

attack are as de�ned in [CGGM] (except that here they are applied on the adversary's strategy

7

In fact, we should strengthen Property 2 by requiring that also in the context of secure multi-party computation

(where the simulators are themselves interactive machines) the known \expected polynomial-time" simulators (of

strict probabilistic polynomial-time) are deemed admissible by the selected de�nition.

8

Actually, we may relax this condition by allowing a modi�cation of the simulator but not of the protocol and/or

the underlying intractability assumptions.

5



rather than on the honest party's strategy). Speci�cally, in a reset attack, the internal coin tosses

of the strategy are �xed (to a random value) and the attacker may interact several times with the

resulting residual (deterministic) strategy.

The forgoing discussion suggests a simple �x to the problem. Just de�ne expected polynomial-

time strategies as ones that run in expected polynomial-time under any reset attack that interact

with them for a polynomial number of times. Actually, we should allow attacks that interact with

these strategies for an expected polynomial number of times.

9

(See De�nition 3.)

It seems that any (black-box) simulator that handles strict probabilistic polynomial-time ad-

versaries can also handle adversaries that run in expected polynomial-time under the foregoing

de�nition. After all, this de�nition was designed to support such a result. However, I was not

able to prove this result without further restricting the class of simulators (in a natural way). For

details, see Section 1.4.

But before turning to the results, let me suggest an even more restricted notion of expected

polynomial-time strategies. I suggest to consider strategies that run in expected polynomial-time

when interacting with any (\magical") machine that receives the strategy's internal coin tosses as

side information. Arguably, this is the most restricted (natural) notion of expected polynomial-time

strategies (which, when applied to non-interactive machines, coincides with the standard de�nition

of expected polynomial-time). Needless to say, this de�nition (which is more restrictive than the

aforementioned resetting de�nition) also supports the extension of simulators that handle strict

probabilistic polynomial-time adversaries to handle adversaries satisfying the current de�nition.

Clearly, both de�nitions satisfy the �rst two desirable properties stated in Section 1.2. As for

the third desirable property, I was able to establish it only for a natural subclass of black-box

simulators discussed next.

1.4 The main results

The main results establish the third desirable property, while assuming that the provided simulators

(i.e., the simulators provided by the corresponding hypothesis) belong to a natural subclass of black-

box simulators. Indeed, one could hope that these results would hold for all (universal) simulators

or at least for all black-box simulators.

10

Speci�cally, I consider black-box simulators that, when given oracle access to any strategy,

make an expected number of steps that is upper-bounded by a polynomial in the length of the

input, where each oracle call is counted as a single step. In contrast, the standard de�nition of

black-box simulators only mandates such a step-bound in the case that the simulator is given oracle

access to any probabilistic polynomial-time strategy. Still, every strict probabilistic polynomial-

time black-box simulator can be modi�ed to satisfy the extra condition, which I call normality.

Furthermore (and more importantly), the known simulators that run in expected polynomial-time

(e.g., [GK96]) are normal. For further discussion see the beginning of Section 3.

As stated in Section 1.3, the new de�nitions (or actually the \resetting-based" one) were de-

vised to support the �rst main result (stated in Theorem 10). This result asserts that any normal

black-box simulator that handles strict probabilistic polynomial-time adversaries can also handle ad-

versaries that run in expected polynomial-time under the new de�nition(s). In particular, it implies

that normal black-box zero-knowledge protocols remain simulateable when attacked by adversaries

9

When measuring the expected number of interactions, I refer to a variant of Feige's notion of expected complexity

with respect to the designated machine. Indeed, this widens the class of possible (reset) attackers, which further

limits the class of admissible strategies (i.e., those that are expected polynomial-time under such attackers).

10

Recall that a universal simulator is a universal machine that is given that the code of the adversary that it

simulates. In contrast, a black-box simulator is only given oracle access to the corresponding strategy.

6



that satisfy the new de�nition(s) of expected polynomial-time. This applies, in particular, to the

proof system of [GK96], for which analogous (\free") results were not known under the previous

de�nitions of expected polynomial-time.

11

Note that the fact that the aforementioned normal black-box simulators run in expected polynomial-

time also when given access to any expected polynomial-time adversary is quite obvious from the

new de�nition(s). This follows from the fact that normal black-box simulators invoke the adver-

sary strategy for an expected polynomial number of times, while the \resetting-based de�nition"

upper-bounds the total expected time consumed by the adversary in such invocations. What should

be shown is that, also in this case, the corresponding simulation produces good output (i.e., in-

distinguishable from the real interaction). This can be shown by using a rather straightforward

\truncation" argument.

12

Let us now turn to the question of composition, starting with the sequential composition of zero-

knowledge protocols. The known result (of [GO94]) refers to strict probabilistic polynomial-time

adversaries (and holds both with respect to strict and expected polynomial-time simulation).

13

However, the known argument does not extend to expected polynomial-time adversaries. Recall

that the said argument transforms any adversary that attacks the composed protocol into a resid-

ual adversary that attacks the basic protocol. The source of trouble is that the fact that the former

adversary is expected polynomial-time (under any de�nition) does not imply that the latter adver-

sary is expected polynomial-time (under this de�nition). See the proof of Theorem 9 for details.

Fortunately, there is an alternative way: just note that the simulator obtained by [GO94], which

refers to strict probabilistic polynomial-time adversaries, can handle expected polynomial-time ad-

versaries (i.e., by invoking Theorem 10 (or rather its zero-knowledge version { Theorem 8)).

The foregoing idea can also be applied to the general setting of secure multi-party computation,

but additional care is needed to deal with the extra complexities of this setting (as described next).

Speci�cally, the so-called sequential composition theorem of Canetti [C00] (see also [G04, Sec. 7.4.2])

refers to an oracle-aided (or \hybrid") protocol � that uses oracle calls to a functionality

14

f , which

can be securely computed by a protocol �. (Note that the corresponding oracle-aided protocol was

not mentioned in the context of zero-knowledge, because it is trivial (i.e., it merely invokes the

basic protocol several times).) The theorem asserts that the security of � (with respect to a

speci�c functionality unmentioned here) is preserved when � uses subroutine calls to � rather than

oracle calls to f . This result refers to security with respect to strict probabilistic polynomial-time

adversaries that is demonstrated by strict probabilistic polynomial-time simulators. One point to

notice is that the proof of security of the resulting protocol, denoted �

0

, proceeds by incorporating

the simulator of � into an adversary for �. Thus, if the simulator of � runs in expected polynomial-

time then so does the resulting adversary (for �), and thus the simulator for � has to handle expected

polynomial-time adversaries (even if we only care of strict polynomial-time adversaries attacking

�

0

). Indeed, having a simulator for � that handles any expected polynomial-time adversaries

11

Note that Katz and Lindell [KL05] showed that the simulator presented in [GK96] fails (w.r.t expected polynomial-

time under the previous de�nitions). Their work implies that, if strongly hiding commitment schemes are used in the

protocol, then an alternative simulator does work. In contrast, my result applies to the simulator presented in [GK96]

and does not require strengthening the commitment scheme used in the protocol. Furthermore, the running-time is

preserved also for no-instances (cf., in contrast, [KL05, Sec. 3.3]).

12

Indeed, the running-time analysis relies on the hypothesis that the simulator is normal, whereas the analysis of

its output only relies on the hypothesis that the simulator is black-box. In contrast, for the claim itself to make sense

at all it su�ces to have a universal simulator (as otherwise it is not clear what we mean by saying that a simulator

that handles any A 2 C can handle any A

0

2 C

0

).

13

The original proof (of [GO94]) refers to strict polynomial-time simulators, but it extends easily to expected

polynomial-time simulators.

14

A functionality is a randomized version of a multi-input multi-output function (cf. [G04, Sec. 7.2.1]).

7



su�ces for a partial result that refers to strict probabilistic polynomial-time adversaries for the

resulting protocol �

0

and to expected polynomial-time simulators (for �, �, and �

0

). The general

(sequential) composition theorem for the case of expected polynomial-time (which refers to expected

polynomial-time adversaries and simulators) follows by applying Theorem 10.

Turning to the concurrent composition theorem of Canetti [C01], recall that it evolves around

the notion of environmental security (a.k.a UC-security [C01]). Speci�cally, Canetti proved that

any protocol that is environmentally secure preserves security under arbitrary concurrent execu-

tions, where the adversaries, simulators, and environments are all modeled as strict probabilistic

polynomial-time strategies (with non-uniform auxiliary inputs for the environments). He then sug-

gested the methodology of establishing environmental-security as a way of obtaining security under

concurrent composition. Consequently, an extension of Canetti's methodology to the expected

polynomial-time setting requires (1) verifying that Canetti's proof extends to this setting, and

(2) obtaining environmental security for expected polynomial-time adversaries and environments.

Using the new de�nitions of expected polynomial-time strategies, the �rst requirement follows anal-

ogously to the proof of the sequential composition theorem, while the second requirement follows

by generalizing Theorem 10 (which may be viewed as referring to trivial environments).

The bottomline is that, for normal black-box simulators, the new de�nitions of expected

polynomial-time strategies provide a \free" transformation from the strict probabilistic polynomial-

time model to the expected polynomial-time model. In particular, normal black-box simulators that

work in the strict model extend to the expected model, and the most famous composition theorems

extend similarly.

1.5 Organization

Section 2 provides formal statements of the aforementioned (old and new) de�nitions as well as

a demonstration of a hierarchy among them. Since the special case of zero-knowledge protocols

provides a good benchmark for the general case of secure protocols, the main results are �rst

presented in that setting (see Section 3). This simpli�es things, because in that special case

the simulators are standard algorithms rather than interactive strategies (for the so-called \ideal-

model"; see, e.g., [G04, Sec. 7.2]). Nevertheless, I believe that the main ideas are already present in

the zero-knowledge setting, and that this belief is supported by the treatment of general protocols

(provided in Section 4).

2 The De�nitions

We adopt the standard terminology of interactive machines, while occasionally identifying strategies

(which specify the next message to be sent by an interactive machine given its view so far) with the

interactive machines that activate them. We use the shorthand PPT for probabilistic polynomial-

time whenever using the full term is too cumbersome; typically, we do so when contrasting strict

PPT and expected PPT. For simplicity, we only consider the two-party case. We denote by x the

common (part of the) input, and denote by y and z the corresponding private inputs of the two

parties.

2.1 Known de�nitions

We start by formulating the two known de�nitions that were mentioned in Section 1.1.

8



De�nition 1 (Feige [F90]): The strategy � is expected PPT w.r.t a speci�c interactive machine M

0

if, for some polynomial p and every x; y; z, the expected number of steps taken by �(x; z) during

an interaction with M

0

(x; y) is upper-bounded by p(jxj), where the expectation is taken over the

internal coin tosses of both machines.

We stress that � may be expected PPT with respect to some interactive machines but not with

respect to others.

De�nition 2 (attributed to Goldreich, e.g., in [KL05]): The strategy � is expected PPT w.r.t any

interactive machine if, for some polynomial p, every interactive machine M , and every x; y; z, the

expected number of steps taken by �(x; z) during an interaction with M(x; y) is upper-bounded by

p(jxj).

Here we may assume, without loss of generality, that M (which is computationally unbounded) is

deterministic, and thus the expectation is only taken over the internal coin tosses of �. The same

convention is applied also in De�nition 4 (but not in De�nition 3; see discussion there).

2.2 New de�nitions

In the �rst new de�nition, we refer to the notion of a reset attack as put forward in [CGGM]. Such

an attack proceeds as follows. First, we uniformly select and �x a sequence of internal coin tosses,

denoted !, for the attacked strategy �, obtaining a residual deterministic strategy �

!

. Next, we

allow the attacker to interact with �

!

numerous times (rather than a single time). Speci�cally, for

each possible value of !, the expected number of times that attacker interacts with �

!

is upper-

bounded by a polynomial.

15

Note that the attacker is not given ! explicitly, but its ability to (sequentially) interact with

the residual strategy �

!

for several times provides it with additional power (beyond interacting

with � itself for several times, where in each interaction � uses a fresh sequence of coin tosses). As

shown in [CGGM], such an attack is equivalent to a single interaction in which the attacker may

(repeatedly) \rewind" � (or rather �

!

) to any prior point in the interaction and ask to resume the

interaction from that point. Indeed, such an attack is reminiscent of the way that a (black-box)

simulator uses an adversary strategy.

De�nition 3 (tailored for simulation): A q-reset attack on � is an attack that, for every x; y; z and

!, interacts with �

!

for an expected number of times that is upper-bounded by q(jxj). The strategy

� is expected PPT w.r.t any reset attack if, for some polynomial p, every polynomial q, every q-reset

attack on �, and every x; y; z, the expected total number of steps taken by �(x; z) during this attack

is upper-bounded by q(jxj) � p(jxj).

16

15

Indeed, the restriction on the number of interactions is a hybrid of the spirit of De�nitions 1 and 2. We are

upper-bounding the (expected) number of interactions initiated by the attacker (rather than its running-time), but

do so not with respect to the designated � but rather with respect to each of the residual �

!

. Note that a simpli�ed

version that refers to the expected number of interactions with � (i.e., the expectation is taken also over the coins

of �) yield a \bad" de�nition. (For example, suppose that �

!

sends ! and makes 2

j!j

steps if ! = 1

j!j

and halt

immediately otherwise. Then, intuitively � is expected PPT (and in fact it even satis�es De�nition 4), but the reset

attack that, upon receiving ! in the �rst interaction, invokes �

!

for 2

j!j

additional times if and only if ! = 1

j!j

,

causes � to make an expected exponential number of steps.)

16

The upper-bounded of q(jxj) � p(jxj) seems natural, but an upper-bounded of p(jxj + q(jxj)) would work just as

well (for all results stated in this work) but would yield weaker quantitative bounds.

9



We stress that the number of invocations of � (like the total number of steps taken by �) is a random

variable de�ned over the probability space consisting of all possible interactions of the attacker and

�. Here (unlike in De�nition 2), allowing the potential attacker to be probabilistic increases its

power (and thus adds restrictions on strategies satisfying the de�nition). The reason is that, for

each �xed !, the number of invocations of �

!

is allowed to be an arbitrary random variable with

a polynomially bounded expectation (rather than being strictly bounded by a polynomial).

In the next (and last) de�nition, we consider a \magical" attacker that is given the outcome of

the strategy's internal coin tosses as side information. That is, such an attack proceeds as follows.

First, we uniformly select and �x a sequence of internal coin tosses, denoted !, for the attacked

strategy �, obtaining a residual deterministic strategy �

!

. Next, we provide the attacker with !

and allow it a single interaction with �

!

. We stress that this attacker is merely a mental experiment

used for determining whether or not � is expected polynomial-time (under the following de�nition).

De�nition 4 (seemingly most restrictive): The strategy � is expected PPT w.r.t any magical ma-

chine if, for some polynomial p, every interactive machine M

0

that is provided with the internal

coin tosses of � as side information, and every x; y; z, the expected number of steps taken by �(x; z)

during an interaction with M

0

(x; y) is upper-bounded by p(jxj).

Here as in De�nition 2, we may assume, without loss of generality, that M

0

(which is computa-

tionally unbounded) is deterministic, and thus the expectation is only taken over the internal coin

tosses of �. Thus, De�nition 4 refers to the expectation, taken uniformly over all choices of !,

of the number of steps taken by (the residual deterministic strategy) �

!

(x; z) during an interac-

tion with (the deterministic strategy) M

0

(x; y; !). Indeed, a strategy � that satis�es De�nition 4

runs in expected polynomial-time even if each of the incoming messages is selected to maximize its

running-time, when this selection may depend on the internal coin tosses of �. This formulation is

closest in spirit to the standard de�nition of strict PPT strategies.

2.3 Relating the de�nitions

It is easy to see that, for i = 1; 2; 3, De�nition i+1 implies De�nition i. In fact, it is not hard to see

that the converses do not hold. That is:

Proposition 5 For i = 1; 2; 3, the set of strategies that satis�es De�nition i+1 is strictly contained

in the set of the strategies that satis�es De�nition i.

Proof: The �rst two containments (i.e., for i = 1; 2) are plainly syntactic. To see that De�nition 4

implies De�nition 3 note that a reset attack does not add power to a computationally unbounded

machine that gets �'s internal coin tosses. Formally, �xing an arbitrary q-reset attack A, denote

by t

A(r)

(!) the total time spent by �

!

when attacked by A, which in turn uses coins r. Likewise,

denote by n

A(r)

(!) the number of interactions of A with �

!

, when A uses coins r. By the hypothesis

that A is a q-reset attack, for every value of !, it holds that E

r

[n

A(r)

(!)] is upper-bounded by q(�).

On the other hand, if � satis�es De�nition 4 then letting t

0

A(r)

(!) = t

A(r)

(!)=n

A(r)

(!) it follows

that E

!

[max

r

ft

0

A(r)

(!)g] is upper-bounded by some polynomial p(�), because t

0

A(r)

(!) corresponds

to the (average) time spend by �

!

in a single iteration with A(r). Noting

17

that E

r;!

[t

A(r)

(!)]

17

We use the fact that E

i;j

[a

i;j

b

i;j

] is upper-bounded by max

j

fE

i

[a

i;j

]g � E

j

[max

i

fb

i;j

g]. This fact can be proved

by noting that E

j

[E

i

[a

i;j

b

i;j

]] � E

j

[max

i

fb

i;j

g � E

i

[a

i;j

]], letting B

j

= max

i

fb

i;j

g and A

j

= E

i

[a

i;j

], and using

E

j

[B

j

A

j

] � max

j

fA

j

g � E

j

[B

j

].

10



is upper-bounded by the product of max

!

fE

r

[n

A(r)

(!)]g and E

!

[max

r

ft

0

A(r)

(!)g], and using the

foregoing upper-bounds, it follows that � sati�es De�nition 3.

To show that the foregoing containments are strict we present corresponding strategies that

witness the separations. The following examples are rather minimal, but they can be augmented

into strategies that make sense (even for natural protocols). For example, a strategy that halt

immediately upon receiving the message 0 and runs forever upon receiving the message 1 witnesses

the separation between De�nition 1 and De�nition 2. Note that this example has nothing to do

with the issue of expected polynomial-time (although an example that does relate to the latter

issue can be constructed similarly).

To separate De�nition 3 from De�nition 4 consider a strategy that uniformly selects an n-bit

long string r, and upon receiving a message s halts immediately if s 6= r and halts after making 2

n

steps otherwise. Clearly, this strategy does not satisfy De�nition 4, but it does satisfy De�nition 3.

A small twist on the foregoing example can be used to separate De�nition 2 from De�nition 3:

Suppose that upon receiving s, the strategy �rst sends r, and then halts immediately if s 6= r and

halts after making 2

n

steps otherwise. In this case a 2-reset attack can cause this strategy to always

run for 2

n

steps, while no ordinary interactive machine can do so.

3 Results for Zero-Knowledge

In the context of zero-knowledge, simulators are used to establish the security of predetermined

prover strategies with respect to attacks by adversarial veri�ers. We start by showing that (normal

black-box) simulators that handle strict PPT adversaries also handle adversaries that are expected

PPT (under De�nitions 3 and 4). We next turn to an expected PPT version of the standard

sequential composition theorem. (In Section 4, analogous results are proved for general secure

protocols.) To shorthand the text, when we say that some quantity (referring to an interaction) is

polynomial, we mean that it is polynomial in the length of the common input.

Since the notion of normal black-box simulators is pivotal to our results, let us start by brie
y

recalling the standard de�nition of black-box simulators (see, e.g., [G01, Def. 4.5.10]). Loosely

speaking, a black-box simulator is a universal machine that is given oracle access to a deterministic

strategy and provides a simulation of the interaction of this strategy with the party attacked by this

strategy.

18

In extending this notion to randomized strategies, we refer to providing the simulator

with oracle access to a residual (deterministic) strategy obtained by �xing random coin tosses to

the given randomized strategy.

Typically, by saying that a black-box simulator is PPT one means that the total (expected

or strict) number of steps taken both by the simulator itself and any (PPT) strategy that the

simulator invokes is upper-bounded by a polynomial. Often a more restricted formulation is used,

by referring only to the number of steps taken by the simulator itself and/or considering oracle

calls as single steps (i.e., counting them at unit cost). In this case one mandates that, when given

oracle access to any PPT strategy, the (expected) number of steps taken by the simulator itself is

upper-bounded by a polynomial. Here we extend the latter requirement to any strategy.

De�nition 6 (normal black-box simulators): A black-box simulator is called normal if, on any

input and when given oracle access to any strategy, it make an expected number of steps that is

18

In typical use of a black-box simulator one refers to the quality of this simulation. Speci�cally, it is require that

if the former strategy is e�cient (in some adequate sense) then the simulation is computationally indistinguishable

from the real corresponding interaction. Since the notion of e�ciency will vary (i.e., from strict PPT to expected

PPT), we shall not couple the operational aspect of the black-box simulator with the quality of the output that it

produces, but rather separate the two.

11



upper-bounded by a polynomial in the length of the input, where each oracle call is counted as a

single step.

Although it is possible to construct black-box simulators that are not normal (e.g., they run forever

if the black-box manages to solve a hard problem), the standard black-box simulators (e.g., the

ones of [GMR, GMW, GK96]) are all normal. Furthermore, normality seems a natural property

and it is easy to verify. For example, if the running-time analysis of a simulator (unlike the analysis

of the quality of its output) does not rely on any intractability assumptions, then it is probably the

case that the simulator is normal.

The total simulation time. We will often refer to the (total) simulation time of the combined

simulator S

V

�

, which consists of a normal black-box simulator S that is given oracle access to an

adversarial veri�er V

�

. Needless to say, for any normal simulator S, if V

�

is strict PPT then the

expected (total) simulation time of S

V

�

is polynomial. As observed by Katz and Lindell [KL05],

this is not necessarily the case if V

�

is expected PPT w.r.t De�nition 2. The key observation, which

motivates De�nition 3, is that the desired bound on the expected (total) simulation time of S

V

�

does hold if V

�

is expected PPT w.r.t any reset attack.

Observation 7 If S is a normal black-box simulator and V

�

is expected polynomial-time w.r.t

De�nition 3 then the expected total simulation time of S

V

�

is polynomial.

Proof: Since S is a normal black-box simulator, there exists a polynomial q such that, for every

setting of coins ! for V

�

, it holds that the expected number of times that S invokes the residual

strategy V

�

!

is upper-bound by q(�). Thus, S is a q-reset attack on V

�

. Since V

�

satis�es De�nition 3,

it follows that the expected (total) number of steps taken by V

�

during the entire simulation is

upper-bound by a polynomial. The claim follows.

3.1 Simulating expected PPT adversaries

Bearing in mind that (in the context of zero-knowledge) the simulator is a standard algorithm, it

su�ces to state the following result with respect to De�nition 3, and its applicability to De�nition 4

follows as a special case.

Theorem 8 (extendability of normal black-box simulators, the zero-knowledge case): Let (P; V )

be an interactive proof (or argument) system for a set L, and hP; V

�

i(x) denote the output of the

adversarial veri�er strategy V

�

on input x after interacting with the prescribed prover P . Let M be

a normal black-box simulator that, on input in L and when given access to any strict PPT strategy

V

�

, produces output that is computational indistinguishable from hP; V

�

i. Then, when M is given

oracle access to any strategy V

�

that is expected PPT w.r.t any reset attack, the expected simulation

time of M

V

�

is polynomial and the output is computational indistinguishable from hP; V

�

i.

Note that the hypothesis allows the simulator to run in expected PPT while simulating a strict

PPT adversary. This makes the hypothesis weaker and the theorem stronger; that is, the theorem

can be applied to a wider class of protocols (including protocols that are not known to have strict

PPT simulators such as, e.g., the constant-round zero-knowledge proof of [GK96]).

Proof: Fixing any expected PPT w.r.t De�nition 3 strategy V

�

, we �rst note that (by Ob-

servation 7) the expected simulation time of M

V

�

is polynomial. To analyze the quality of this

simulation, suppose towards the contradiction that D distinguishes between the simulation and the

12



real interaction, and let p be a polynomial such that the distinguishing gap of D for in�nitely many

x 2 L is at least �(jxj)

def

= 1=p(jxj). Let t

�

(x) denote the total (over all invocations) expected num-

ber of steps taken by V

�

when invoked by M . Note that t

�

(x) is upper-bounded by a polynomial

in jxj, and assume (without loss of generality) that t

�

(x) also upper-bounds the expected running

time of V

�

in the real interaction (with P ). Now, consider a strict PPT V

��

that emulates V

�

,

while truncating the emulation as soon as 3t

�

=� steps are emulated. Then, the variation distance

(a.k.a statistical di�erence) between M

V

�

(x) and M

V

��

(x) is at most �(jxj)=3, because �=3 upper-

bounds the probability that the number of steps taken by V

�

in any of its invocation by M exceeds

3t

�

=�. Similarly, the variation distance between hP; V

�

i(x) and hP; V

��

i(x) is upper-bounded by

�(jxj)=3. It follows that D distinguishes the simulation M

V

��

from the real interaction hP; V

��

i

with a gap that exceeds �=3, on in�nitely many inputs in L, in contradiction to the hypothesis that

M simulates all strict PPT veri�ers.

Discussion: We believe that the fact that the proof of Theorem 8 is rather straightforward should

not be counted against De�nition 3, but rather the other way around. That is, we believe that the

claim that the simulation of strict PPT adversaries extends (without modi�cations) to expected

PPT adversaries is natural, and as such a good de�nition of expected PPT adversaries should

support it. It may be that Theorem 8 can be generalized also to arbitrary black-box simulators

and even to arbitrary universal simulators, but the current proof fails to show this.

19

Note that the (expected PPT) combined simulator resulting from Theorem 8 is trivially expected

PPT under reset attacks (and also under De�nition 4), because it is a non-interactive machine.

Things are not as simple when we move to the setting of secure protocols, where the simulator is

an interactive strategy (which operates in a so-called ideal-model). See Section 4.1.

3.2 Sequential composition

Again, the setting of zero-knowledge provides a good warm-up for the general study of secure

protocols. The following Theorem 9 is an expected PPT version of the standard result (of [GO94])

that refers to strict PPT adversaries and simulators (see also [G01, Lem. 4.3.11]). Note that the

standard result does not require the simulator to be black-box (let alone normal). The reason for

the extra requirement will become clear in the proof.

Theorem 9 (expected PPT version of sequential composition for zero-knowledge:) In this theorem

zero-knowledge means the existence of a normal black-box simulator that handles any expected PPT

w.r.t De�nition 3 (resp., w.r.t De�nition 4) adversarial veri�er, where handling means that the cor-

responding combined simulator runs in expected PPT and produces output that is computationally

indistinguishable from the real interaction. Suppose that (P; V ) is a zero-knowledge protocol. Then,

sequentially invoking (P; V ) for a polynomial number of times yields a protocol, denoted (P

0

; V

0

),

that is zero-knowledge.

19

Recall that a universal simulator obtains the code of the adversary's strategy rather than a black-box access to

it. Thus, it may be the case that such a simulator can distinguish the code of V

�

from the code of V

��

(i.e., the

timed version of V

�

), and produce bad output in the latter case. Indeed, a \natural" simulator will not do so, but

we cannot rely on this. Turning to a more natural example, we note that the known non-black-box simulator of

Barak [B01] (as well as its modi�cation [BG02]) may fail to simulate expected PPT veri�ers, because the random

variable representing its simulation time is polynomially related (rather than linearly related) to the running-time

of the veri�er. Recall that it may be the case that t(x) has expectation that is upper-bounded by a polynomial in

jxj while t(x)

2

has expectation that is lower-bounded by exp(jxj); for example, consider t : f0; 1g

�

!N such that

Pr[t(x) = 2

jxj

] = 2

�jxj

and Pr[t(x) = jxj

2

] = 1� 2

�jxj

.

13



Proof: The proof of the strict PPT version (see [G01, Sec. 4.3.4]) proceeds in two steps: First,

any veri�er V

�

that attacks the composed protocol (or rather the prover P

0

) is transformed into an

veri�er V

��

that attacks the basic protocol (or actually the prover P ). This transformation is quite

straightforward; that is, V

��

handles a single interaction with P (while receiving the transcript of

previous interactions as auxiliary input). LetM denote a (normal black-box) simulator for (P; V

��

).

Then, a simulator for the composed protocol (or rather for the attack of V

�

on P

0

) is obtained by

invoking M for an adequate number of times (using a correspondingly adequate auxiliary input in

each invocation).

Wishing to pursue the foregoing route, we merely need to check that any veri�er V

�

that is

expected PPT w.r.t De�nition 3 (resp., De�nition 4) is transformed into a veri�er V

��

that is

expected PPT w.r.t De�nition 3 (resp., De�nition 4). Unfortunately, this is not necessarily the

case. Indeed, the expected running-time of V

��

when given a random auxiliary input (i.e., one

produced at random by prior interactions) is polynomial, but this does not mean that the expected

running-time of V

��

on each possible value of the auxiliary input is polynomial. For example, it may

be the case that, with probability 2

�jxj

over the history of prior interactions, the current interaction

of V

�

(i.e., V

��

with the corresponding auxiliary input) runs for 2

jxj

steps. The bottomline is that

V

��

may not be expected PPT w.r.t any reasonable de�nition (let alone w.r.t De�nition 3 or

De�nition 4).

In view of the forgoing, we take an alternative route. We only use the hypothesis that some

normal black-box simulator can handle all strict PPT veri�ers that attack the basic prover P . Next,

we observe that the proof of [G01, Lem. 4.3.11] (i.e., the strict PPT version) can be extended to

the case that the simulation of the basic protocol (w.r.t strict PPT adversaries) runs in expected

PPT. The key observation is that V

��

is not a�ected by the complexity of the simulator of the

basic protocol (which simulates the interaction of V

��

with P ). The only relation between V

��

and the latter simulation is that the argument refers to the behavior of V

��

when fed with various

auxiliary inputs that are obtained by various invocations of the said simulator (but the length of

this auxiliary input is determined by the protocol and not by the simulator). Thus, we obtain an

expected PPT simulation that handles any strict PPT attack on P

0

. Furthermore, the simulation

amounts to invoking M for a polynomial number of times (while providing it with black-box access

to V

��

, which in turn is implemented by a black-box access to V

�

). It follows that the simulation

of (P

0

; V

�

) is performed by a normal black-box simulator (because M is normal). Hence, we have

obtained a normal black-box simulator that can handle any strict PPT attack on the composed

protocol (or rather on the prover P

0

). The current theorem follows by applying Theorem 8 to the

latter simulator.

Discussion: The proof of Theorem 9 is somewhat disappointing because it does not use the

hypothesis that P is zero-knowledge w.r.t expected PPT veri�ers. Instead, Theorem 8 is used to

bridge the gap between strict and expected PPT veri�ers. A similar (but not identical) phenomenon

will occur in the sequential composition theorem for general protocols, presented in Section 4.2.

4 Results for General Secure Protocols

In this section we extend the treatment of zero-knowledge (provided in Section 3) to a treatment

of arbitrary secure protocols. The extension is quite straightforward, once the key notions are

properly extended. The main issue that deserves attention is that, in the context of arbitrary

secure protocols, simulators are not standard algorithms but rather interactive strategies (for a

14



corresponding ideal-model { to be discussed next). Consequently, notions such as normal (black-

box) simulators and expected PPT simulators will have to be clari�ed. For simplicity, we only

consider the two-party case.

Recall that the standard (\simulation-based") de�nition of secure protocols calls for comparing

the real execution of the protocol (when certain parties are controlled by an adversary) to the

a�ect of a corresponding adversary in an ideal model (see, e.g., [G04, Sec. 7.2]). The ideal model

consists of the parties sending their inputs to a trusted party that provides each party with its cor-

responding output, where the trusted party computes these outputs according to the predetermined

functionality that the protocol is supposed to securely compute. Thus, the actions of the adversary

in the ideal model are con�ned to selecting the messages sent to the trusted party (by the parties

controlled by the adversary) and computing its �nal output based on the messages it received from

the trusted party (i.e., the messages received by the parties controlled by the adversary). In the

two-party case, this adversary sends a single message to the trusted party and receives a single

message in return. Note that this adversary is an interactive machine, although its interaction is

very minimal, and thus the various de�nitions of expected PPT strategies should and can be applied

to it.

Another point to note is that the ideal-model adversary is viewed as a simulator of the real-

model adversary, and that (as in the case of zero-knowledge) the simulator is typically described

as a universal machine that is given black-box access to the real-model adversary that it simulates.

For simplicity, we shall refer to the ideal-model adversary as the simulator and to the real-model

adversary as the adversary.

Turning to the notion of normal black-box simulators, let us �rst restate De�nition 6 (which

refers to non-interactive simulators). For any black-box simulator S and any adversary A, we

consider an imaginary machine I that emulates S

A

such that each oracle call to A is emulated

in unit time. Then, De�nition 6 mandates that for every adversary A the corresponding I is

expected PPT. In our context, the simulator itself is an interactive machine and thus the imaginary

machines will also be interactive. For i = 1; 2; 3; 4, we say that a black-box simulator S is normal

w.r.t De�nition i if, for every adversary A, the corresponding I is expected PPT w.r.t De�nition i.

We note that natural simulators used in security proofs are normal. This holds for simulators of

simple protocols (cf., e.g., [G04, Sec. 7.4.3.1-7.4.3.3]) as well as for simulators of complex protocols

obtained by composition (cf., e.g., [G04, Sec. 7.4.4]).

4.1 Simulating expected PPT adversaries

In continuation to Section 3.1, we prove that normal black-box simulation of strict PPT adversaries

can be extended to expected PPT adversaries. Unlike in Theorem 8, here the result (i.e., Theo-

rem 10) is stated for both the new de�nitions, because the combined simulator is an interactive

machine (and thus De�nitions 3 and 4 do not necessarily coincide when applied to it).

Theorem 10 (extendability of normal black-box simulators, the case of general two-party proto-

cols): Let � be a two-party protocol and real

A

(x) denote the output of its execution, on input

tuple x, under an attack of the adversary A. Let S be a normal w.r.t De�nition 3 (resp., De�ni-

tion 4) simulator and ideal

A

F

(x) denote the output of its execution, on input tuple x, oracle access

to the strategy A, and when the trusted party answers according to the functionality F . Suppose

that for every strict PPT strategy A, it holds that ideal

A

F

is computational indistinguishable from

real

A

. Then, for every strategy A that is expected PPT w.r.t De�nition 3 (resp., De�nition 4),

the total simulation time of the combined simulator S

A

is expected PPT w.r.t De�nition 3 (resp.,

De�nition 4) and ideal

A

F

is computational indistinguishable from real

A

.

15



As in case of zero-knowledge, Theorem 10 asserts that known simulators that handle strict PPT

adversaries can also handle adversaries that run in expected polynomial-time under the new de�-

nition(s). (Again, this holds even if the former simulators run in expected PPT.)

Proof: The current proof is analogous to the proof of Theorem 8, except that the veri�cation of

the expected total running-time of the combined simulation is slightly less evident. The key point

is that a de�nitional attack (i.e., as in De�nitions 3 and 4) on the combined simulator S

A

yields

a corresponding attack on A, which satis�es De�nition 3 (resp. De�nition 4) by the hypothesis.

Details follow.

We can focus on the total time spent by A in all its invocations by S, since the number of

steps of S itself is upper-bounded by the normality hypothesis. Let us �rst consider the version

that refers to De�nition 4, denoting by n

!

A

(!

S

) the maximum number of invocations of A by S,

when A (resp., S) uses coins !

A

(resp., !

S

) and the maximization is over all possible messages

(supposedly by the trusted party) that can be provided to the simulator (maximized for these

choices of !

A

and !

S

). By the normality hypothesis (applied to the residual adversaries A

!

A

),

it follows that max

!

A

fE

!

S

[n

!

A

(!

S

)]g is upper-bounded by a polynomial. Denoting by t(!

A

) the

maximum running time of A when the maximization is over all possible messages sent to A (again

maximized for this choice of !

A

), it follows that E

!

A

[t(!

A

)] is upper-bounded by a polynomial

(since A is PPT w.r.t De�nition 4). Now, the total time spent by A when S

A

interacts with a

magical machine (as in De�nition 4) is upper-bounded by

E

!

S

;!

A

[n

!

A

(!

S

) � t(!

A

)] = E

!

A

[E

!

S

[n

!

A

(!

S

)] � t(!

A

)]

� E

!

A

[max

!

fE

!

S

[n

!

(!

S

)]g � t(!

A

)]

= max

!

fE

!

S

[n

!

(!

S

)]g � E

!

A

[t(!

A

)]

This establishes the claim for De�nition 4. Turning to the version that refers to De�nition 3,

we apply an analogous analysis. Speci�cally, �xing any reset attack on the simulator S

A

, we let

n

r

(!

S

; !

A

) denotes the number of invocations of A(!

A

) by S(!

S

) when S

A(!

A

)

(!

S

) is invoked by

the reset attack that uses coins r. The admissibility of this reset attack on S

A

means that, for any

!

A

and !

S

, the expected number of invocations of S

A(!

A

)

(!

S

) by this attack is upper-bounded by a

polynomial. By the normality hypothesis regarding S (applied to the residual strategy A

!

A

, for any

�xed !

A

), it follows that max

!

A

fE

r;!

S

[n

r

(!

S

; !

A

)]g is upper-bounded by a polynomial (denoted q).

This means that the corresponding reset attack on A (i.e., obtained by combining the reset attack

on S

A

with S itself) is admissible (i.e., is a q-reset attack). Thus, by De�nition 3 (applied to A), it

follows that the expected total amount of time spent by A in these interactions is upper-bounded

by a polynomial.

4.2 Sequential composition

In continuation to Section 3.2, we turn to discuss the preservation of the security of general protocols

under sequential composition. The formulation is more complex in the current setting, because se-

quential composition of general protocols refers to a model of oracle-aided protocols (a.k.a \hybrid"

model). Thus, we need to extend our de�nitional treatment of expected PPT to that model.

Recall that an oracle-aided protocol � that uses oracle calls to a functionality f , is a protocol

augmented by special instructions by which the (two) parties may invoke the functionality f (several

times). Each invocation is performed by sending inputs to f , via special (imaginary) channels, and

16



receiving corresponding outputs (again via special channels).

20

Thus, in the various de�nitions

of expected PPT we need to refer also to the distribution of the messages obtained through the

aforementioned special channels. Speci�cally, when considering a strategy in the oracle-aided model,

the (de�nitional) attack

21

on this strategy controls both the ordinary channels (on which the

strategy expects to get messages from other parties) and the special channels (on which the strategy

expects to get outputs from the functionality). We stress that only under (the natural extension

of) De�nition 1, it is the case that the messages delivered over the special channels must �t the

designated functionality f .

A sequential composition theorem refers to an oracle-aided protocol that uses oracle calls to

some functionality, and to the e�ect of replacing these oracle calls by invocations of a secure protocol

for the said functionality. In the standard results of this type (cf. [C00]), it is assumed that the

proof of security of the sub-protocol (which replaces the oracle calls to the functionality) is via a

strict PPT simulator. The di�culty addressed here is that allowing an expected PPT simulator for

this sub-protocol requires considering expected PPT adversaries for the oracle-aided protocol (even

if we only care about strict PPT adversaries for the composed protocol). But if the oracle-aided

protocol is secure also with respect to expected PPT adversaries then we are �ne (as far as strict

PPT adversaries for the composed protocol are concerned). As in the proof of Theorem 9, if all

the simulators guaranteed by the hypothesis are normal, then we can extend the result to expected

PPT adversaries.

Theorem 11 (expected PPT version of the standard sequential composition theorem

22

:) In this

theorem security means the existence of normal black-box simulators that can handle

23

any ex-

pected PPT adversary, where normality and expected PPT are de�ned as in either De�nition 3 or

De�nition 4. Suppose that F can be securely computed by an oracle-aided protocol � that is given

oracle access to the functionality f , which can be securely computed by a standard protocol �. Then,

F can be securely computed by a standard protocol �

0

, which is composed of � and �.

Note that by Theorem 10 it su�ces to have in the hypothesis expected PPT (normal black-box)

simulators that can simulate any strict PPT adversary. Actually, the following proof invokes

Theorem 10 anyhow, which in turn is the reason that the de�nition of security refers to simulators

that operate in a black-box and normal fashion.

Proof: As in the proof of Theorem 9, the �rst idea that comes to mind is adapting the standard

proof of the corresponding result (i.e., [G04, Thm. 7.4.3]) that refers to strict PPT. Speci�cally,

the standard proof (as presented, say, in [G04, Sec. 7.4.2]) proceeds as follows: First, any adversary

that attacks the standard protocol �

0

is transformed into an adversary that attacks the standard

protocol �. Next, the former adversary (i.e., of �

0

) as well as a simulator for the latter adversary

(i.e., of �) are combined and transformed into an adversary that attacks the oracle-aided protocol

� (which uses oracle calls to f). A simulator of this adversary of � yields the desired simulation.

20

We stress that each invocation of f is performed instantaneously and no other protocol activity (i.e., neither

an ordinary communication nor another invocation of f) is performed concurrently. As usual, towards the time

complexity, each invocation is considered a single step.

21

Note that here we refer to the attacks used (as a mental experiment) in the various de�nitions of expected PPT

strategies (especially in De�nitions 3 and 4).

22

This is an expected PPT version of the Sequential Composition Theorem of [C00] (see also [G04, Thm. 7.4.3]),

which refers to security as the existence of strict PPT simulators that handle any strict PPT adversary. As in

Theorem 9, our expected PPT version requires that the simulators in the hypothesis operate in a black-box (and

normal) manner.

23

As in Theorem 9, handling means that the corresponding combined simulator runs in expected PPT under the

relevant de�nition and produces output that is computationally indistinguishable from the real interaction.

17



However, as in the proof of Theorem 9, it is not necessarily the case that if the adversary

attacking �

0

is expected PPT then the adversary obtained for � is also expected PPT. Thus, again,

we take an alternative route, starting by establishing the current theorem for strict PPT adversaries

attacking �

0

and next applying Theorem 10 to extend the result to adversaries that are expected

PPT w.r.t De�nition 3 (resp., De�nition 4). Now there is no problem with the �rst transformation

(which transforms any strict PPT adversary attacking �

0

into a strict PPT adversary attacking

�). Hence, we obtain a simulator for �, which runs in expected PPT w.r.t De�nition 3 (resp.,

De�nition 4). Combining this simulator with the former adversary (for �

0

), we obtain an adversary

attacking � that runs in expected PPT according to De�nition 3 (resp., De�nition 4).

The key point is that (by the hypothesis) we do have a (normal black-box) simulator that

can handle any expected PPT adversary attacking �. Thus, proceeding as in the proof of [G04,

Thm. 7.4.3], we obtain a simulator for �

0

, which is expected PPT w.r.t De�nition 3 (resp., De�-

nition 4). Using the fact that both simulators we used are normal black-box simulators (and so is

the construction presented in the proof of [G04, Thm. 7.4.3]), we infer that the simulator obtained

for �

0

is a normal black-box simulator. This allows invoking Theorem 10, and thus extending

the simulation to adversaries that are expected PPT w.r.t De�nition 3 (resp., De�nition 4). The

theorem follows.

Discussion: Note that the partial result by which �

0

is secure w.r.t strict PPT adversaries (via

an expected PPT simulator) was established using the following two hypotheses: (1) the simulator

for � can handle expected PPT adversaries, and (2) the (expected PPT) simulator for � can handle

strict PPT adversaries. That is, this partial result neither uses the hypothesis that the simulator

for � can handle expected PPT adversaries nor the hypothesis that both simulators operate in

a black-box (and normal) fashion. The latter hypothesis is used in order to guarantee that the

simulator constructed for �

0

is a normal black-box simulator, which in turn is used for extending

the partial result to the general result stated in Theorem 11. The hypothesis that the simulator

for � can handle expected PPT adversaries is never used.

4.3 Concurrent composition

Turning to concurrent composition theorems, we recall the pivotal role of environmental security

(a.k.a UC-security [C01]) in that context. Speci�cally, Canetti [C01] put forward a robust notion of

security (i.e., environmental security), and proved that any protocol that satis�es this notion also

preserves security under arbitrary concurrent executions. Since environmental security refers to a

single execution, an appealing methodology for providing protocols that are secure under arbitrary

concurrent executions emerged: design your protocol to be environmentally secure and obtain (for

free) security under concurrent executions. Our goal is to extend this methodology, which was

developed for the strict PPT setting, to the expected PPT setting. This requires (1) showing that

environmental security in the strict PPT setting implies environmental security in the expected

PPT setting, and (2) verifying that Canetti's proof extends to the expected PPT setting. But let

us start by recalling Canetti's notion of environmental security [C01] (see also [G04, Sec. 7.7.2]),

while con�ning ourselves to standard (non-reactive) functionalities.

24

24

Recall that a (non-reactive) functionality is a randomized version of a multi-input multi-output function (cf. [G04,

Sec. 7.2.1]). In contrast, Canetti's exposition of environmental security [C01] is dominate by reactive functionalities,

which are of natural (secondary) interest also when the basic notion of (stand-alone) security is concerned (cf. [G04,

Sec. 7.7.1.3]). We see no reason to couple environmental security with reactive functionalities.

18



A brief introduction to environmental security. Loosely speaking, environmental security

25

is aimed at representing the preservation of the protocol's security when executed within any

(feasible) environment. The notion of an environment is a generalization of the notion of an

auxiliary-input; that is, the environment is an auxiliary oracle (or rather a state-dependent oracle)

that the adversary may access. In particular, the environment may represent other executions of

various protocols that are taking place concurrently (with the execution that we consider). We

stress that the environment is not supposed to assist the proper execution of the protocol (and, in

fact, honest parties merely obtain their inputs from it and return their outputs to it). In contrast,

the environment may assist the adversary in attacking the protocol. Following the simulation

paradigm, we say that a protocol (for computing a functionality F ) is environmentally-secure if any

feasible real-model adversary attacking the protocol, with the assistance of any feasible environment,

can be simulated by a corresponding ideal-model adversary that uses the same environment (and

communicates with a trusted party that represents F ). We stress that both adversaries interact

with an environment that is selected after they are �xed (i.e., they \use" the environment in a

black-box manner). For sake of simplicity, the environment is also responsible for providing the

parties with inputs and for trying to distinguish the real-model execution from the ideal-model

execution. In the standard formulation (see [G04, Sec. 7.7.2]), the environment is implemented by

a (non-uniform) family of polynomial-size circuits (or, equivalently, by strict PPT with arbitrary

auxiliary inputs). As usual, the real-model and ideal-model adversaries are modeled as strict PPT

interactive machines.

The expected PPT version. Firstly, we apply our de�nitions of expected PPT (i.e., De�ni-

tions 3 and 4) to the real-model and ideal-model adversaries, hereafter referred to as adversaries

and simulators respectively. Note that the (de�nitional) attacks on these strategies control both

the ordinary channels (on which such a strategy expects to get messages from other parties) and

the channels used for communication with the environment. Secondly, we apply our de�nitions

of expected PPT (i.e., De�nitions 3 and 4) to the environment itself, which after all is merely a

strategy.

26

Lastly, we extend the notion of normal black-box simulators such that its \net" time

bound (i.e., counting only its own steps) refers to interaction with any environment.

Theorem 12 (extendability of simulators, the case of environmental security): In this theorem,

an expected PPT strategy is one that satis�es De�nition 3 (resp., De�nition 4). Suppose that �

is environmentally secure in the sense for every strict PPT adversary there exists an expected

PPT simulator such that, for every strict PPT environment, the corresponding real-model and

ideal-model executions are computationally indistinguishable. Further suppose that the simulator

runs in expected PPT even when interacting with an arbitrary environment. Then, there exists a

normal black-box simulator such that, for every expected PPT adversary and every expected PPT

environment, the following holds:

1. The expected total simulation time is polynomial, where the total simulation time includes the

steps taken by the simulator itself, the steps taken by the black-box adversary in all invocations,

and all steps taken by the environment.

25

The term used by Canetti [C01] is Universally Composable, abbreviated UC-secure, but we believe that a reason-

able sense of \universal composability" is merely a corollary of the suggested de�nition. Furthermore, as indicated by

subsequent research (e.g., [L03]), it is bene�cial to distinguish the desired \universal composability" property from

the speci�c way it is formulated.

26

In fact, since the simulator cannot \rewind" the environment, we may allow that latter to be expected PPT

according to De�nition 2. However, in the main application (i.e., Theorem 13) we shall only use environments that

are expected PPT according to De�nition 3 (resp. De�nition 4).

19



2. The corresponding real-model and ideal-model executions are computationally indistinguish-

able.

Note that the hypothesis allows the simulator to run in expected PPT while simulating a strict

PPT adversary and that the simulation is guaranteed to be computationally indistinguishable with

respect to strict PPT environments. Unlike in the previous extendability theorems (i.e., Theorems 8

and 10), here we did require the simulator to use the adversary in a black-box manner, because

without loss of generality (in the environmental setting) it su�ces to consider a �xed (and rather

trivial) adversary (cf. [C01]). We did require, however, that the simulator of that adversary runs

in expected PPT when interacting with any environment.

Proof: By the last comment, the hypothesis actually yields a normal black-box simulator that

handles any strict PPT adversary and any strict PPT environment. Proceeding as in the proof

of Theorem 10, which in turn builds on the proof of Theorem 8, we note that the same simulator

can handle any expected PPT adversary and any expected PPT environment. The current theorem

follows.

Security under concurrent executions. For any protocol �, we wish to consider numerous

executions of � that take place concurrently, where the scheduling of messages in the various

executions is up to the adversary.

27

In addition, other numerous executions of other protocols

(sometimes referred to as \arbitrary network activity") can take place concurrently, but our concern

is with the security of the copies of �. Loosely speaking, this should mean that these actual

executions of � can be simulated in a corresponding ideal-model (where a trusted party answers

according to the desired functionality). Needless to say, the simulator control the same parties

that are controlled by the adversary in the real-model. For simplicity, consider the case that all

executions of the (two-party) protocol � are played by the same pair of parties (and that the

adversary controls a single party).

Canetti [C01] prove that if � is environmentally secure then the concurrent execution of multiple

copies of � is secure, where security refers to strict PPT adversaries and simulators (as well as such

environments when relevant). Loosely speaking, Canetti's proof consists of simultaneously replacing

all the (real-model) concurrent executions by copies of the simulator (of the environmental security

hypothesis) while emulating the adversary's attack on the concurrent system by using the channels

of the corresponding environments. (A hybrid argument that refers to partial replacements of real

executions by simulations is used for showing that the behavior is maintained.) Here we claim an

expected PPT version of Canetti's result.

Theorem 13 (environmental security implies concurrent composability, an expected PPT version

(roughly stated)): Suppose that � is environmentally secure with respect to adversaries, simulators

and environments that are expected PPT w.r.t De�nition 3 (resp., De�nition 4). Further suppose

that the simulator runs in expected PPT even when interacting with an arbitrary environment.

Then the concurrent execution of polynomially many copies of � is secure with respect to adversaries

and simulators that are expected PPT w.r.t De�nition 3 (resp., De�nition 4).

The proof is analogous to the proof of Theorem 11. Speci�cally, we de�ne an imaginary protocol

�

0

that consists of polynomially many concurrent copies of �, each initiated by any party at any

27

Note that this di�ers from sequential composition (treated in Section 4.2) in that these executions take place

concurrently rather than sequentially. Furthermore, additional activity (which is referred to next) takes place con-

currently rather than before and/or after these executions.

20



time and proceeding at arbitrary pace (i.e., at each time, each party decides whether to initiate

a new copy or advance an active copy by sending a corresponding message). Adapting the proof

of Canetti [C01], we �rst prove a partial result in which we only consider an arbitrary strict PPT

adversary that attacks �

0

(i.e., polynomially many copies of �). We note that the simulator

constructed by Canetti (for �

0

) uses the simulator for environmental security of � in a black-box

and normal manner. Thus, the former simulator runs in expected PPT provided that the latter

simulator runs in expected PPT, which is de�nitely the case when simulating residual adversaries

and environments that are derived from the strict PPT adversary that attacks �

0

. Proceeding as

in the proof of Theorem 11, we extend the result to any expected PPT adversary that attacks �

0

.

Theorem 13 follows.

5 Conclusions and Open Problems

We believe that the new de�nitions of expected PPT (i.e., De�nitions 3 and 4) are satisfactory.

Indeed, our belief is supported by the results presented in this paper; that is, by the fact that normal

black-box simulators that handle strict PPT adversaries also handle adversaries that satisfy our

de�nitions, and that these de�nitions support various natural composition theorems.

We note that both de�nitions arise naturally. As we saw, De�nition 3 arises as the natural

answer to the problem caused by dealing with adversaries that are expected PPT under De�nition 2.

As for De�nition 4 it is simplest to state, and, contrary to our initial feeling, it works just as well.

A natural question that arises is which de�nition is preferable: De�nition 3 or De�nition 4? At

this point we feel no urge to address this question. In our opinion, a choice will have to be made

only once we reach applications that work with one de�nition but not with the other.

We note that normal black-box simulators are pivotal to our main results. It may be that

the same results (or equally satisfactory modi�cations of them) hold also for arbitrary black-box

simulators and even for any universal simulators, but the current proofs fail to show this (see

Footnote 19). We leave the resolution of this issue as an open problem. A good place to start may

be getting rid of the normality condition.

We note that throughout the discussion we ignored the question of what is a good de�nition of

expected PPT for standard algorithms, and merely assumed and extended the naive one. However,

as advocated by Levin in a somewhat di�erent context (see [G97]), a better starting point is de�ning

expected PPT as time that is polynomial in a random variable that has expectation that is linear

in the length of the input.

28

This issue is orthogonal to the issues discussed in the current paper:

Needless to say, Levin's de�nitional approach to expected PPT algorithms can be extended to

strategies (analogously to the extensions applied to the naive notion of expected PPT algorithms).

29

28

This de�nitional approach eliminates the technical di�culties exempli�ed at the end of Footnote 19, and provides

a robust de�nition of expected PPT (i.e., if an algorithm is deemed \expected PPT" then also a modi�cation that

squares its running time will yield an \expected PPT" algorithm). This guarantees that the running-time of Barak's

non-black-box simulator [B01] (when applied to \expected PPT' veri�ers) remains \expected PPT" and an extension

of Barak's result to \expected PPT" strategies follows as in the proof of Theorem 8 (while noting that this simulator

does not react to the replacement of the code of V

�

by the code of V

��

).

29

The same applies to alternative ways of handling the issues that motivated the introduction of expected PPT to

Cryptography (i.e., the fact that some intuitively secure protocols do not have strict PPT simulators). For example,

in the context of zero-knowledge, it was suggested (cf. [DNS]) to use simulators that, for every desired noticeable

deviation � (from the real interaction), run in time that is strictly bounded by a polynomial in 1=�. An alternative

suggestion (of Vadhan [V06]) is allowing (standard) simulation with varying running-time such that the probability

that the simulation takes more than t steps is upper-bounded by poly(�) �t

�
(1)

+�(�), where � is a negligible function.

Note that, in both cases, the de�nition (stated here for standard algorithms) will have to be extended to interactive

machines, and the issues and approaches presented in this paper will apply. More details will be provided in the next

21



Acknowledgments

I am grateful to Salil Vadhan for a discussion that inspired this work (and in particular De�nition 3).

I should be equally grateful to Yehuda Lindell for a discussion that inspired De�nition 4, but I

only understood this in retrospect. Finally, I wish to thank Salil and Yehuda for many insightful

discussions and helpful comments on earlier drafts of this write-up.

version of this work.

22



References

[B01] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium

on Foundations of Computer Science, pages 106{115, 2001.

[BG02] B. Barak and O. Goldreich, Universal arguments and their applications. In the 17th IEEE

Conference on Computational Complexity, pages 194{203, 2002.

[BL02] B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. In 34th

ACM Symposium on the Theory of Computing, pages 484{493, 2002.

[C00] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal

of Cryptology, Vol. 13, No. 1, pages 143{202, 2000.

[C01] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Pro-

tocols. In 42nd IEEE Symposium on Foundations of Computer Science, pages 136{145,

2001. Full version is available from the author.

[CGGM] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In

32nd ACM Symposium on the Theory of Computing, pages 235{244, 2000.

[DNS] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th ACM Symposium

on the Theory of Computing, pages 409{418, 1998.

[F90] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D Thesis, Weiz-

mann Institute of Science, 1990.

[G97] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC, TR97-058,

Dec. 1997.

[G01] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press,

2001.

[G04] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University

Press, 2004.

[GK96] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof

Systems for NP. Journal of Cryptology, Vol. 9, No. 2, pages 167{189, 1996. Preliminary

versions date to 1988.

[GMW] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity

or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol.

38, No. 1, pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.

[GO94] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.

Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.

[GMR] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof

Systems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version

in 17th STOC, 1985.

[KL05] J. Katz and Y. Lindell. Handling Expected Polynomial-Time Strategies in Simulation-

Based Security Proofs. In 2nd Theory of Cryptography Conf., 2005. To appear in J. of

Crypto..

23



[L03] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party

Computation. In 44th IEEE Symposium on Foundations of Computer Science, pages

384{393, 2003.

[MP06] S. Micali and R. Pass. Local Zero-Knowledge. In 38th ACM Symposium on the Theory of

Computing, 2006.

[V06] S. Vadhan. Alternatives to expected probabilistic polynomial-time. Private communica-

tion, 2006.

24


