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Abstract

We provide the first proof of security for MDC-2, the most well-known construction for turning an n-
bit blockcipher into a 2n-bit cryptographic hash function. Our result, which is in the ideal-cipher model,
shows that MDC-2, when built from a blockcipher having blocklength and keylength n, has security
much better than that delivered by any hash function that has an n-bit output. When the blocklength
and keylength are n = 128 bits, as with MDC-2 based on AES-128, an adversary that asks fewer than
2749 queries usually cannot find a collision.
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1 Introduction

OVERVIEW. A double-length hash-function uses an n-bit blockcipher as the building block by which it maps
(possibly long) strings to 2n-bit ones. The classical double-length hash-function is MDC-2, illustrated in
Figure 1. This nearly 20-year-old technique [5,22] is specified in the ANSI X9.31 and ISO/IEC 10118-2
standards [1,13], and it is implemented in popular libraries and toolkits, such as OpenSSL.

This paper gives the first proof of security for MDC-2. Our result establishes that when MDC-2 is based
on an ideal blockcipher with keylength and blocklength of n bits, the adversary must ask well over 27/2
queries to find a collision. In partiuclar, for n = 128, no adversry can find a collision with so much as a 50%
chance if it asks fewer than 274 forward-or-backward queries of a 128-bit blackbox-modeled blockcipher.

Getting a collision-resistance bound of 2749 queries when n = 128 is still far from the optimum one
might hope for, which is a bound of 2'2% queries for an output of 2n = 256 bits (the birthday bound). But
obtaining any bound above 24 (a trivial lower bound) has proved elusive to researchers thus far, given the
combinatorial complexity of the problem. We point out further down some of the characteristics of MDC-2
which make its security harder to tackle than that of other hash functions.

WHAT 1s MDC-27 Traditionally, MDC-2 was instantiated using DES, and some people may understand
MDC-2 to mean MDC-2 based on DES. This is not our meaning. Indeed this paper assumes a common
keylength and blocklength n bits, and so our results don’t directly apply to MDC-2 based on DES. (We
assume that, with signficant work, one could extend our analysis to handle the DES parameters of 56-bit
keys and 64-bit blocks, but we haven’t done this.) In this paper we consider MDC-2 using a blockcipher
E: {0,1}"x{0,1}" — {0,1}" with equal-length blocks and keys. We make this assumption both for simplicity
while preserving contemporary applicability: eliminating “bit-dropping” makes the algorithm cleaner, while
the usage of MDC-2 that people nowadays envisage is with the blockcipher AES-128 [28]. All future mention
of MDC-2 in this paper assumes equal blocklength and keylength.
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Figure 1: Left: Definition of the MDC-2 algorithm based on a blockcipher E with key length, word length,
and output length n. The message being acted on is X = X --- X,;, where m > 1 and |X;| = n. Strings A;
and B; are distinct n-bit constants. For an even-length sting S we let S¥ and S be its left and right half.
Right: Tllustration of the algorithm acting on a three-block messsage X = X; X2 X3. The resulting hash is
H(X) = V3 W3. The darkened edge of the box representing the blockcipher indicates the input that is the
key.

The MDC-2 algorithm is simple and elegant: building on the usual Merkle-Damgérd approach [6,21],
the compression function uses two parallel invocations of the Matyas-Meyer-Oseas compression function [20]
and then swaps the right halves of the outputs. It is defined and illustrated in Figure 1. It is easy to see
that the algorithm doesn’t work (that is, it admits efficient attacks) if it is “over-simplified” by dropping the
left /right swapping, the feed-forward XOR, or both.

The version of MDC-2 that we consider does not incorporate a “bit fixing” step like replacing the leftmost
bit of each left-column blockcipher key in Figure 1 with a 0-bit and replacing the leftmost bit of each
right-column blockcipher key with a 1-bit. Such bit-fixing was employed in MDC2-DES to overcome the
key-complementation property of the primitive and also, conceivably, as a security measure.

We also comment that in the version of MDC-2 that we consider, no length-annotation or padding is used,
and the domain is correspondingly restricted to ({0,1}")*. It is easy and customary to use padding and
length-annotation to extend MDC-2 to handle a domain of any string of less than 2" bits. Provable-security
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Figure 2: Our upper bound on AdvMP“?(g) as a function of ¢ for n = 128 (solid line) compared to the

n

previous best upper bound of ¢(g + 1)/2™ (dotted line).

results immediately extend: a collision-intractability result for the ({0,1}")" version of a hash function will
always lift to give essentially the same bound for the {0, 1}<" domain version one gets after padding and
length-annotation.

OUR RESULTS. We work in the ideal-cipher model, as in [4,8,15]. This is the customary model for proving the
security of a blockcipher-based hash function. In the ideal-cipher model the underlying primitive, a blockci-
pher E, is modeled as a family of random permutations with one random permutation chosen independently
for each key K. The adversary may make a query E(K, X) to discover the corresponding value Y = E(K, X),
or the adversary may make a query E~!(K,Y) so as to learn the corresponding value X = E~!(K,Y) for
which E(K,X) =Y. We are interested in the chance that an adversary can find a collision, namely a pair of
distinct messages that collide under MDC2%, by asking ¢ queries to such a primitive (more formal definitions
are given below).

Tt is easy to show that finding a collision for MDC2 implies finding X, K, X', K' with (X, K) # (X', K')
such that B(K,X)® X = E(K',X') ® X'. From this it follows (see e.g. [4]) that an adversary’s chance of
finding a collision in ¢ queries is less than g(q + 1)/2" ~ ¢*>/2™ where n = | X| = |K| is the block size. This
is a trivial upper bound, equal to the best possible security of a hash function with output length n [4] (also
known as the “birthday bound”). Ideally one would like to prove a similar birthday bound of ¢?/2%" for
MDC-2, since MDC-2 has output length 2n. However, despite the lack of attacks on MDC-2, no one has even
been able to exhibit an improvement on the bound of ¢/2". In this paper we give the first improvement
by showing that the adversary has chance O(g®/2%") of finding an attack for large enough n, and that an
adversary needs at least ¢ ~ 23"/5 queries to have an even chance of finding a collision for large enough n.
For example when n = 128 (the main case of interest) we show that an adversary needs at least ¢ = 2749
queries to have an even chance of obtaining a collision, which is over 2'° greater than the trivial bound of
2635 Figure 2 shows our upper bound as function of ¢ for the case n = 128.

We should mention the fact that there are well-known limitiations on the ideal-cipher model as a way to
evidence security of a blockcipher-based construction, these limitiations stemming from that fact that the
approach models, not defines, the security of the underlying blockcipher. In particular, we are not claiming
any particular cryptographic property that, say, AES must have in order for MDC24F5128 4 he secure. A
blackbox-model result comes closer to saying that if one can find collisions in MDC24ES128 then there is
some particular and damaging sense in which AES128 is not behaving like an idealized blockcipher.

OTHER TYPES OF SECURITY. There are other notions of security for hash functions besides collision in-
tractability such as preimage resistance and second preimage resistance. Roughly speaking a hash function
f is preimage resistant if given y in the range of f it is difficult to find x such that f(z) = y and is second
preimage resistant if given x and y such that f(z) = y it is difficult to find 2’ # z such that f(2') = y.



Preimage resistance and second preimage resistance are generally considered weaker than collision resistance.

In the case of MDC-2 it is easy to see that breaking preimage resistance implies the ability to find, given
some word Y of length n, a pair (X, K) such that E(K, X)® X =Y, which is hard to do (more precisely, the
adversary’s chance of achieving this in ¢ queries is upper bounded by ¢/(2" — ¢) in the ideal-cipher model,
which is a secure bound already for n = 128). Similarly breaking second preimage resistance! implies the
ability to find, given some triple (X, K,Y") such that E(X,K)® X =Y, a pair (X', K') # (X, K) such that
E(X',K"Y® X' =Y, which is equally hard to do. The questions of preimage resistance and second preimage
resistance are therefore not so interesting? for MDC-2, and our focus in this paper is on collision resistance.

THE RESURGENCE OF INTEREST IN BLOCKCIPHER-BASED HASHING. Since their initial design by Rivest [25],
MD4-family hash functions (eg, MD4, MD5, and SHA-1) have dominated cryptographic practice. But in
recent years a sequence of attacks on MD4-family hash-functions by Dobbertin, Wang, and others [2,7,29,30],
has led to a generalized sense of concern about the MD4-approach. The most natural place to look for an
alternative is in blockcipher-based constructions, which in fact predate the MD4-apprach [26]. Blockcipher-
based constructions are based on principles unrelated to MD4-style functions. Moreover recent attacks by
Joux [14] on concatenated hash functions have led to renewed interest in sound design principles for double
block length hash functions [19,24]. As a result many authors [9-11,19,23,24,27] have recently proposed new
double block-length constructions based either on an ideal blockcipher primitive or on an ideal compression
function primitive. Other authors have shown new attacks or limitations on the efficiency or security of such
constructions [3,12,16,27].

Some of the newly proposed blockcipher-based double block hash functions have birthday-type collision
resistance [10,11] but suffer from drawbacks such as long key lengths. The original blockcipher-based con-
structions of Merkle [21] were also double block length (in essence) and with best possible collision resistance
but had very low rates (the “rate” of a blockcipher-based hash function measures the number of blocks
hashed per blockcipher invocation, and constitutes a rough measure of its efficiency). Overall, MDC-2 re-
mains one of the more attractive candidates for a double length blockcipher-based hash function given its
high rate, small keys, and lack of known attacks.

A common template for the constructions with proven best possible collision resistance in either the
ideal cipher or ideal compression function model is the iteration of a compression function F' : {0, 1}2n+m —
{0,1}*" where m is the message block length and where F' is defined by F(V, W, X) = f1(V, W, X)||f(V, W, X)
where f1 : {0,1}*""™ — {0,1}", f2 : {0,1}*"*™ — {0,1}" are two component functions made from the ideal
primitive (note MDC-2 can be defined this way this way with m =n and fi(V,W,X) = E(VIWE X))o X,
f(V,W,X) = E(VEWT, X)® X). All the constructions that we are aware of for which it is possible to
prove birthday-type collision security have the common trait that the inputs necessary to compute f; can be
inferred from the inputs necessary to compute fo and vice-versa. The reader may contrast this with MDC-2,
for which the inputs necessary to compute fo, namely VE W and X, cannot be deduced from the inputs
necessary to compute fi, which are VX, WE and X. This independence between the left and right-hand
sides of MDC-2 seems to account in part for the difficulty of proving its security.

2 Preliminaries

Let Bloc(n) be the set of functions E: {0,1}" x {0,1}" — {0,1}" such that E(K,-) = Ek(-) is a permutation
on {0,1}". Given a function E € Bloc(n) we define MDC2E: ({0,1}")* — {0,1}*" by the algorithm of Fig.
1. The hash of a word X where |X| is a multiple of n by MDC2¥ is denoted by MDC2¥(X).

An adversary is an (always-halting) algorithm with access to an oracle. If A is a deterministic adversary
and E € Bloc(n) is a keyed permutation then the query history of A¥, denoted Q = QAF, is the tuple
(Q1,-..,Q,) where Q; = (X;, K;,Y;) and A asks total of ¢ queries and the i*® query is either a “forward”
query (K;, X;)twa, this query being answered by Y; = Ek,(X;), or a “backward” query (Kj;,Y;)bwd, this
query being answered by X; = EI_(I(Y;) We can assume the adversary never asks a query for which it
already knows the answer, such as by asking the same query twice or by asking (Kj;, X;)fwa and then asking

LA proper definition of second preimage resistance includes the definition of a sampling mechanism for z; we could assume
that z is chosen at random from all strings of length < c¢n for some small constant c.

2Bounds of the order ¢/2" are indeed considered secure for n = 128, but are probably not the best achievable; more work
might be done to obtain matching upper and lower bounds on preimage resistance and second preimage resistance.



(K, Yi)bwa (thus the answer to any query is always a randomly chosen from a pool of size at least 2" — ¢
where ¢ is the number of queries previously made by the adversary). We will often resort to the notational
convention that (K;, X;) denotes a forward query and that (K;,Y;) denotes a backward query, without
possible confusion.

If (X;, K;,Y;) is an element of the query history then we refer to X; as the “word input” of the query,
to K; as the “key” of the query, and to Y; as the “output” of the query. The quantity X; @ Y; is called the
“XOR output” of the query.

The adversary’s goal is to output a pair of nonempty strings X, X' such that X # X’ and MDC2”(X) =
MDC2P(X"). Moreover we impose the condition that the adversary must have made all queries necessary to
compute MDC2%(X), MDC2” (X’). This restriction is reasonable since otherwise the adversary can output
very long words X, X' where MDC2F(X) = MDC2”(X') with good probability but where computing
MDC2%(X), MDC2"(X") is infeasible in practicality. (For example, the adversary could simply output
0K, 02K7 where K is the lem of all numbers between 1 and 22" and have probability 1 of obtaining a
collision without making any queries, but this isn’t a reasonable type of attack.)

Since we may tell simply from the adversary’s query history Q whether it is possible for the adversary
to output words X # X' such that MDC2”(X) = MDC2¥(X’) and such that Q contains all the queries
necessary for the computation of MDC2”(X), MDC2(X"), we will in fact dispense the adversary from having
to output X, X' and simply determine whether the adversary has been successful or not by examining its
query history Q. Formally, we say that CoIIMDczE(Q) holds if there are two distinct nonempty words X,
X' of lengths divisible by n such that MDC2F(X) = MDC2¥(X") and such that Q contains all the queries
necessary to compute MDC27(X), MDC2%(X") as defined by the algorithm of Fig. 1. The goal of the

adversary A is thus to make some sequence Q = QAF of ¢ or fewer queries such that CoIIMDCZE(Q). The
adversary’s ability to break MDC2 in ¢ or fewer queries is measured by

Adv)%(4) = Pr{B ¢ Bloc(n), Q « A¥; ColMP*" (Q)].

We let AdvMP“?(q) be the max over all adversaries A making at most ¢ queries of AdvMP?(4). Our goal
is thus to upper bound Adv:[DCQ(q). Since ¢ is always less than the total possible number of queries which

can be made to E, we can assume without loss of generality that A asks exactly ¢ queries and thus that
|QA"| = q.

Say that numbers n and g have been fixed as well as an adversary A such that |QAP| = g for all
E € Bloc(n). If P is any predicate which may be true or false for a sequence of queries Q (such as for

example CoIIMDCZE(Q)) then we write Pr[P(Q)] as a shorthand for Pr[E < Bloc(n), Q + AF; P(Q)]. With

this notation we have AdvMPY%(4) = Pr[CoIIMDC2E(Q)]. We will often use this simpler notation to avoid

over-complicating our formulas.

By our definition ColMPO2" (Q) holds if there are two nonempty words X # X' such that MDC2F (X) =
MDC2F(X') and Q contains all the queries necessary to compute MDC2F (X), MDC2”(X’). We say the
pair X, X' forms an earliest possible collision if there do no exist two nonempty exist words ¥ # Y’ of
length 0 mod n such that Y is a prefix of X, Y is a prefix of X’ and MDC2¥(Y) = MDC2¥(Y"). Obviously
if ColMPO2" (Q) holds then it holds for some X, X' that are an earliest possible collision. We will use this
fact later to upper bound Adv%DCQ(q).

Our upper bound can be stated in varying degrees of generality and comprehensibility. The most general
and least comprehensible statement of our upper bound is the following:

Theorem 1. Let n, q be natural numbers withn > q. Let N = 2", N' = n —q arlLd let mq, mp, m. be
any positive numbers with eqN%/N’ < myp, eq/N' < m.. Finally let My = mpyN'/qgNz, M. = m.N'/q and
N" = N'(Nz —my)/Nz. Then
2
AdMPC2(g) < q +2qN%eqN%M,,(1—1n(Mb))/N’ + qNetMe(=In(MO))/N' 4 (1)
- mgN'
q(mj + mamj +my) /N' + (2)
q(4mgamy) /N' + q(2mamy) /N" +
g(mime + 5m? + mgme + 6m,)/N' + q(4m, + 8m3)/N" +
(

q(4 4 10my, + 2mym.) /N" + 3q/N' + 4¢/N" + ¢° /N"?
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261 757x1077[ 264 x 105 44.01 | 3.7147
26822 107*] 7.01 x 106 | 128.09 | 3.9448
272.19 1/100 | 1.75 x 107 | 898.95 | 4.1899
274.00 1/10 | 2.66 x 107 | 2902.32 | 4.3082
27472 1/3 | 3.14 x 107 | 4687.89 | 4.3523
27491 1/2 | 3.29 x 107 | 5355.49 | 4.3640
275.21 1 _ _ _

Table 1: Upper bounds on Adv%]gm(q) given by Theorem 1.

What Theorem 1 concretely means for n = 128 is shown in Table 1 and Fig. 2. Table 1 shows specific
numerical upper bounds for Advllvggm(q) for various values of q. The threshold value where Theorem 1 gives
an upper bound of 1/2 is ¢ = 279! (to be compared with the previous best threshold of ¢ = 2%%-%). For
each value of ¢ we also show the values of m,, ms, m, which yield the stated upper bound. Fig. 2 plots our

upper bounds on Adv}5e?(q) as a function of ¢, compared to the previous upper bound of ¢(g+ 1)/N. The

method for optimizing m,, ms, m. for given values of n, ¢ in order to obtain the best bound on Adv%Dm(q)

is explained in the last section. In that appendix we also show that Theorem 1 implies the following;:
Theorem 2. Let ¢ = N5¢ where € > 0 and N = 2". Then AdvMP?(¢) - 0 as n — .

Asymptotically as n — oo, thus, our bound for AdvMP®2(q) behaves like the function min(1,¢®/23"),
though the two functions still look significantly different for n = 128 (e.g. ¢°/2%™ has a threshold of 76.6 for
n = 128 whereas our bound on Adv}"“?(g) has a threshold of 74.9). Though the two functions behave the
same asymptotically there does not seem to be any good closed form relating our bound on Advﬁ/IDC2 (q) to

the function ¢°/23".

3 Analysis

Fix numbers 7, ¢ and an adversary A. We upper bound Pr[Adv}P?(Q)] by exhibiting predicates Win0(Q),
..., Win8(Q) such that Adv}'P“*(Q) = Win0(Q) V...V Win8(Q) and then by upper bounding separately
the probabilities Pr{Win0(Q)], ..., Pr[Win8(Q)]. Then obviously Pr[Adv}P“?(Q)] < Pr[Win0(Q)] + --- +
Pr[Win8(Q)].

To state the predicates Win0(Q), ..., Win8(Q) we need some definitions; a, b, b”, b®, ¢ are functions
defined on query sequences of length ¢, as follows:

a(Q) = {@G,)) el...q i #4,X;dY; = X; ®Y;}| is the number of
ordered pairs of distinct queries in Q with same XOR outputs

b (Q) = maxy o132 [{i : (X; ®Yi)l =Y} is the maximum size of a set
of queries in @ whose XOR outputs all have the same left n/2 bits

bR(Q) = maxy o 1yns2 [{i 1 (X; @ Y;)® =Y} is the maximum size of a set
of queries in @ whose XOR outputs all have the same right n/2
bits

b(Q) = max(b"(Q),b%(Q))

= maxyeoai» [{i : X; ®Y; = Y} is the maximum size of a set of

queries in @ whose XOR outputs are all the same

o)
—~~
o)
~
|

The event Win0(Q) is simply defined by
Win0(Q) = (a(Q) > my) V (b(Q) > mp) V (¢(Q) > me)

where mg, mp, m. are the constants from Theorem 1 (and that are chosen later depending on n and ¢—see
Appendix B for how best to choose m,, my, m.). Thus as m,, my, m,. are chosen larger Pr[Win0(Q)]
diminishes.
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Figure 3: The configurations defining Win1(Q).

The events Winl(Q), ..., Win8(Q) are slightly different in nature from the event Win0(Q); they con-
cern the feasibility of fitting certain subconfigurations of MDC-2 using queries from Q = (X, K3,Y1), -,
(X4, Ky,Yy). Take for example the configuration 1la of Fig. 3. In this configuration, the two strings marked
‘A’ are equal and the queries marked i, !i are different. We now define what it means for four (or possibly
fewer) queries from Q to “fit” configuration la. We say that Fity, (4,4, 7, k) holds if

(Z#ZI)/\(Xz =X )NX;eYi=Xy0Yu)A
(Xj = X)) A(X; @ Yy)" = Kf) A (X @ V)T = KfF) A
(Xk @ Ye)" = Kf) A (Xk @ Yi)' = K[Y)

and we say that ExistsFit;,(Q) holds if there exist i,4i',j,k € [1..q] such that Fit1,(%,4',4,k). The predi-
cates ExistsFity,, ExistsFity, ExistsFits, ExistsFity,, ExistsFity,, ExistsFitg,, ExistsFitg,, ExistsFitg., ExistsFitgq,
ExistsFity,, ExistsFity;, whose configurations are shown in Appendix A, are likewise defined (in these config-
urations strings marked by the same letter are equal but strings marked with different letters may or may
not be equal; likewise queries marked 4, !i are different but queries marked 7, j may be the same). Note that
ExistsFitg, = ExistsFitg, and that ExistsFitg, = ExistsFitgq; configurations 6b, 6d are provided to facilitate
referencing. An additional notation is required to indicate inequality between queries in configurations 5 and
8 (Figs. 8, 11). In these configurations, pairs of queries from the bottom row that do not both contain a ‘1’
or both contain a ‘0’ (namely, queries with different labels) are presumed different; there are no constraints
relating top row to bottom row queries, and queries with the same label are not presumed equal (see Fig.
4 for an explanation of “top row”, “bottom row”). The predicates ExistsFit;(Q), ExistsFitg(Q) then denote
the existence of a set of queries in Q fitting respectively configurations 5 and 8 under these constraints.
We also let NotWinj = Win0(Q) V ---V Winj(Q) for 0 < j < 8. We now define:

Win1(Q) = NotWin0(Q) A (ExistsFit1,(Q) V ExistsFit1;(Q))
Win2(Q) = NotWinl(Q) A ExistsFit,(Q)
Win3(Q) = NotWin2(Q) A ExistsFit3(Q)
Win4(Q) = NotWin3(Q) A (ExistsFity, (Q) V ExistsFits,(Q))
Win5(Q) = NotWin4(Q) A ExistsFits(Q)
Win6(Q) = NotWin5(Q) A (ExistsFitg,(Q) V ExistsFitg.(Q))
Win7(Q) = NotWin6(Q) A (ExistsFitr,(Q) V ExistsFitz,(Q))
Win8(Q) = NotWin7(Q) A ExistsFits(Q)
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Figure 4: The query labels.

The reader will note that all configurations have at most 2 pieces and each piece is a subportion of two
rounds of MDC2. If the configuration has two pieces (such as configurations 2, 4a, 4b, 5, 6a, 6b, 6¢, 6d, 7a,
7b, 8 as opposed to configurations 1la, 1b, 3) then the left portion of the configuration is called “Word 1”
and the right portion of the configuration is called “Word 2” (Fig. 4). Queries in the right-hand column
of a two-round piece are called “right column” queries and queries in the left-hand column of a two-block
portion are called “left column” queries. “Top row” and “bottom row” queries are defined the exptected
way. A query in the configuration is given coordinates 1T R for “Word 1, Top row, Right column” or 2BL
for “Word 2, Bottom row, Left column”, etc. If the configuration has only one piece then we drop the prefix
“1” or “2” and simply give coordinates TL, TR, etc. for the queries. The reader should refer to Fig. 4.

We now show that Coll™P2"(Q) = Win0(Q) V- -- V Win8(Q):

Theorem 3. CollMP%**(Q) = Win0(Q) V- -- Vv Win8(Q)

Proof. First we define new predicates Winl', ..., Win8' such that Winl’(Q)V---VWin8'(Q) = Win0(Q)V

-+-V Win8(Q). Then it is sufficient to show CoIIMDCZE(Q) = Winl’(Q) V --- V Win8'(Q). The new
predicates are:

Winl'(Q) = ExistsFit;,(Q) V ExistsFit15(Q)
Win2'(Q) = ExistsFit2(Q)
Win3'(Q) = ExistsFit3(Q)
Wind'(Q) = ExistsFitso(Q) V ExistsFits (Q)
Win5'(Q) = ExistsFit;(Q)

Win6'(Q) = ExistsFite, (Q) V ExistsFits.(Q)
Win7'(Q) = ExistsFit7,(Q) V ExistsFit7;(Q)
Win8'(Q) = ExistsFitg(Q)

It is clear that Winl'(Q) V--- V Win8'(Q) = Win0(Q) V - -- V Win8(Q).

Say CoIIMDC2E(Q). Then a collision can be constructed from the queries Q. We can assume that the
collision is the earliest possible, as explained in the introduction. By definition collisions involve words with
at least 1 block, so the collision must either (i) use two words that are 1 block long each (ii) use one word
of > 2 blocks and one word of 1 block or (iii) use two words of > 2 blocks. If the collision uses two words
that are 1 block length each then obviously ExistsFit2(Q) (if query ¢ where equal to !4, the two words would
be the same), so we can assume either (ii) or (iii).



Say first the collision is of type (ii), namely that the collision has one word with m > 2 blocks, which
is WLOG word 1, and one word of with 1 block, which is word 2. Note first that when word 1 is hashed
via MDC-2 there can never be a round where the same query appears both on the left and right-had sides
unless Win1(Q) holds (to see this, take the earliest such round; then the two queries from the round before
are different but have the same output, so Win1(Q)). Therefore we can assume that at every round in the
hashing of word 1, different queries appear on the left and right-hand sides. Naturally the same query may
appear both in the left and right columns in different rounds.

We now examine the last two rounds of the hashing of word 1. The four (not necessarily distinct) queries
comprising these two rounds are labeled 17'L, 1T R, etc. as in Fig. 4 and as per our convention described
above. The two queries making up the unique round for the hashing of word 2 are simply labeled 2L and
2R, where 2L is the query with key input A; and 2R is the query with key input B;. By our previous
remark, queries 17T L and 1T R are distinct as well as queries 1BL and 1BR. If query 1BL equals query 2L
and query 1BR equals query 2R then ExistsFit3(Q). On the other hand if query 1BL is not equal to query
2L and query 2BR is not equal to query 2R then ExistsFit;(Q). Therefore we can assume (by symmetry)
that query 1BL is not equal to query 2L but that query 1BR equals query 2R. But then ExistsFity,(Q).
This concludes the case when the adversary’s collision is of type (ii).

We now assume that both of the words involved in the collision have > 2 rounds. We examine the last
two rounds of the hashing of each word; the queries for these last two rounds are labeled as in Fig. 4. By
the same remark as above, the same query cannot appear in both left and right positions at the same round
of the same word, so the top row constraints of configuration 8 are satisfied. If query 1BL equals 2BL and
query 1BR equals query 2BR then the collision is not earliest possible, a contradiction, so we can assume (by
symmetry) that query 1BL is not equal to query 2BL. If queries 1BR and 2BR are equal then ExistsFitz,
so they too must be unequal. But then ExistsFitg so we are done. O

The reader may have noted that Win6'(Q) does not actually appear in the proof of Theorem 3. However
Win6(Q) will be used in the upper bounding of Pr[Win7(Q)] (recall that Win7(Q) is false if Win6(Q)).

Let WinFit(Q) = Win1(Q) V ...V Win8(Q), so Pr[ColMP2"(Q)] < Pr[Win0(Q)] + Pr[WinFit(Q)]. We
will show:

Theorem 4. Let N, N', N", m,, my, My, m., M, be as in Theorem 1. Then:

2

Pr[Win0(Q)] < qN, + 2qN%eqN%M"(1_1"(Mb))/N' + gNetMe(1=In(Me))/N"
my

and:

Theorem 5. Let N, N', N, m,, my, m. be as in Theorem 1. Then:

Pr[WinFit(Q)] < q(m2 +mami +mi)/N' +
q(4m,my) /N + q(2mgomyp) /N" +
q(m2m, + 5m? + mym. + 6m,)/N' + q(4m, + 8m?2)/N" +
q(4 + 10my + 2mpm.)/N" + 3q/N' +4q/N" + ¢* /N"?

Theorems 4 and 5 imply Theorem 1 (by Theorem 3). The proof of Theorem 4 is given in Appendix B,
which also contains the proof of Theorem 2. The proof of Theorem 5 (which constitutes the “meat” of the
paper) is given in Appendix A. To give a feel for the type of argument involved in proving Theorem 5 we
show here how to upper bound Pr[NotWin0(Q) A ExistsFit;,(Q)], which establishes “half” of the upper bound
for Pr[Win1(Q) = NotWin0(Q) A (ExistsFit;,(Q) V ExistsFit;;(Q))]. The constants N, N', N" will remain
throughout as defined in Theorem 1, namely N = 2", N' = N — ¢, N" = N'(N% —m;)/Nz.

Proposition 6. Pr[NotWin0(Q) A ExistsFit;,(Q)] < g(m, + mi)/N' + 2gm, /N".

Proof. Let Q; denote the first ¢ queries made by the adversary. The term “last query” means the latest
query made by the adversary (we examine the adversary’s queries (K;, X;) or (K;,Y;) one at a time, in
succession as they come in). The last query is always given index i. We say the last query is “successful”
if the output Y; or X; for the last query is such that a(Q;) < mg, b(Q;) < myp, ¢(Q;) < m. and such that



the adversary can use the query (X;, K;,Y;) to fit configuration la using only queries in Q; (in particular,
the last query must be used in the fitting for that query to count as successful). The goal is thus to upper
bound the adversary’s chance of ever making a successful last query.

The strategy for upper bounding the probability of the last query being successful is to consider sepa-
rately the different ways in which the last query can be used to fit the configuration and to upper bound
the probability of success in each case, and finally to sum the various upper bounds. For example, the
adversary may use the last query only once in the configuration or otherwise in several different positions of
the configuration (such as, say, TL and BL). The basic setup for upper bounding the probability of success
in a given case is to upper bound the maximum number of different outputs Y; or X; (depending on whether
the last query is a forward or backward query) that would allow the query (X;, K;,Y;) to be used to fit the
configuration, and then to divide this number by N' = N — ¢ (since either Y; or X;, depending, is chosen
randomly among a set of at least N' different values). That ratio is then multiplied by g, since the adversary
makes ¢ queries in all, each of which could become a successful last query.

Case 1: The last query is used exactly once in the configuration. We can assume WLOG that it is used
in the left column.

Subcase 1.1: The last query is used in position BL. Say first that the last query is a forward query
(K;, X;). Since the last query cannot be successful if 5(Q;_1) > myp (by definition) we can assume that
b(Q;i—1) < myp. Then since the left half of the XOR output of the query used in position T'L must be equal
to the left half of K; there are at most my different queries in Q; 1 that could be used in position T'L, for
the given inputs (K, X;) of the last query. Likewise because the right half of the XOR output of the query
used in position TR must be equal to the right half of K; there are at most m; different queries in Q;_1
that could be used in position TR. Since X; together with the outputs of the queries used in positions T'L,
TR completely determine the query used in position BR, there are therefore at most m} different queries
in Q; 7 which can be used in position BR for the given inputs (K;, X;). Therefore there are at most mj
outputs Y; which would enable the last query be used to fit the configuration at position BL (namely which
would enable the XOR, output X; & Y; of query BL to be equal to the XOR output of query BR), so the
chance of success of the last query if it is forward is < m}/N'.

Now say the last query is a backward query (K;,Y;). We cannot reason like for the forward query case
that there are only mg queries in Q; 1 that that can appear in position BR since we do not know the word
input X; anymore. However because the query used in position BR has same XOR output and same word
input as the query in position BL it must also have the same output as the query in position BL, which
means the output of the query in position BR is actually Y;. Now because F is a blockcipher, there is exactly
at most one possible query for position BR in Q;_; for any given value of the key of the query in position
BR, and since the key can take at most m} different values (as in the forward case) there are again at most
m} different queries that can be used in position BR. Therefore there are at most m different values for
X; which would make the backwards query (K;,Y;) successful, so the last query again has chance of success
<m}/N'.

Thus the last query has chance of success < m? /N’ whether it is a forward or backward query. Multi-
plying by g, we obtain that the chance of ever making a successful last query of this type is < gm2/N'. This
concludes the analysis of Subcase 1.1.

Note: we will not always give as many details as in Subcase 1.1. In particular, we will not continue
to remind that one can assume a(Q;—1) < Mg, b(Qi—1) < myp, ¢(Q)i—1 < m, (or else the last query is by
definition not successful) and we will often shorten phrases of the type “query used in position T'L” to simply
“query T'L”.

Subcase 1.2: The last query is used in position T'L. Because the queries use in positions BL, BR are
distinct but have the same XOR output there are at most m, different ordered pairs of queries in Q;_; that
can be used for the pair BL, BR. But the pair of queries for BL, BR completely determines what the XOR
output X; @ Y; of the last query should be. Therefore the last query has chance at most m, /N’ of success
and the total probability of making this type of successful last query is < gm,/N'.
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Note: Subcase 1.2 does not require a separate analysis for the forward and backward case because we
can upper bound the maximum number of successful XOR outputs for the last query without looking at
the inputs for the last query; by contrast, in Subcase 1.1 we inspected X; in the forward case and Y; in the
backward case in order to determine the maximum possible number of successful XOR outputs. In general,
whenever an upper bound on the total number of successful XOR outputs for the last query can be found
without inspecting any inputs for the last query besides the key, the same analysis will work both for the
forward and backward cases.

Case 2: The last query is used twice or more in the configuration. Because queries BL and BR are
distinct the queries T'L and T'R are also distinct and so the last query must in fact appear exactly twice in
the configuration. We can assume WLOG that it is used in position T'L.

The type of analysis we use for this case is slightly different than the analysis for Subcases 1.1, 1.2. To
estimate the probability of the last query succeeding we will first look at the left n/2 bits of XOR output,
estimate their probability P, of success (the left bits are “successful” if they do not preclude the last query
from being successful) and then we estimate the probability of success P,; of the right n/2 bits of XOR
output being successful, conditioned on the fact that the left n/2 bits are successful (the right n/2 bits are
“successful” if the last query is successful). The probability of success of the last query is then P, P, ;. Note
that if the set of left half of XOR outputs which are successful has size T' then P, < TN 3 /N' since the
return to any query has chance < N 3 /N' of having its left half of XOR output equal to any particular value
(there are at most N strings that have that left half, each of which is returned with chance at most 1/N").
Then if the left half is successful and there are U different possible ways of completing the left half into a
successful string, namely U different successful right halfs, the chance of the right half being successful given
NotWin0(Q;_1) is < U/(Nz —my) since the XOR output could be any of at least Nz —my, values with equal
probability (there are at most m; values which we know will not appear because they have already appeared
for this left half). So the total chance of success of the last query in this case (assuming U was independent
of the left half, as it will be in our analysis) is < TUN%/N’(N% —mgp) or < TU/N".

Subcase 2.1: The last query is used in positions T'L, BL. Since the last query appears in positions T'L,
BL the left half of the last query’s XOR output must be equal to the left half of its key input, so the left
half of output has chance P, < N 3 /N' chances of succeeding. If it succeeds, there are at most my queries for
BR in Q;_; with that left half of XOR output (which must be shared with query BL), so the right half of
XOR output has chance P,; < mp/(N 7 — my) of succeeding if the the left half succeeds. Therefore the last
query has chance P, P,; < myN2 /N'(N2 —my) = my/N" of succeeding and the adversary’s total chance of
making this kind of successful last query is < gmy/N".

Subcase 2.2: The last query is used in position T'L and in position BR. The same type of analysis as
for Subcase 2.1 applies, showing that the total chance of a successful last query of this type is < gmy/N".

Subcase 2.2 concludes Case 2 and thus all possible cases of making a successful query for configuration la.
Summing up the probabilities we get that Pr[NotWin0(Q) AExistsFit1,(Q)] < g(mq+m3)/N'+2gmy/N". O
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A Proof of Theorem 5

To upper bound Pr[WinFit(Q)] we give separate upper bounds for Pr[Win1(Q)], ..., Pr[Win8(Q)] and sum
the result. The proofs for the upper bounds of Pr[Win1(Q)], ..., Pr[Win8(Q)] all function similarly to the
proof of Proposition 6 by upper bounding the probability of making a successful last query (namely a last
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query completing the configuration in question, subject to the “NotWin” condition). We therefore keep the
same terminology and notation as for the proof of Proposition 7 We keep all the terminology of the proof
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Proposition 6. We start by completing our upper bound for Pr[Win1(Q)], already started in Proposition 6.
Proposition 7. Pr[Win1(Q)] < ¢(1 + m, +m2)/N' + 2gm;/N".

Proof. By Proposition 6 it suffices to show Pr[NotWin0(Q) A ExistsFit;,(Q)] < ¢/N'. We use the same tech-
nique as in Proposition 6, namely we upper bound the probability of the adversary ever making a successful
last query, where a last query is now “successful” if it can be used to complete configuration 1b and if
NotWin0(Q;) (with i being the index of the last query). The two positions of configuration 1b will simply be
labeled L and R for “left” and “right”.

Case 1: The last query has key A;. Then the last query, if it is successful, will be used in position L.
If the last query is forward then we know the word input for query R so there is at most 1 choice in Q;
for query R (whose key is constant) and therefore at most 1 successful value for the XOR output of the last
query. The last query then has chance < 1/N' of succeeding. If the last query is backward then we know
its output Y; and therefore the output of query R, whose output (as well as its XOR output) must be equal
to the output of query L, so there is again only at most 1 choice in Q; 1 for query R and the last query
has chance at most 1/N’ of succeeding. Therefore either way the last query has chance < 1/N' of succeeding.

Case 2: The last query has key B;. Same analysis, same bound as above.

Since the last query cannot be successful if its key is neither A; or B; and since its key is either A; or
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B; but not both, the chance of success of a last query is < 1/N' and the total chance of success is < ¢/N’,
so Pr[NotWin0(Q) A ExistsFit;,(Q)] < g/N'. O

Proposition 8. Pr[Win2(Q)] < ¢?/N".

Proof. For every forward query of the form (A;, X;) made by the adversary we give it for free the answer to
the forward query (By, X;) and vice-versa if the adversary makes a forward query (B;, X;) we give it for free
the answer to the forward query (A1, X;). Also for every backward query (A, Y;) made by the adversary we
give it for free the answer to the forward query (Bi, X;) where X; is the answer to (41,Y;), and similarly
for every backward query (B1,Y;) made by the adversary we give it for free the answer to the forward query
(A1, X;) where X; is the answer to (Bi,Y;). Thus at any point of its computation and for any word X the
adversary either knows both the answers to the queries (A, X), (B, X) or else knows neither. The reader
can also check that the adversary is never given for free a query that it already knows the answer for.

Say the last query made by the adversary is a forward query (Kj;, X;). Then that query has 0 chance
of being successful if K; # A;,B; and otherwise is equivalent to the pair of forward queries (4;,X;),
(B1, X;) neither of which the adversary knows the answers to. The pair (41, X;), (B1,X;) is successful
if the adversary’s query history Q;_1 contains a pair (41, X;, E(41,X;)), (B1,X;,E(B1,X;)) such that
X,@E(Al,XZ) = X] @E(A]_, X]), X@@E(Bl, Xz) = XJ@E(Bl, X]) Take any such pair (Al,Xj, E(AI,XJ)),
(B1,X;,E(B1,X;)) in Q; 1. Then the output of E(A;,X;) of the query (Ai,X;) has chance < 1/N' of
satisfying X; @ E(A,X;) = X; @ E(A4,X;), since that equation has a unique solution. If the output
does satisfy that equation, the output of (B, X;) still has chance < 1/N’ of satisfying its equation X; ®
E(B1,X;) = X; ® E(Bi, X;). Therefore there is < 1/N'? chance that the last query will be successful with
respect to the pair of queries (A1, X;, E(A41, X)), (B1,X;, E(B1,X;)). Since there are at most ¢ such pairs
in Q;_; the last query has chance < q/N'? of success.

If the last query is a backward query (K;,Y;) then the last query has 0 chance of success if Ky # A, By,
otherwise we can assume WLOG that K; = A;. We return to the adversary both X; = E~1(4;,Y;) and
E(B1,X;). The query is successful if there is some pair (41,X;, E(A1, X;)), (B1,X;,E(B1,X;)) in the
adversary’s query history Q;_1 such that X; ®8Y; = X; ® E(A1, X;), Xi @ E(B1,X;) = X; ® E(B1,X;). Fix
such a pair (A1, X;, E(A1,X;)), (B1,X;, E(B1,X;)) before looking at the returned values X;, E(Bi, X;).
The returned value X; has chance < 1/N' of satisfying X; @ Y; = X; @ E(Ay, X;) and, if it does, then
E(By, X;) also has chance < 1/N’ of satisfying X; & E(B1,X;) = X; ® E(B1,Xj). Therefore there is
< 1/N" chance that the last query will be successful with respect to the pair of queries (41, X}, E(A1, X;)),
(B1,X;,E(B1,X;)). Since there are at most ¢ such pairs in Q;_; the last query has chance < g/N'? of
success.

Thus whether the last query is forward or backward it has chance < q/N"? of being successful, and so
the total chance of success is < ¢®/N'2. O

Proposition 9. Pr[Win3(Q)] < ¢/N’.

Proof. Obviously Win3(Q) implies the adversary has made at least one query with XOR output AYB¥E
which happens with probability < 1/N’ for each of the ¢ queries, so Pr[Win3(Q)] < ¢/N'. O

Proposition 10. Pr[Win4(Q)] < ¢(2 + 2m)/N' + ¢(4 + 4m, + 4m;) /N".

Proof. We upper bound the probability that NotWin3(Q) A ExistsFits,(Q) since the proof for configuration
4b is equivalent. We refer to the single query in Word 2 of configuration 4a as query “2L” of the configuration.

Case 1: The last query appears only once in the configuration.

Subcase 1.1: The last query appears at position 1BL. If the last query is a forward query then given
its word input X; there is only one query possible in position 2L so the last query has chance < 1/N' of
success. If the last query is backward then because the queries 1BL, 2L must have same output as well as
same XOR output there is still only one possible query for query 2L so the last query has chance < 1/N' of
being returned the correct input word X; (which needs to be equal to the input word of query 2L). Therefore
the last query has chance < 1/N' of success and the total chance of success of making a successful last query
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of this type is < ¢/N.

Subcase 1.2: The last query appears at position 17 L. First say that the last query is forward. We first
look at the left n/2 bits of output and then at the right n/2 bits. Since queries 1BL, 2L are distinct but
have the same output there are at most m, possibilities for the pair 1BL, 2L in Q; 1 so the left half of the
output of the last query has chance < m,N 3 /N’ of succeeding. Then since there is only one right answer
for the right output half, the right output has chance < 1/(NZ —mj,) of succeeding if the left half succeeds.
Therefore the last query has chance < m,/N" of succeeding. Since the analysis did not require knowledge of
the input word the same analysis applies if the query is backward, so the total chance of making a successful
query of this type is < gm,/N".

Subcase 1.3: The last query appears at position 17T R. Same analysis as above, total chance of success
< gma/N".

Subcase 1.4: The last query appears at position 2L. There are at most m; queries 17'L and my; queries
1T R with the given right-half XOR outputs so at most m? different keys for query 1BR. If the last query is
forward then we also know the word input for query 1BR making at most m? queries 1BR, whereas if the
last query is backward then we know the output for query 1BR also making at most mj queries 1BR. There-
fore the chance of success of the last query is either way < m7 /N’ and the total chance of success is < gm? /N'.

Case 2: The last query appears twice or more in the configuration. Then it appears exactly twice.

Subcase 2.1: The last query appears at positions 17 L, 1BL. Whether the query is backward of forward
the left half of the output has chance < N 3 /N' of success because the left half of the XOR output is equal
to the left half of the key. The right half of output then obviously has chance < 1/(N 3 —my) of success
(whether the query is forward or backward). The chance of success of the last query is therefore < 1/N" for
a total chance of success of < ¢/N".

Subcase 2.2: The last query appears at positions 17R, 1BL. Same analysis, same bound.

Subcase 2.3: The last query appears at positions 17'L, 2L. Whether it is backwards or forwards, the
right output bits have chance < N 3 /N’ of success. If the right output bits are successful then we know the
right half of the XOR output of query 2L and hence of query 1BL and there are at most m; queries in Q;_1
with those right XOR output bits, so the left output bits have chance < mj/(N% —my) of being successful
(whether the last query is backwards or forwards). The total probability of success is < gmy/N".

Subcase 2.4: The last query appears at positions 17'L, 2R. Same analysis as above, same bound.

Subcase 2.4 concludes Case 2, and thus all cases. Tallying the probabilities and multiplying by 2 to
account for configuration 4b yields a bound of ¢(2 + 2m?)/N' + q(4 + 4m, + 4mp) /N". O

Proposition 11. Pr[Win5(Q)] < ¢(4m, + mem. + mim.)/N' + q(2my + 2mpm.) /N".

Proof. The two queries of Word 2 are simply labeled “2L, 2R” since that word has only one row. We proceed
with the same type of case analysis as usual:

Case 1: The last query is used only once in the configuration, in Word 1. We can assume WLOG that
it is used in the left column of Word 1.

Subcase 1.1: The last query is used in position 1BL. There are at most m, pairs of queries in Q; 1
that can be used for queries 1BR, 2R so at most m, possibilities for query 2L. Therefore (whether it is
backwards or forwards) the last query has chance < m,/N' of succeeding and the total chance of success is
< gmg/N'.
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Subcase 1.2: The last query is used in position 17'L. There are m, choices at most for the pair of
queries 1BL, 2L and for each such choice exactly one possibility for query 2R, and for every query 2R at
most m,. queries 1BR, so the last query (whether it is forwards or backwards) has chance < mym./N' of
success and the total chance of success is < gmgm./N'.

Case 2: The last query is used only once in the configuration, in Word 2. We can assume WLOG it is
used in position 2L. If the last query is forward then given its input there is only one possible query 2R
and at most m. queries 1BR and for each of those at most m? queries 1BL (because at most mj queries
1TL and my; queries 1T R, see e.g. Subcase 1.2 of Proposition 6) so that the probability of success of the
last query becomes < mim./N'. On the other hand if the last query is backwards then because the queries
2R, 1BR are distinct there are at most m, choices for the pair 2R, 1BR in Q;_; so the word output for the
last query has chance < m, /N’ of fitting the word input of query 2R. Therefore the last query has chance
< (mg+mim.)/N’ of succeeding whether it is forward or backward and therefore the total chance of success
is < g(mq + mZm.)/N'.

Case 3: The last query is used exactly twice in the configuration, both times in Word 1. Then it is used
once in the top row of Word 1 and once in the bottom row of Word 1. We can assume WLOG that it is
used in position 17T'L.

Subcase 3.1: The last query is also used in position 1BL. Whether it is backwards or forwards the left
half of output has chance < N 3 /N’ of succeeding. If it succeeds, there are at most m; choices for query 2L
so the right half of output then has chance at most my/(Nz —m;) of succeeding. The probability of success
of the last query is therefore < my/N" and the total probability of success is < gmy/N".

Subcase 3.2: The last query is also used in position 1BR. Same analysis, same bound as above.

Case 4: The last query is used exactly twice in the configuration, once in Word 1, once in Word 2. We can
assume it is used in position 2L. Then the last query cannot appear in position 1BR or else ExistsFity,(Q)
(and ExistsFit;5(Q)), so must appear either in position 17L or 1T R. Note that if the last query is forward
then query 2R is uniquely determined by the inputs of the last query.

Subcase 4.1: The last query is also used in position 17°L. If the last query is forward then B is
uniquely determined so there are only m, possibilities for query 1B R and the right half of output has chance
<m.Nz /N’ of succeeding. If the right output is successful then there are at most m; possibilities for query
1BL so the left bits of output have chance < my/(NZ —my) of succeeding. So if the last query is forward
then it has < mym./N" chance of succeeding. If the last query is backward then it has < m, /N’ chance
of succeeding since there are only at most m, choices in Q;_1 for the pair of queries 1BR, 2R (since the
word input of 2R has to match up with the word input of the last query). So the total chance of success is
therefore < gmg/N' + gmpm./N".

Subcase 4.2: The last query is also used in position 17 R. Same analysis and same bound as above.

Case 5: The last query is used 3 or more times in the configuration. Then it must be used twice in the
second row of the configuration so it will appear either both in positions 1BL, 2R or both in positions 1BR,
2L. But either way implies ExistsFit;,(Q) (and ExistsFity;(Q)), so it is impossible for this case to yield a
successful last query.

Case 5 concludes all possible cases. Tallying the probabilities we obtain the upper bound ¢(4mg,+mem.+
mim.)/N' + q(2mp, + 2mym.)/N". O

Proposition 12. Pr[Win6(Q)] < ¢(2m,myp + 2m3)/N' + 4gm?2/N".

Proof. We first upper bound Pr[NotWin5(Q) A ExistsFitg,(Q)]. The queries of configuration 6a are labeled
1T, 1B, 2T, 2R since they are all left column queries.
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Case 1: The last query is used exactly once in the configuration. We can assume it appears in Word 1.

Subcase 1.1: The last query is used at position 17". Since queries 1B, 2B are distinct there are at
most m, different possibilities for that pair in Q; ;. Then for each query 2B there are at most m; queries
2T so in total there are most m,m; possibilities for the pair 1B, 2T". Since the outputs of the last query
are determined by that pair (whether the last query is forwards or backwards) the last query has chance
< mgemp/N' of being successful and the total chance of success if < gmgomp/N'.

Subcase 1.2: The last query is used at position 1B. Given the key input of the last query there are at
most my possibilities for query 17" and for each of those at most m; different possibilities for the query 27T
(that shares its right XOR output with 17'), each of which then uniquely determine the query 2B (together
with the inputs of the last query—if the last query is forward we know the word input of 2B and if the last
query is backward we know its output). Therefore the last query has chance < mi /N’ of succeeding, for a
total probability of success < gm?/N'.

Case 2: The last query is used twice or more in the configuration. Then the last query must be used
exactly twice and by symmetry we can assume it is used either in positions 17", 1B or else in positions 17", 2B.

Subcase 2.1: The last query is used in positions 17, 1B. The left output of the query has chance
< N1/2 /N' of succeeding since it must match the left half of the key. If the left half of output succeeds there
are at most mp queries 2B with that left half of XOR output and for each query 2B at most m; queries
2T with the left half of XOR output to match the left half of key of query 2B. Since the half of XOR
output of the last query must match the right half of XOR output of query 27T, the right half has chance
< m2/(N% —my) of succeeding. Therefore the total chance of success is < gm?/N".

Subcase 2.2: The last query is used in positions 17°, 2B. There are at most m, different choices for
query 27T given the key input of the last query and the right half of XOR output of query 27T needs to be
equal to the right half of XOR output of the last query, so the right half of output of the last query has
chance < mpNz /N’ of succeeding. If the right half is successful then there are most m; different queries for
position 1B (with that right half of XOR output) so the left half of output has chance < my /(N 3 —my) of
being successful. The total probability of success is therefore < gm7/N".

Case 2 completes all cases. We have examined 3 cases in all, and there are 3 more identical cases for
configuration 6¢ so the overall chance of success is < g(2m,my, + 2m?)/N' + 4qm3 /N". O

Proposition 13. Pr[Win7(Q)] < g(m} + 2m,my + 2m,) /N’ + 4gm?2 /N".

Proof. Tt suffices to upper bound Pr[NotWin6(Q) A ExistsFitr,] because configuration 7b is a different drawing
of configuration 7a (included for convenience).

Case 1: The last query is used only once. We can assume it is used in Word 1.

Subcase 1.1: The last query is used in position 1BL. There are at most m; possible choices for query
1T L and my possible choices for query 1T R. Then for every query 17T L there are at most m; possible choices
for query 2T L and for every query 1T R there are at most m; possible choices for query 2T'R. This makes
a total of mj possible choices for the pair 2T'L, 2T'R and thus mj possible choices for query 2BR (if the
last query is forward then we know the word input of 2BR, otherwise we know its output). So the total
probability of success is < gmg /N’

Subcase 1.2: The last query is used in position 17L. Since the queries 1BL and 2BL are distinct there
are most m, possible choices for that pair of queries. Then for any query 2BL there are at most my; possible
choices for query 2T L. Since the output of the last query is uniquely determined by the queries 1BL, 2T'L
(whether the last query is forward or backward) the total chance of success is < gmgomy/N'.

Subcase 1.3: The last query is used in position 17'R. Like above, there are m, possible pairs 1BL, 2BL
and for each query 2BL there are my, possible queries 2T R, so the total probability of success is < gmgmp/N'.
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This concludes Case 1.

Case 2: The last query is used twice or more in the configuration. Then it is used at least once in the
top row, and we can assume in the top row of Word 1. If the last query appears both in positions 17L, 2T'L
then queries 1T R, 2T R must be different (or queries 1BL, 2BL could not be different) so this would imply
ExistsFitgq(Q), meaning the last query could not be successful. Likewise the last query cannot appear both
in positions 1T R, 2T'R or else ExistsFits,(Q). By symmetry we can assume that the last query appears in
position 17T'L but not in position 2T'L (we can revert to this case from the other case by interchanging the
role of the left and right outputs; we simply need to remember to tally twice the probabilities of success for
all the following subcases).

Subcase 2.1: The last query also appears in position 1BL. Then the left output half of the last query
has chance < N2 /N' of being successful. If the left output half is successful there are at most m; different
queries 2BL with that left half of XOR output and for each of them at most m; queries 27'L, so the right
output has chance < m? /(N2 —my) of being successful. The overall chance of success is therefore < gm?2 /N".

Subcase 2.2: The last query also appears in position 2BL. Then given the key input of the last query
there are at most m; different queries 27L so the right output half has chance < myN 2 /N' of being suc-
cessful. If the right output half is successful then there are at most m, queries 1BL with that right XOR
output half and so the left output half has chance < my, /(N 7 — my) of being successful. The total chance of
success is therefore < gmj /N".

Subcase 2.3: The last query also appears in position 27'R, and does not appear either in position 1BL
or 2BL (or else we can revert to Subcase 2.1 or Subcase 2.2). Then there are at most m, possibilities for
the pair 1BL, 2BL so the last query has chance < m,/N' of success and the total chance of success is
< gmgy/N'. This concludes Case 2.

Case 2 concludes all cases. Tallying the probabilities yields the bound g(mj + 2mgmp + 2mg) /N’ +
4gmi/N". O

Proposition 14. Pr[Win8(Q)] < g(mem? + m2)/N' + q(2ms + 2memy) /N".

Proof. Dispensing with comforting initial remarks:

Case 1: The last query is used only once in the configuration. We can assume WLOG that it is used in
the left column of Word 1.

Subcase 1.1: The last query is used in position 1BL. Since query 1BR is distinct from query 2BR
there are only m, possible pairs of queries 1BR, 2BR and in particular only m, possible choices for query
2BR. For any query 2BR there are at most m; queries 2T'R and at most m; queries 2T L, so in total there
are at most m,m? possible choices for the query 2BL. Therefore the last query (whether it is backwards or
forwards) has chance < m,m? /N’ of being successful and the total chance of success is < gmgomi /N'.

Subcase 1.2: The last query is used in position 1T L. There are at most m, possible choices for the pair
of queries 1BL, 2BL and also at most m, possible choices for the pair of queries 1BR, 2BR. In particular,
this implies there are at most m2 possible choices for the pair of queries 1BL, 1BR so the last query has
probability of success < m2/N'. The total chance of success is < gm2/N’.

Case 2: The last query is only used in the bottom row. Then it is used exactly twice, WLOG in positions
1BL, 2BR. But then A = B and ExistsFit1,(Q).

Case 3: The last query is only used in the top row. Then the analysis of Subcase 1.2 applies and we do
not need to tally a new probability.

20



Case 4: The last query is used at least once in the bottom row and at least once in the top row. We can
assume WLOG that it is used in position 17T'L. By the same reasoning as for Case 2, the last query must
appear exactly once in the bottom row.

Subcase1 4.1: The last query is also used in position 1BL. Then the left output of the last query has
chance < N2 /N’ of succeeding. There are < my; queries 2BL with that left output so the right output has
probability < my/(NZ —my) of succeeding. The total probability of success is < gmy/N".

Subcase 4.2: The last query is also used in position 1BR. Same analysis as above but arguing first on
the right output and then on the left, for a bound of gmy/N".

Subcase 4.3: The last query is also used in position 2BL. There are then < m, different possibilities for
the pair of queries 1BR, 2B R so the right output of the last query has chance < m,N 3 /N’ of succeeding.
Since the right XOR output of the last query is also the right XOR output of query 1BL, if the right output
is successful then there are at most my queries 1BL so the left output has chance < my/(N 3 — myp) of
succeeding. The total chance of success is therefore < gmqomy/N".

Subcase 4.4: The last query is also used in position 2BR. Same analysis as above but arguing first on
the left output and then on the right, for a bound of gm,m/N". This completes Case 4.

Case 4 completes all possible cases. Tallying the probabilities yields g(m,m2 + m2)/N' + q(2m; +
2mgmy) /N". O

Tallying the bounds of Propositions 7-14 we obtain that

Pr[WinFit(Q)] < q(1+m, +m})/N'+2gmy/N" +
/N +
g/N' +
q(2+2m3)/N' + q(4 + 4m, + 4my) /N" +
q(4mg + meme + mim.) /N' + q(2my + 2mym.)/N" +
Q(Qmamb +2mj)/N' + 4gmiy [N" +
q(m} + 2memy + 2m,)/N' + 4gm? /N"
q(maemi +m?2)/N' + q(2my + 2m,my) /N"
= g(m?+mem? +m;)/N' +
q(4mamyp) /N + q(2mamp) /N +
g(mim, + 5mj + mgeme + 6m,)/N' + q(4m, + 8m})/N" +
q(4 + 10my, + 2mym.)/N" + 3¢/N' + 4¢/N" + ¢* /N"?

which establishes Theorem 5.

B Appendix B: Proofs of Theorems 1, 2 and optimization of con-
stants

To prove Theorem 1 it suffices to prove Theorem 4 since Theorem 5 is established in Appendix A. That is,
we need to show

2

q
mqN'

Pr[Win0(Q)] < + qu%eqN%Mb(lfln(Mb))/N' + quqMc(lfln(Mc))/N'

for all positive numbers m,, my, m. obeying the conditions of Theorem 1 and where My = myN'/qN 3,
M. = m.N'/q (the conditions of Theorem 1 being that eqN%/N’ < my, eq/N' < m,).
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To upper bound Pr[Win0(Q)] it is sufficient to find separate bounds for Pr[a(Q) > m,], Pr[b(Q) > my],
Pr[c(Q) > m.] because Pr[Win0(Q)] < Pr[a(Q) > m,] + Pr[b(Q) > my] + Pr[e(Q) > m.]. We do each of
these in a separate proposition.

Proposition 15. Pr[a(Q) > m,] < ¢*/m,N".

Proof. Let S;; denote the event that queries ¢, j have the same XOR output. Then obviously Pr[S;;] < 1/N’
for all i # j so E[a(Q)] = >2,; E[Si;] < ¢?/N'. Using a Markov inequality we then get

as desired. 0
1 1
Proposition 16. Pr[b(Q) > ms] < 2qN 2N > Me(=In(L)/N" it N> ¢ where My = myN' /qNz.

Proof. Tt is sufficient to show Pr[b*(Q) > m;] < qN%eqN%Mb(lfln(Mb))/N' since by symmetry Pr[bL(Q) >
mp] = Pr[b¥(Q) > my] and therefore Pr[b(Q) > my] < 2Pr[bX(Q) > my).

We can rephrase the problem of upper bounding Pr[b%(Q) > m;] as a balls-in-bins question. Let r = N 3
be the number of bins and ¢ be the number of balls to be thrown. The i-th ball falls into the j-th bin if the
left half of the XOR output of the i-th query is equal to j. Our problem is to upper bound the probability
that some bin contains more than my balls. The i-th ball always has probability < p = N2 /N' of falling in
the j-th bin (regardless of how previous balls were thrown) because when the XOR output of the i-th query
is chosen uniformly at random from a set of size at least N', of which at most N 2 members have left half 7
If we let By be the probability of having exactly k balls fall in a particular bin (say bin 1) then

By <pt (Z)
Let u = gp (note p is an upper bound for the expected number of balls in any bin, and that m, = Myu). By
Stirling’s approximation

1 q q°

B, < p
Y O (TR
—k
1 . q a

e (i25)

IA

IA
=
|

Since mp = Myp we get

euMb(l—ln(Mb)) .

Now note that By, is a decreasing function of k after k = ey, so if My > e we have

Prpt(Q) >my) < Ni Y B 3)
j=mp
< ¢NiBp, (4)
< gN3erMs(1-In(My)) (5)
as desired. 0

Proposition 17. Pr[¢(Q) > m.] < gNetMe(1=In(M)/N" 4t M > e, where M, = m.N'/q.
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Proof. We skip most of the detailslsince the computation is essentially the same as for Proposition 16, but
this time with N bins instead of N2z and with probability of a ball falling in a given bin < p = 1/N’ (instead
of < N%/N’). The corresponding value to p is v = gp = ¢/N' so m, = M.v and if M, > e then we have

Pr[c(Q) >m.] < gNe?Me(1-In(M.))
quqMc(l—ln(Mc))/N’

as desired. n

Proposition 17 finishes the proof of Theorem 4 and thus of Theorem 1.

Before proving Theorem 2 we discuss how to best optimize the constants mg, my, m. for given values of
n and ¢q. Note that we do not require the best possible values of m,, m;, m. for the bound to be corect—any
values of m,, my, m. which meet the conditions of Theorem 1 yield a valid upper bound.

The value of m, is the easiest to optimize. Since the dominating term with m, in Pr[WinFit(Q)] is
gm? /N', optimizing m, roughly amounts to minimizing the sum ¢?>/m,N'+ gm?2/N'. Taking the derivative
and setting to 0 we find that a near-optimal value for m, is &/q/2.

Since the dominating term involving my, in Pr[WinFit(Q)] is gmj /N’, an optimal M; (and hence m;) will
be chosen such as to minimize the sum

2qN%€‘uMb(1_1n(Mb)) + qlflMI;l/Nl (6)

subject to the condition that My > e. Unfortunately one cannot take the derivative of (6) and solve directly
for My since this leads to a transcendental equation. Instead one can obtain a numerical approximation by
an iterating a procedure which attempts to make the two sides of the sum (6) as equal as possible. One can
also do slightly better by aiming to make qu*M;/N' about 100 (say) times larger than 2N z e#Me(1—In(Ms))
since a small change in M} can greatly decrease 2q N 3 et Mb(1-In(Ms)) without increasing qu* M} /N' by nearly
as much.

The biggest terms involving m. in Pr[WinFit(Q)] are g¢(mZm. +mym.)/N' so an optimal value of m, will
be chosen such as to minimize the sum

gNetMeIMMD/NT 1 g2 (i M. + mo M) [N, (7

Like for Mj there is no way to find an exact solution for the optimal value of M., so M, must be found
numerically. Since the terms involving M, represent much smaller terms than the largest terms involving
Mqa, My one may choose m,, mp first and then choose m. such as to minimize (7). However the value of
m. is much less critical than the values of m,, my, precisely because the terms involving m, are so much
smaller than the largest terms involving m,, m. Naturally, m; and m. are always chosen within the allowed
ranges (this doesn’t turn out to be a relevant restriction since the optimal values are always in those ranges
anyway).
E
Our last task is prove Theorem 2, which asserts that if g = N& ¢ then Pr[Col™P°?"(Q)] — 0 as n — oo.
E

So let ¢ = N3¢ where € > 0 is a constant. We can assume € < 1/10 because Pr[Col™P¢2" (Q)] is monotone
increasing with ¢ and that n is large enough that N'/q > 1. We set m, = ¢3, My = €2, M, = (N'/q)+
where 0 < a < % It is sufficient to check that the terms

¢

1 ' ’
g 2N EINE MO g NeaMe (I OIDINT gl N, gmi [N, gmime /N", qmame/N' - (8)
a

go to zero because other terms in the upper bound of Theorem 1 are bounded by these. Because N/N' — 1
as n — 0o it is straightforward to check that terms ¢?/m,N’ and gm?2 /N’ of (8) go to zero as n — oco. For
example substituting m, = ¢3 = N573¢ into ¢2/moN’ gives N1=3¢ /N’  which goes to zero. When M, = ¢?
the term 2qN%eqN%Mb(1*1“(Mb))/N' becomes 2qN%e*€2qN%/NI which one easily checks goes to 0 since eV’
grows faster than N°* for any r,s > 0. After substitution of M, = (N'/q)'** the term gNedMe(1=In(Mc))/N'
becomes < gNe~(N'/0% which again goes to 0 for the same reason. The term gmj /N’ becomes e3¢% /N> N' =
€8 N375¢ /N2 N’ which goes to 0 because N'/N — 1. The remaining terms gmim./N", gm,m./N' are checked
likewise. This establishes Theorem 2 and concludes our results.
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