Efficient Implementation of Tate Pairing
on a Mobile Phone using Java

Yuto Kawahara', Tsuyoshi Takagi', and Eiji Okamoto?

! Future University-Hakodate, Japan
% University of Tsukuba, Japan

Abstract. Pairing-based cryptosystems (PBC) have been attracted
by researchers in cryptography. Some implementations show that PBC
are relatively slower than the standard public key cryptosystems. We
present an efficient implementation for computing Tate pairing on a
mobile phone using Java. We implemented the nr pairing (a recent
efficient variation of Duursma-Lee algorithm) over some finite fields
of characteristic 3 with extension degree m = {97,167,193,239}. Our
optimized implementation for m = 97 achieved about 0.5 seconds for
computing Tate pairing over FOMA SH901iS, NTT DoCoMo. Then our
implementation of Tate pairing is compared in the same platform with
other Java program of the standard cryptosystems, i.e., RSA cryptosys-
tem and elliptic curve cryptosystem (ECC). The computation speed of
Tate pairing is comparable to that of RSA or ECC on the same mobile
device.

Keywords: Tate pairing, Java, mobile phone, efficient implementation.

1 Introduction

Pairing-based cryptosystems (PBC) can provide us several novel cryptographic
applications, e.g., ID-based cryptosystems [5], short digital signatures [7], broad-
cast encryption [6], etc. Some of them have not been achieved using the con-
ventional public key cryptosystems. Therefore PBC have been attracted by
researchers in cryptography. PBC use the Tate pairing on elliptic curves over
finite fields. The standard algorithm for computing the Tate pairing is Miller’s
algorithm. Miller’s algorithm is about 5 times slower than 1024-bit RSA and
160-bit elliptic curve cryptosystem (ECC) [2]. It is an important research topic
to find more efficient algorithms for computing Tate pairing.

Recently, Duursma and Lee introduced an efficient implementation of Miller’s
algorithm specified for supersingular curves over finite fields F3m [8]. The order
of the supersingular curves has the very low Hamming weight (i.e. 3) and this
algorithm can be implemented in a closed form only using the arithmetic of the
underlying finite field. Kwon then presented an efficient variation of Duursma-
Lee algorithm without computing cube roots [15]. This algorithm over Fzor has
been implemented in several milliseconds on FPGA [14] or Pentium using C
language [18,1]. Moreover, Barreto et al. proposed the nr pairing algorithm
that is about twice faster than Duursma-Lee algorithm [1]. The number of the
loops in ny pairing algorithm becomes (m + 1)/2 using an endomorphism map,

which is about the half of m used in Duursma-Lee algorithm. i pairing over
Fym can be implemented under one second on a smart card [16].

Java 2 Platform, Micro Edition (J2ME) is a secure and flexible Java plat-
form designed for embedding devices such as mobile phones [12]. Some appli-
cations of pairing based cryptosystems are suitable for the environments using
ubiquitous devices. Java provides several security components of the standard
public-key cryptosystem (RSA, ECC) and other cryptographic functions [13].
Tillich and Grofischadl presented some implementation of the standard public-
key cryptosystem over mobile phones [19]. However, no implementation of the
pairing-based cryptosystems using Java over mobile phones has been reported.

In this paper, the feasibility of Tate pairing on mobile phones using Java
is examined. We implement 7 pairing algorithm over Fsm for several exten-
sion degrees m = {97,167,193,239}, and especially optimized it for extension
degrees m = 97. Because there is no JCE component for computing Fsm , we
have to implement the arithmetic of Fsm from scratch. We design that the
number of Java components is preferable to be as small as possible, and avoid
a large overhead in the computation speed when many Java components are
called. The speed of calculations in Fsz= strongly depends on the choice of the
representation of elements, so that we deploy the bit representation suitble for
basic logic operations in Java and the irreducible trinomial basis 2™ + 2% + 2
with smallest degree k. In this implementation, our program achieves about 0.5
seconds on FOMA SH901iS, NTT DoCoMo. Moreover, our implementation of
Tate pairing is compared with the standard public-key cryptosystems (1024-bit
RSA and 160-bit ECC) using the Java components provided by Bouncy Cas-
tle [21]. Then the speed of our implementation is comparable to that of the
standard public-key cryptosystems with the same security parameters.

2 Arithmetic in Finite Fields with Characteristic 3

In this section, we describe the arithmetic of finite fields with characteristic 3
of degree m, where m is positive integer. We denote by Fs» the finite fields.

2.1 Bit Representation of Fzm

Let F3 = {0,1,2} be the finite field with characteristic 3. The element a in
F; is encoded by two bits such as a = (api, aio) for ani,a;, € {0,1}. In the
implementation we choose 0 = (0,0),1 = (0,1), and 2 = (1,0). The negative
—a for a € F3 is replaced by 2a.

Every elements in Fsm are represented Fs[z]/f(x), where f(z) is an ir-
reducible polynomial of degree m in F3[z]. Let A(z) be an element in Fsm .
A(z) can be represented as the polynomial of degree at most m — 1, namely
S aixt (a; € F3) [4]. For our implementation, each coefficient a; is repre-
sented as follows:

Ani = ((@m—1)nis (@m—2)nis 5 (@0)ni) , Ao = ((@m—1)10, (@m—2)10, -, (@0)10)

Here we denote A(z) by (Api, Aio). Using this representation, we need an array
with size of N = (m/W)+1 for storing an element in F3m , where W is the word

size of the target processor. Note that a negative element —A(z) is replaced
2A(z) by changing Ap; and Aj,.

2.2 Addition and Multiplication in Fzm

Let A(z) = (Api, Aio) and B(z) = (Bpi, Bio) be the elements of Fs- . Addition
C(z) = (Chi,Ci,) = A(z) + B(z) is performed by the basic logic operators
(AND(&), OR(|) and XOR(A)) as follows:

T = (Ani | Ato)&(Bhi | Bio), Chi =T A (Ani | Bri), Cio =T A (Aio | Bio).

Subtraction A(z) — B(z) can be computed as A(z)+ B'(z) for B'(z) = 2B(X).

Multiplication in F3m consists of the polynomial multiplication step and
the reduction step. The polynomial multiplication step computes C'(z) =
S22 eyt = A(z) - B(z) for given A(x), B(z) in Fsm. The shift-addition

i=0
multiplication method is the simplest algorithm, and other methods (e.g. the
comb method) require additional memory comparing with the shift-addition

multiplication method [10]. Therefore it is suitable for the implementation on

memory constraint device such as mobile phones. Let A(z) = Zzgl a;xt and

B(z) = Ezgl b;z* be the elements of Fym . The polynomial multiplication step

C'(x) = 222210—2 cizt = A(x) - B(z) is performed by the following algorithm.

Algorithm 1 Shift-Addition Multiplication in Fgm
Input: A(z) = 37" P aia’, B(x) = X7, bie' € Fam (ai,b; € F3)
Output: C'(z) = A(zx) - B(z)

1: C'(z) + 0

2: for i+ 0tom—1do

30 C'(z) « C'(z) +b; A(z) - o

4: end for

Next, the reduction step is computed based on the irreducible polynomial
of F3m . In order to accelerate the reduction step, we deploy the irreducible
trinomial f(z) = 2™ + 2% 4+ 2, where m > k > 1. The reduction algorithm with
irreducible trinomial f(z) is described as follows:

Algorithm 2 Reduction with Trinomial Basis
Input: C'(z) = GF(3)[z] of degree n (n > m — 1), f(z) =z™ +z" + 2
Output: C’'(z) = C'(z) mod f(x)

1: for i <+ n downto m do

20 G Cip—C

3 Chipy — Cin — 26k
4: ci+0

5: end for

2.3 Other Operations in Fzm

We describe other operations in Fzm , namely cube, inversion and cube root.

Cube: For a given polynomial A(x) € Fs[z], the cube of A(z) is calculated by
(A(z))® = Z;’;El a;x%. Therefore the multiplication step is computed virtu-
ally for free. We present two methods for the reduction step of the polynomial
E?igl a;x3. One performs the standard reduction algorithm using the irre-
ducible trinomial ™ = 2z* 4+ 1. Another one utilizes a reduction table, which
directly finds the reduced polynomial for a given A(x) € F3[z]. The speed of
the second reduction method can be optimized for fixed degree m. However the
reduction table should be prepared depending on the extension degree m, and

the first reduction method is suitable for general degree m.

Inversion: Inversion is performed using the extended Euclidean algorithm for
the polynomials over Fz[z]. We developed a ternary version of the extended
Euclidean algorithm over binary polynomial F;[z] [10]. The details of our algo-
rithm is described in appendix A. Another algorithm for computing an inversion
is the ternary gcd [11]. In our experiment, the ternary extended Euclidean al-
gorithm is faster than the ternary ged.

Cube Root: Cube root is efficiently implemented by the algorithm proposed
by Barreto et al. [3]. One cube root can be computed with the speed of at most
two multiplications in Fzm .

2.4 Arithmetic in Extension Field Fzem

Extension field Fzom is represented Fzsm [0]/h(c) and Fsm [p]/g(p), where h(o)
and g(p) are irreducible polynomials h(c) = 02 +1 over Fzsm and g(p) = p>—p—
1 over Fsm . Let A(0), B(o) be elements in Fzen . We denote by A(o) = aj0+ag
the element in Fszem , where ag, a1 are elements in Fssm . The operations in Fem
are implemented as follows:

— Addition: A(o) + B(o) = (a1 + b1)o + (ap + bo).

- Multiplication H A(U)B(U) = (too — tll)O' + (tgl — t()o — tll); where tog =
apbo, t11 = a1by, tor = (ao + a1)(bo + b1). Multiplication in Fzsm can be
obtained 18 multiplications and 57 additions in Fzm .

— Cube: A(0)? = —a}o + a. Cube in Fssm is computed by 6 cubes and 4
addition in Fsm .

— Inversion: A(c)™! =t (ap — ay0),where t = (a? + a3). Inversion in Fzem
uses 1 inversion, 21 multiplications and 45 additions in Fzm .

3 Implementation of Tate pairing

In this paper, we implement the Tate pairing on the following supersingular
elliptic curve over Fgm ,

E(Fsn) = {(z,y) € Fsm |y =2° —z +1}.

A point over curve E(F3=) is represented by (z,y), where x and y are
elements in F3m . All points on E(Fs3m) with the point of infinity forms a group
structure. The group order of curve E(Fgm) is #E = 3™ + 3(m+1/2 1 1, The
pairing based cryptosystems require the arithmetic of curve E(Fsm) such as
point addition, point double, point tripling, and scalar multiplication [11].

Let P = (zp,9p), Q = (x4,Y4) be input points over elliptic curve E(Fzm).
We describe some formulae on E(Fzm) in the following.

— Point Addition: Point addition (z,,y,) = P + Q, (z, # ®,) is imple-
mented by the following algorithm =, = * — (z, + x,), yr = (yp +y4) — A3,
where A = (y, — yp)/(xy — xp). Point addition needs 2 multiplications, 1
inversion, 1 cube, and 6 additions in Fsm .

— Point Double: Point double (z,,y,) = P + P is computed by z, = A\? +
Tp, Yr = —(yp + A®), where A = 1/y,. Point double needs 1 multiplication,
1 inversion, 1 cube and 2 additions in Fgm .

— Point Tripling: Point tripling (z,,y,.) = 3P = P+ P + P is computed by
z. = ((zp)%)® — 1, y» = —((yp)®)3. Point tripling requires only 4 cubes in
Fs3= and it is very efficiently computed.

— Scalar Multiplication: Scalar multiplication is defined by dP, where P
is a point on E(F3=) and d is a integer. This algorithm is calculated by
triple-and-addition algorithm [2], and can be obtain |logsd| point triplings,
about %Llog3dj point additions and 1 point double.

Let [be a large prime number that satisfies [|#E and [|(3°™ — 1). Denote
by E(F3=)[l] the subgroup of E(F3=) with order . Let ¢(z,y) = (—z + p,yo)
be the distortion map, which maps a point @ = (z,y) on E(Fsm)[l] to the point
#(Q) in E(Fzom)[I] the elliptic curve defined over the extension field Fzom . The
pairing e(P, () is a bilinear map

e : B(Fym) 1] x E(Fyom)[I] = Fon | (Fon)’
(P, 6(Q)) - e(P,Q),

which satisfies e(aP, Q) = e(P,aQ) = e(P, Q) for every non-zero integer a.

3.1 Implementation of nr Pairing

Miller’s algorithm is the standard algorithm for computing Tate pairing, but
it is about 5 time slower than the standard public-key cryptosystems [2].
Duursma-Lee algorithm is a simply modified version of Miller’s algorithm for
supersingular curves over Fsm [8]. The order of the supersingular curve has
the very low Hamming weight (i.e. #E = 3™ 4 3(™+1/2 4 1) and this algo-
rithm can be implemented in a closed form (any operators with the arithmetic
in F3m). Barreto et al. proposed a faster variation of Duursma-Lee algorithm
called np pairing [1]. The number of the loops in n pairing algorithm is reduced
to the half of that in Duursma-Lee algorithm, and np pairing is about twice
faster than Duursma-Lee. We have the relationship nT(P,Q)3(3(m+1)/2+1)2 =
e(P, Q)*B(MH)/2 for given two points P,Q € E(Fsm)[l]. We describe the algo-
rithm of np pairing in the following.

Algorithm 3 57 pairing on E(F3m) :y? = 2% — 2+ 1, m = +1 mod 12

Input: P = (zp,yp), Q = (24,yq) € E(Fzm)
Output: nr(P,Q) € Fyom

L yp ¢ —yp (in Fam)

2 fyqo —yp(xp + 74 +1) +ypp (in Fem)
3: for i < 0 to (m—1)/2 do

4: u<+zp+xe+1 (in Fam)

51 g Ypyqo —u’ —up—p° (in Faem)

6: [+« fg (in Fyom)

T xp xll,/B, Yp y,l,/3 (in Fam)

8 xg T, yg < yo (inFym)

9: end for

10: return f(33m71)(3m+1)(3m73(m+1)/2+1)

The final exponential fG*"-DE"+DE™=3"D241) (an he efficiently com-

puted [14,1]. Indeed, we can use equation f(33m_1) = (fo — fro)(fo + fro)™!
for f = fo + fio, and remaining exponent can be computed by 2m cubes, 2
multiplications and 1 inversion in Fzem .

4 TImplementation using Java

Java is a multi-platform language, which is suitable for the programming on
ubiquitous devices and can develop security systems more easily comparing
to some other program languages such as C. Java Micro Edition (J2ME) is
one of component set of Java 2, and often uses embedded devices such as
mobile phone. Java cryptography extension (JCE) is component library provide
cryptography communication functions. Java language supports JCE which has
the standard public key cryptosystem components, e.g. RSA cryptosystem and
elliptic curve cryptosystems etc [13]. Cryptographic components are provided
by some institutes, for examples, Bouncy Castle [21] and IAIK [22]. On the
other hands, the pairing-based cryptosystems (PBC) accomplish novel security
applications on ubiquitous environments. Therefore it is an interesting research
topic to implement PBC on ubiquitous devices. However, no implementation
of PBC on mobile phones has been reported.

In this paper, we try to implement Tate pairing from scratch in Java. There
is a large overhead in computation speed when many components of J2ME
are called. The goal of our implementation is to develop efficient computing
of Tate pairing, so that the number of Java components is preferable to be as
small as possible. Indeed, our program has a simply structure of Java class that
contains variables and methods. We implement six Java classes, i.e. finite field
parameters, finite field, extension field of extension degree 3, extension field of
extension degree 6, elliptic curve point, and Tate pairing.

Another goal is to implement Tate paring by a general-purpose program
that can compute by various extension degree m and irreducible trinomial f(x).
This is important to enhance the security by increasing the degree m in the
future. The general-purpose program has the following variables of finite field
Fsm appeared in Section 2, namely the characteristic 3, the extension degree

m, the middle degree of the irreducible trinomial k, the array size IV, and the
word size W. Then this program can support various extension degrees with
different irreducible trinomials.

On the other hand, we develop an optimized program for Tate paring with
F307 . The optimized program does not have the above variables, in other words
does not have the finite field parameters class, but this includes directly values
that correspond to these variables in algorithm. Moreover we improve multipli-
cation and cube for the optimized program, and thus this program is computed
faster.

4.1 Timing Results on a Mobile Phone

In this section, we describe timing results of our implementation using Java. We
use a mobile phone FOMA SH901iS, NTT DoCoMo in order to measure timing
result. We utilize degree m = {97,167,193,239}, and the irreducible trinomial
f(x) used for each degree m is as follows: 2°7 + 2'2 42, 2167 4+ 296 + 2 2193 4
21242, 229 4224 42, respectively. Table 2 presents the timing of the 57 pairing
over F3m and the arithmetic in F3m appeared in Section 2. We show the timing
of using the general-purpose program by degree m = {97,167,193,239}. The
optimized program for extension degree m = 97 is denoted by ”optFser”. The
timing results of Fsm and np pairing are shown in the following. All timings
are estimated on average by randomly chosen one thousand elements.

Table 1. Timing of Tate Pairing with Several Fsm (msec)

Operator |optI["397| Fso7 | Fsi67 | Fj103 | F3239
Addition 0.0173|0.0171| 0.0202 | 0.0203 | 0.0198
Subtraction | 0.0196(0.0193| 0.0225 | 0.0232 | 0.0210
Multiplication| 0.2400|0.2897| 0.6651 | 0.8638 | 1.1891
Cube 0.0473]|0.0886(0.1149 | 0.1254 | 0.1362
Inversion 1.5288(1.5411| 3.7500 | 5.0203 | 6.6621
Cube Root | 0.2982{0.3701| 0.5112 | 0.6094 | 0.7941

nr pairing | 509.22[627.65]1724.93][2368.58[3557.42

Addition, subtraction and cube implemented by the general-purpose pro-
gram in F3m are computed in almost same speed for each degree. The other
operations (multiplication, inversion and cube root) become gradually slower
as the degree m increases. Here 77 pairing algorithm uses many multiplications
and cubes, whose number increases based on the degree m due to the number
of loop. Therefore the timing of ny pairing also become slower in terms of in-
creasing the extension degree m. For example, the timing of np pairing over
3230 is about 6 times slower than that over Fsor.

On the other hands, the timing of 7 pairing by the optimized program over
optFse7 is about 1.2 time faster than that by the general-purpose program,
because the optimized program is implemented using less variables, and has
more efficient algorithms for multiplication and cube.

4.2 Comparison to Standard Cryptosystems

In this section, we compare our implementation of np pairing over Fsor to
the standard public key cryptosystems, i.e. 1024-bit RSA and 160-bit elliptic
curve cryptosystem (ECC) over Fyies. Other papers show that the size of these
parameters have the same security level [2].

We implement a modular exponentiation for 1024-bit RSA and a scalar
multiplication for 160-bit ECC over Fyiez using components distributed by
Bouncy Castle [21]. The modular exponentiation is (7'¢ mod n) for given 1024-
bit integers T',d, n. We use the parameters of ECC from Certicom [20], and the
scalar multiplication is dP for a given 160-bit integer d and a point P. Timing
results for each cryptosystem are as follows:

Table 2. Comparison of Timing with Other Cryptosystems (msec)

Operator [FOMA SH901iS|Pentium M

nr pairing with Fsor 509.22 10.15

Modular exponentiation of 1024-bit RSA 4238.40 75.07
Scalar multiplication of ECC over F,i63 13777.50 116.83

nr pairing with Fze7 is faster than the modular exponentiation of 1024-bit
RSA and the scalar multiplication of 160-bit ECC. However our implementa-
tion of nr pairing does not sufficiently support the processing by exceptions,
comparing with the release version of Bouncy Castle provider. Therefore the
timing of 5y pairing with Fser is relatively fast, but npp pairing is still calculated
enough efficient. For the comparison we also show the timings of executing the
same programs on a Pentium M 1.73GHz with 1GB RAM using J2SE.

5 Conclusion

In this paper, we presented the first implementation of Tate pairing over a mo-
bile phone using Java. The i pairing over finite fields with characteristic three
F3m , which is the fastest version of Duursma-Lee algorithm, was implemented.
There is no mathematical library from the Java cryptographic extension (JCE)
for computing the arithmetic of finite fields Fszm , so that we implemented it
from scratch in JAVA. The optimized implementation of the np pairing with
m = 97 achieves about 0.5 seconds on a mobile phone FOMA SH901iS, NTT
DoCoMo. This mobile phone is not the currently newest one, and the process-
ing speed of the next models should become faster. Therefore the paring-based
cryptosystems can be efficiently implemented on mobile phones using Java.

Acknowledgements

This research was supported by the New Energy and Industrial Technology
Development Organization (NEDO), Japan.

References

1. P. Barreto, S. Galbraith and C. O’hEigeartaigh, ” Efficient pairing computation on
supersingular abelian varieties”, To appear in Designs, Codes, and Cryptography.

2. P. Barreto, H. Kim, B. Lynn, and M. Scott, ” Efficient algorithms for pairing-based
cryptosystems”, CRYPTO 2002, LNCS 2442, pp.354-368, 2002.

3. P. Barreto, B. Lynn, and M. Scott, ” A note on efficient computation of cube roots
in characteristic 3”, TACR ePrint Archive, Report 2004/305, 2004.

4. G. Bertoni, J. Guajardo, S. Kumar, G. Orland, C. Paar, and T. Wollinger, ”Ef-
ficient GF(p™) arithmetic architectures for cryptographic application”, CT-RSA
2003, LNCS 2612, pp.158-175, 2003.

5. D. Boneh, and M. Franklin , "Identity based encryption from the Weil pairing”,
SIAM J. Comput., vol.32, no.3, pp.586-615, 2001.

6. D. Boneh, C. Gentry and B. Waters, ” Collusion resistant broadcast encryption
with short ciphertexts and private keys”, CRYPTO 2005, LNCS 3621, pp.258-275,
2005.

7. D. Boneh, B. Lynn, and H. Shacham, ”Short signatures from the Weil pairing”,
ASIACRYPTO 2001, LNCS 2248, pp.514-532, 2001.

8. I. Duursma and H. Lee, ”"Tate pairing implementation for hyperelliptic curves
y? =P —x +d”, ASTACRYPTO 2003, LNCS 2894, pp.111-123, 2003.

9. FOMA SH901iS, NTT DoCoMo. http: //WWW nttdocomo.co Jp/enghsh/product/foma/

10. D. Hankerson, A Menezes and S. Vanstone, Guide to elliptic curve cryptography,
Springer-Verlag, 2004.

11. K. Harrison, D. Page, and N. Smart, ”Software implementation of finite fields
of characteristic three, for use in pairing-based cryptosystems”, LMS J. Comput.
Math., vol.5, pp.181-193, 2002.

12. Java 2 Platform, Micro Edition (J2ME). http://java.sun.com/javame/

13. Java Cryptography Extension (JCE). http://java.sun.com/products/jce/

14. T. Kerins, W. Marnane, E. Popovici, P. Barreto, ” Efficient hardware for the Tate
pairing calculation in characteristic three”, CHES 2005, LNCS 3659, pp.412-426,
2002.

15. S. Kwon, "Efficient Tate pairing computation for supersingular elliptic curves
over binary fields”, TACR ePrint Archive, Report 2004/303.

16. M. Scott, N. Costigan, W. Abdulwahab, ”Implementing Cryptographic Pairings
on Smartcards”, IACR ePrint Archive, Report 2006/144, 2006.

17. J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, 1986.

18. T. Takagi, D. Reis, Jr., S.-M. Yen, B.-C. Wu, "Radix-r non-adjacent form and
its application to pairing-based cryptosystem”, IEICE Transactions, Vol.E89-A,
No.1, pp.115-123, 2006.

19. S. Tillich and J. Grofischadl, ”A survey of public-key cryptography on J2ME-
enabled mobile devices”, ISCIS 2004, LNCS 3280, pp.935-944, 2004.

20. Certicom Research, ”SEC 2: Recommended Elliptic Curve Domain Parameters”,
Version 1.0, 2000.

21. The Legion of the Bouncy Castle, Bouncy Castle Crypto APIs.
http://www.bouncycastle.org/

22. Institute for Applied Information Processing and Communication, Sifting Secure
Information and Communication Technologies. http://www.iaik.tugraz.at/

A Extended Euclidean Algorithm by Ternary
Polynomial

The extended Euclidean algorithm for the polynomials over Fs [z] is shown [10].
We develop a ternary version of the extended Euclidean algorithm. Let A(z)

be the element in F3m , and deg() be the function computed degree. Inversion
(A(z)~') mod f(x) is computed as follows:

Algorithm 4 Inversion in Fzm
Input: A(z) € Fam = F3[z]/(f(z))
Output: (A(z)™') mod f(x)

1: u <+ A(z), v« f(x)

2: g1+ 1, g2+ 0

3: while deg(u) # 0 do

4: j«+ deg(u) — deg(v)

5: if j < 0 then

6: UV, g1 4> g2, J— —]
7 end if

8: if u; + v; # 0 then

9: V4 —U, g2 < —Qg2

10: end if

11: w+utv-27
12: gL g1+ g a?
13: end while

14: if u; = 2 then

15: g1 < —g1

16: end if

17: return g

B Arithmetic in F3sm

Extension field Fzsm can be represented by Fsm [p]/g(p), where g(p) is an ir-
reducible polynomial g(p) = p* — p — 1 over F3m [X]. We denote by A(p) the
element in F3sm , where A(p) = azp? +aip+ ag for ag,ay, as € F3m . Arithmetic
in field F3s» is performed as follows:

Addition : A(p) + B(p) = (a2 + b2)p? + (a1 + b1)p + (ap + bo).
Multiplication : Let t()o = aobg, tll = albl, t22 = azbg, tgl = (ao +
al)(bo + bl), ti1a = (a1 + ag)(bl + bg), tos = (ao + ag)(bo + b2) Then
A(p)B(p) = (toz +t11 —too) + (t12 +to1 +too —t11)p+ (t12 +too —t11 —ta2)p?.
Multiplication in Fssm is computed by 6 multiplications and 14 additions
in Fgm .

Cube : A(p)? = a3p® + (a3 — a3)p + (a} + a} + a3). Cube in Fzsm uses 3
cubes and 3 additions in Fzm .

— Inversion : We implemented using the algorithm shown by Kerins et.
al. [14]. This algorithm can be obtained with 1 inversion, 9 multiplications
and 11 additions in Fsm .

10

