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Abstract

We extend the de�nitional work of Dwork, Naor and Sahai from deniable authentication to

deniable key-exchange protocols. We then use these de�nitions to prove the deniability features

of SKEME and SIGMA, two natural and e�cient protocols which serve as basis for the Internet

Key Exchange (IKE) protocol. The two protocols require distinct approaches to their deniability

analysis, hence highlighting important de�nitional issues as well as necessitating di�erent tools

in the analysis.

SKEME is an encryption-based protocol for which we prove full deniability based on the plaintext

awareness of the underlying encryption scheme. Interestingly SKEME's deniability is possibly

the �rst \natural" application which essentially requires plaintext awareness (until now this

notion has been mainly used as a tool for proving chosen-ciphertext security); in particular

this use of plaintext awareness is not tied to the random oracle model. SIGMA, on the other

hand, uses non-repudiable signatures for authentication and hence cannot be proven to be fully

deniable. Yet we are able to prove a weaker, but meaningful, \partial deniability" property: a

party may not be able to deny that it was \alive" at some point in time but can fully deny the

contents of its communications and the identity of its interlocutors.

We remark that the deniability of SKEME and SIGMA holds in a concurrent setting and does

not essentially rely on the random oracle model.

Keywords: Key Exchange, Authentication, Deniability, Privacy, Zero-Knowledge, Plaintext-

Awareness.
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1 Introduction

Privacy of communications has been the main object of study in cryptography for centuries. Its

classical goal: prevent unauthorized parties from accessing secret or con�dential information. In

this setting the focus is on establishing authenticated and secret communication (a.k.a. \secure

channels") with authorized peers. The intent is to defend the communications from an \unau-

thorized third party" in the form of an eavesdropper or active attacker; there is no attempt at

preventing an authorized peer from disclosing information it receives legitimately. Today, with the

transfer of our personal, social, economic and political lives to digital form, privacy has become

a much wider and central notion. Modern cryptography recognized these issues early on through

anonymity-related notions [14, 15], mix networks [13], undeniable signatures [16], private infor-

mation retrieval [18], and more. More recently, we have seen a huge increase in the treatment of

broader privacy issues in the crypto/security community (e.g. [38, 26, 17]). This paper focuses on

an essential aspect of privacy: the deniability of every-day digital communications.

Deniable communication has always been a central concern in personal and business communi-

cations, with o�-the-record communication serving as an essential social and political tool. Given

that much of these interactions now happen over digital media (email, instant messaging, web

transactions, virtual private networks) it is of central importance to provide these communications

with \o�-the-record" or deniability capabilities: the author or sender of a message should be able to

deny, e.g., in court, that he or she sent that message. (Needless to say, there are special applications

where non-repudiation is essential, but this is not the case for most of our communications.) One

of the challenges of deniability in the digital world is that deniability is at odds, at least without

careful design, with remote authentication. That is, Alice needs to be able to get a digital proof

that she is talking to Bob but that proof should not leave any trace that will convince a third party

that Bob talked (or said something speci�c) to Alice. This should be the case even if Alice herself is

trying to prove the existence of the conversation to such third party! Thus, while in the traditional

\secure channels" setting one is not defending against misbehavior by the (authorized) peer to the

communication, in the deniability setting the potential attackers include the authorized (identi�ed

and authenticated) peer.

The �rst to formally treat the deniable authentication problem were Dwork, Naor and Sahai in

[27], followed by a series of papers including [41, 42, 34, 23]. On the more applied front, a practical

(and widespread) protocol that set \plausible deniability" as a desirable property (though, not as

an essential goal) is the IKE protocol [31]; in particular, this motivated the design of the SKEME

protocol [36] that became part of IKEv1. More recently, [7, 24] treat explicitly o�-the-record

communications in the setting of instant-messaging communications.

Our present paper is motivated by the above works. One missing link in these works is the

formal treatment of deniability for key-exchange (KE) protocols. Note that when using symmetric

shared keys to authenticate/encrypt information then deniability is easy to achieve at least as

long as the secret key cannot be tied, via third-party veri�able proofs, to the identities of the peers.

However, when the symmetric keys are established via a KE protocol, which in turn uses public

key techniques for authentication (as it is common in today's communications), then the weak

link for deniability becomes this KE protocol. If its authentication mechanisms leave a \proof of

communication" then deniability is lost.

The following example is useful to illustrate how a KE protocol can indeed leave such a \proof of

communication". Here is a simple 3-message variant of an ISO Di�e-Hellman KE protocol [32, 10]:

(1) A! B : g

x

(2) B ! A : g

y

; sig

B

(g

x

; g

y

; id

A

) (3) A! B : sig

A

(g

y

; g

x

; id

B

)

The protocol makes use of digital signatures as the most natural (and scalable) tool for remote
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authentication. In addition, as part of the essential features of a secure KE protocol the identities

of the communicating parties (i.e., id

A

and id

B

) are tied to the exchanged key via these signatures.

However, by signing the peer's identity each of the parties of the protocol leaves an undeniable proof

of communication between these parties. Note that in this case the non-deniability of the protocol

is particularly serious: not only can A prove that B talked to her, but even an eavesdropper that

obtains these signatures will be able to provide such a proof. Unfortunately, if one omits these

identities in the signatures the protocol becomes completely insecure [28].

This example serves to stress the con
ict between authentication and deniability; and, in the

case of KE, the con
ict between deniability and the binding between identities and the exchanged

key so central to KE security. One of our central contributions is in showing that carefully de-

signed protocols may provide for sound KE security as well as for signi�cant levels of deniability.

Fortunately, we show this to be the case for some well-known and practical KE protocols.

Defining Deniability. The notion of deniability in public key authentication formalized by

Dwork, Naor and Sahai [27] using the simulation paradigm. Informally, a protocol is deniable if

the view of any receiver (or veri�er) can be simulated by a machine that does not know the secret

key of the sender (or prover). The idea behind this natural and appealing de�nition is that the

transcript of the protocol owned by the receiver, cannot be used to trace this conversation back to

a speci�c sender, since the receiver could have produced it via the simulator machine.

Thus, the basic property of a deniable protocol follows the notion of zero-knowledge [29]. How-

ever, for deniability one needs a stronger simulator than in the case of ZK: while in ZK the simulator

is basically a \mental experiment", for deniability, as pointed out by Pass [42], the simulator must

be a real machine that works in the real world. For example, in a model in which there is a common

reference string (CRS), the ZK de�nition allows the simulator to produce the CRS together with

some extra information that will allow it to produce simulations of the actual protocols. On the

other hand, such a simulator would not necessarily prove deniability because in real life the CRS is

�xed and cannot be modi�ed by the veri�er (similar considerations apply to proofs in the \random

oracle model"). Another challenge in dealing with ZK-based proofs is that those usually make use

of \rewinding". As pointed out in [27], this technique signi�cantly limits the applicability of the

proof in a real-life concurrent-executions setting.

Deniability for Key Exchange Protocols. In a KE protocol, two parties engage in a protocol

whose result is a (session) key K which only the two of them know, and they are assured to be

sharing K with each other. They will use K to encrypt and authenticate messages in the session,

using a symmetric-key authentication mechanism that is deniable provided that the key cannot be

traced to either party.

Thus, the most important component for the deniability of electronic communications is the

deniability of KE protocols. If the parties can deny having exchanged a key with the other party,

then the rest of the communication can also be denied.

1

Our contributions. After recalling the de�nition of deniable authentication from [27] we propose

a de�nition of deniable key exchange protocols, which still adheres to the simulation paradigm. The

extension is not trivial as we are moving to a protocol which outputs a secret value (rather than

the simple accept/reject bit of an authentication protocol). In particular KE deniability requires

the simulation not only of the entire transcript, but of the output key as well, since the key will be

passed to an arbitrary security protocol after the exchange phase is completed.

We then study the deniability of SKEME [36] and SIGMA [37], two practical KE protocols

which form the cryptographic core of IKE, the Internet Key Exchange of IPSEC [31, 35].

1

Needless to say, we limit ourselves to avoiding \algorithmic" proofs of communication, and ignore other means

that courts, or other entities, may accept as evidence such as physical tapping (or just the word of a gentleman...).
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For SKEME we show the strong form of deniability guaranteed by our de�nition. The analysis

has several interesting features; in particular we �rst abstract out a basic message authentication

mechanism from the key exchange protocol and prove its deniability in the setting of Dwork et al.

[27]. We then use this result to show the deniability of the full SKEME protocol.

In the case of SKEME the authentication protocol is very simple: the sender has an encryption

public/private key pair (pk,sk) and the receiver who wants the message m authenticated, sends

enc

pk

(k) where k is a random key. The sender responds with MAC

k

(m). This authenticator,

derived from [36], has been proven secure in [1] provided that the encryption function is CCA2-

secure [25]. (A related authenticator and proof appears in [25, 27].) But what about deniability?

This two-message scheme was not known to be deniable, and some evidence (including the low

number of messages) indicated that it may not be deniable. We show that CCA2-security for

enc is not su�cient for deniability by showing that there is a CCA2-secure encryption scheme for

which the above protocol is not deniable. We then show that deniability holds if the encryption

scheme is plaintext-aware (either in the standard model [4, 21] or in the random oracle model [6, 2])

Interestingly this makes deniability one of the �rst applications to essentially require plaintext

awareness; so far plaintext awareness was mainly used as a tool to prove CCA2 security.

The case of SIGMA is more involved. Since SIGMA uses signature-based authentication, de-

niability (de�ned as full simulation) cannot be achieved. However, in spite of its use of signatures

(and in contrast to the above ISO example) SIGMA o�ers some valuable deniability properties.

We capture these properties via a modi�ed notion of partial deniability for key-exchange protocols,

in which a party can deny the identity of the parties he or she exchanges keys with, as well as

the content of the subsequent communications protected by those keys. Based on this, we show

the 4-message variant of SIGMA (known as SIGMA-R) to be partially deniable. The result holds

under a \key awareness" notion, which can be plaussibly assumed to hold for \natural" MAC and

hashing functions (and can formally be shown to hold in the random oracle model).

Concurrency An important feature is that our proof of deniability for SKEME and SIGMA

holds in a concurrent setting, where the adversary can open and schedule sessions in an arbitrary

way [27]. This is of utmost importance for practical applications run in an open network like the

Internet. In addition, our notions and proofs, while meaningful in the random oracle model, do not

essentially depend on it.

Related Work. As we said earlier deniable authentication has been studied from both the

theoretical [27, 42, 41, 34, 23] and the practical [36, 31, 8, 40, 7, 24] points of view. For the case of

key exchange protocols, where both parties have registered public keys there are other approaches to

deniable authentication: Designated Veri�er Proofs [33] permit to create signatures that convince

only the intended recipient (using his public key); Ring Signatures [44] permit a member of an

ad hoc group to sign a message on behalf of the group, i.e. it is impossible to trace the actual

signer inside the group. This solution can be used to create deniable signatures by choosing the

sender and the receiver as members of the group: the signature is deniable as the receiver could

have created it too . Our approach is di�erent in that our goal is to prove deniability for real-life

protocols used in practice (which do not use the above tools).

Formalisms of KE security has been extensively studied [1, 45, 10, 12] yet none of those studies

considered deniability explicitly and/or formally. Informal treatment of deniability issues for KE

protocols can be found in [36, 7, 8, 40, 24].

Finally we recall the notion of deniable encryption [9] which allow a sender to encrypt a message

m in a ciphertext c, under the public key of a receiver, while allowing him to later deny what the

content of the ciphertext is. Deniable encryption is also motivated by privacy-preserving applica-

tions (such as electronic voting), but the notion and the technique are unrelated to the problem we
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are tackling (denying that an interaction between two parties ever took place).

2 De�nition of Deniable Key Exchange

Our presentation and de�nition of the notions of deniability in this section follows essentially the

approach and de�nition from Dwork, Naor and Sahai [27], the �rst to formalize the deniability

of authentication protocols. For lack of space, the notion of authentication protocol from [27] is

presented in Appendix A.1. Next we recall their de�nition of deniable authentication that we

use as the basis for formalizing deniability of key exchange protocols. (Throughout the paper we

will use the standard polynomial-time complexity notions, such as indistinguishability, negligible

probabilities, etc.; in particular, all algorithms and machines are probabilistic polynomial-time.)

Deniable Authentication. Intuitively an authentication protocol is deniable if a (possibly dis-

honest) receiver cannot convince a third party (let's call it, the judge) that a given sender S

authenticated a given message m. This notion was �rst formalized in [27] using a zero-knowledge

formalism. The idea is that an authentication protocol is deniable if the receiver's view of the

protocol can be simulated by an e�cient machine (called the simulator) that does not know the

secret key of the sender S. In other words, the receiver interacting with the simulator obtains views

with the same distribution than when interacting with the real sender S. Thus, when the receiver

(the attacker in this setting) brings such a view to the judge, this view will not be a convincing

evidence of the interaction with S since the same view could have been generated by the receiver

alone by running the simulator. We recall the formal de�nition next.

Consider an adversaryM (for \malicious") acting as a receiver on input pk. The adversary may

also have some auxiliary input aux taken from a distribution AUX of such inputs. This auxiliary

input models some extra information that the adversary might have gathered in some other form;

for example, if M has been eavesdropping on correctly executed protocols between other parties

and S, AUX will consist of legal transcripts of runs of the authentication protocol.

The adversary M starts a concurrent interaction (as de�ned in [27]) with the sender S. In

other words, M starts an arbitrary number of executions of the authentication protocol with

S with public key pk, choosing the input messages for these executions. These executions can be

arbitrarily scheduled and interleaved byM. The adversary's view of this interaction is then de�ned

as the transcript of the full interaction betweenM and S, together with the internal coin tosses of

M. We denote this as View

S

M

(pk; aux).

De�nition 1 [27] We say that (AKG,S,R) is concurrently deniable with respect to the class AUX

of auxiliary inputs if for any adversary M, acting as the receiver on input pk and any auxiliary

input aux 2 AUX, there exists a simulator SIM

S

M

that, running on the same inputs, produces

a simulated view which is indistinguishable from the real one. In other words, consider these two

probability distributions:

Real(n; aux) = [(sk; pk) AKG(1

n

) ; (aux; pk;View

S

M

(pk; aux))]

Sim(n; aux) = [(sk; pk) AKG(1

n

) ; (aux; pk; SIM

S

M

(pk; aux))]

then for all probabilistic polynomial-time machine Dist and all aux 2 AUX

jPr

x2Real(n;aux)

[Dist(x) = 1]� Pr

x2Sim(n;aux)

[Dist(x) = 1]j � negl(n)

We stress that the the simulator has all the same inputs asM, including its random coins (alter-

natively assume that the simulator provides these coins toM).
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Remark (O�-line vs. on-line judges.) In the deniability context (also in the case of KE protocols)

the distinguisher Dist represents the role of the judge which needs to decide if the transcript pre-

sented byM corresponds to a real execution of the protocol with S or to a simulated view of such

run. This distinguisher is presented with the transcript as well as with the inputs ofM including

the auxiliary input aux (which are also the inputs on which SIM is run). Hence, this formulation

corresponds to the situation in which the transcript is generated without the judge intervention,

i.e., the judge is invoked a posteriori to decide if the message m was really authenticated by S or

not. This formulation is in line with the standard zero-knowledge de�nitions and also with the

intuitive notion of deniability. Yet, one could contemplate a stronger setting in which the judge is

allowed to interact with the adversary before the authentication protocol takes place or even during

the run of the protocol between M and S. In the latter case, there is little one can do to provide

deniability with respect to this \on-line" judge since the judge itself can run the protocol directly

with S (or usingM as a relaying intermediary) and be convinced by this direct interaction as any

other receiver R. In the case of interaction between the judge and adversaryM before the (alleged)

run betweenM and S, but not during the run, the above de�nition per se is not su�cient to ensure

deniability. Yet, some protocols will achieve some form of deniability also in this case. We will

not formalize this stronger notion here but when presenting speci�c protocols we will discuss the

extent to which they achieve this stronger notion.

Deniable Key Exchange. Here we extend the above de�nition of deniability to the setting

of (authenticated) key-exchange (KE) protocols. As in the case of authentication, we present a

simpli�ed de�nition of a KE protocol as a stand-alone procedure, and then de�ne the deniability

property in a concurrent-execution setting. A more general treatment of the subject, including a

full integration of deniability with a model of KE security in a multi-party setting is left for future

work. By simplifying the formal treatment in our presentation here, and focusing on the concurrent

setting, we are able to highlight the technical and conceptual issues raised in the investigation of

deniability. Also, by studying the deniability features of speci�c KE protocols that were proven

secure in the literature we can build on these works and concentrate mainly on the novelty of the

deniability aspects. For formal de�nitions of KE security see [5, 45, 10, 11].

In a key exchange protocol, two parties, say A and B, are associated with public keys pk

A

and pk

B

respectively, for which they each own the matching secret key sk

A

and sk

B

. We assume

that public/secret keys are generated according to a key generation algorithm KG which is part

of the speci�cation of the KE protocol, and these are used in the authentication steps of the KE

protocol. The protocol speci�es the interaction between A and B (one acting as \initiator" and

the other as \responder") and whose result is either a (session) key K or \error" if some of the

operations/veri�cations in the protocol fail. The basic (and simpli�ed) security requirement in a

KE protocol is that if A outputs a session key K and associates it to peer B then the only party

that may possibly know K is B; and if B outputs the same session key then it associates it to peer

A. Note however that this security guarantee is provided only for sessions (i.e., runs of the KE

protocol) in which both peers are uncorrupted.

In great contrast, the deniability guarantee of a KE session is most relevant when one of the

peers is dishonest (and the other honest). The goal of deniability is to prevent either A or B from

proving to a judge that they exchanged a key with a speci�c party, and to prevent a proof of what

the contents of a communication protected with that key were. Once again we model deniability via

simulation along the lines of De�nition 1 but with some important di�erences, arising mainly from

the fact that not only is the KE protocol itself that needs deniability but also the communications

that use the resultant session key.

Let � be a key-exchange protocol de�ned by a key generation algorithm KG and interactive
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machines �

I

;�

R

specifying the roles of the (honest) initiator (the party who sends the �rst message)

and responder, respectively. Both �

I

and �

R

run on input their own secret and public keys and,

typically, also on input the identity and public key of a speci�ed peer (in some cases, however,

the identity and public key of the peer are not provided as input at the onset of the interaction

but these values are rather learned during the run of the protocol [12]). Each run of the KE

protocol by a party is called a session. Upon completion, the protocol outputs either error (e.g., an

authentication operation failed) or outputs a session key.

Consider an adversary M which runs on input an arbitrary number of public keys

~

pk =

(pk

1

; : : : ; pk

`

), randomly chosen according to KG and associated with the honest users in the net-

work. M also has an auxiliary input aux as in De�nition 1. The adversary initiates an arbitrary

number of executions of � with the honest parties, some as an initiator, others as a responder

2

.

The executions are concurrent, i.e. scheduled and interleaved arbitrarily by the adversary. The

view ofM consists of its internal coin tosses, the transcript of the entire interaction and the session

keys computed in all the protocols in which M participated (if the session does not complete, the

session key is de�ned as an error value). We denote this view as View

M

(

~

pk; aux).

The de�nition below follows the traditional approach of simulation of the adversary's view.

However, it is important to highlight an element in this de�nition that di�erentiates it essentially

from deniability in the message authentication setting of the previous subsection: the inclusion of

the computed secret key to the adversary's view. Recall that the goal of deniability in a KE protocol

is not only to prevent a (adversarial) partyM from proving that another (honest) party B talked

to M but also to prevent M from proving to a third party the contents of a communication in

which B participated. Since KE protocols are typically run in order to agree on a session key which

is later used to authenticate further communication, it is essential that not only the communication

during the KE session be simulatable but also the value of the session key should be part of the

output of the simulation. In this case, when an attacker brings to a \judge" evidence against B

in the form of a key exchange or subsequent authenticated information, the simulatability of the

exchange and the resultant key will make this evidence worthless.

A technical point worth noting is that the simulator is required to output the session key only

in case that the simulated (honest) party completes the protocol with a session key as output. Only

in this case the party will pass the session key for use in some application, and hence it is then

when the key needs deniability. Also, the reason we require that the whole session key be simulated

(rather than, say, the ability to compute a MAC value with that key) is that we do not know what

applications and in which way the key will be used (e.g., some applications may transmit the whole

key in the clear, in which case anything short of full key simulatability will be insu�cient).

De�nition 2 We say that (KG;�

I

;�

R

) is a concurrently deniable key exchange protocol with re-

spect to the class AUX of auxiliary inputs if for any adversary M, for any input of public keys

~

pk = (pk

1

; : : : ; pk

`

) and any auxiliary input aux 2 AUX, there exists a simulator SIM

M

that,

running on the same inputs as M, produces a simulated view which is indistinguishable from the

real view ofM.

That is, consider the following two probability distributions where

~

pk = (pk

1

; : : : ; pk

`

) is the set

of public keys of the honest parties:

Real(n; aux) = [(sk

i

; pk

i

) KG(1

n

) ; (aux;

~

pk;View

M

(

~

pk; aux)]

Sim(n; aux) = [(sk

i

; pk

i

) KG(1

n

) ; (aux;

~

pk; SIM

M

(

~

pk; aux)]

2

In these executions the adversary will use public keys which she can select arbitrarily, see the Remark after the

de�nition.
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then for all probabilistic poly-time machines Dist and all aux 2 AUX

jPr

x2Real(n;aux)

[Dist(x) = 1]� Pr

x2Sim(n;aux)

[Dist(x) = 1]j � negl(n)

Remarks on the de�nition. First note that impersonation is not the issue here: when M is

interacting with B she is not trying to impersonate A but rather, she is trying to obtain a proof

that she herself interacted with B and established a key with him. The goal of deniability is to

prevent M from proving to a third party that this was the case. Thus, when M interacts with

B we can assume (wlog) that she will do so using a public key pk

M

(which may or may not be

associated withM's identity). Indeed, since our de�nition guarantees that even when the attacker

M runs the key generation algorithm to generate a public key (thus knowing the corresponding

secret key) she cannot prove that B talked to her, thenM can certainly not be able to prove that B

talked to any other party A (in particular, this implies deniability with respect to eavesdroppers).

In addition, whileM may decide to reveal her secret key sk

M

to help in proving that B talked to

her, she does not have to do so (actuallyM may use a public key for which she does not know a

corresponding private key!).

In Section 4 we present a relaxed variant of De�nition 2 which provides for a weaker, yet

meaningful, notion of (limited) deniability.

3 Deniability of SKEME

In this section we prove the deniability of the key exchange protocol SKEME [36] which uses public

key encryption as a means of authentication. First we abstract out the authentication protocol

which is at the core of SKEME and prove that it is deniable if the encryption scheme used is

plaintext-aware according to the de�nition in [4]. We also show that chosen-ciphertext security is

not su�cient to prove deniability. Then we use this result to prove the deniability of the SKEME

key exchange protocol

3

. In the following we denote an encryption scheme E = (gen; enc; dec) which

are the key generation, encryption and decryption algorithms, respectively. We recall the traditional

notions of security for encryption in Appendix A.2.

3.1 Encryption-based Deniable Authentication

Here we study the authentication protocol based on public-key encryption which is at the core of

SKEME [36] (related protocols are studied in [25, 27]).

Let pk be the sender's S public key and sk the related secret key, for a public key encryption

scheme E . The receiver chooses a random key k and encrypts it under the sender's public key as

c = enc(pk; k). The sender decrypts such key as k = dec(sk; c) and uses it to create a valid MAC of

the message m under the key k. If the decryption is invalid, the sender chooses a random key k

0

and sends a MAC on m computed with this random key. The protocol is described in Figure 1.

The receiver's belief that S is really authenticating m comes from the fact that she is the only

one able to decrypt k. Indeed this authentication protocol is proven secure in [1] if E is secure

against adaptive chosen-ciphertext attack (IND-CCA2). On the other hand, the receiver could

create the whole transcript on his own, so that the authentication seems intuitively to be deniable.

In fact, this scheme is perfectly deniable against an honest receiver, since the simulator SIM

R

can easily produce valid transcripts on his own. What happens against a dishonest receiverM? To

3

Interestingly, this appears to be the �rst \essential" application of plaintext-awareness; before, this notion was

used mainly as a tool to prove chosen-ciphertext security.
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Encryption-based Authentication �

E

Public Input: S's public key pk

Secret Input of S: sk

S R

m ; c = enc(pk; k)

�

k at random

k

0

= dec(sk; c)

t = MAC

k

0

(m)

-

t

?

= MAC

k

(m)

Figure 1: Protocol �

E

: A method of authentication based on public-key encryption

formally prove the deniability we need to create a simulator SIM

M

that is able to produce valid

transcripts interacting with the malicious receiverM. When the simulator receives the encrypted

challenge c = enc(pk; k), how are we going to simulate the reply t = MAC

k

(m)? The simulator

doesn't know the sender's secret key sk!

In order to make the above scheme provably deniable, one can add a challenge-response sub-

protocol (in a way similar to the authentication protocol in Dwork et al. [27]). Basically, the

sender instead of replying with the MAC t replies with a commitment to t. Upon receiving such

commitment h, the receiver reveals the key k encrypted in the �rst message. If this key equals the

one that he decrypted, the sender opens the commitment, revealing the MAC t.

This variant is still unforgeable assuming that E is IND-CCA2. Deniability follows from a

standard black-box ZK simulation, which however includes a \rewinding" step for the malicious

receiver (the simulator commits to random junk in the second message, waits to see k in the third,

rewinds the receiver to the second message where it now places a correct commitment to t). This

rewinding step limits the applicability of the protocol in a concurrent setting: in this case the

proof of security guarantees deniability only if a logarithmic (in the security parameter) number of

sessions are concurrently executed [27].

Adding the extra commitment step, thus (i) modi�es the protocol; (ii) adds rounds and (iii)

yields a non-concurrent solution. Our �rst result is to show that under the sole assumption that E

is CCA2-secure, the protocol �

E

is not deniable.

Theorem 3 There exists a CCA2-secure encryption scheme E, such that �

E

is not deniable.

We prove the above theorem in Appendix B, by presenting a counter-example: an encryption

scheme E which is CCA2-secure but for which the protocol �

E

is not deniable.

In contrast we show next that concurrent deniability for �

E

can be proven by making a stronger

assumption on the underlying encryption scheme, namely (PA-2) plaintext-awareness [4]. We recall

the formal de�nition of plaintext-awareness in Appendix A.3; here we give an informal description

of this notion which su�ces to obtain an intuitive understanding of the proof.

Intuitively, we say that E is PA-1 plaintext-aware if for any adversary C that on input a public

key pk outputs a valid ciphertext c there is a \companion" machine C

�

that outputs the matching

plaintext. Think of C

�

as the alter ego of C: the de�nition basically implies that if C produces a

valid ciphertext it must \know" the corresponding plaintext. A strengthening of this notion, PA-2,

accommodates the fact that an attacker may have access to a set of ciphertexts computed under

8



public key pk but not produced by the attacker itself; for example, these ciphertexts could have been

generated by other, honest, parties in the system communicating with the owner of this public key.

Hence, the de�nition of PA-1 is strengthened so that the above adversary C is also given as input a

list of valid ciphertexts for which it does not know the corresponding plaintexts, and the companion

machine C

�

is de�ned to yield the corresponding plaintext only for valid ciphertexts produced by

C which are not in the above list. The resultant notion is called PA-2 plaintext-awareness and its

formal de�nition is recalled in Appendix A.3.

When coming to prove the deniability property of protocol �

E

, the PA-1 notion is therefore too

weak to represent the common situation in which multiple copies of the protocol are run concurrently

since in this case the attacker does have access to valid ciphertexts created by other parties. In

particular, in the case of protocol �

E

the attacker may \replay" such ciphertexts in a communication

with the owner of pk without knowing the encrypted plaintext. Our result, therefore, depends on

the encryption function being PA-2. In this case we will use the auxiliary input AUX to represent a

list of valid transcripts of protocol �

E

(with pk as the sender's public key) gathered by the attacker

in the network.

We denote by TR(pk) the set of legal transcripts of the protocol �

E

under public key pk and

let the auxiliary input aux, with respect to which the deniability of �

E

is established, be a list

of transcripts sampled from TR(pk) and for which the adversary M has no information on the

plaintexts (and randomness) used to generate the ciphertexts included in these transcripts. In

other words, we assume these to be transcripts generated by honest parties in interaction with S.

Theorem 4 If the encryption scheme E is PA-2 and IND-CPA secure, then the protocol �

E

is

concurrently deniable with respect to the class of auxiliary inputs TR(pk).

Proof: To show that the protocol �

E

is deniable against a malicious receiver M we construct

a simulator SIM

M

that interacting with M, creates transcripts that are indistinguishable from

the real transcripts between M and S. The following proof shows a non-rewinding simulator for

a single execution of the protocol and hence the simulation for the concurrent execution of the

protocol follows by composing the (non-rewinding) simulations.

We �rst provide the idea of the proof in an informal way. The simulator SIM

M

acts as follows:

when the attackerM sends a ciphertext c that appears in the aux list (for whichM does not know

the corresponding plaintext), SIM

M

responds with a MAC value computed under a random key

(in this case the attacker has no access to the real key encrypted in the ciphertext and hence the

MAC under a random key is indistinguishable from the real MAC) while if the ciphertext c is not

in the list SIM

M

will resort to the \alter ego" extractorM

�

to provide with the plaintext under c;

now SIM

M

can compute the correct MAC value (if c happens to be an invalid ciphertext,M

�

will

provide this information to SIM

M

and a random MAC will be used). This results in a simulation

that is inherently non black-box and which does not use rewinding. The formal argument follows.

We use the following notation and terminology. Given an adversary M and a sequence of

random coins r, we denote by M

1

(r) the pair (m; c) output by M, using coins r, as the �rst

protocol message. IfM(r) does not produce output (i.e., does not send a message at all) we denote

this output as ?. We will assume that if the output of M

1

is not empty then it can be parsed

into a pair (m; c) (with a possibly invalid ciphertext c). Now we consider a related adversary,

denoted M de�ned to have access to a decryption oracle under S's private key and related to M

in the following way. If M(r) = ? then M(r) does not produce output. If M

1

(r) = (m; c) then

M(r) outputs the same pair (m; c) but in addition it queries the decryption oracle on ciphertext c.

By assumption, the encryption scheme E is PA-2 and therefore there exists an extractor M

�

that

simulates the decryption oracle for M without having access to the private key of S. Moreover, we

9



will assume that algorithm M not only outputs the pair (m; c) as M does, but also outputs its

random coins r. By the PA-2 de�nition, the simulation of M by M

�

is indistinguishable also for

this speci�cation of M.

In addition, we de�ne L to be the list of ciphertexts included in the transcripts set aux, the

auxiliary input to M (recall that aux includes transcripts of �

E

executions generated by honest

parties interacting with S and therefore these transcripts include valid ciphertexts for whichM has

no information on the encrypted plaintexts or the encryption coins). For compatibility with the

formalism in the de�nition of PA-2 we will consider a \plaintext creator" P operated by M such

that each query from M to P is answered by P with the next ciphertext in the list L.

Having de�ned the above algorithms and notation we proceed to describe the simulator SIM

M

.

The simulator runs the attacker M under a sequence of random coins r chosen (uniformly) by

SIM

M

itself. IfM(r) does not produce output (i.e., M

1

(r) = ?) then SIM

M

does not produce

output either. IfM(r) produces a pair (m; c) then SIM

M

runs M

�

(r) which will output the pair

(m; c) as well as a value p corresponding to the simulated decryption of c. This value p will be ? in

two cases: either c is invalid or c 2 L. In this case, i.e., p = ?, SIM

M

chooses a random MAC key

k and sets t = MAC

k

(m). Else p equals (or encodes) a MAC key k and SIM

M

sets t = MAC

k

(m)

for this value of k. Now SIM

M

outputs the transcript:

coins = r; msg1 = (m; c); msg2 = t:

We proceed to show that this distribution generated by SIM

M

is indistinguishable from the

real transcripts betweenM and S. In the case that p = ? is due to the invalidity of the ciphertext

c, both the simulation and the real transcript include a MAC value computed under a random key

and hence the two distributions are identical. When p = ? and c 2 L, the real transcript will

include t = MAC

k

(m) computed under the real key encrypted under c while the simulation includes

a MAC value computed under a random key. Yet these two distributions are indistinguishable due

to the IND-CCA2 property of the encryption scheme E (we assume that E is PA-2 and IND-CPA

and hence it is IND-CCA2). Finally, when the pairM

1

(r) includes a valid ciphertext c =2 L then,

by the de�nition of PA-2, the distribution of plaintexts p output by the extractor algorithm M

�

is indistinguishable from the distribution of real plaintexts encrypted under valid ciphertexts c.

Therefore the value MAC

k

(m) computed by SIM

M

in this case is indistinguishable from the MAC

value computed by S in a real interaction withM. Note that the above argument holds also when

the coins r ofM are output (as required by the de�nition of deniability) since, as said,M

�

simulates

a decryption oracle correctly also when M outputs such coins.

2

3.2 The SKEME Key Exchange Protocol

The SKEME key exchange from [36] is described in Figure 2. It consists of two parallel executions

of the authentication protocol �

E

applied to the messages (g

x

; g

y

) and (g

y

; g

x

) where A and B act as

the sender in one and the receiver in the other. Yet, deniability for SKEME does not immediately

follow, from the simulatability of �

E

. Recall that for a key exchange, we must simulate not only

the transcript, but also the output key.

Theorem 5 If E is a PA-2 and IND-CPA secure encryption scheme, then SKEME is a concur-

rently deniable key exchange protocol.

Proof: We present the idea of the proof. The technical details are similar to those in the proof of

Theorem 4.
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Assume we are simulating party A (a similar argument holds for B). The simulator SIM chooses

x; k

A

at random and sends g

x

; c

A

(as A would do in the real protocol).

When the adversary M sends g

y

; c

B

; t

B

, the simulator �rst of all checks if t

B

is correct, i.e.

equal to MAC

k

A

(g

y

; g

x

). SIM can do this since it knows k

A

. If it is not correct, then SIM stops

(as A would do in the real protocol).

If t

B

is correct, then SIM turns its attention to the ciphertext c

B

. In a manner similar to

the simulation of �

E

, if c

B

is a \fresh" valid ciphertext, then SIM invokes the extractor M

�

with

ciphertext c

B

to obtain a plaintext p from which SIM computes a key k. Using this key, SIM

computes A's MAC value as t

0

A

= MAC

k

(g

x

; g

y

). Since the responses fromM

�

are indistinguishable

from those of a real decryption oracle then the distribution of MAC values t

0

A

generated by the

simulation is indistinguishable from the distribution of t

A

in the real interaction between party A

and attacker M.

At this point the simulator has produced a transcript indistinguishable from the real one.

However, recall that the complete view includes the key K = PRF

k

A

(g

xy

) � PRF

k

B

(g

xy

). The

simulator hence computes, using its knowledge of g

xy

(SIM knows x) and k

A

, the value K

0

=

PRF

k

A

(g

xy

) � PRF

k

(g

xy

). Again due to the indistinguishability of the keys k and k

B

the dis-

tribution of the keys K

0

output by SIM is indistinguishable from the real distribution of keys

K.

The simulation in the case of ciphertexts contained in the auxiliary input aux is handled iden-

tically to the case of the �

E

protocol.

2

SKEME

Public Input: pk

A

; pk

B

encryption public keys of A and B respectively.

Secret Input of A: sk

A

; Secret Input of B: sk

B

A B

x; k

A

at random

c

A

= enc(pk

B

; k

A

)

g

x

; c

A

-

g

y

; c

B

; t

B

�

y; k

B

at random and

k

0

A

= dec(sk

B

; c

A

) ;

t

B

= MAC

k

0

A

(g

y

; g

x

) ;

c

B

= enc(pk

A

; k

B

)

t

B

?

= MAC

k

A

(g

y

; g

x

) and

k

0

B

= dec(sk

A

; c

B

) ;

t

A

= MAC

k

0

B

(g

x

; g

y

)

t

A

-

t

A

?

= MAC

k

B

(g

x

; g

y

)

Output: Shared key K = PRF

k

A

(g

xy

)� PRF

k

B

(g

xy

)

Figure 2: The three rounds version of SKEME

Notice that Theorem 5 holds for the regular case in which the judge (or distinguisher) is not present

during the run of the KE protocol nor it provides inputs to the protocol, but rather is presented

with a transcript a posteriori. In Appendix C we discuss how SKEME can be made deniable in

the case in which the adversary cooperates with the judge before the protocol takes place.
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3.3 On Plaintext-Aware Encryptions

In the above discussion we focused on the notion of plaintext-awareness in the standard model

(i.e. without random oracle) as introduced in [4]. That work showed that a basic modi�cation of

Damg�ard's scheme [20] is PA-1 secure, while Dent in [21] shows that the Cramer-Shoup scheme

[19] is PA-2 secure. Both statements hold under a non-black-box type of assumption known as

\Knowledge of exponent assumption" (KEA1) [20, 30, 3], which we recall below.

Let G be a cyclic group of prime order q, and let g; h 2 G with g; h 6= 1 (and thus both

generators of G). The assumption says that for every algorithmM that on input G; q; g; h outputs

(y; z) where y = g

x

and z = h

x

for some x 2 Z

q

, there exists an algorithmM

�

which outputs x.

In other words, the only way forM to output a pair of elements y; z that have the same discrete

log x with respect to two di�erent basis g; h is to know the discrete log x.

Random Oracle Model Schemes. Typical instantiations of SKEME, such as in IKE, use

encryption schemes like OAEP which are plaintext-aware in the random oracle model. It is not

hard to see that our proof of deniability will also hold for such schemes. Indeed the basic tool to

simulate the authentication protocol �

E

is a \plaintext extractor" for correct ciphertexts, which is

guaranteed to exist by the de�nition of plaintext-awareness in the random oracle model.

Note that the \programmability feature" of the random oracle is not used in the above argu-

ment (only the ability to \see" where the adversary queries the oracle.) Thus our simulator is a

valid deniability simulator (a simulator that \programs" the random oracle, does not guarantee

deniability [42]).

4 Partial Deniability of the SIGMA Protocol

The SIGMA Protocol

Public Input: pk

A

; pk

B

signature public keys of A and B respectively.

Secret Input of A: sk

A

; Secret Input of B: sk

B

A B

x at random

g

x

-

g

y

�

y at random

K

m

; K

s

 KDF (g

xy

)

t

A

= MAC

K

m

(0;A)

�

A

= Sig

sk

A

(g

x

; g

y

)

A; �

A

; t

A

-

If Ver

pk

B

((g

y

; g

x

); �

B

) = 1

and t

B

= MAC

K

m

(1;B)

then output session key K

s

else output error

B; �

B

; t

B

�

K

m

; K

s

 KDF (g

xy

)

If Ver

pk

A

((g

x

; g

y

); �

A

) = 1

and t

A

= MAC

K

m

(0;A)

then �

B

= Sig

sk

B

(g

y

; g

x

)

and t

B

= MAC

K

m

(1;B)

output session keyK

s

else �

B

= t

B

= error

Figure 3: The four-round version of SIGMA
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The SIGMA key-exchange protocol [37] depicted in Figure 3 forms the cryptographic basis for

the Internet Key Exchange (IKE) protocol (speci�cally, the signature-based mode in IKEv1 [31]

and the public key mode in IKEv2 [35]). The basic goal of the protocol, proven secure in [12], is

to provide a secure Di�e-Hellman exchange authenticated using digital signatures. In addition,

the protocol was designed with the privacy goal, referred to as `identity protection', of hiding

the logical identities of the participants from eavesdroppers and active attackers in the network

4

.

While deniability was not an explicit design goal of SIGMA (in IKEv1 deniability was o�ered via

the encryption-based mode which uses the SKEME protocol studied in Section 3), we show here

that the protocol does provide some signi�cant level of deniability even though it does not achieve

the full deniability of SKEME.

Remarks on the protocol description. The 4-round SIGMA protocol is presented in Figure 3.

In it each party signs its own DH exponential as well as the peer's exponential and computes a MAC

on its own identity. The MAC is computed also over a value 0/1 depending on whether the MAC

is computed by the initiator or responder; this serves to prevent re
ection attacks. Alternatively,

as in the case of IKE, initiator and responder can use di�erent MAC keys (both derived from g

xy

)

in generating their MAC values. The deniability of the protocol is preserved with either technique.

On the other hand, we stress that if one adds a di�erentiator, such as 0/1 to the signatures then the

proof of deniability (for the responder) as presented below will not work. Indeed, the proof uses the

fact that the signatures produced by the parties do not include evidence of whether the signature

was produced in the role of initiator and responder. Therefore, implementations of SIGMA that

seek to provide deniability must be careful about modi�cations to the protocol.

Another aspect of SIGMA that will be of importance in our analysis in Section 4.2 relates to

the way the MAC key K

m

and session key K

s

are derived from the DH value g

xy

. This key

derivation function (KDF) typically consists of three components: (i) computing the DH value g

xy

,

(ii) extracting a key K from g

xy

via a hashing operation (implemented via SHA-1, a universal

hashing scheme, etc.), (iii) using a PRF with key K to derive the two values K

m

;K

s

(e.g., the

�rst is set to PRF

K

(0) and the latter to PRF

K

(1)). We do not specify the way these components

are implemented but in the analysis we will need to assume certain properties of these functions.

Finally, we stress that when the third and fourth message of SIGMA are encrypted (as needed

to provide identity protection) the deniability of the protocol is preserved (the proof is just a

straightforward adaptation of the proof presented below).

4.1 Partial Deniability

The challenge in creating a deniable key-exchange protocol that uses digital signatures is that the

sole fact that a signature was generated, even if on random inputs, may provide signi�cant infor-

mation (e.g., that the signer was \alive" or active). Yet, even in this case the range of deniability

may vary widely: from no deniability in the case of a protocol that signs the peer's identity (as

the ISO protocol discussed in the introduction) to a protocol that only signs self-generated random

information. Here we investigate the position of SIGMA in this \deniability range". We'll see that

the provision of not signing the peer's identity (but rather MACing one's own identity), needed to

achieve identity protection, also provides the basis for deniability.

Let's consider �rst the role of the initiator, or A. The core observation is that A will sign g

y

irrespective of who generated it. For example, consider an attackerM that encodes in the exponent

y (used to generate the value g

y

sent to A) its own identity (e.g., choosing y to be a signature by

this attacker). The fact that A will sign g

y

says nothing about whether A talked or not to M

4

To achieve identity protection the shown protocol is augmented with an encryption of messages 3 and 4. We omit

the encryption part here since it is not necessary for our discussion. We refer to [37] for full details of the protocol.
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(or even if she was willing to talk to M) since A will sign g

y

regardless of who sent it. In other

words, A's transcripts are peer-independent. The case of the responder B is similar to the above

and its transcript is also \peer-independent". However, we will see later that the fact that B sends

its signature on (g

y

; g

x

) after verifying the sender's identity may provide some extra information

under special circumstances. This peer-independence property provides a limited, yet meaningful

and signi�cant form of deniability.

To formalize it we resort (again) to the de�nitional approach of Dwork, Naor and Sahai [27] who

introduced a weakened notion of deniability, in the context of authentication protocols, to deal with

situations similar to the above (e.g., when the authentication algorithm uses digital signatures).

This relaxed de�nition from [27] still follows the simulation paradigm but the simulator is allowed

to interact with an oracle representing the real sender (or prover) on messages other than the

one provided as input to the simulator. This captures the fact that whatever is learned from the

authentication protocol is independent of the authenticated message. This relaxation is useful in

proving the limited deniability of certain protocols, yet its exact \practical meaning" needs to be

assessed in a per-application basis. For example, such a de�nition does not preclude the possibility

to deduce (and prove to a third party) the number of messages a party has authenticated; this may

be a signi�cant information in some cases (in the extreme, a protocol may be built to authenticate

a single message, e.g., \attack", and in this case the above form of partial deniability from [27]

is too weak { similar caveats will apply to our partial deniability notion for KE protocols de�ned

below; see also Section 4.3).

Roughly speaking, we will say that a key-exchange protocol is partially deniable for the initiator

if the runs of the (honest) initiator A with a given responder B are indistinguishable from runs

with any other responder B

0

. In the formal de�nition we provide the initiator's simulator SIM

I

,

simulating an initiator A and acting on input (B; pk

B

), with one of two oracles: an oracle that acts

as the real initiator A running with peer B

0

where B

0

6= B, or an oracle that acts as A running as

the responder with peer B

0

. Similarly, we de�ne partial deniability for the responder. Then we will

say that the protocol is partially deniable if it is deniable for the initiator and responder. This is

formalized in De�nition 6 below.

Notation. Let � be a key-exchange protocol with interactive machines �

I

;�

R

de�ning the roles

of the (honest) initiator and responder, respectively. We use the symbol �

C

I

(D; pk

D

) to denote the

interactive machine implementing a honest party C as the initiator in a run of protocol � with

peer D and peer's public key pk

D

. Implicit in this notation is that �

C

I

has as input the secret and

public keys of C. The responder machine �

C

R

(D; pk

D

) is de�ned analogously.

Formal note: in some KE protocols, including SIGMA, parties can be initially activated without the

values of the peer's identity and/or public key; hence the pair (D; pk

D

) is not necessarily provided

as input at the onset of the protocol but only when communicated by the peer (in the case of

SIGMA this happens in the third and fourth messages).

De�nition 6 Let � = (�

I

;�

R

) be a key-exchange protocol. We say that �

I

is partially deniable

with respect to an I-oracle (resp. R-oracle) if for any adversary M and any (honest) party C, the

interaction between C as initiator with M as responder can be simulated (as in De�nition 2) by

a simulator SIM

I

that is given oracle access to �

C

I

(D; pk

D

) (resp. �

C

R

(D; pk

D

)) where pk

D

is a

public key chosen independently of M's public key pk

M

.

We say that �

I

is partially deniable if it is partially deniable with respect to an I-oracle or with

respect to an R-oracle. The de�nition of �

R

being partially deniable is similar.

Finally, we say that � = (�

I

;�

R

) is partially deniable if both �

I

and �

R

are partially deniable.

Concurrency. For ease of presentation the above de�nition is formulated in terms of a single
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\stand-alone" execution of the protocol. Adding full concurrency to the de�nition is straightforward

(see De�nition 2). More importantly, we note that the proof of partial deniability of SIGMA

(Theorem 7) avoids rewinding, and thus holds in the concurrent model.

Auxiliary input. The treatment of auxiliary input, omitted in the above simpli�ed de�nition, is

identical to the case of De�nition 2; in particular, the proof of Theorem 7 below holds with respect

to such auxiliary input. What is important to stress is that the SIGMA protocol has the salient

property that it is (partially) deniable even if the judge provides DH values to the attacker to be

used in the protocol and for which the attacker does not know the exponent (see the discussion on

o�-line/on-line judges in Section 2). Indeed, when M acts as an initiator then receiving g

x

(but

not x) from a third party does not allow M to produce the correct third protocol message and

hence the execution is aborted without the responder generating the authentication information

in message 4. In the case that M acts as responder then a third-party provided g

y

makes no

di�erence since the initiator authenticates g

y

independently of the peer (and without \inspecting"

the g

y

value itself).

The meaning of partial deniability. In Section 4.3 we further discuss the \real-life" semantics

and relevance of our notion of partial deniability.

4.2 Deniability Analysis of SIGMA

Here we show that SIGMA as depicted in Figure 3 is partially deniable as in De�nition 6. The

main di�culties in the simulation of the protocol are (i) the generation of the signatures on behalf

of the simulated parties, and (ii) the computation by the simulator of the session key K

s

and the

MAC key K

m

. Note that producing K

s

is a necessary condition for satisfying the de�nition of

deniability and partial deniability (De�nitions 2 and 6) while computing (or learning) K

m

is a

necessary condition to simulate the generation and veri�cation of the MAC values exchanged in

the protocol.

For point (i) the simulator will use the real parties as oracles (as allowed by the de�nition

of partial deniability) to produce the signatures. Speci�cally, the simulation of a given party C

acting as initiator will use an oracle to the real party C acting as initiator. The simulation of C as

responder will also use an oracle to the real party C acting as initiator (rather than as a responder

{ see discussion in Section 4.3).

For point (ii), since each of the exponentials g

x

; g

y

are chosen by either the simulator's oracles

or by the adversary then the corresponding exponents x; y are not known to the simulator who

thus cannot easily compute the values g

xy

, K

m

or K

s

. We solve this problem as follows. If the

attacker itself cannot compute its own MAC values then the simulator will be able to succeed

without computing or verifying these MAC values (in this case, the simulated party would abort

before having to compute the MAC values). However, if the attacker can compute the MAC then,

intuitively, the simulator (which has non-black-box access to the attacker) can learn these values

as well.

However, what we really need is for the simulator to learn not just the MAC values but the

keys K

m

and K

s

. In most natural/practical implementations of the key derivation function of

SIGMA one will have the property that for the adversary to compute the right MAC values, it has

to compute the right MAC key and to do so it has to compute the PRF key from which also K

s

is

computed. This, however, is not a necessary condition that follows just from the regular de�nitions

of MAC and PRF: one may be able to construct arti�cial functions where the attacker succeeds

in computing its own correct MAC value without necessarily having to compute the key K

m

(note

that the key K

m

does not have to be random as the attacker can in
uence it via the choice of the

DH exponential). Moreover, one can envision a situation where the attacker can prove that it could
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have not possibly known how to compute the MAC produced by its peer to an exchange in which

case the exchange (and possibly the following communication) may not be deniable. Therefore, our

proof of SIGMA will apply to KDF construction where the above arti�cial situation does not arise.

We formalize this via the following \key awareness" assumption.

The Key-Awareness Assumption for SIGMA's KDF. We say that a KDF procedure for

SIGMA has the Key-Awareness property if for all deniability attackersM against the protocol the fol-

lowing holds. If on exchange of DH values X;Y an attackerM computes a correct value MAC

K

m

(t),

for some input t, where K

m

is the MAC key derived by the KDF from X;Y , then there is an \ex-

tractor machine" M

0

that on the same inputs of M outputs the keys K

m

and K

s

.

5

In other words, there are no \shortcuts" available for the attacker in computing the MAC without

going through the key derivation steps and explicitly computing the MAC key K

m

as well as the

companion key K

s

. We note that the above very informal de�nition of the Key-Awareness can be

formalized in ways similar to other non-black box \extraction assumptions" such as the \knowledge

of exponent" and plaintext awareness assumptions discussed in Section 3. We omit the gory details

here.

As we said earlier we expect most natural implementations of key derivation in SIGMA to have

the above property, in particular when the hashing, PRF and MAC are implemented using HMAC

or CBC-MAC using strong hash and block-cipher functions as in the implementation of SIGMA in

IKE. Of course, we cannot prove this, but we have to explicitly assume it.

Next we show that this assumption holds when the hash function H used to derive the PRF

key K = H(g

xy

) is modelled as a random oracle; in this case, the whole key derivation has the

key awareness property. Namely, we show that the simulator can extract the correct keys K

m

and

K

s

from the run of the attacker, provided the latter computes correct MAC values. (Interestingly,

while intutive the following argument contains some unexpected subtleties.)

Due to the randomness of H, if the attackerM does not compute g

xy

then the key K = H(g

xy

)

(and thus K

m

) is indistinguishable from random forM. In this case, the attacker cannot possibly

compute the correct value of a MAC under K

m

. Thus, the simulator (which has access to the

oracle H) can check the inputs to H provided byM and hence learn K, and with it both K

m

and

K

s

. There is however a problem in this argument. The simulator will not be able to compute, in

general, the value g

xy

by itself; so how will it know which of the inputs to H was the real value g

xy

?

(In particular,M may use a key K, or K

m

, derived from an output of H on a point di�erent than

g

xy

). The solution to this problem uses the fact that in the simulation the simulator SIM will have

an example of a correct value of a MAC, computed under the correct key K

m

, produced by a real

player! Thus, in this case, SIM proceeds as follows. It considers each output of H as a candidate

PRF key K

�

and derives from it two candidate keys K

�

s

and K

�

m

. Now, SIM , uses the candidate

key K

�

m

to verify the MAC value received from the real player. If the veri�cation succeeds then

SIM assumes K

�

m

to be the correct MAC key K

m

(and K

�

s

to be the correct session key). It is

easy to see that a wrong candidate key K

�

m

will succeed in verifying the real MAC with negligible

probability. Indeed, since the distribution of wrong K

�

m

keys is uniform (and independent from

K

m

) then the latter probability is at most as the probability to forge a MAC and hence negligible.

(Clearly, if two independent random keys have a high probability of producing, or verifying, the

same MAC value then one can forge MAC values computed under a secret random key by simply

re-computing the MAC value under another random and independent key.)

Another subtlety in the above argument is what is meant by the \right value" of g

xy

. What

5

In the case in which the protocol uses additional keys, such as directional MAC keys, encryption keys, etc, then

we assume that the extractor returns all these keys; alternatively, if all these keys are derived from a single PRF key

K then it su�ces that extractor returns this key K.
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happens if the attacker chooses, say, a value Y (instead of g

y

) not in the subgroup generated by g

(as in the Lim-Lee attacks [39])? In this case the value g

xy

is not even well-de�ned. However, since

in this case we will have that the value X = g

x

was chosen by a real (and honest) player then the

value Y

x

is well de�ned and it is this value that we actually refer to as the \right g

xy

" (conversely,

when X is the value chosen by the attacker and Y = g

y

is chosen by the honest player then the

\real value of g

xy

" refers to X

y

).

Note. We note that the above simulation requires no rewinding and hence it does not break the

concurrency of the deniability property. Also worth noting is that as pointed out by Pass [42]

one has to be careful when arguing deniability using the random oracle model. Speci�cally, one

cannot use in such an argument the so called \programmability feature" of random oracles. We

note that this property is not used in the above argument. (We only use the ability to \see" where

the adversary queries the oracle.)

Summarizing, we prove the following Theorem.

Theorem 7 The SIGMA protocol from Figure 3 with a key-aware key derivation is partially deni-

able according to De�nition 6. (In particular, this is the case if one models the hashing of g

xy

in

SIGMA as a random oracle.)

Proof: We �rst show that �

I

is partially deniable with respect to an I-oracle. That is, we show a

simulator SIM

I

that simulates the interaction between the adversaryM as responder with a (hon-

est) initiator C where SIM

I

is given oracle access to �

C

I

(D; pk

D

) and pk

D

is independent from pk

M

.

In this case SIM

I

is very simple, it uses the oracle �

C

I

(D; pk

D

) to produce the messages on behalf of

�

C

I

(M; pk

M

) and passes these messages to and fromM. Speci�cally, SIM

I

activates �

C

I

(D; pk

D

)

and gets g

x

which it passes toM; it then passes the response g

y

fromM back to �

C

I

(D; pk

D

). When

the latter produces its second message with the triple C; �

C

= Sig

sk

C

(g

x

; g

y

); t

C

= MAC

K

m

(0; C),

the simulator SIM

I

passes it toM. So far the simulation of C is perfect (it is actually produced

by C itself and it does not depend on the peer D { actually, in many applications of SIGMA, C

does not necessarily know at this point who the peer is). If M returns its �nal message with the

tripleM; �

M

= Sig

sk

M

(g

x

; g

y

); t

M

= MAC

K

m

(1;M), the simulator needs to check the validity of

the signature (this is easy as SIM

I

knows M's public key) as well as the validity of the MAC

value t

M

. For this we use the key-aware KDF assumption by which either t

M

is the wrong MAC

value or else SIM

I

extracts the correct keys K

m

and K

s

. If the extractor does not return a MAC

key K

m

then SIM

I

(on behalf of �

C

I

(M; pk

M

)) aborts the run of the protocol (in this case the

MAC returned by M was wrong), and outputs the simulated view. Note that the key K

s

is not

output by SIM

I

since in the real protocol C does not produce a session key in this case. If the

correct K

m

;K

s

are recovered then SIM

I

uses K

m

to validate t

M

. If correct, it completes its run

by outputting the simulated view together with the value of the session key K

s

. It is easy to see

that the simulation is perfect (up to a negligible probability of error in the KDF extractor).

Next, we show that �

R

is partially deniable with respect to an I-oracle. That is, we show a

simulator SIM

R

that simulates the interaction between the adversaryM as initiator with a (honest)

responder C where SIM

R

is given oracle access to �

C

I

(D; pk

D

) and pk

D

is independent from pk

M

.

This simulation is somewhat more involved than the previous one due to the di�erences of roles of C

as responder in the simulation and as initiator under the oracle �

C

I

(D; pk

D

). Speci�cally, whenM

sends its initial message g

x

, the simulator SIM

R

activates the oracle �

C

I

(D; pk

D

) and gets an initial

value g

x

0

. Now, SIM

R

sets g

y

to the value g

x

0

and sends g

y

back toM. It also sets g

y

0

to the value

of g

x

and sends g

y

0

to �

C

I

(D; pk

D

) who responds with C; �

C

= Sig

sk

C

(g

x

0

; g

y

0

); t

C

= MAC

K

m

(0; C)

where K

m

is derived via KDF (g

x

0

y

0

) which is equivalent to KDF (g

xy

) due to the equality g

x

=

g

x

0

and g

y

= g

y

0

. When M responds with its third message M; �

M

= Sig

sk

M

(g

x

; g

y

); t

M

=
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MAC

K

m

(0;M), then SIM

R

proceeds as follows. If veri�cation of M's signature fails then the

protocol aborts. Else, SIM

R

applies an extractor to get K

m

;K

s

. If the keys are not returned by

the extractor SIM

R

aborts the protocol since the MAC t

M

must be wrong. Otherwise, SIM

R

uses

the extracted K

m

to calculate the MAC value t

0

C

= MAC

K

m

(1; C) (note that the value t

C

output

by �

C

I

(D; pk

D

) used a '0' in the mac instead of '1'), and sends to M the �nal message C; �

C

; t

0

C

which corresponds exactly to the message C would have sent to M if C acted as responder (in

particular note that �

C

= Sig

sk

C

(g

x

0

; g

y

0

) = Sig

sk

C

(g

x

; g

y

)). The simulator completes its run by

outputting the full view including the session key K

s

. 2

4.3 Discussion on Partial Deniability

It is important to understand the \real-life" semantics of our notion of partial deniability. The

idea behind our de�nition is that the transcript available to the adversary M could have been

produced by a party C when interacting with any other party D (this is what we refer to as the

\peer independence" property). Thus C can deny having been involved withM. A point to notice

is the role of C during this \claimed" interaction with D. The simpler case is when C acts as

initiator: in this case the information generated by C is totally independent of the peer's identity

and hence interaction with any speci�c peer can be denied by the initiator. In the case that C

runs as responder, the \peer independence" property can be formally proven provided that C also

runs as initiator in other instances of the protocol. In other words, the authentication information

created by C as responder is simulatable from the information created by C as initiator. How

common is it in real-life protocols that parties run as both initiators and responders? Clearly, this

depends on the application. For example, in applications of SIGMA to Instant Messaging (as in

[7, 24]) the common case is that end-points to the IM service act as both responders and initiators.

In contrast, in a typical client-server con�guration of IPSec, parties will run as either initiators or

responders but not both (fortunately, in these cases clients usually run as initiators so they are

fully protected by deniability). However, as we see next, SIGMA provides some level of deniability

also in cases where parties act exclusively as responders and not as initiators.

Deniability for parties who only act as responders. For a party, B, that only acts as a

responder (never as an initiator), SIGMA still provides some form of deniability whose signi�cance

may depend on the application. Indeed, note that there is nothing explicit in the authentication

information sent by the responder that ties it to a speci�c peer. The problem, however, is that B

will send this information only after verifying the identity of the peer. Let's consider an example.

Say, Charlie, acting as initiator, sends Bob g

x

where x encodes Charlie's signature on some value.

Bob signs this g

x

and later Charlie brings to court Bob's signature and the value x showing that this

value was generated by him (Charlie). In itself this proves nothing about Bob having knowingly

communicated with Charlie: g

x

could have been sent by David, a party with whom Bob was

willing to talk. In other words, David could have been collaborating with Charlie in \framing"

Bob (or maybe Charlie just broke into David's computer). In this sense, Bob enjoys deniability

even though it acts as responder-only in SIGMA. On the other hand, one can imagine cases where

additional \circumstantial evidence" may make it harder for Bob to deny, especially since Bob

needs to convince that Charlie was using someone with whom Bob was willing to communicate for

mounting the attack. This may be di�cult to do, for example, in the following situation: Charlie is

a malicious web site that decides to disclose identities of its visitors/customers (who would prefer to

remain anonymous) by sending each customer a g

x

value that \ties" the communication to this web

site as above. Now, if Bob is one of these customers it will have to convince the judge that someone

with whom Bob is willing to talk was colluding with (or controlled by) the malicious website.

The above considerations apply also to the case of an implementation of SIGMA that adds in-
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formation under the signatures that make the signatures produced by C as initiator distinguishable

from those generated by C as responder (the addition of such information is not needed for the

security of SIGMA and is certainly not recommended in any setting where deniability is signi�cant).

Deniability of SIGMA-I. We remark that the 3-message variant of SIGMA, called SIGMA-I

[37], is partially deniable, according to De�nition 6, only for the responder. In this case it is the

responder's behavior which is peer-independent since his signature is produced before seeing the

identity of the initiator. The initiator, Alice, in SIGMA-I is in a position similar to the responder

in SIGMA-R (Fig. 3) since she signs after seeing the identity of the other peer. Unlike the SIGMA-

R case, however, the initiator Alice may not be able to claim that her signature on (g

x

; g

y

) was

performed in her role of responder. Indeed, a malicious responder could choose his DH value

dependent on Alice's DH value, and this is never the case when Alice acts as responder. In other

words, the signatures of initiators and responders can be made distinguishable by a dishonest

peer in SIGMA-I, something that is not possible in SIGMA-R. Thus SIGMA-R may be somewhat

preferable in the deniability setting.

FInal note. The deniability limitations of SIGMA follow from the use of signatures (essential to

the protocol) and the fact that these signatures are applied to a peer-provided value. The latter

issue can be avoided if one replaces the peer's DH value under the signature with a freshness value

not chosen by the peer, such as a non-repeating counter or a timestamp; however, these values are

seldom available, or secure enough, in practical settings. As said earlier, a more essential limitation

of partial deniability is that having a signature of a party, even on random information, is su�cient

proof to show that the party was \alive". Moreover, it is easy to see that in the case of SIGMA an

attacker can encode into its DH value, information that will allow to prove not only that a party

was alive but that it was alive after certain time or event (for example, the attacker can encode into

the DH value the hashing of today's New York Times). Leaving a proof of such information seems

unavoidable in any protocol that needs to include some \freshness guarantee" inside a signature to

prevent its replay.
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A De�nitions

A.1 Authentication Protocols

Here we recall the notion of an authentication protocol (in the public-key model) as de�ned by

Dwork, Naor and Sahai [27].

An authentication protocol consists of a triple (AKG,S,R): where AKG is the key generation

algorithm which on input 1

n

, where n is the security parameter, outputs a public/secret key pair

(sk,pk); S and R are interactive Turing Machines called the sender and receiver, respectively. They

run on common input pk and a message m, while S also holds the secret key sk. At the end R either

accepts or rejects.

We consider a concurrent communication model [43, 27, 2] in which executions of the protocol

can be arbitrarily scheduled and interleaved by the adversary. We stress that this requirement is

fundamental to claim security for protocols ran in practical scenarios and open networks like the

Internet.

Informally, a secure authentication protocol must be complete (S should always make R accept)

and sound (or unforgeable): no forger F interacting with R on common input (pk;m) (where pk is

the public key of S) should make R accept, even if he has oracle access to S authenticating messages

m

0

6= m. More formally:

� AKG is the key generation algorithm: on input 1

n

, where n is the security parameter, it

outputs a public/secret key pair (sk,pk);

� S and R, called the sender and receiver, respectively, are interactive Turing machines; S

runs on input a key pair (sk,pk) and a message m; while R runs only on pk and m. With
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(S(sk);R)(pk;m) we denote the output of this interaction (by convention, this output is a

single bit representing a successful/failed authentication).

(AKG,S,R) is called a secure authentication protocol if the following properties hold:

Completeness. For any message m and any key pair (sk,pk), (S(sk);R)(pk;m) = 1.

Soundness. For any forger F with oracle access to S(sk; pk; �):

Pr[(sk; pk) AKG(1

n

) ; (F

S(sk;pk;�)

;R)(pk;m) = 1] � negl(n)

where m was not queried to the oracle S by F . (That is, the probability that F , pretending

to be S, successfully authenticates a new message m to R is negligible even if F is allowed to

interact with S on inputs other than m.)

Notice that the above de�nition intrinsically considers a concurrent scenario since F can arbitrarily

schedule and interleave its interactions with the real sender S, while trying to fool the real receiver

R.

A.2 Encryption Notions

An encryption scheme E is a triple (gen,enc,dec) where

� gen is the key generation algorithm. On input 1

k

, where k is the security parameter, it outputs

a public/secret key pair (sk,pk).

� enc is the encryption algorithm. On input a message m and a the public key pk it outputs a

ciphertext c.

� dec is the decryption algorithm. On input a ciphertext c and the secret key sk it outputs

either ? or a message m.

The obvious requirement is that if (sk; pk) = gen(1

k

) and c = enc(pk;m) then m = dec(sk; c).

We say that E is semantically secure (or IND-CPA) if for any two messages m

1

;m

2

and for pk

chosen according to gen, the two distributions c

1

; c

2

, where c

i

= fenc(pk;m

i

)g, are indistinguishable.

Consider now the following game: choose sk,pk according to gen(1

n

). Then give the adversary

oracle access to dec(sk; �) i.e. allowM to get decryptions of ciphertexts of her choice. At one point

M outputs two messages m

0

;m

1

: choose a random bit b and compute c = enc(pk;m

b

) and return

it to M. Now restrict M access to dec(sk; �) to any ciphertext except c untilM outputs a bit b

0

.

Denote with adv

M

(n) = Pr[b = b

0

] � 1=2. We say that E is semantically secure against adaptive

chosen ciphertext attack (or IND-CCA2, or CCA2-secure) [25] if for all adversaryM, adv

M

(n) is

negligible in n.

A.3 De�nition of Plaintext-Awareness

In this section we recall the notion of plaintext-awareness (PA) for an encryption scheme. Intu-

itively, an encryption scheme is Plaintext-Aware (PA) if the \only" way, that an adversary can

produce a valid ciphertext, is to apply the encryption algorithm on a given message. In other

words, any adversary against a PA scheme, that produces a valid ciphertext, \must know" the

corresponding plaintext.

The de�nition of PA was introduced by Bellare and Rogaway in [6] in the Random Oracle (RO)

Model. The notion was re�ned in [2] and recently formulated by Bellare and Palacio [4] in the
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standard model. In [4] there are three main de�nitions of PA: each de�nition formalizes a stronger

level of PA. They are named, in increasing order of strength, PA-0, PA-1 and PA-2.

It is important to note that PA by itself does not guarantee the secrecy of the message, so

it has to be coupled with standard notions like Indistinguishability against a Chosen-Plaintext

Attack (IND-CPA) or against a non-adaptive/adaptive Chosen-Ciphertext Attack (IND-CCA1,

IND-CCA2). In [4] some important relations are proven, for example: PA-1+IND-CPA implies

IND-CCA1 and PA-2+IND-CPA implies IND-CCA2.

PA-1 Definition. The de�nitional framework used in [4] considers a polynomial-time adversary

C, called a ciphertext creator, that takes as input the public key and can query ciphertexts for

decryption to a decryption oracle. For each such a ciphertext creator we require the existence of an

extractor C

�

which is another polynomial-time algorithm. C

�

is said to be a successful extractor

for C if it can provide replies to the oracle queries of C that are computational indistinguishable

from those provided by a real decryption oracle. The extractor gets as input the same public key

as the ciphertext creator, as well as its coin tosses. Basically the extractor is the \subconscious"

of the adversary.

The intuition behind an extractor for PA is the following: if the only way to produce a correct

ciphertext is to encrypt a plaintext then the extractor C

�

, that knows everything C knows, should

be able to retrieve such plaintext. We now recall the formal de�nition from [4].

Let Dist be a distinguisher, i.e. a probabilistic polynomial time Turing machine that on input a

string x outputs a bit. We de�ne two experiments: in the �rst C interacts with the real decryption

oracle dec, while on the second C interacts with the extractor C

�

.

Experiment EXP

dec

E ;C;Dist

(k).

(sk; pk) gen(1

k

) ; x C

dec(sk;�)

; b Dist(x)

Return b.

Experiment EXP

ext

E ;C;C

�

;Dist

(k).

� (sk; pk) gen(1

k

);

� Choose random tapes R(C) and R(C

�

) for C and C

�

respectively. Set St(C

�

) [pk; R(C)].

� Run C on input pk and random tape R(C) until it halts. When C queries Q, set

[m;St(C

�

)] C

�

(Q;St(C

�

); R(C

�

))

and return m to C.

� Let x denote the output of C; Return b Dist(x).

We say that C

�

is a successful PA-1 extractor for C if for any distinguisher Dist we have that

Prob[EXP

dec

E ;C;Dist

(k) = 1]� Prob[EXP

ext

E ;C;C

�

;Dist

(k) = 1] � negl(k)

We say that an encryption scheme E is PA-1 secure if for any ciphertext creator C there exists a

successful PA-1 extractor C

�

.

PA-2 Definition. The PA-1 de�nition does not take into consideration the realistic setting in

which an adversary learns valid ciphertexts by means other than encrypting a message himself: for

example by eavesdropping on the network and picking ciphertexts produced by others. Given such
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a valid ciphertext, it may be possible for the adversary to compute another valid ciphertext, related

to the original one, yet without knowing the corresponding plaintext. The PA-2 de�nition aims at

ruling such possibility out.

When modeling the ability of receiving valid ciphertexts we need to consider two facts: (i) on

the one hand C does not know the plaintext contained in such valid ciphertexts; (ii) on the other

hand C may have partial information on the plaintexts and the distributions from which they are

drawn. This is modeled by creating a companion plaintext creator P which when queried by C, it

generates a message m and sends it to an encryption oracle, returning the corresponding ciphertext

to C and, in the extraction experiment, to C

�

. C has some control over P via its communication

(the content of the query), but this control is not total, as the randomness of P is not exposed to

either C or C

�

. Of course we do not allow C to query the ciphertexts created by P to its decryption

oracle.

As before, we de�ne two experiments: in the �rst C interacts with the real decryption oracle

dec, while on the second C interacts with the extractor C

�

.

Experiment EXP2

dec

E ;C;P;Dist

(k).

� (sk; pk) gen(1

k

); L �;

� Choose random tapes R(C); R(P) for C;P respectively. Set St(P) �.

� Run C on input pk and random tape R(C) until it halts.

{ When C queries (dec; Q), if Q 2 L return ?, o.w. return m dec(sk; Q)

{ When C queries (enc; Q), set [m;St(P)]  P(Q;St(P); R(P)); c  enc(pk;m) and

L L [ fcg. Return c to C.

� Let x denote the output of C; Return b Dist(x).

Experiment EXP2

ext

E ;C;C

�

;P;Dist

(k).

� (sk; pk) gen(1

k

); L �;

� Choose random tapes R(C); R(C

�

); R(P) for C;C

�

;P respectively. Set St(P)  � and

St(C

�

) [pk; R(C)].

� Run C on input pkand random tape R(C) until it halts.

{ WhenC queries (dec; Q), ifQ 2 L return?, o.w. set [m;St(C

�

)] C

�

(Q;St(C

�

); R(C

�

))

and return m to C.

{ When C queries (enc; Q), set [m;St(P)]  P(Q;St(P); R(P)); c  enc(pk;m) and

L L [ fcg. Return c to C.

� Let x denote the output of C; Return b Dist(x).

We say that C

�

is a successful PA-2 extractor for C if for any plaintext creator P and any distin-

guisher Dist we have that

Prob[EXP2

dec

E ;C;P;Dist

(k) = 1]� Prob[EXP2

ext

E ;C;C

�

;P;Dist

(k) = 1] � :(k)

We say that an encryption scheme E is PA-2 secure if for any ciphertext creator C there exists a

successful PA-2 extractor C

�

.
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B CCA2 is not su�cient for deniability

We start by showing a CCA2 encryption scheme E and a secure MAC function which when used

inside �

E

yield a protocol which is not deniable. This construction follows the original ideas from

[4] where an example of a CCA2 scheme which is not plaintext-aware is presented.

Let E

0

= (gen

0

; enc

0

; dec

0

) be a CCA2-secure encryption scheme and let f : f0; 1g

�

! f0; 1g

�

be

a length preserving one-way function. Given a security parameter n, consider the following new

scheme E = (gen; enc; dec)

� key generation algorithm gen(1

n

):

{ invokes gen

0

(1

n

) to obtain public/secret keys (pk

0

; sk

0

);

{ chooses at random two strings u

1

; u

2

of length n and computes U

1

= f(u

1

); U

2

= f(u

2

);

{ returns the public key pk = (pk

0

; U

1

; U

2

) and the secret key sk = (sk

0

; u

1

; u

2

).

� encryption algorithm enc(pk;m):

{ parses pk as (pk

0

; U

1

; U

2

);

{ returns (0; enc

0

(pk

0

;m).

� decryption algorithm dec(sk; c):

{ parses sk as (sk

0

; u

1

; u

2

) and c as (v; c

0

);

{ if v = 0 then return dec

0

(sk

0

; c

0

);

{ if v = 1 then if c

0

= U

1

jU

2

then return u

1

ju

2

else return fail.

It is not hard to see that E is CCA2-secure if E

0

is.

To instantiate the �

E

protocol we also need a suitable MAC function. Let k be a string of

length n and let MAC

0

k

: f0; 1g

�

! f0; 1g

n

be a secure MAC function. Let's de�ne a new function

MAC

k

: f0; 1g

�

! f0; 1g

2n

; this function will use keys of length 2n. Parse the key k as the

concatenation of two n-bits strings such that k = k

1

jk

2

, the new MAC function is computed as

MAC

k

1

jk

2

(m) = MAC

0

k

1

(m)jk

2

. That is, the �rst half part of the key is used to compute the actual

MAC function, while the second half is \published" in the output. It is easy to see that MAC is a

secure MAC as long as MAC

0

is.

What happens if we use E andMAC in the �

E

protocol? The protocol is still a good authenticator

but the deniability is gone! If the receiver uses the ciphertext (1; U

1

jU

2

) in the �rst round to

authenticate a message m, the sender decrypts as dec(sk; (1; U

1

jU

2

)) = u

1

ju

2

, and thus the reply

will be t = MAC

u

1

ju

2

(m) = MAC

0

u

1

(m)ju

2

. Notice that now the transcript contains the pre-image

of the value U

2

under the one-way function f , that is the value u

2

such that U

2

= f(u

2

). This is

evidence that the receiver has interacted with the owner of the public key containing the value U

2

(the value u

2

cannot be simulated).

C SKEME with a cooperating judge

As we discussed in Section 2 it could be possible for a judge to provideM with a ciphertext and

askM to submit it in an execution of �

E

. In this case the protocol would stop being deniable even

if the encryption is PA-2: this is because the judge knows the decryption of the ciphertexts in the

auxiliary input.
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A possible way to get around this problem is to add a challenge response mechanism (as in

[27]), which however will create a non-concurrently secure 4-round protocol. Instead we show how

to add a single preliminary round to �

E

to make it fully deniable. The resulting 3-round protocol

will be simulatable (in a non black-box fashion) with auxiliary input under the assumption that E

is PA-2 secure. More importantly it will be concurrently secure.

The basic idea is to have the sender S initiate the protocol by sending a random nonce r to the

receiver R. The latter will incorporate r inside the ciphertext, i.e. will encrypt it together with the

key k to produce the ciphertext c. The sender will decrypt c and check that the plaintext starts

with the nonce r and if so will MAC the message m with k, as before. If the ciphertext c is invalid

or its does not start with r, then SMACs the message m with a random key. The protocol, denoted

�

0

E

, is described in Figure 4.

Encryption-based Authentication �

0

E

Public Input: S's public key pk

Secret Input of S: sk

S R

r at random

r

-

m ; c = enc(pk; r:k)

�

k at random

If dec(sk; c) = r:k

0

t = MAC

k

0

(m)

-

t

?

= MAC

k

(m)

Figure 4: Augmenting �

E

against \cooperating judges"

To argue that �

0

E

is deniable even in the presence of a judge who knows the decryption of

the ciphertexts in the auxiliary input, we follow the same argument presented in the proof of

Theorem 4. We construct a simulator SIM

M

that interacting withM, creates transcripts that are

indistinguishable from real ones.

M can be thought of as a ciphertext creator C in the de�nition of PA-2 security. Let L be the

list of ciphertexts in the auxiliary input.

We now run M by feeding it a random challenge r. M will respond with (m; c). If c 2 L

then once again we answer with a MAC on m computed using a random key. If c =2 L, then by

the PA-2 security assumption we have access to an extractor C

�

which will return a value r

0

:k as

the matching plaintext contained in c. If r 6= r

0

again we compute the MAC using a random key.

Otherwise the simulator will use k to compute t = MAC

k

(m).

This simulation is indistinguishable, because by hypothesis the answers of C

�

when c =2 L are

indistinguishable from real plaintexts. On the other hand when c 2 L the probability that it

decrypts to something of the form r:k is negligible (assuming that r is su�ciently long).

SKEME key exchange with a cooperating judge. The case of the judge who may cooperate

with one of the parties in SKEME, can be handled similarly to protocol �

0

E

(Figure 4). More

speci�cally: we add one extra round at the beginning in which B sends g

y

and nothing else. Then

we use g

x

and g

y

as the nonce r in �

0

E

, that is we include them under the ciphertext and when

decrypting each party checks that the values appear in the decrypted plaintext. As in the case of
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�

E

0

this foils the attack of a judge handing a ciphertext to one of the parties in advance, since such

ciphertext will include (g

x

; g

y

) only with negligible probability.
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