
Zero-knowledge-like Proof of Cryptanalysis of

Bluetooth Encryption

Eric Filiol∗

Ecole Supérieure et d’Application des Transmissions

Laboratoire de virologie et de cryptologie

B.P. 18, 35998 Rennes Armées, FRANCE

eric.filiol@esat.terre.defense.gouv.fr

September 3, 2006

Abstract

This paper presents a protocol aiming at proving that an encryption
system contains structural weaknesses without disclosing any informa-
tion on those weaknesses. A verifier can check in a polynomial time
that a given property of the cipher system output has been effectively
realized. This property has been chosen by the prover in such a way
that it cannot been achieved by known attacks or exhaustive search
but only if the prover indeed knows some unknown weaknesses that
may effectively endanger the cryptosystem security. This protocol has
been denoted zero-knowledge-like proof of cryptanalysis. In this paper,
we apply this protocol to the Bluetooth core encryption algorithm E0,
used in many mobile environments and thus we prove that its security
can seriously be put into question.

Keywords: Bluetooth encryption, Bluetooth security, Bluetooth proto-
col, stream cipher, zero-knowledge, cryptanalysis.

1 Introduction

Encryption is the most important part in computer security mechanisms and
protocols: he who can bypass cryptographic protection, gains total control
over the security. Password management, secure network transmission pro-
tocol, wireless protocol (Wep, WPA, Bluetooth, GSM...), integrity checking

∗Also Eric.Filiol@inria.fr

1

(e.g. in antivirus software), data protection, login authentication... are well-
known examples whose security heavily relies on cryptographic mechanisms.

As far as viral hazard is concerned, maintaining a high level of security is
essential. Anyone who could break cryptographic mechanisms would be not
only able to subvert some detection capabilities (file integrity checking) but
also to make malware spread far more easily. One well illustrative example,
among many others, is the Bluetooth protocol used for wireless communi-
cations between mobile devices: laptops, PDA, cell phones, printers, cars...
Since July 2004, more than a hundred viral codes spreading via mobile envi-
ronments and Bluetooth devices in particular have been recorded. The most
famous one is the Epoc.Cabir virus [3]. Fortunately, these viral codes have
a very limited effect. One of the main reason for this, is that Bluetooth pro-
tocol embeds cryptographic multi-level security. Cryptology ensures a high
level of security for both encryption and authentication. This implies that
nobody can remotely and unlegitimately either connect to or log in to Blue-
tooth devices and proceed to its infection. With the same considerations in
mind, encryption of data stream between two or more communicating de-
vices prevents anyone from manipulating or corrupting it (e.g. insertion of
malicious code). The encryption cryptographic core uses the stream cipher
E0, whose key entropy is 128 bits. The key length thus prevents any crypt-
analysis by exhaustive search. Moreover, up to now, the encryption security
of E0 has not been challenged from a practical point of view. A few attacks of
theoretical interest only have been published [1, 4, 2, 6, 7, 10, 11, 13, 14, 15].
Unless irrealistic assumptions are to be made, E0 has not been broken yet
and the cryptographic security of Bluetooth protocol is still very high.

However, publishing any potentially efficient cryptanalytic techniques
that may practically put cryptographic security into question is an essential
question. While it is important to make engineers, vendors and users aware
of a real risk, there are maybe more important reasons not to technically
explain what the level of risk really is:

• disclosing any technical, reproducible and usable data provides infor-
mation that the “bad guys” will use to perform attacks. As far as
embedded encryption is concerned (WEP, Bluetooth, GSM...), chang-
ing the core encryption algorithm is very costly and takes too much
time. Months or even years are generally required before all weak de-
vices are replaced. The vendors try to make their technical investments
financially profitable enough before changing the whole cryptographic
standard while users are generally reluctant to change their equipment.
During this transition period, an important number of attacks may be

2

performed.

• disclosing any technical information that allow to bypass or hurt com-
puter security is generally prosecuted in many countries (one example
among others is the French Law for Confidence in the e-Economy 1

[12]). Moreover, such disclosing can be prosecuted as copyright in-
fringement as well. The best known-example is undoubtly the US
Digital Millenium Copyright Act [20]. But retaining any information
about any system vulnerability, a software flaw or any weakness and
communicating it only to the developers may incitate them not to
react for commercial purposes.

The question actually is the following one: how to prove in a uncriticizable
way but without disclosing any useful, reproducible technical data that a
cryptographic system can, may or might be broken in practise?

In this paper, we will consider the case of the Bluetooth encryption
system (E0) and explain how to solve this problem. Recent and signifi-
cant progress has been made in the cryptanalysis of symmetric ciphers. We
detected and identified serious cryptographic weaknesses in E0 that could
be used to break it in practice in a near future, especially to perform vi-
ral attacks through the Bluetooth protocol. This result is proved without
giving any clue about the weaknesses and the way they can be exploited.
Nonetheless, any reader with basic cryptographic knowledge will be able to
be convinced that it is possible through a simple polynomial time verifica-
tion. We call this method of proof Zero-knowledge-like proof of cryptanalysis
(0-Kl proof for short).

The paper is organized as follows. Section 2 recalls the required back-
ground and notation in cryptography. Section 3 recalls how the Bluetooth
encryption works. Section 4 then presents the Zero-knowledge-like proof
of cryptanalysis itself. Section 6 then deals with future work and draws a
conclusion. The E0 reference implementation is given in Appendix A. Ap-
pendix B contains detailed numerical values. Both appendices are essential
to make Zero-knowledge-like proof of cryptanalysis work.

2 Background and Notation

First of all, we are going to define what Zero-knowledge is generally referred
to. Zero-knowledge is a property attributed to interactive proofs, in which a

1According to Article 323-3-1 of the Penal Code, it is punishable by imprisonment not
exceeding three years and a fine of up to 45,000 euros.

3

prover convinces a verifier of the validity of a given statement. The prover
has no particular restriction whereas the verifier is restricted to use a (prob-
abilistic) polynomial time algorithm. By Zero-knowledge proof, we mean
that the verifier is convinced without the prover releasing any knowledge
beyond the validity of the statement. This concept has been introduced for
the first time by Goldwasser and al. [9]. The reader will find a detailed
overview of zero-knowledge proofs in [8].

For the non cryptologist reader’s sake, let us now recall the definition
of a stream cipher. A stream cipher is a symmetric cipher – in other
words, the same secret key is employed for both the encryption and the
decryption – which operates in the following way: a sequence of plain-
text bits m0,m1, . . . ,mi, . . . is encrypted into a sequence of ciphertext bits
c0, c1, . . . , ci, . . . by means of a pseudo-random sequence s0, s1, . . . , si, . . .

called the keystream. The most common way of encryption is given by

ci = mi ⊕ si

The keystream is produced by a finite state automaton whose initial state
is precisely the secret key shared by both emitter and receiver.

Like for any other encryption algorithm, performing an exhaustive search
cryptanalysis consists to trying every possible key until the right key that
had been used to produce a given keystream has been detected. In the
context of the paper, we try to find secret keys that produce keystreams
having some given properties. Up to now, no method except exhaustive
search is known to achieve that property for a keystream.

Let us state more clearly the total amount of work required by an ex-
haustive search. Let us consider a secret key K of n bits and let us con-
sider a property P for the corresponding (output) keystream of length n.
Thus, finding a key which produces a keystream having property P requires
nO(1).O(2n−m) operations where 2m represents the total number of keys for
which P is satisfied. Let us notice that in classical exhaustive search m = 0
(there is only one key producing a fixed keystream).

A random search consists in trying at random a large enough number of
keys until obtaining a given fixed property or, equivalently, keeping the keys
that output sequences with non-trivial properties.

The Hamming weight of a sequence (st)0≤t≤n, denoted wt((st)0≤t≤n) is
the number of non-zero bits:

wt((st)0≤t≤n) = {0 ≤ t ≤ n|st = 1}.

4

3 The Bluetooth Encryption

The Bluetooth security mechanisms are presented in part H of Volume 2 of
[19]. In the Bluetooth standard, the security layer is one of the baseband
layers (hardware level), which the upper layers control (host and application
levels). The security mechanisms include key management, as well as key
generation protocols, user/device authentication, and data encryption. The
data encryption algorithm used within the Bluetooth security architecture
is the E0 stream cipher.

Each time two Bluetooth devices need to communicate securely, they
first undergo authentication and key exchange protocols whose purpose is
to agree on a shared secret (the link key), which is used to generate the
encryption key (KC). This latter key is derived from the current link key,
an encryption offset number (COF), that is known from the authentication
procedure done prior to the encryption phase, and a public known random
number (EN RAND).

To cipher a payload packet, the private key KC is modified into another
key denoted K ′

C . Then K ′
C is used in a linear manner, along with the pub-

licly known values, the master device Bluetooth address (MAC address), and
a clock value, which is different for each payload packet, to form the initial
state for a two-level stream cipher as depicted in Figure 1. The encryption
algorithm E0 generates a binary keystream, Kcipher, which is bitwise xored
with the plain text. Decryption is performed in exactly the same way using
the same key as used for encryption (xor addition being involutive). Any
real-life cryptanalysis of E0 will greatly challenge the overal security. Be-
sides the fact that it would be then possible to manipulate the encrypted
data stream between devices that communicate (insertion of malicious code
for example), coupled with recent efficient attack of the Bluetooth authenti-
cation and key negotiation protocol [18], the ability of retrieving the secret
encryption key could make other attacks on overal cryptographic security
easier.

3.1 The E0 Stream Cipher

Let us now consider the encryption core denoted E0.
E0 stream cipher uses linear feedback shift registers (LFSRs) whose out-

put is combined by a simple finite state machine (called the summation
combiner) with 16 memory states. The output of this state machine is
the keystream sequence, or, during initialization phase, the randomized
initial start value. The algorithm uses an encryption key KC , a 48-bit

5

Figure 1: Functional description of the Encryption Procedure

Bluetooth address, the master clock bits CLK26−1, and a 128-bit RAND
value. Figure 2 shows the encryption engine setup. There are four LFSRs
(LFSR1, . . . , LFSR4) of lengths L1 = 25, L2 = 31, L3 = 33 and L4 = 39
with feedback polynomials as specified in Table 1. The total length of the
registers is 128. These primitive polynomials have been chosen as they ex-
hibit the best trade-off between hardware implementation constraints and
excellent statistical properties of the output sequences. Let xi

t denote the

i Li Feedback polynomials

1 25 x25 ⊕ x20 ⊕ x12 ⊕ x8 ⊕ 1
2 31 x31 ⊕ x24 ⊕ x16 ⊕ x12 ⊕ 1
3 33 x33 ⊕ x28 ⊕ x24 ⊕ x4 ⊕ 1
4 39 x39 ⊕ x36 ⊕ x28 ⊕ x4 ⊕ 1

Table 1: The Four Primitive Feedback Polynomials

t-th symbol of LFSRi. The value yt is derived from the 4-tuple x1
t , x

2
t , x

3
t , x

4
t

6

Figure 2: Functional description of the Encryption Procedure

using the following equation:

yt =

4
∑

i=1

xi
t,

where the sum is over the integers. Thus yt can take the values 0, 1, 2, 3
or 4. The output of the summation generator is obtained by the following
equations:

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t ∈ {0, 1},

st+1 = (s1
t+1, s

0
t+1) = ⌈

yt + ct

2
⌉ ∈ {0, 1, 2, 3},

ct+1 = (c1
t+1, c

0
t+1) = st+1 ⊕ T1[ct] ⊕ T2[ct−1],

where T1[.] and T2[.] are two different linear bijections over GF (4) summa-
rized in Table 2. The E0 algorithm needs to be initialized with an initial
value for the four LFSRs (the secret key K ′

C) and the four bits that specify
the values of c−1 and c0. The key K ′

C and the 4-bit value are produced by
an initialisation step involving E0 and the secret key KC , a 48-bit Bluetooth
address, the master clock bits CLK26−1, and a 128-bit RAND value.

7

x T1[x] T2[x]

00 00 00
01 01 11
10 10 01
11 11 10

Table 2: E0 Bijective Mappings

3.2 E0 Cryptanalysis State-of-the-Art

Stream cipher E0 is so far considered as a secure encryption algorithm. In
particular, it has very good statistical properties and complies to the NIST
statistical test suite [17]. No significant bias has been detected with respect
to the tests of this suite.

A number of E0 cryptanalysis have been proposed so far. They can be
divided into two sets, according to the number of frames required for the
cryptanalysis to work :

• Long keystream attacks.- These attacks consider the Bluetooth encryp-
tion outside its real-life mode of operation. They require a too long
keystream to actually challenge E0 security. They are for most of
them correlation or fast correlation attacks, that is to say that they
exploit some correlation between the outputs of the LFSR and the
output sequence itself. Two attacks consider [1, 4] linearization of non
linear equations whose unknowns are secret key bits. Table 3 summa-
rizes the required amount of keystream bits (data) and the complexity
(precomputation, time and memory) for each of those attacks.

Attacks Data Precomp. Attack complexity Memory

Fluhrer - Lucks [6] 243 - 273 251

Fluhrer [7] 212.4 280 265 280

Golic & al. [10] 217 280 270 280

Armknecht - Krause [1] 224 - 268 248

Courtois [4] 224 - 249 237

Lu & Vaudenay [14] 239.6 - 240 235

Lu & al. [15] 228.4 238 238 233

Table 3: Complexity Comparison for Best Long Keystream Attacks on E0

8

• Short keystream attacks.- These methods consider a very short known
keystream (128 bits). Despite their still high complexity, these at-
tacks are far more realistic than long keystream attacks. So far only
a few such short key cryptanalysis are known: use of Binary Decision
Diagrams [11] or backtracking methods [13] have opened a promising
field of cryptanalytic research. Table 4 compares complexity of known
short keystream attacks.

Attacks Known keystream bits Attack complexity

Bleichenbacher [2] 128 2100

Krause [11] 128 281

Levy - Wool [13] 128 286

Table 4: Complexity Comparison for Best Short Keystream Attacks on E0

4 Zero-knowledge-like Proof of Cryptanalysis

The attacks presented in the previous section all require irrealistic assump-
tions to work in practice such as a huge amount of known plaintext bits
and/or a dramatically high computing complexity. Let us consider now se-
quences of known plaintext of length n. The core idea of the zero-knowledge-
like proof of cryptanalysis is to consider a mathematical property that cannot
be achieved in real-life, unless to effectively knowing one or more weaknesses.
The following definition will help us to make it clearer.

Definition 1 (Zero-knowledge-like proof of cryptanalysis) Let be a cryp-
tosystem SK and a property P about the output sequence of length n produced
by S denoted σn

K . No known method other than exhaustive search or random
search can obtain property P for σn

K . Then, a zero-knowledge-like proof of
cryptanalysis of S consists in exhibiting secret keys K1,K2, . . . , ...Km such
that the output sequences (σn

Ki
)1≤i≤m verify P and such that, checking it re-

quires polynomial time complexity. Moreover, the property P does not give
any information on the way it was obtained.

The protocol proposed in Definition 1 is not a true zero-knowledge protocol
(hence the term zero-knowledge-like) for the following reasons:

1. a paper is not an interactive medium;

9

2. the author of the cryptanalysis plays the role of the prover and answers
questions which have not been asked by the verifier, e.g. the reader.

Another point worth considering is that the reader/verifier can bring up
against the author/prover that some random keys has been taken, the
keystream has been computed and afterwards been claimed that the keystreams
properties have been desired. In other words, the author/prover tries to fool
the verifier/reader by using exhaustive search to produce the properties that
have been considered for the zero-knowledge-like proof protocol. Thus the
relevant properties must be carefully chosen such that:

• the probability to obtain them by random search over the key space
makes such a search untractable. This point is treated in Section 4.1, 4.2
and 4.3. In the contrary the verifier/reader would be able to himself
exhibit secret keys producing keystream having the same properties
by a simple exhaustive search;

• the known attacks cannot be applied to retrieve secret keys from a fixed
keystream having the properties considered by the author/prover.

• to really convince the reader/verifier, a large number of secret keys
must be produced by the author/prover, showing that “he was not
lucky”.

Since there do not exist any known method other than exhaustive search
or random search to produce output sequences σn

K having property P, and
since the complexity of a successful search is too high in practice, anybody
who is effectively able to exhibit a secret K producing such output sequences
obviously has found some unknown weaknesses he used to obtain this re-
sult. The probability of realizing property P through an exhaustive search
gives directly the upper bound complexity of the zero-knowledge-like proved
cryptanalysis.

The last point to weigh up is to determine whether the fact knowing
some flaw in a cryptographic design implies that it is possible to break
it. The academic approach generally considers the following established
cryptanalytic models:

• either an attacker knows some keystream bits and wants to recover
the secret key,

• or the attacker wants to efficiently distinguish a keystream produced
by a particular keystream generator from a truly random keystream2.

2However, it remains an open problem which consists in proving that having a efficient

10

Well in the context of the present paper, the model we consider is not so
far from the first case as long as the properties we considered are effectively
not reproducible by another approach than a true cryptanalytic one: we fix
some a priori keystreams exhibiting given properties and we must retrieve
the corresponding secret key for each of them. In other words:

• in the classical case, a cryptanalyst aims at guessing K = E−1
0 (σK)

for some a priori fixed output sequence σK ;

• in our case, we consider a subset SP of output sequence having a a
priori fixed property P, and we aim at recovering KSP = E−1

0 (SP).

We will consider in the rest of the paper output sequence of length n =
128. This particular value is based on two reasons:

• this length value is more realistic when considering real use of E0
encryption in Bluetooth communication protocol (see Section 3);

• choosing a short sequence value clearly reinforces the level of attack
efficiency and thus the 0-Kl proof of cryptanalysis.

Moreover, since E0 stream cipher exhibits all cryptographic properties that
any strong cryptosystems fullfil and provided that secret keys are random
variables over F

128
2 , any output sequence σ128

K is a random variable as well
which has uniform distribution over F

128
2 . Let us now consider two proper-

ties for our purpose of 0-Kl proof of cryptanalysis.

4.1 The Hamming Weight Property

We will first try to find secret keys K such that σ128
K = SK has Hamming

weight at most equal to some value k. This sequence will be denoted σ
128,k+
K .

In particular, we will focus on small values for k since the sparsity of sequence
is a property that is difficult to achieve. The same approach could consider
in the same way sequence of weight at least equal to k for large value of k.
To state things more clearly, the probability to obtain a sequence σ

128,k+
K is

given by Formula (1).

P [σ128,k+
K] =

1

2128
×

(

k
∑

i=0

(

128

i

)

)

= pk+ (1)

distinguiser at one’s disposal is equivalent to effectively be able to break the relevant
cryptosystem. The distinguisher issue relates more to a steganographic (transmission
security or equivalently the security of the transmission channel itself) issue than to pure
communication security issues.

11

This result is obvious when considering simple combinatorial properties.
In the same way, we may consider output sequences of length n = 128

that Hamming exactly equal to k. These sequences will be denoted σ
128,k
K .

Then the probability of such a sequence is given by

P [σ128,k
K] =

1

2128
×

(

128

k

)

= pk.

Now considering the Hamming weight property implies that if we want to
find a secret key K that outputs a sequence σ

128,k+
K (respectively a sequence

σ
128,k
K) no other method than a exhaustive search or random search of com-

plexity Ck+ = 1
pk+

(resp. Ck = 1
pk

) is known unless using some undisclosed

weaknesses. Table 5 gives numerical values for different values of k. These

k Ck+ Ck k Ck+ Ck

30 230.52 231.04 22 246.36 246.69

29 232.27 232.76 21 248.66 248.97

28 234.08 234.54 20 251.04 251.33

27 235.97 236.39 19 253.51 253.78

26 237.90 238.31 18 256.06 256.31

25 239.91 240.30 15 264.27 264.48

24 241.99 242.35 10 280.18 280.31

23 244.14 244.48 5 299.96 2100.02

Table 5: Complexity for the Hamming Weight Property (Random Search;
n = 128)

results show that complexity Ck+ is systematically lower than complexity
Ck. As a matter of fact, it is better to consider the property relevant to Ck

with k ≤ 22 at least, for our purposes.

4.2 The Run Property

The purpose is now to find secret keys for which SK outputs a sequence
whose r first bits are all zeroes (runs of zeroes). Sequences satisfying this
property will be denoted σ

128,r
K . The probability of such a sequence is given

by

P [σ128,r
K] =

2128−r

2128
=

1

2r
= pr.

12

The proof is obvious when considering basic combinatorics. The resulting
complexity to find such a sequence at random is

Cr = 2r.

As for the Hamming weight property, if we manage to exhibit a secret
key K such that SK output a sequence σ

128,r
K , for relatively large value of

r, then we 0-Kl prove that we know a far more efficient attack than the
exhaustive search which is untractable at the present time.

The reader will note that any fixed sequence with some structure could
be used instead of runs, provided that any verifier is convinced that this
sequence has not been chosen after an simple encryption process (a posteriori
choice). This is the reason why we choose runs of zeroes which can be
considered as a rather “remarquable sub-sequence”.

4.3 Cumulating Hamming Weight and Run Properties

We now want to find secret keys such that SK outputs a sequence whose
r first bits is a run of zeroes and whose Hamming weight is equal to k.
Such a sequence will be denoted σ

128,r,k
K . It is then easy to prove that the

probability to find such a key at random (exhaustive search) is given by

P [σ128,r,k
K] =

(128−r
k

)

2128
= pr,k.

The resulting complexity to find such a key is given by

Cr,k =
2128

(

128−r
k

) .

In the same way, we can consider output sequences with runs located any-
where in the sequence and not only at the beginning. Such a sequence is
denoted σ

128,r+,k
K . The probability to find such a key at random (exhaustive

search) is given by

P [σ128,r,k
K] =

(128 − r)
(128−r

k

)

2128
= pr+,k.

The resulting complexity to find such a key is given by

Cr+,k =
2128

(128 − r)
(

128−r
k

) .

13

(r, k) Ck+ Ck Cr Cr,k Cr+,k

(69, 29) 232.27 232.76 269 272.28 266.40

(69, 27) 235.97 236.39 269 272.57 266.69

(69, 25) 239.91 240.30 269 273.25 267.36

(68, 27) 235.97 236.39 268 271.71 265.80

(67, 26) 237.90 238.31 267 271.24 265.31

(67, 24) 241.99 242.35 267 272.27 266.34

(66, 29) 232.27 232.76 266 269.49 263.53

(66, 26) 237.90 238.31 266 270.45 264.50

(65, 28) 234.08 234.54 265 268.87 262.89

(65, 27) 235.97 236.39 265 269.23 263.25

(65, 26) 237.90 238.31 265 269.69 263.71

(64, 27) 235.97 236.39 264 268.44 262.44

(63, 29) 232.27 232.76 263 266.87 260.85

(63, 28) 234.08 234.54 263 267.23 261.20

(63, 27) 235.97 236.39 263 267.67 261.64

(62, 29) 232.27 232.76 262 266.04 259.99

(62, 28) 234.08 234.54 262 266.43 260.38

(62, 27) 235.97 236.39 262 266.91 260.86

(62, 26) 237.90 238.31 262 267.47 261.43

(60, 23) 244.14 244.48 260 268.52 262.43

Table 6: Complexity Comparison for Hamming Weight and Run Properties
(Random Search; n = 128)

Table 6 compares the different complexity Ck, Ck+, Cr and Cr,k for different
values of k and r. Note that the complexities we have given in the present
section refer to the detection of one unique secret key K. Looking for ν such
keys increases the relevant complexity in the same order of magnitude. In
other words, we have to multiply the complexity by ν.

5 E0 Zero-knowledge-like proof of cryptanalysis

Important weaknesses have been identified for E0. To the author’s knowl-
edge, they have never been published so far. These weaknesses are mainly
of combinatorial nature. The CoHS3 and vauban packages have been used

3CoHS stands for Combinatorics over Huge Sets

14

in a precomputing step. The first package is a combinatorial flaw scan-
ner whereas the second one translates the detected flaws into one or more
statistical estimators suitable for cryptanalysis. They both are non public
packages.

All the three properties have been successfully considered. Each time
secret keys have been found for different values of k and r. For the run
property, without loss of generality, we considered run of zeroes. The mem-
ory bits c−1 and c0 have been chosen equal to zero as well. This appears to
be a more challenging choice: the null vector K = (0, 0, 0, . . . , 0) obviously
produces in this setting the null sequence. Thus retrieving keys that zeroes
the r first bits while having non zero Hamming weight increases the diffi-
culty. However, the results could be obtained for any other settings (runs
of ones and different memory bits initialisation).

The precomputing step with the two packages took approximatively one
week of computing time on a Athlon 64. The work must be done only
once (and for all). For each possible choice of runs and values k and r,
the cryptanalysis step is performed (on four DEC 9000 machines). The
first keys have been retrieved within the first hour while slightly more than
five weeks have been necessary to retrieve slightly more than 48,000 keys.
Some of the most significant sequences are given in Appendix B. Table 7
provides results about the number of secret keys retrieved for each property,
during five weeks of computing (detailed results available upon request). The

k Hamming weight property (r, k) Cumulated properties

19 1 (69, 29) 1
20 5 (69+, 27) 1
21 18 (69+, 25) 1
22 38 (66+, 26) 3

Table 7: Number of Keys Found With Respect to Properties (n = 128)

most significant results deals with the retrieval of a secret key K outputting
a sequence σ

128,69,29
K . Finding such a key would require an exhaustive or

a random search of 272.28, in average. For the moment, this cannot be
achieved with existing computing resources. Consequently, this implies to
know weaknesses enabling to retrieve such a key faster than with exhaustive
search.

The approximative equivalent complexity of the computation which en-
ables to recover slightly more than 48,000 has been empirically evaluated by

15

comparing the number of keys effectively treated by the attack with respect
to the time that a simple exhaustive search would require. This yields a
complexity of O(235). The theoretical value of complexity has been com-
puted but the proof will not be given in order the cryptanalysis to remain
zero-knowledge-like. Let us mention that theoretical, expected and observed
complexities do not significantly differ.

At last, the properties we have considered does not provide any informa-
tion about the method to obtain them. In other words, the verifier cannot
induce what weaknesses have been exploited. Of course, a rigorous proof
could be given only by precisely exhibiting those weaknesses. Only the future
will confirm or invalidate the fact that our approach is truly zero-knowledge.
If nobody is able to reproduce such properties in the same amount of time,
then we can consider that indeed it is.

At the present time, none of the known attacks can obtain the re-
sults we have presented in this paper: either building secret keys produc-
ing keystream with given properties or retrieving secret keys from fixed
keystream with desired properties. However, it is an open problem to deter-
mine whether the attacks of Table 4 can be modified or improved to obtain
the results presented before.

6 Future Work and Conclusion

In this paper, we have presented a scheme to prove the cryptanalysis of an
encryption algorithm without disclosing any information on the nature of the
cryptanalysis, while any verifier can check in a polynomial time the reality
of that cryptanalysis. It becomes then acceptable to disclose information
about the weaknesses of cryptosystems without fearing that “bad guys” will
reproduce and use it for real attacks purpose. This scheme can be applied
to any symmetric cryptosystem. Block ciphers can be considered as stream
ciphers when fixing the plaintext block.

At the present time, the results exhibited in this paper allow to greatly
put E0 security into question. In the future, viral attacks could occur by
precisely bypassing Bluetooth security at the cryptographic level if any other
people found equivalent or more important weaknesses in E0. That kind of
risk cannot be denied.

As far as E0 stream cipher is concerned, current work is in progress to
greatly improve the efficiency of our attack while new properties for 0-Kl
proof of cryptanalysis will be considered. Other cryptosystems used in real
transmission protocols are currently analysed with CoHS and Vauban pack-

16

ages in order to exhibit vulnerabilities that could be exploitable in practical
cryptanalysis.

Acknowledgements

The author would like to thank all reviewers for their valuable comments
which greatly help to improve the final quality of this paper.

References

[1] Armknecht F. and Krause M. (2003), “Algebraic Attacks on Combiners
with Memory”. In Advances in Cryptology - CRYPTO’03, LNCS 2729,
pp. 162–175, Springer Verlag.

[2] Bleichenbacher D. (2001), Personal communication in Jakobsson M.
and Wetzel S., “Security weaknesses in Bluetooth” in Proc. RSA Secu-
rity Conf. – Cryptographer’s Track, LNCS 2020, pp. 176–191, Springer-
Verlag.

[3] Description of the Epoc.Cabir virus. www.f-secure.com/v-descs/

cabir.shtml

[4] Courtois, N. (2003), “Fast Algebraic Attacks on Stream Ciphers with
Linear Feedback”. In Advances in Cryptology - CRYPTO’03, LNCS
2729, pp. 176-194, Springer-Verlag.

[5] Filiol E. (2005) Computer Viruses: from Theory to Applications, IRIS
International series, Springer Verlag, ISBN 2-287-23939-1.

[6] Fluhrer S. and Lucks S. (2001), “Analysis of the E0 Encryption Sys-
tem”, Selected Areas in Cryptography - SAC 2001, LNCS 2259, pp.
38–48, Springer-Verlag.

[7] Fluhrer S. (2002), “Improved Key Recovery of Level 1 of the Bluetooth
Encryption System”, available at http://eprint.iacr.org/2002/068

[8] Goldreich O. (2001), Foundations of Cryptography – Basic Tools. Cam-
bridge University Press, Cambridge.

[9] Goldwasser S., Micali S. and Rackoff C. (1989), “The Knowledge-
complexity of Interactive Proof Systems”, SIAM Journal on Comput-
ing, Vol. 18, pp. 186–208.

17

[10] Golic J., Bagini V. and Morgani G., “Linear cryptanalysis of Bluetooth
stream cipher”. In Advances in Cryptology - EUROCRYPT’02, LNCS
2332, pp. 238–255, Springer, 2002.

[11] Krause M. (2002), “BDD-based cryptanalysis of keystream generators”.
In Advances in Cryptology - EUROCRYPT 02, LNCS 2332, pp. 222–
237, Springer-Verlag.

[12] Loi pour la confiance en l’économie numérique (Law for Confidence in
the e-Economy), Journal Officiel, June 22nd, 2004. A detailed presen-
tation of this law as well as comments and legal explanation of this law
can be found in English in [5, Chap. 5].

[13] Levy O. and Wool A. (2005), “A Uniform Framework for Cryptanalysis
of the Bluetooth E0 Cipher”. Available at eprint.iacr.org/2005/

107.pdf

[14] Lu Y. and Vaudenay S. (2004), “Faster correlation attack on Bluetooth
keystream generator E0”. In Advances in Cryptology - CRYPTO 04,
LNCS 3152, pp. 407–425, Springer-Verlag.

[15] Lu Y., Meier W. and Vaudenay S. (2005), “The Conditional Correlation
Attack: A Practical Attack on Bluetooth Encryption”. In Advances in
Cryptology - CRYPTO’05, LNCS 3621, pp. 97–117, Springer Verlag.

[16] Saarinen, M.-J., “A Software Implementation of the BlueTooth Encryp-
tion Algorithm E0”. Available at http://www.jyu.fi/~mjos/e0.c

[17] Revised NIST Special Publication 88-22 (2000), “A Statistical Test
Suite for the Validation of Ramdom Number Generator and Pseudo-
random Number Generator for Cryptographic Applications”. National
Institute of Standard and Technology, US Commerce Department’s
Technology Administration, http://csrc.nist.gov/rng/rng2.html

[18] Shaked Y. and Wool A. (2005), Cracking the Bluetooth PIN. In Proc.
3rd USENIX/ACM Conf. Mobile Systems, Applications, and Services
(MobiSys), Seattle, pp. 39–50, ISBN 1-931971-31-5.

[19] “Specification of the Bluetooth system”, v.2.0. Core specifica-
tion, 2004. Available from http://www.bluetooth.org/foundry/

adopters/document/Core_v2.0_EDR/en/1/Core_v2.0_EDR.zip

18

[20] U.S. Copyright Office Summary (1998), “The Digital Millenium Copy-
right Act of 1998”, http://www.copyright.gov/legislation/dmca.
pdf

A E0 Reference Implementation

We give here the E0 implementation in C programming language, that has
been used for this cryptanalysis. Is it mainly based on Saarinen’s reference
implementation [16]. The reader thus will be able to verify our results. As
pointed out by a reviewer, this implementation differs from the official spec-
ification. In each iteration of the for-loop in the main encryption procedure,
the LFSR-output has to be read before instead after the LFSRs are clocked.
Consequently, the initial LFSR-states given in the Saarinen’s implementa-
tion have to be clocked one step backwards to work with the original E0.
Nonetheless, from a cryptanalytic point of view this minor difference does
not have an impact in our approach and results.

A.1 Header File “include.h”

#include "stdio.h"

#include "stdlib.h"

#define mot64 unsigned long long int

#define mot32 unsigned long int

#define int32 long int

#define mot16 unsigned int

#define mot08 unsigned char

A.2 Header File “e0light.h”

#include <stdio.h>

typedef unsigned char mot08;

typedef unsigned long long mot64;

const mot08 e0_fsm[16][16] = {

{ 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2},

{ 5, 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 7, 4, 7, 7, 7},

{11, 11, 11, 8, 11, 8, 8, 8, 11, 8, 8, 8, 8, 8, 8, 9},

{14, 13, 13, 13, 13, 13, 13, 12, 13, 13, 13, 12, 13, 12, 12, 12},

{ 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1},

19

{ 6, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 4, 7, 4, 4, 4},

{ 8, 8, 8, 11, 8, 11, 11, 11, 8, 11, 11, 11, 11, 11, 11, 10},

{13, 14, 14, 14, 14, 14, 14, 15, 14, 14, 14, 15, 14, 15, 15, 15},

{ 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3},

{ 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6},

{10, 10, 10, 9, 10, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 8},

{15, 12, 12, 12, 12, 12, 12, 13, 12, 12, 12, 13, 12, 13, 13, 13},

{ 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 0},

{ 7, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, 5, 5},

{ 9, 9, 9, 10, 9, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 11},

{12, 15, 15, 15, 15, 15, 15, 14, 15, 15, 15, 14, 15, 14, 14, 14}

};

static mot64 e0_r1, e0_r2, e0_r3, e0_r4;

static int e0_state, e0_x, e0_z;

A.3 Encryption Procedure

#include "e0light.h"

int e0(mot64 K1, mot64 K2, mot08 KA, mot08 * suite, mot64 nbbit)

{

unsigned long int i;

int t;

/* Register Initialisation */

e0_r1 = (K1 & 0x1FFFFFFL);

e0_r2 = ((K1 >> 25) & 0x7FFFFFFFL);

e0_r3 = (((K1 >> 56) | (K2 << 8)) & 0x1FFFFFFFFLL);

e0_r4 = (K2 >> 25);

e0_state = KA;

for(i = 0; i < nbbit;i++)

{

e0_r1 = ((e0_r1 << 1) & 0x1fffffe) | (((e0_r1 >> 7)

^ (e0_r1 >> 11) ^ (e0_r1 >> 19) ^ (e0_r1 >> 24)) & 1);

e0_r2 = ((e0_r2 << 1) & 0x7ffffffe) | (((e0_r2 >> 11)

^ (e0_r2 >> 15) ^ (e0_r2 >> 23) ^ (e0_r2 >> 30)) & 1);

e0_r3 = ((e0_r3 << 1) & 0x1fffffffell) | (((e0_r3 >> 32)

20

^ (e0_r3 >> 27) ^ (e0_r3 >> 23) ^ (e0_r3 >> 3)) & 1);

e0_r4 = ((e0_r4 << 1) & 0x7ffffffffell) | (((e0_r4 >> 38)

^ (e0_r4 >> 35) ^ (e0_r4 >> 27) ^ (e0_r4 >> 3)) & 1);

e0_x = ((e0_r1 >> 23) & 1) | ((e0_r2 >> 22) & 2)

| ((e0_r3 >> 29) & 4) | ((e0_r4 >> 28) & 8);

e0_state = e0_fsm[e0_state][e0_x];

t = e0_x ^ (e0_x >> 2);

t ^= t >> 1;

suite[i] = (t ^ (e0_state >> 2)) & 1;

}

}

A.4 Main Procedure

#include "include.h"

#define N 128

#define KA 0 /* Initial memory bits */

int main(int argc, char * argv[])

{

mot64 i, j, i0, i1, i2 , i3, K[2];

mot32 m;

mot08 * suite, ka, k;

K[0] = <------- bits 0 -- 63 of secret key

K[1] = <------- bits 64 -- 127 of secret key

suite = (mot08 *)calloc(N, sizeof(mot08));

suite_sc = (mot08 *)calloc(N, sizeof(mot08));

suite_ka = (mot08 *)calloc(N + 2, sizeof(mot08));

e0(K[0], K[1], KA, suite, 128LL);

printf("Output sequence\n\n");

for(i = 0L; i < 128;i++) printf("%01d", suite[i]);

printf("\n\n");

free(suite);

21

}

B Proof Values of 0-K Cryptanalysis

In this section, we give the key producing the most significant properties.
Detailed results are available upon request (slightly more than 48,000 keys).
The notation is that of the main() procedure given in the previous section
of the Appendix.

(67+, 24)

K[0] = 0x73CD595AD3FD6A26 K[1] = 0x4E5BB736824EFAC4

(67+, 26)

K[0] = 0x481AC9D68A265BB6 K[1] = 0x9C49E65F2C5AC7EC

(66+, 26)

K[0] = 0x19D2C332127ACF17 K[1] = 0x3616434EA1A991A

K[0] = 0xD15D3CA3C5240B4D K[1] = 0x11BDAC9BE5D608D2

K[0] = 0x1168C994D63DBEE1 K[1] = 0xA52DB3C47F6E4B78

(66+, 29)

K[0] = 0x4AA088310330E134 K[1] = 0x886554F41774B5DF

(65+, 26)

K[0] = 0x499B5A23B09E73C7 K[1] = 0xBF9A060F485F8708

(65+, 27)

K[0] = 0x49EE7FAEDE74A51B K[1] = 0x9EF861C90E85C6A0

(65+, 28)

K[0] = 0xCB9E8BC74B91EA42 K[1] = 0x4575201CFBDC7FF9

(64, 27)

K[0] = 0x09F51F2AEE52BBCC K[1] = 0x345991408FD0A40B

(63+, 27)

K[0] = 0x3AF59A1AB3849A22 K[1] = 0xA8F0630AAB90E4EE

(63+, 29)

K[0] = 0xC98D344092E7B8A6 K[1] = 0x18FFAA9AB4BB0FB2

22

K[0] = 0x3395F4E0AA7F2AAA K[1] = 0x7D3C8F1CC1A9FB61

K[0] = 0x60595B6C3F81FBC7 K[1] = 0x39608B22C62E8C79

(63+, 28)

K[0] = 0x0DB55B6143A3DF6A K[1] = 0xC69A087CB6FA29E5

(62, 29)

K[0] = 0x18C1077579DD290B K[1] = 0x5B672FC8D0CCE243

(62, 27)

K[0] = 0xF11D6526C305E816 K[1] = 0x35BE571A69C9B6EA

(62+, 29)

K[0] = 0xC88DDB3D2D6415F4 K[1] = 0xA219615A07B7BFFF

K[0] = 0xC40BA27939383C32 K[1] = 0xC1692DEF036E7049

K[0] = 0x9D45CC6215D1E5B3 K[1] = 0x39CB14370AEB1CB2

(61+, 29)

K[0] = 0xF1F70889D3A6FF5D K[1] = 0x4DD6D71E317B540B

K[0] = 0x1B9456D34AA3E596 K[1] = 0x9E183710E7B6138B

(62+, 27)

K[0] = 0x44F646AB3AED19E0 K[1] = 0xC3BC20A780A2BA3E

K[0] = 0x42461FB9C07F3F9D K[1] = 0x746A780C6A649D6B

(62+, 26)

K[0] = 0x7B1B5463C802FFB5 K[1] = 0xA3FDF5940264D28B

K[0] = 0x89E14644C0AD64BB K[1] = 0xC077883C768664D5

K[0] = 0x33E24602D7A02C18 K[1] = 0xBF3C9A7CD53C865D

(62+, 28)

K[0] = 0x125D85B3A3353C2A K[1] = 0xA8E12FDAD9269406

(61+, 27)

K[0] = 0x2FA83A7A4959C2FE K[1] = 0xCCF65606210D32C9

(61+, 26)

K[0] = 0xF01896F8455DDBD5 K[1] = 0x604AC5B5048A233D

(60+, 23)

23

K[0] = 0xB8F7ABBACC30347F K[1] = 0xEEDC60766DAA3F32

24

