Efficient Scalar Multiplication and Security
against Power Analysis in Cryptosystems based

on the NIST Elliptic Curves Over Prime Fields

Lars Elmegaard-Fessel*

Joint work with IBM Danmark A /S
August 1, 2006

Supervisors:
Associate Professor Anders Thorup, Associate Professor Tanja Lange,
Institute for Mathematical Sciences, Department of Mathematics,
University of Copenhagen Technical University of Denmark
—o—

Thesis for the Master degree in Mathematics.
Study board for Mathematical Sciences,
Institute for Mathematical Sciences,
University of Copenhagen

* Supported by Oticon Fonden and Siemensfonden.

(© 2006 Lars Elmegaard-Fessel

This text is printed using Computer Modern 12pt.

Layout by the author using INTEX.

Graphs and figures are produced using Maple, Xfig and METAPOST.
Printed in Denmark.

To Cathrine

Abstract

In cryptosystems based on elliptic curves over finite fields (ECC-systems), the most
time-consuming operation is scalar multiplication. We focus on the NIST elliptic curves
over prime fields. An implementation of scalar multiplication, developed by IBM Dan-
mark A/S for test purposes, serves as a point of reference.

In order to achieve maximal efficiency in an ECC-system, one must choose an op-
timal method for scalar multiplication and the best possible coordinate representation
for the curve being used. We perform an analysis of known scalar multiplication meth-
ods. This analysis contains a higher degree of detail than existing publications on the
subject and shows that the NAF,, scalar multiplication method with precomputations
in affine coordinates, intermediate doublings in Jacobian coordinates and additions in
mixed coordinates is the optimal choice. We compare our scalar multiplication scheme
with the one implemented by IBM and conclude that a substantial improvement of effi-
ciency is achieved by using our scheme. We implement our efficient scheme and support
our conclusions with timings of the implementations.

Side channel attacks using power analysis is considered to be a major threat against
the security of ECC-systems. Mathematical countermeasures exist but reduce the per-
formance of the system. So far, no comparison of the countermeasures has been pub-
lished. We perform such a comparison and conclude that if a sufficient amount of
storage is available, a combination of side channel atomicity and scalar randomization
should be used as a countermeasure. If storage is limited, countermeasures should be
based on a combination of Montgomery’s ladder algorithm and scalar randomization.
We specify side channel atomic elliptic curve operations on the NIST elliptic curves in
mixed coordinates. So far, no such specifications have been published. We develop an
efficient and secure scalar multiplication scheme and conclude that this scheme is more
efficient than the scheme used in the IBM implementation, which provides no security
against side channel attacks. We implement our efficient, secure scheme and support
our conclusions with timings of the implementations.

Resumé

I kryptosystemer baseret pa elliptiske kurver over endelige legemer (ECC-systemer)
er den mest omkostningsfulde operation skalarmultiplikation. Vi fokuserer pa NIST
elliptiske kurver over endelige legemer IF),, hvor p er et primtal. En implementation af
skalarmultiplikation udviklet af IBM Danmark A/S til testformél tjener som sammen-
ligningsgrundlag.

For at opna en maksimal grad af effektivitet i et ECC-system skal man valge en opti-
mal metode til skalarmultiplikation og den bedst mulige koordinat-repraesentation af den
anvendte kurve. Vi gennemfgrer en analyse af kendte metoder til skalarmultiplikation.
Denne analyse indeholder en hgjere detaljeringsgrad end eksisterende publikationer in-
denfor emnet og viser, at NAF,, metoden til skalarmultiplikation med pree-beregninger i
affine koordinater, mellemliggende fordoblinger i Jakobianske koordinater og additioner
i blandede koordinater er det optimale valg. Vi sammenligner vores metode med den
af IBM anvendte og konkluderer, at en betydelig effektivitetsforggelse opnas ved at
anvende vores metode. Vi implementerer vores effektive metode og understgtter vores
konklusioner med tidsmalinger af implementationerne.

Sakaldte side channel angreb baseret pa strgm-analyse betragtes som en alvorlig
trussel mod ECC-systemers sikkerhed. Matematiske modtrak eksisterer men pavirker
systemets ydeevne negativt. Hidtil er ingen sammenligning af modtrakkene blevet
offentliggjort. Vi gennemfgrer en sddan sammenligning og konkluderer, at hvis en
tilstreekkelig maengde hukommelse er til radighed, bgr en kombination af side channel
atomisme og tilfzeldigt skalar anvendes som modtraek. Hvis maengden af hukommelse
er begraenset, bgr man anvende et modtrak bestaende af Montgomery’s stige-algoritme
og tilfaeldigt skalar. Vi specificerer side channel atomiske operationer pa NIST elliptiske
kurver i blandede koordinater. Sadanne specifikationer er ikke tidligere blevet offentlig-
gjort. Vi udvikler en effektiv og sikker metode til skalarmultiplikation og konkluderer,
at denne metode er mere effektiv end metoden der anvendes i IBM-implementationen,
som ikke er sikret mod side channel angreb. Vi implementerer vores effektive, sikre
algoritme og understgtter vores konklusioner med tidsmalinger af implementationerne.

ii

Contents

Contents iii
Preface v
Introduction vii
I Elliptic Curves 1
1 Arithmetic on Elliptic Curves 3
1.1 General Definitions 4
1.2 The Group Law 8
2 Elliptic Curves in Cryptography 13
2.1 Cryptographic Protocols 13
2.2 Elliptic Curves Recommended by NIST 15
IT Efficient Scalar Multiplication 17
3 Scalar Multiplication Methods 19
3.1 Binary Methods oo 20
3.2 Methods using Signed Representations 28
3.3 Comparison and Conclusion 39
4 Coordinate Representations 41
4.1 Fixed Representations 41
4.2 Mixed Representations 44
4.3 Comparison and Conclusion 60
5 Implementations 63
5.1 Setup for Time Measurements 63
5.2 IBM Test Implementation 64

5.3 An Efficient Scheme 66

iii

Contents

5.4 Conclusion

IIT Countermeasures against Power Analysis

6 Power Analysis
6.1 Simple Power Analysis
6.2 Differential Power Analysis

7 Securing an Implementation
7.1 Combinations of Countermeasures
7.2 Comparison and Conclusion

IV Conclusion

8 Results and Recommendations

V Appendix

A Random Processes and Markov Chains
A.1 Basic Definitions and Results
A2 Properties
A.3 Asymptotic Behaviour L.

B Test Vectors

C Source Code

C.1 Field Implementations
C.2 Addition and Doubling
C.3 Scalar Multiplication without SPA/DPA Countermeasures
C.4 Scalar Multiplication with SPA Countermeasures
C.5 Scalar Multiplication with DPA Countermeasures
C.6 Scalar Multiplication with

SPA & DPA Countermeasures
C.7 Auxiliary Methods

Bibliography

v

69

71
72
98

113
113
116

121

123

127

129
129
132
134

135

139
139
149
164
167
172

177
180

187

Preface

This text is a thesis for the master degree in mathematics at the University of
Copenhagen. It was produced in the period February-July 2006. The project
proposal for the thesis was established in collaboration with IBM Danmark A/S.

The prerequisite for reading the thesis is basic mathematical knowledge cor-
responding to what is held by graduate students of mathematics. However, in
order to ease the understanding of the motivation for using cryptosystems based
on elliptic curves, basic knowledge of cryptography (such as the principles behind
RSA and the discrete logarithm problem) is recommended.

The thesis contains a report and a collection of implementations of algo-
rithms, for which commented Java source code is enclosed. The details of the
implementations are in the report, and anyone with a programming background
corresponding to the level presented at introductory programming courses should
be able to understand the code.

To avoid confusion with regular text, the end of all definitions and examples
are marked with o (except when the definition/example is the last part of a
section or appears immediately before another environment). The end of proofs
are marked with H.

The author would like to thank A. Thorup at the University of Copenhagen
and T. Lange at The Technical University of Denmark for competent supervision,
prompt answers of my many queries and for commenting on various portions of
the manuscript. All mistakes or problems remaining in the text are my own,
and I apologize in advance for any such you may find. T would also like to
thank M. Clausen and L. Moesgaard at IBM Danmark A/S. for allocating time
and resources to my project, commenting on my work and answering numerous
questions. Thanks are due also to I. Kiming, A. Thorup and F. Topsge at the
University of Copenhagen for their assistance with my applications for grants.
The author would like to thank Oticon Fonden and Siemensfonden for believing
in my project. I would also like to thank my parents for their support and my
brother N. Elmegaard-Fessel for his inputs during our conversations. Last, but
certainly not least, I thank my beloved wife Cathrine for many valuable comments
on the manuscript and for her priceless encouragement during the writing of the
thesis.

Due to copyright considerations Section 6.1.3 (pages 87-95) is excluded from

Preface

the publicly available version of this report. Section 6.1.3 has, however, been
made available to the parties involved in grading the thesis.

Copenhagen, July 2006

vi

Introduction

Today, most public key cryptosystems are based on the use of RSA. The advances
in information technology during recent years has resulted in a demand for longer
RSA keys, in order to uphold an acceptable level of security. At the time of writing
(July 2006), RSA Security recommends! a key size of 1024 bits for corporate use
and 2048 bits for extremely valuable keys, e.g. the root key pair for a certifying
authority. The need for long keys makes systems based on RSA difficult to
implement in devices with constrained memory and/or processing power, e.g.
smart cards.

As an alternative to using RSA, one can construct public key cryptosystems
based on the discrete logarithm problem (DLP) in a finite abelian group G. The
DLP is: Given g € GG and ¢* € (G, determine x. The group is most commonly
taken to be Iy, where ¢ = p" for a prime p and a positive integer n. There exists,
however, sub-exponential methods (e.g. the Pohlig-Hellmann algorithm and the
“Index Calculus” algorithm by Adlemann and Western, and Miller) for solving
the DLP in I} (see [Kob94] or [BSS99]). For many purposes, the ¢ being used,
therefore, has to be very large in order to uphold a sufficient level of security.
These large values of ¢ imply a large storage requirement and a need for high
processing power, so, like cryptosystems based on RSA, cryptosystems based on
the DLP in [} are often not suitable for implementation in devices with limited
resources.

Miller [Mil85] and Koblitz [Kob87| has suggested the use of elliptic curves
in cryptography. Their proposal was to use cryptosystems based on the DLP
in a group constructed from the points on an elliptic curve over a finite field.
In this setting the DLP is called the Elliptic Curve Discrete Logarithm Problem
(ECDLP). There is no known direct analog of the “Index Calculus” algorithm
for attacks on systems based on the ECDLP, and, by choosing suitable system
parameters, one can achieve a group order equal to a large prime number (the
meaning of “large” is determined by the desired strength of the system). This
makes attacks based on the Pohlig-Hellmann algorithm infeasible. These proper-
ties make it possible to construct an Elliptic Curve Cryptosystem (ECC-system)
which offers the same level of security as “conventional” systems (based on RSA or
the DLP in [F}) and uses shorter keys. In [RY97] Robshaw and Yin estimate that

'Recommendations are published at http://www.rsasecurity.com/rsalabs/.

vii

Introduction

an ECC-system using a 160 bit key potentially offers the same level of security
as a conventional system using a 1024 bit key. Similar conclusions can be found
in the recommendations by The National Institute of Standards and Technology
(NIST) [NIS06], The European Network of Excellence for Cryptology (ECRYPT)
[ECRO5], and Lenstra and Verheul [LV0O].

All ecryptographic schemes based on the DLP in [F; have an elliptic curve ana-
log. We will focus on the Digital Signature Algorithm (DSA) and the ElGamal
cryptosystem. The elliptic curve analog of the DSA is the Elliptic Curve DSA
(ECDSA), described in [X9.98]. The ElGamal cryptosystem is not standardized
(partially due to certain security issues). Instead, one uses the Elliptic Curve
Integrated Encryption Scheme (|[P1300]). For our purposes, the ElGamal cryp-
tosystem will, however, suffice. Using the time required to perform a 1024 bit
modular multiplication as a time unit, Robshaw and Yin [RY97| compare the
time required by a 160 bit ECC-system, a 1024 bit RSA cryptosystem and a
1024 bit DLP cryptosystem to perform an encryption, a decryption, a signing
and a signature verification. Their figures show that for decryption and signing
the ECC-system is four times faster than the cryptosystem based on the DLP.
It is more than six times faster than the cryptosystem based on RSA. The RSA
cryptosystem is the fastest when doing encryption and signature verification?.

The possibility to maintain an unchanged level of security while using shorter
keys makes ECC-systems interesting for use in smart cards and similar devices.
Also, key generation in ECC-systems is simple, as it only involves choosing a
random positive integer in a fixed interval, whereas key generation in an RSA
cryptosystem involves primality testing of large numbers, which is very time con-
suming. Due to this, elliptic curves have received a lot of attention during recent
years. However, not all elliptic curves are equally secure for use in ECC-systems
(see [BSS99]). NIST has selected a number of elliptic curves (NIST curves) over
finite fields which are considered to be safe for use in cryptographic applications.
We will focus on a selection of the NIST curves in the sequel. The text is divided
into five main parts:

Part I: In Part I we present a brief introduction to the theory of elliptic curves
and the use of elliptic curves in cryptography. Also, we specify the details of the
NIST curves.

Part II: The most time-consuming operation performed in an ECC-system is
the so-called scalar multiplication. When implementing an ECC-system, one has
to make two important choices. The first one is which method to use for scalar
multiplication. The second one is which coordinate representation to use for the
elliptic curve being used. The efficiency of the system depends heavily on these

2Tt should be taken into consideration that Robshaw and Yin provide very little information
about the degree of optimization performed on the systems.

viii

choices. We are presented with a Java implementation of a scalar multiplication
scheme, developed by IBM Danmark A /S for test purposes. Part IT deals with the
task of constructing a scheme which is more efficient than the one implemented by
IBM. We examine a number of known scalar multiplication methods in order to
find the most efficient one. Subsequently, we perform an evaluation of the use of
different coordinate representations. As the choice of an optimal representation
depends on the specific computational environment (processor power, memory,
available software etc.), we make an optimal choice based on the computational
environment at hand. We implement our resulting scalar multiplication scheme
and document the efficiency of our scheme both theoretically (counting the num-
ber of required operations to be performed in the ground field) and empirically
(documenting timings of our implementation). The test implementation devel-
oped by IBM will serve as a point of reference, when evaluating the efficiency of
our scheme.

Part III: A technique for doing cryptanalysis known as side channel analy-
sis has become a threat to many types of cryptosystems. Attacks based on
this technique are known as side channel attacks. These attacks have drawn
much attention, since Paul Kocher [KJJ99| described the first attack of its kind
in 1999. Coron [Cor99| transferred the idea to ECC-systems. Mathematical
countermeasures against side channel attacks on ECC-systems exist, but imple-
menting these countermeasures affects the performance of the system. So far,
no comparisons between the efficiencies of known mathematical countermeasures
against side channel attacks have been published. In Part IIT we perform such a
comparison. We evaluate both the efficiency and security of a number of known
countermeasures. Implementations of all countermeasures are developed, and
timings of the implementations are documented. Based on our comparison, we
select countermeasures which introduce the smallest possible performance reduc-
tion. The countermeasures are used to construct a scalar multiplication scheme
which is secure against side channel attacks using power analysis. We compare
the efficiency of our secure scheme to the efficiency of our original scheme as well
as to the efficiency of the scheme implemented by IBM, which offers no security
against side channel attacks. Our secure scheme is implemented, and timings of
the implementations are documented.

Parts IV & V: In Part IV we draw conclusions based on the results obtained
in Part II and Part III. In Part V (appendix) we enclose an introduction to
the theory of Markov chains, as results from this theory are used in connection
with analyzing scalar multiplication algorithms. Also, we enclose test vectors and
source code for all implementations developed.

ix

Part 1

Elliptic Curves

Chapter 1

Arithmetic on Elliptic Curves

Elliptic curves are not ellipses. The study of elliptic curves arose from calculating
arc lengths on ellipses which leads to so-called elliptic integrals of the form

/ dx
\/4373—9237—93.
By evaluating this integral for suitable complex numbers g and g3, one can

find complex numbers w; and w, which are linearly independent over R. These
numbers, called periods, are used to define the lattice

L= Zw1 + ng = {n1w1 + Nowoy | ny,No € Z}

A meromorphic function is given by

weL
w#0

The function p is called the Weierstrafs o function. It is doubly periodic and
satisfies the differential equation

(¢)" = 49° — 920 — g3,
so for every u € C we get a point (z,y) = (p(u), ¢'(u)) which satisfies the equation
y* = 42° — gox — g3.

Equations of this form define elliptic curves over C, and every elliptic curve over
a field of characteristic different from 2 and 3 can be defined by an equation of
this form.

This section presents a brief introduction to the theory of elliptic curves. The
presentation is not an exhaustive examination, as only a sparse selection of the
aspects of the theory is presented. The section is self-contained, as far as our
need for an applied introduction to the theory goes, but readers interested in the
vast field of elliptic curves will benefit from the introductions found in [Sil92] and
[ACD*05].

Chapter 1. Arithmetic on Elliptic Curves

1.1 General Definitions

Let K be a field, let K[X], K[X,Y] and K[X,Y, Z] be the polynomial rings over
K in one,two and three variables respectively. Let f € K[X,Y]. Then, f can be
written as a finite sum

flz,y) = Zai,jxiyj, a;; € K. (1.1)
4,J
If f # 0, the degree of f is deg(f) = max{i + j|a;; # 0}.
An element F' € K[X,Y, 7] is said to be homogeneous of degree d if

F(X,Y,Z)= Y biuXY'ZF brcK
1,5,k
i+ k=

The homogenization of f in equation (1.1), where f # 0, is a homogeneous
polynomial F' € K[X,Y, Z] of degree deg(f) given by

F(X,Y,Z) =) a;; X'y 7%=,
i?j
Let F' be the homogenization of f, and consider the equation

F(X,Y,Z) =0. (1.2)

Equation (1.2) has solutions (z,y,1), where (z,y) is a solution of f(z,y) = 0.
If (X,Y,Z) € K® is a solution of equation (1.2), then so is (AX,\Y,\Z) for
any A € K* (as F' is homogeneous). We introduce an equivalence relation ~ on
K :=K"\ {(0,0,0)} by

(X,Y,Z) ~ (XY, Z') if
MeK X =AX'AY =AY A Z =AZ".

The quotient space K/ ~ is called the projective plane over K and is denoted
P?(K) (or simply P?), while K? is called the affine plane over K and is denoted
A%(K) (or simply A?). A point in P € P?(K) is thus an equivalence class. We
write P = (X : Y : Z) for the equivalence class containing (X,Y, 7).

If Z # 0, the projective point (X : Y : Z) corresponds to the affine point
(%, %) € K2 If Z = 0, the projective point (X : Y : Z) has no affine representa-
tion. Projective points with no affine representation are called points at infinity.
Using informal notation,

P?(K) = A%(K) U {Points at infinity}.

If one representative of the equivalence class P = (X : Y : Z) satisfies equation
(1.2), all representatives of the class satisfy equation (1.2) (as F' is homogeneous).

4

General Definitions

Therefore, it makes sense to ask whether F'(X,Y, Z) = 0 for some point
(X:Y:Z) e P*K).

Let K be the algebraic closure! of K, i.e. K is an algebraic extension of K
such that every p € K[X] with deg(p) > 1 has a root in K. We now define:

Definition 1.1 (Projective curve). Let F' € K[X,Y, Z]. Assume that F' # 0 and
that F' is homogeneous. A projective curve C over K is the set of solutions in

P?(K) of the equation
C: F(X,Y,Z)=0.

The degree of C is the degree of F. Let L be a field with K C L C K. A
point (X : Y : Z) on C is said to be L-rational if there exists A € K and
(X',Y’,Z') € L3\ {(0,0,0)} such that X = AX', Y = \Y’ and Z = \Z". The
set of L-rational points is denoted C(L).

If the field L is apparent from the context, then C'(L) is simply called the
rational points. We say that a projective curve is non-singular if the (formal)
partial derivatives of F' do not vanish simultaneously at any point of C.

e}

With these notions in place, we are ready to define the concept of an elliptic
curve.

Definition 1.2 (Elliptic curve). Let E be a projective curve over K given by
E:FX)Y Z)=0,
where F' has the form
FX,Y,2)=Y?Z - X3+ a1 XY Z — a; X*Z + a3Y Z* — ay X Z* — agZ°.

If F' is non-singular, the projective curve FE is called an elliptic curve. The
equation for E is written as

E:Y*Z+aXYZ+a3YZ? =X+ ayX*Z + ay X 7% + agZ°. (1.3)
Equation (1.3) is called the Weierstrafl form of E.

o

Let E be an elliptic curve given by equation (1.3), and let P = (X : Y : Z) be

a point on E. If Z # 0, we can put 2’ := % and vy = % (notice that 2’ and ¢/

Strictly speaking, the algebraic closure of K can (using Zorn’s lemma) only be shown to
be unique up to an isomorphism which fixes the elements of K. We will disregard this and
simply speak of the algebraic closure of K.

Chapter 1. Arithmetic on Elliptic Curves

are independent of the choice of representative of P). Then, the point (2,') is
a solution of the equation

v+ axy + asy = 2 + asx? + agx + ag. (1.4)

This corresponds to the equation

flz,y) =

with

flz,y) = y? 4 arzy + asy — 10 — apx® — aur — ag.

Equation (1.4) is called the affine Weierstralt form of E. Conversely, if (z/,y’)
is a solution of equation (1.4), the projective point (' : 3 : 1) is a solution of
equation (1.3). This gives a 1 — 1 correspondence between solutions of equation
(1.3) with Z # 0 and solutions of equation (1.4).

If Z =0, equation (1.3) says that X3 = 0. The polynomial X3 has the triple
root X = 0, and equation (1.3) with X = Z = 0 holds for any value of Y.
According to the definition of P?, we have Y # 0. Therefore, P = (0 :1:0) is
a point on a curve in Weierstraft form, and it is the only projective point on the
curve with Z = 0. Tt is a point at infinity, so it has no representation in affine
coordinates. We count it as a rational point and represent it by the symbol O,
when affine coordinates are being used. In the affine case the K—rational points
are:

E(K) = {(z,y) € K*| f(z,y) = 0} U{O}. (1.5)

In summary, the correspondence between the projective and the affine represen-
tation of points in F(K) is given by

{(X:Y:Z) = (2,%), Z#0
(0:1:0) <O '

This correspondence between affine and projective points on E allows us to switch
between representations, and we will use both the projective and the affine de-
scription interchangeably. We use the notation (x,y) for affine points and the
notation (X : Y : Z) for projective points.

In order to get a shorter form of the equation for F, we use the following
proposition:

Proposition 1.1. Assume that char(K) # 2,3. If E is an elliptic curve over K
given by equation (1.4), there is a linear change of variables such that E can be
written on the form

E:y*=2"+azx+b (1.6)

General Definitions

Proof: The change of variables is given by

2’ —x—a2+r
3 Y

, a1 r’ + asg

Yy =y B

A curve given by equation (1.6) is said to be in short Weierstraf§ form. As we will
be working with fields which satisfy the condition in Proposition 1.1, we will use
the short Weierstrafs form in the sequel. The homogeneous version of equation
(1.6) is

E :Y?Z=X>4aXZ+bZ5.

So far, we have implicitly made the assumption that the variables in K[X,Y, Z]
all have the same degree 0(X) = 6(Y) = 6(Z) = 1. This is the standard choice,
but there is nothing to stop us from assigning new degrees, or weights, to X, Y
and Z. Our choice is to define that

With this definition, the homogenization G of f, where f is given by equation
(1.1), is
G(X,Y,Z) = a;; X'yI 7>d4ol)=2=5 (1.7)
i,J
If a point (&,7,¢) € K® satisfies G(£,7,¢) = 0, then so will (A\2¢, *n, X() for any

A € K*. This motivates the definition of yet another equivalence relation on K.
We define that

(&m.¢) ~ (&,n',¢) if
INEK® E= N An=X0 A=),

The quotient space K/ ~ is called the weighted projective plane over K with
weights 2, 3 and 1. It is denoted P?2,3,1)<K)- Points in P%2,3,1)(K) are written as
(€ :1m:¢) and are said to be in Jacobian coordinates.

If ¢ # 0, the Jacobian point (£ : 1 : () equals (f—Q : @“13 : 1), corresponding to
&

& C—"B) Points with ¢ = 0 are the points at infinity with no
representation in affine coordinates.
When using Jacobian coordinates, an elliptic curve in short Weierstrafs form

is given by:

the affine point (

E:Y*=X3+aXZ*+02°. (1.8)

7

Chapter 1. Arithmetic on Elliptic Curves

This is seen by homogenizing equation (1.6) as shown in equation (1.7).

Assume that (£ : 1 : () is a point at infinity, i.e. (= 0, satisfying equation
(1.8). Then, n* = £3. As we are working in P?2,3,1)= we see that (£,7,0) ~ (1, 1,0),
as it follows by taking A := g in the definition on page 7 (the definition of
P? ensures that & # 0). Indeed, this gives (A2, A3, 0) = (£2,£3,0), which is

2,3,1
ecguive)llent to (1,1,0). Hence, the only point at infinity in Jacobian coordinates on
Eis (1:1:0),so, as in the projective case, exactly one of the points at infinity is
on the curve. We will represent this point by O, when using affine coordinates. In
summary, the correspondence between the Jacobian and the affine representation

of points in F(K) is given by

€:n:0 = (&) (A0
(1:1:0) <O

1.2 The Group Law

Let E be an elliptic curve over the field K defined by
E :Y?Z=X*4+aXZ*+b2Z5.

Let L be a field with K € L C K. The set E(L) of L-rational points on E
has an interesting property. With a proper definition of a composition @, called
addition on E(L), the pair (E(L), @) is an abelian group. We will only present
an overview of the construction of the composition and refer to [ACDT05] or
[Si192| for details.

When defining a composition on F(L), it turns out that one has to distinguish
between adding two distinct points and doubling a point. Let P, @ € F(L) with
P #). We will need the following:

(i) The straight line joining P and @ intersects the curve at exactly one further
point R. The point R is L-rational. The cases R = P or R = () are not
excluded.

(ii) Let P be an L-rational point on E. The tangent to F at P intersects E at
exactly one further point R, which is L-rational. The case R = P is not
excluded.

The statements above can be summarized in the following way: In the projective
plane, any line which intersects the elliptic curve FE intersects F at exactly three
points, when counting multiplicities (with a suitable definition of what multiplic-
ity should mean). We will not go into details with this. Instead, we will consider
statements (i) and (ii) above as facts. Recall, from Section 1.1, that in P?(L),
the point (0 : 1:0) is the only point at infinity on £. Denote the third point of

8

The Group Law

intersection between E and the line through P and) by P x (). Similarly, P x P
denotes the other intersection point between E and the tangent to E at P. The
group law on E(L) is defined as follows:

Neutral element: As the neutral element we select (0:1:0).

Inverse element: We define the inverse —P of P as
—P:=(0:1:0)%P.

Addition: We know that P x @ € E(L), and we define
PoQ:=—(PxQ).

Doubling: We know that P P € E(L), and we define
P®P:=—(PxP).

The definition says that one gets P @ () by “drawing” the line determined by the
two points P and @), finding the third point of intersection P % () and taking the
inverse of P x (). A doubling is done similarly, only with the line being a tangent
to E/ at P. The situation for L = R is shown in Figure 1.1.

1/

N

2P

Flgure 1. 1 The figure shows addition (left) and doubling (right) on the elliptic curve
E : y? =23 — 10z + 15 over R.

Using Max Noethers’s theorem or direct calculation, one can prove that, with
these definitions, (E(L),®) is an additive, abelian group. Most of the work
involved in proving this lies in showing that & is associative. A proof can be
found in [Sil92]. An alternative proof, using divisor theory, can be found in
[ACDT05].

Chapter 1. Arithmetic on Elliptic Curves

Definition 1.3 (Scalar multiplication). Let k& be an integer, and let P € E(L).
If k& is non-negative, we define [k]P as

0, k=0
k)P = * .
PoPd---®P, k>0

If k is negative, we define
[KP = [<k](—P).

We say that [k]P is the result of scalar multiplication of the point P by the scalar
k.

1.2.1 Formulas for Addition and Doubling

The geometric definition of the composition @ is not very useful in applied situa-
tions. If one has to implement the elliptic curve addition in hardware or software,
it is more convenient to work with explicit formulas. We have introduced three
different coordinate representations of an elliptic curve E. This section specifies
formulas for addition and doubling in each representation. Deducing the formulas
does not require any advanced mathematics, but a lot of special cases have to be
considered. Therefore, the deduction is excluded from this examination.

Projective coordinates: The equation for E is
E :Y?Z=X*4+aXZ*+bZ5.

The group is (E(L),®) with neutral element (0 : 1:0). Let P, € E(L) with
P=(X;:Yy: 7)) and Q = (X : Yy : Z5). Assume that P # (). The inverse
of Pis —P = (X; : =Y, : Z;). Formulas for P® @Q = (X3 : Y3 : Z3) and
[2]P = (X, :Y,: Zy) are:

10

Formulas for Addition and Doubling

Addition:

Set A=Y7Z, —Y,Zy, B=Xy7Z, — X, Zy and C = A%Z, 7, — B> — 2B*X, Z,.
Then, X3 = BC, Y3 = A(B?*X,Zy — C) — B3YZy and Z3 = B3Z,Z,.
Doubling:

Set A=3X?+aZ?, B=Y1Z;,C=X,Y1Band D= A? - 8C.

Then, Xy = 2BD, Y, = A(4C — D) — 8Y?*B? and Z, = 8B3.

Affine coordinates: The equation for F is
E:y’=2*4ax+b

The group is (E(L),®) with E(L) as in equation (1.5) and neutral element O.
Let P € E(L) \ {O}. As O does not have an affine representation, we must
consider the operations —O, P & O, P — P and [2]O separately. We have:

-0=0
PaO=P
P—-P=0
[2]0 = O.
When implementing the group law in affine coordinates, one must choose a suit-
able representation of O and take account of the cases mentioned above.
Let P = (z1,y1) and @ = (x2,y,) be affine points on E with P # £@. The

inverse of P is —P = (1, —y1). Formulas for P& Q = (x3,y3) and [2]P = (x4, y4)
are:

Addition:

Set A = 222 Then, 3 = * — 21 — x5 and y3 = A\(z1 — 23) — y1.

Doubling:

Set \ = ‘%j% Then, x4 = A* — 2z, and yy = ANz, — 24) — 41

Jacobian coordinates: The equation for E is
E:Y?*=X*+aXZ"+bZ5.

The group is (F(L),®) with neutral element (1: 1 :0). Let P,Q € E(L) with
P=(&:m:¢)and Q = (& :m2 : (o). Assume that P #). The inverse of P is

11

Chapter 1. Arithmetic on Elliptic Curves

—P=(&:—mn1: (). Formulas for P& Q = (&3 :m3: (3) and [2|P = (&4 : ny : (4)

are:
Addition:

Set A=¢&(2 B=6CG, C=m, D=nG, E=B—Aand F=D —C.
Then, & = —E% — 2AE? + F?, n3 = —CE? + F(AE? — &) and (3 = (G E.
Doubling:

Set A = 4&m? and B = 362 + a(}.

Then, & = —2A + B?, ny = =8} + B(A — &) and ¢4 = 201G,

One can use these formulas to implement addition on elliptic curves given in

short Weierstrak form, as long as an implementation of the operations in the
ground field is available.

12

Chapter 2

Elliptic Curves in Cryptography

This chapter contains a brief description of how elliptic curves are used in cryp-
tography. As described in [BSS99|, not all elliptic curves are equally secure for
cryptographic purposes. We present a selection of secure curves used in real-life
cryptographic applications.

2.1 Cryptographic Protocols

This section presents the elliptic curve analogs of the ElGamal cryptosystem
and the digital signature algorithm (DSA). Descriptions of these can be found
in [Kob94]. In the setting of an ECC-system, the latter is standardized as the
Elliptic Curve Digital Signature Algorithm (ECDSA) and is specified in [X9.98].
As is common, when describing cryptographic protocols, we assume that Alice
wants to send a message P to Bob, while the eavesdropper Eve is able to intercept
any information exchanged by Alice and Bob. Let p > 3 be a prime number and
let £/ be an elliptic curve over F,,. We assume that P is represented as an element
of E(F,).

2.1.1 Elliptic Curve ElGamal Cryptosystem

Initially, Alice and Bob fix a publicly known base element) € E(F,) of prime
order n.

(i) Bob chooses a random positive integer kg € [1,n — 1]. He publishes the
public key [kp]Q and keeps secret the private key kp.

(ii) Alice chooses a secret, random positive integer k& € [1,n — 1] and sends
([K]Q, P & [k]([k5]Q) to Bob.

(iii) Bob recovers P as P @ [k]([kB]Q) & (—[kp]([k]Q)) = P.

Eve may intercept ([k]Q, P @ [k]([kB]Q), but she needs to solve the ECDLP in
order to find kg or k.

13

Chapter 2. Elliptic Curves in Cryptography

2.1.2 ECDSA

Let n = |@| be the (prime) order of a publicly known base point @ € E(F,).
The ECDSA uses a cryptographic hash function' h : E(F,) — Z/nZ. Let ka
and [ka]@ be Alice’s private and public key respectively. The keys are chosen by
Alice in a way similar to the one described in the ElGamal cryptosystem. Alice
generates a signature for the message P in the following way:

Signature generation
(i) Alice computes e = h(P).

(ii) She selects a random k € [1,n — 1] and computes (x1,y;) = [k]Q.
If x1 =0 mod n, she repeats this step.

(iii) She sets r :==x; mod n.
(iv) She sets s := k= !(e + kar) mod n. If s = 0, she goes to step (i).
(v) Along with the message, she sends the signature (r,s) to Bob.

Bob wants to verify that Alice sent the message P signed with (r,s). To do this,
he performs the following steps:

Signature verification
(i

) If r or s is not in [1,n — 1], the signature is rejected.
(ii) Bob computes e = h(P).
)

He sets ¢ := s~ !

(iii mod n, u; := ec mod n and us := r¢ mod n.
(iv) He computes (z1,71) = [u1]Q @ [u]([ka]@). If the resulting point is not
affine, the signature is rejected.

(v) He sets v := x; mod n. If r = v, the signature is verified. If r # v, the
signature is rejected.

As one can see, both encryption/decryption and signature generation/verifica-
tion requires scalar multiplication, and it turns out that scalar multiplication on
the elliptic curve is actually the most time consuming operation involved in the
protocols. In Chapters 3 and 4 we examine different ways of making scalar mul-
tiplication as efficient as possible. The scalar multiplication performed in step
(iv) of the signature verification is a special case for which one can use a tech-
nique known as “Straus’ algorithm” or “Shamir’s trick”. The reader is referred to
[ACD*05] for details on this subject.

!Standards for hash functions can be found in [X9.98].

14

Elliptic Curves Recommended by NIST

2.2 Elliptic Curves Recommended by NIST

In January 2000, FIPS PUB? 186-2 was published. This is a digital signature
standard, which includes the ECDSA and is the result of a revision of FIPS PUB
186-1 performed by NIST. For elliptic curves, FIPS PUB 186-2 recommends five
prime fields and five binary fields. In this examination we only consider prime
fields.

The prime fields are F,,,,, F F

F and F

psa1, Where

1929 p224> p2567 p384

prog = 2192 — 264 — 1

Poos = 224 — 290 1,

Dosg — 226 _ 9224 | 9192 4 996 _ |
Dasg — 2384 128 _ 996 | 932 _ |
D521 = 2521 — 1.

The form of the primes allows for very efficient modular reduction (see [Sol99]).
For each of the five fields an elliptic curve was selected. As we saw in Chapter 1,
an elliptic curve over F,, can be defined by an equation of the form y* = 23 +az+,
where a,b € IF,,. The NIST curves all have = —3 mod p which, as we shall see in
Chapter 4, is an advantage when performing certain elliptic curve operations. The
value of b was chosen pseudo-randomly, via the SHA-1 based method described in
[X9.98] and [P1300], such that the group (E(F,), ®) of rational points is of prime
order for all five curves. The base point P € E(IF,) was chosen to be a generator
of the group. The NIST curves over F,, o,, Fpoous Fposss Fpae, and Fp,., with these
properties are denoted P-192, P-224, P-256, P-384 and P-521 respectively. The
value of b and the group order n corresponding to each of the five curves are
shown in Table 2.1.

We will consider only the five NIST curves over prime fields. Curves over
binary fields are described in detail in [ACD*05].

2Federal Information Processing Standards Publication

15

Chapter 2. Elliptic Curves in Cryptography

P-192:
= 2192_264_1
a=-3

b = 0x 64210519 E59C80E7 OFA7E9AB 72243049 FEBS8DEEC C146B9B1
n — Ox FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

P-224:

p = 2224_296+1

a=-3

b — 0x B4050A85 0C04B3AB F5413256 5044BOB7 D7BFD8BA 270B3943 2355FFB4
n = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 EOB8FO3E 13DD2945 5C5C2A3D

P-256:
p = 2256 _ 2224 + 2192 + 296 -1

a=-3

b = 0x 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0O CC53BOF6 3BCE3C3E
27D2604B

n = 0x FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2
FC632551

P-384:

p = 2384 _ 2128 _ 296 + 232 -1

a=-3

b = 0x B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F
5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

n — Ox FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81
F4372DDF 581A0DB2 48BOA77A ECEC196A CCC52973

P-521:
p = 2521 -1
a=-3

b = 0x 00000051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3
B8B48991 8EF109E1 56193951 ECTE937B 1652C0BD 3BB1BFO07 3573DF88
3D2C34F1 EF451FD4 6B503F00

n — 0x 000001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8
899C47AE BB6FB71E 91386409

Table 2.1: The table shows the five NIST curves over prime fields.

16

Part 11

Efficient Scalar Multiplication

17

Chapter 3

Scalar Multiplication Methods

As mentioned in Section 2.1, the most time-consuming operation performed in an
ECC-system is scalar multiplication, i.e. determining [k]P for a positive integer
k and P € E(F,). Scalar multiplication in E(F,) consists of a sequence of
elliptic curve doublings (ECDBL) and elliptic curve additions (ECADD) which, in
turn, consist of a number of operations in the ground field [F,,. In this chapter we
evaluate and compare a number of known scalar multiplication algorithms based
on the number of ECDBL and ECADD required by the algorithm.

We point out that our evaluation and comparison is more detailed than pre-
viously published surveys of scalar multiplication methods, and we include many
proofs of correctness of the presented algorithms®' Hopefully, the degree of detail
presented here will be helpful to anyone implementing a scalar multiplication
method.

In this chapter, ¢ denotes a function measuring the requirements of a given
algorithm. For instance, if 2 is an algorithm for performing scalar multiplication,
one has t(2) = w-ECDBL 4 v - ECADD for some non-negative numbers u and v. The
goal of this chapter is to choose an algorithm 2, for which #(2() is minimal under
some conditions. The setup is as follows:

Setup: Let k be a positive integer with binary representation
k= (ki—1-ko)z,

where k;_; = 1. Let E be an elliptic curve over [, given by the equation
y*> = 2% — 3z +b. Let P = (x,y) be an affine point in E(F,). We wish to
determine the point

[k|P € E(F,).

! An introduction to proving correctness of algorithms can be found in [CLRS01].

19

Chapter 3. Scalar Multiplication Methods

We assume that k is positive. If k is negative, the scalar multiplication algorithms
in this section will produce the expected output for input & = —kand P’ = —P =
(x,—y). The naive way of determining [k]P is to compute [2]P, [3]P,... [k —
1]P, [k] P, which requires ECDBL + (k — 2) - ECADD. This is not feasible when £ is
large, so we will aim at reducing the requirement.

3.1 Binary Methods

This section presents three algorithms for performing scalar multiplication on an
elliptic curve. The algorithms all use a binary representation of the scalar — hence
the name binary method.

3.1.1 The Double-and-add Method

The double-and-add method is one of the oldest methods for performing scalar
multiplication?. Tt is based on the observation that [2"]P can be computed as

2]P,[4]P, ..., [2"|P

in n operations. The method is shown in Algorithm 1.

Algorithm 1 Double and add
Input: An affine point P € E(F,) and k = (k;—1 - - - ko).
Output: [k]P € E(F,).

1: Q«— P;1+—1—2;

2: while 7 > 0 do

3 Q+ [2]Q;

4: if k; = 1 then
5: Q—PDQ;
6: end if

7 d— 11— 1;

8: end while
9: return Q

Proof of correctness: Notice that ¢ is decremented in line 7, so eventually the
algorithm terminates due to the condition in line 2. Algorithm 1 maintains the
loop invariant

L: At the start of each iteration of the while-loop in lines 2-8,
Q=[S

2In a general (multiplicatively written) group the algorithm is known as the square-and-
multiply method and performs exponentiation.

20

The 2¥-ary Method

As k;_1 = 1, the statement is true prior to the first iteration. Furthermore, we
have for all i < [that

[(Fie1 -+ - kigaka)o] P o= 2]([(Fie - - - Kiga)2] P) + [Ki] P, (3.1)

since (kl—l s 'ki+1ki)2 = 2(kl—1 s 'k’H_l)Q + k’z Therefore, when ¢ = —1, the
algorithm terminates and returns @) = Z;;B k;2) = [k|P.

The number of additions required by Algorithm 1 depends on the Hamming
weight (the number of non-zero bits) v(k) of k, as an addition is performed if,
1

and only if, k; = 1. We have v(k) = 5[on average, so on average the algorithm
executes %(l — 1) - ECADD. One ECDBL per bit is always performed, so we get the

following result:

Proposition 3.1 (Requirement of the double-and-add method). On average,
4 -1
t(Algorithm 1) = (I — 1) - ECDBL + — ECADD.

Example 3.1. The smallest field recommended by NIST is [F,,, (see Section
2.2). If we assume that k is a 192-bit integer, the average cost of Algorithm 1 is

191 - ECDBL + 96 - ECADD.

3.1.2 The 2"-ary Method

An obvious modification of Algorithm 1 is to use a larger base for representing
k. The base could be any number m, but we will focus on the special case
m = 2% for a positive integer w > 1. This is equivalent to partitioning the
binary representation of k into windows of length w and process these windows
one by one. For instance, if k¥ = (398);9 = (110001110), and w = 3, we get the
partitioning

k= (110 001 110),.

This corresponds to the equality k = (616),3.

If one can afford to use storage for precomputed values, Algorithm 2, originally
proposed by Brauer in his paper On addition chains from 1939, is an improvement
of Algorithm 1. The algorithm uses the function ¢ : Ny — N x Ny defined by

(m) = (w,0), m=0
om) = (s,u), m #0, where m = 2°u with u odd.

21

Chapter 3. Scalar Multiplication Methods

Algorithm 2 2"-ary scalar multiplication

Input: An affine point P € E(F,), w > 1 and k = (e,—1 - - - €0)aw.
Output: [k|P € E(F,).

1: Compute the odd multiples [3]| P, [5]P, ..., [2% — 1] P.

2: Q — O;

30 1+—n—1;

4: (s,u) «— o(e;);

5: while 7 > 0 do

6: for j=1tow—sdo

T Q< [2]o;

8: end for

9: if e; # 0 then

10: Q — Q @ [u]P; //As u is odd, [u]P has been precomputed in line 1.
11: end if

12: for j=1to sdo

13 Q< [2Q;

14: end for
15 11— 1;
16: end while
17: return Q

Proof of correctness: The proof is almost completely identical to the proof of
correctness of Algorithm 1. The loop invariant is in this case

L : At the start of the while-loop in lines 3-12,
Q= [Z;L;zl—i—l ejzw(jiiil) P.

We assume that the ECDBL in line 7 is not carried out when () = . This is
reasonable, as [2]O = O. Similarly, we assume that the very first addition in line
6 is not performed, as Q @ [u]P = [u]P. Algorithm 2 executes (I — 1) - ECDBL in
lines 2-16 due to the splitting of doubles into a part before and a part after the
ECADD in line 10. An ECADD is performed for each e; # 0. On average, 22;1 of
the e;’s are non-zero, so the main loop performs

2% —1 2% —1

w

on average. The precomputations require one ECDBL and (2“~! — 1)ECADD, so the
average requirement of Algorithm 2 is:

22

The 2¥-ary Method

Proposition 3.2 (Requirement of the 2*-ary method). One has

2% —1
2w

t(Algorithm 2) =1 - ECDBL + ([i-‘
w

4wt 2) . ECADD

on average. Algorithm 2 requires storage for 2~ — 1 precomputed points.

One needs to choose an optimal value of w. To minimize the number of ECADD
on the right hand side of the equation in Proposition 3.2, one has to minimize
the value of

o= [1] Zot

w 2w

for a fixed [. For instance, one gets the values of ¢(w) shown in Figure 3.1 for
[=192 and [= 521, when w € [1, 10].

100

++

= 600 —
— — +
—+ + — *
=, - .
E+ *] +
a %93 + 0 400 — N
a) = o« @) - hy
< -1 - + < — .
O - + + O — .
w — t + w . N
60; " < 200 — *y Iy
= +++ +H+++ = +++++++ +++++
] T —_ Fhey, ++
— — hb
AO T TTTTTITTI[TTTIT]TTT] AERRRRNRRRRRRRRRR RN
> 4 & 8 2 4 6 8 10
w w

Figure 3.1: The plots show the value of ¢(w) for [= 192 and | = 521 respectively,
when w € [1,10].

In the cases in Figure 3.1, w = 4 and w = 6 respectively are optimal. Similar
considerations lead to the optimal values of w for various values of [shown in
Table 3.1.

I [[70,196] | [197,520] | [521, 1452]
w 4 5 6

Table 3.1: The table shows a selection of optimal values of w for the 2¥-ary method.

23

Chapter 3. Scalar Multiplication Methods

Example 3.2. In the example where k is a 192-bit integer, we get the optimal
value w = 4 from Table 3.1. This results in an average requirement of

192 - ECDBL + 51 - ECADD.

Compared to the double-and-add method, the 2*-ary method saves 45 ECADD on
average, while it uses an extra ECDBL and storage for precomputed values.

3.1.3 Sliding-window Method

If we return to the situation k& = (398);9 = (110001110), from Section 3.1.2, we
see that Algorithm 2 computes [k] P from the following intermediate values of @Q:

O, [3]P, [6] P, [12] P, [24] P, [48] P, [49] P, [98] P, [196] P, [199] P, [398] P.
Alternatively, one could compute
O, [3]P, [6] P, [12] P, [24] P, [48] P, [96] P, [192] P, [199] P, [398] P,

whereby one ECADD is saved. The latter sequence of calculations corresponds to
allowing the “windows” in the representation of k£ to be separated by one or more
consecutive zeroes:

(398)10 = (11000111 0)s.

Skipping a zero can then be done by performing an ECDBL. Algorithm 3 shows
the method in general.

Remark 3.1. In lines 4-7, Algorithm 3 performs ECDBL until a k; with k; # 0 is
found. In lines 8-9, for fixed k; = 1, the longest subsequence of bits (k; - - - k;) of
length less than or equal to w such that k; = 1 is found. As k; = 1, we have that
(ki-- k)9 is odd, so [(k;- - - ki)2] P has been precomputed.

24

Sliding-window Method

Algorithm 3 Sliding-window scalar multiplication
Input: An affine point P € E(F,), w > 1 and k = (kj—1 - - - ko).
Output: [k|P € E(F,).

1: Compute the odd multiples [3]| P, [5]P, ..., [2% — 1] P.

2: Q«— P;and 1 — [— 2.

3: while 7 > 0 do

4: if k; = 0 then

5: Q — [2Q;

6: 11— 1;

7. else

8: s max{i —w+ 1,0}
9: t—min{j€Z|j>sNk; =1};
10: forh=1toi—t+1do
11: Q — [2]@;

12: end for

13: w— (ki ki)o;

14: Q — QD [u]P;

15: for h=1tot— s do
16: Q < [2]@;

17: end for

18: 14— s—1;

19: end if

20: end while
21: return ()

Proof of correctness: Algorithm 3 assigns the value max{i —w + 1,0} to s in line
8. After this assignment, s < i. When ¢ becomes s — 1 in line 18, the value of ¢
is decremented, so the algorithm eventually terminates. Algorithm 3 maintains
the loop invariant

L: At the start of the while-loop in lines 3-20),
0" [k P
The statement L is true prior to the first iteration, as k;_; = 1. Let i < [— 2,

and assume that £ holds prior to the (I — i — 2)’th iteration. We aim at proving
that £ holds prior to the (I —i — 1)’th iteration. If k; = 0, we have

-1
Q= [Z k2

=i+1

P (3.2)
after the assignment in line 5. When the value of i is decremented in line 6,

equation (3.2) says that Q = [Z;;liﬂ k;j27==11 P (keeping in mind that k;; —

the former k; — is zero).

25

Chapter 3. Scalar Multiplication Methods

If k; # 0, we have

-1
Q= E:kﬂfﬁ+2“%

L \j=i+1

P

-1
= 2:@W*>+T*wﬁﬁ+-~+h)P

L \j=i+1

-1 7
=11 > ngj—8> +) k2
j=t

L \j=i+1

~

-1
= E:@W*> P
j=t

-1
= E:@W*> P
Jj=s

after the execution of lines 13-17. Here, the last equation is valid as k; = 0
for s < 7 < t. When i is assigned a new value in line 18, the loop invariant is
reestablished, so £ is maintained. At the end of the algorithm ¢ = —1, and the
loop invariant ensures that Q = [k]P.

Notice that Algorithm 3 performs one ECDBL for each bit in the binary repre-
sentation of £ and that an ECADD is performed only in the case where a window
is created (in lines 7-19). Assume that k is unbounded. Let (X,,) be a random
process (cf. Appendix A) given by

1, k’Z:O
&_{w,h%O'

We interpret the output of X; as the length of the window created by Algorithm
3 in the 7'th iteration of the main loop. For each X; we have the distribution

For every i this gives an expectation of EX; = ¥ 5o the expected number of

- T2
bits of k£ being processed per iteration of the main loop is WTH Divide the binary
representation of k into pieces of length wT“, and recall that half of these pieces

will imply an ECADD on average. We now see that Algorithm 3 requires

1 2(01-1) [-1
— - - ECADD = — - ECADD
2 w41 w+1

on average. Also counting the operations from the precomputations, one gets:

26

Sliding-window Method

Proposition 3.3 (Requirement of the sliding-window method). One has

t(Algorithm 8) =1 - ECDBL + (

w

-1 .
—— 4+ 2¥"" — 1| - ECADD

on average. Algorithm 3 requires storage for 2°~t — 1 precomputed points.

Figure 3.2 shows the number of ECADD required on average by Algorithm 3 for
[l =192 and [= 521 as a function of w. Table 3.2 shows optimal values of w for

selected values of [.

300 — N
= .
= +
8ZOOE§
2 S ;
L E ++
100 =, +++
E++++++ +++++
= bbb
e R RRRRRRRRRRRRARRRRRN
2 4 6 8 1
w

400

300

ECADD

200

100

+, +
+, o

iy, o
REY 4+

bbb

TTTTTTTTTTTT TTTTTTTT]
2 4 6 8 10
W

Figure 3.2: The plots show the total number of ECADD required by Algorithm 3 for

[=192 and | = 521 respectively, when w € [1, 10].

[

[25, 80]

31, 240]

[241,672]

w

3

4

b}

Table 3.2: The table shows a selection of optimal values of w for the sliding-window

method.

Example 3.3. In the example [= 192 and w = 4, Proposition 3.3 gives that

Algorithm 3 requires

192 - ECDBL + 45 - ECADD

on average. Compared to the 2*-ary method, the sliding-window method saves 6
ECADD on average and uses the same amount of storage for precomputed values.

27

Chapter 3. Scalar Multiplication Methods

3.2 Methods using Signed Representations

In this section we analyze a selection of scalar multiplication methods which use
a signed-digit representation (defined below) of the scalar k. In E(F,) one has
the advantage that inversion can de done very efficiently.

Indeed, if P = (z,y) € E(F,), we have —P = (z, —y), so inverting a point is
computationally equivalent to performing a negation modulo p — the cost of which
is negligible in efficient field implementations (cf. Section 5.2.1). By allowing
negative coefficients in the representation of £ and using the fast inversion in
E(F,), one can achieve faster scalar multiplication than what we have seen among
the binary methods in Section 3.1.

Example 3.4. We wish to compute [2° — 1]P for some s > 1. Doing this using
Algorithm 1 requires (s — 1) -ECDBL and (s —1)-ECADD. If one computes [2° — 1] P
as [2°]P @ (—P), the calculation only requires s - ECDBL and one ECADD.

e}

From Example 3.4 we see that it can be advantageous to have a representation
of the scalar at hand which allows negative digits. This leads to the following
definition:

Definition 3.1 (Signed digit representation). A signed digit representation of
an integer k£ to the base b is an ordered sequence of integers d,...,d,,_1 with
|d;| <bfori=0,...,m — 1 such that

m—1
k= d;b'.
=0
(0]
Signed digit representations are not unique. For instance,
23 = (11001)y = (11111),,
where 1 = —1. To get a unique representation one has to introduce some addi-

tional conditions on the representation:

Definition 3.2 (Non-adjacent form). A non-adjacent form (NAF) of an integer
k is a signed-binary representation of k& to the base b = 2 such that d;d;;; = 0
for i > 0. The NAF is written (d,,_1 - -do)NAF-

e}

Proofs of existence and uniqueness of the NAF of k£ can be found in [MS04] by
Muir & Stinson. They also prove that the Hamming weight of the NAF of an
integer k£ is minimal among all signed digit representations of k& and that the

28

Methods using Signed Representations

number of bits in the NAF of k£ is at most one more than the number of bits
in the binary representation of k. Several other results applying to the NAF of
integers are also proven in [MS04|. Algorithm 4 computes the NAF of an integer.
In line 4 of Algorithm 4, mods denotes the signed residue with minimal absolute

Algorithm 4 Generation of the non-adjacent form (right-to-left version)

Input: An integer k = (ki1 - ko)2.
Output: The NAF k = (d;- - - dy)xar-
1: 1 0; d « k;
2: while d > 0 do
3: if d is odd then
d; < d mods 4;
else
d; — 0;
end if
d «— g;
10: i« i+ 1;
11: end while
12: return (d;---do)nar;

value. When d is odd, we have either d =1 = -3 mod 4ord=3= -1 mod 4.
In the former case, d mods 4 = 1, and in the latter case, d mods 4 = —1, so the
operation is well-defined, when d is odd. A proof of correctness of Algorithm 4
can be found in [MS04].

If d is odd in line 3, the bit d; is assigned the value 1 or 1, depending on
whether the two least significant bits of d are 01 or 11 respectively. In both cases,
the value of d is decremented in line 5 such that d becomes divisible by four and
d is even at the end of the iteration in line 11. If, on the other hand, d is even
in line 3, the bit d; is assigned the value 0 in line 7. One can see that the name
“non-adjacent form” is justified, as two non-zero digits cannot be adjacent in the
output.

Assume that k is random and unbounded, and that the k; are uniformly
distributed and independently drawn. The process of generating a NAF can be
interpreted as a random process M = (X,,)n, with state space S = {0, *x}, where
* symbolizes 1 or 1. The conditional distribution of X, is

29

Chapter 3. Scalar Multiplication Methods

P(Xpi1=0]X,=0)=

N DN =

P(Xpir = #| X, = 0) =
P(Xp = 0] X, = %) =1

As these probabilities are valid for any n > 0, the process M is a homogeneous
random process. Furthermore, we have that, for any n > 0, the value of X,
only depends on the value of X,,, so M is a Markov chain (cf. Appendix A). The
transition matrix is L
— | 2 2
r-[id]

and the transition graph is shown in Figure 3.2.

1
2

N[

Figure 3.3: The figure shows the transition graph for the Markov chain corresponding
to the process of generating a NAF.

The initial distribution is u® = (0,1), and a stationary distribution for M is
™ = (3,3). As M is irreducible and aperiodic, Theorem A.3 in Appendix A
implies that ;™ converges to 7 in total variation. This means that, for sufficiently
large k, we can assume the Hamming weight of £ in NAF representation to be %
of the number of bits on average. We sum up these considerations in the following

proposition:

Proposition 3.4 (Hamming weight of the NAF). Let v be the average number
of non-zero bits in the NAF of a random positive integer k = (kpy—1-- ko) nap-

Then,
m
v —.

3

30

The Addition-subtraction Method

In the sequel we will assume that the NAF of an integer k is always one bit longer
than the binary representation. Therefore, we have that

k= (kl—l e kO)Z = (dl e dO)NAF

for suitable dy, ..., d;, where d; might be zero.

3.2.1 The Addition-subtraction Method

Algorithm 4 processes the bits of k£ from right to left. There exists a left-to-
right variant of the algorithm for computing the NAF of an integer. The left-
to-right version is used in the addition-subtraction method for performing scalar
multiplication in E(F,). The Addition-subtraction method is recommended in
[P1304] and is shown in Algorithm 5. As the scope of this text does not encompass

Algorithm 5 Addition-subtraction method (including integer recoding)

Input: An affine point P € E(F,) and k = (kj_y1 - - - ko).
Output: [k]P € E(F,).
: (hhu—y -+ ho) < 3k; / /by =1
(/{Zl/{?lfl"'ko) — /{Z; ///{Zl =0
Q — P;
1 — 1 —2;
while 7 > 1 do
Q — [2)Q;
if h;, =1 and k; =0 then
Q— QP
end if
if h;, =0 and k; =1 then
Q— Qd(=P);
end if
1—1—1;
: end while
: return @)

—_ e e e e
A O el

optimization of integer recoding®, the addition-subtraction method is rewritten
to exclude determining the NAF of k. The result is shown in Algorithm 6. Proofs
of correctness of these algorithms are analogous to the proof that Algorithm 1 is
correct.

3Integer recoding is the process of converting integers from one representation to another.

31

Chapter 3. Scalar Multiplication Methods

Algorithm 6 Addition-subtraction method

Input: An affine point P € E(F,) and k = (d; - - - dy)NAF-
Output: [k|P € E(F,).
: Q< O;
1 [;
while 7 > 0 do
Q — [2]@;
if d; # 0 then
Q— Q@ [d]P;
end if
1—1—1;
end while
return ()

_.
=

We assume that the very first doubling in line 4 is not performed, as Q = O.
Similarly, we assume that the very first addition in line 6 is not performed, as
O @ [d;|P = [d;]P. As in Algorithm 1, we see that an addition is performed if,
and only if, d; # 0. Using Proposition 3.4, we get:

Proposition 3.5 (Complexity of the addition-subtraction method). For a suffi-
ciently large scalar k = (kj_1 - ko)o = (d;- - - do) yar, one has on average

[
t(Algorithm 6) = | ECDBL + 3 ECADD.

The addition-subtraction method is the scalar multiplication method used in the

test implementation developed by IBM (source code is enclosed in Appendix
C.3.1).

Example 3.5. If we return to our example of [= 192, we see that Algorithm 6
requires

192 - ECDBL + 64 - ECADD

on average.

The average number of operations in Example 3.5 is not impressively low com-
pared to the sliding-window method (Algorithm 3). However, the addition-
subtraction method has the advantage of needing no precomputations. Further-
more, the approach can be generalized to give a substantial reduction in the
number of operations.

32

The Width-w NAF Method

3.2.2 The Width-w NAF Method

This section presents a scalar multiplication method which has a lower require-
ment than any of the methods discussed in Sections 3.1.1-3.2.1. The method
can be seen as a combination of the sliding-window method and the addition-
subtraction method. It relies on a generalized NAF representation of the scalar.

Definition 3.3 (Width-w non-adjacent form). Let w > 1, and let k be a positive
integer. Let k£ be written as

k=Y d;2, (3.3)

where
(i) di=0ord;isodd fori=0,...,m— 1.
(i) |d;| <2* 1 fori=0,...,m— 1.
(iii) Among any sequence of w consecutive coefficients at most one is non-zero.

The representation in equation (3.3) is called a width-w non-adjacent form (NAF,,),
and we write

k= (dm-1---do)xar,-
@)

Remark 3.2. The representation in Definition 3.3 can also be described in an-
other way. If we write k as

k — 2/{0(2/11(‘ . 2/€y—1(2RuWV + Wy—l) L. + Wl) + WO)
with W, > 0, conditions (i) and (ii) in definition 3.3 correspond to W; being odd
and —2v~! +1 < W; < 2! —1 for all i. Condition (iii) corresponds to xo > 0
and x; > w for all i > 1. For instance, if k = (70000030001)x4ar, With w = 4, we
have k = 20(24(26 -7 —3) + 1).

e}

For w = 2, the NAF,, is simply the ordinary NAF discussed earlier. For any
integer w > 1, the NAF,, shares the following properties with the NAF"

¢ Every integer has a unique NAF,,.

¢ The NAF,, of an integer k is at most one bit longer than the binary repre-
sentation of k.

33

Chapter 3. Scalar Multiplication Methods

For proofs that these properties hold see [MS04]|. Additionally, Avanzi [Ava05]
shows that the NAF,, representation is a recoding of smallest Hamming weight
among all recodings with coefficients smaller than 2¥~! in absolute value.

Like in the case of the NAF, we assume that the NAF,, of a positive integer k
is always one bit longer than the binary representation of k. Therefore, the most
significant bit d; of

k= (di---do)nar,

might be zero. A method for generating the NAF,, is shown in Algorithm 7.

Algorithm 7 Generation of the width-w non-adjacent form.

Input: Integers k = (k;_1---ko)2 and w > 1.
Output: k= (d;- - - dy)NaF,, -
1: 4« 0; d <« k;
2: while d > 0 do
3: if d is odd then
d; < d mods 2%; //d is odd, so mods is well-defined.
d«— d—d;
else
d; < 0;
end if
d— 4
10 1«14 1;
11: end while
12: return (d;---do)nar

Proof of correctness: Lines 4, 5 and 9 ensure that d is reduced in each iteration, so
the algorithm eventually terminates. We now verify that the output of Algorithm
7 satisfies the conditions in Definition 3.3. The assignment d; < d mods 2" in
line 4 (where d is odd) ensures that every non-zero d; is odd and less than 2¥~!
in absolute value.

In the 7'th iteration of the main loop in lines 2-11, we assume that d; is
assigned a non-zero value. Subsequently, d becomes a multiple of 2% in line 5 and
now has the form

d= (00,
The assignment d «— g gives
w—1
d=(m)z

If d # 0, the main loop will execute w — 1 times and output w — 1 zero-valued
bits. If d = 0, d; is the most significant digit, and the algorithm terminates.
These considerations ensure that condition (iii) in Definition 3.3 is satisfied.

34

The Width-w NAF Method

All that remains is to verify that Algorithm 7 actually outputs a value which
equals k. To see that it is so, notice that the algorithm maintains the loop
invariant:

L: At line 2 of algorithm 7,
k=2id+ Y d;2.

As ¢ = 0 and d = k prior to the first iteration, the statement £ holds at this
point. Assume that £ holds for some i > 0. We want to show that £ holds for
1+ 1. If d is even, d;_; = 0 after the incrementation of 7, and d is assigned the
value g, so L holds prior to the next iteration. Assume that d is odd. We know
that

i—1
k=21d+Y " d;2
=0
) i—1
27/ - 2w . .
L, ((d—(d ;nods))) + 34,2 + 2(d mods 2). (3.4)
=0

After the assignments in lines 5 and 9, equation (3.4) becomes

k=2'd+ idjzj,

J=0

so the invariant is restored, when 7 is incremented.
At the end of the algorithm d = 0, so the invariant ensures that k = Z;:o d;27,
with the convention that d; = 0 for j greater than or equal to the final value of 1.

We define the density of a representation of k to be the Hamming weight of the
representation divided by the number of bits in the representation. The average
density of a binary representation is %, and it turns out that the average density
of a NAF,, is less than % In fact, the following result holds:

Proposition 3.6. Let k be a positive integer. The density of the width-w NAF

representation of k is =5 on average.

Proof: We know that Algorithm 7 computes the unique NAF,, representation of
k. Algorithm 7 can be viewed as a homogeneous random process (X,,)y, with
state space S = {s, $2}, where

w

—
s1 =0 (a single bit) and s =0---0x.

Here, we denote by * a non-zero number with absolute value less than 2¥~1
Adapting this view, one should keep in mind that for any k& with a finite number

35

Chapter 3. Scalar Multiplication Methods

of bits the random process is finite, and the last state does not necessarily have
to be either s; or s,. We assume that & is unbounded.

The event X,, = sy corresponds to d being odd in line 3 of Algorithm 7. The
probability of this to occur equals the probability of the least significant bit of d
being equal to one, so P(X,, = s1) = 3. Therefore, P(X,, = s5) = 1, and we get
a density of

P(Xn = 82)]_
P(X,=5)-1+P(X,=8)-w w+1

In later sections we will be interested in knowing:

(a) The average length of the first sequence of zeroes produced
by Algorithm 7.

(b) The average length of sequences of consecutive zeroes produced
by Algorithm 7. These sequences are also known as zero-runs.

Assume that %k is unbounded. To find the length in (a), let X be a random
variable describing the length of the first (possibly empty) sequence of consecutive
zeroes produced by Algorithm 7. This means that X € Ny. The event X = 0
corresponds to k being odd, so P(X =0) = % The event X = 1 corresponds to
k having the form k = (---10)2, so P(X = 1) = 1. Similarly, one can see that

for all j > 0 we have P(X = j) = 5+. This gives an expectation of

EX:Z%:L

J=0

so on average we expect Algorithm 7 to output one zero to begin with.

To find the length in (b), we let Y be a random variable describing the number
of zeroes in a zero-run (apart from the w — 1 zeros we know for sure to be in
there), so Y € Ny. The event Y = 0 corresponds to d having the form

w—1

i (107D

after the assignment in line 5. As we know that the w — 1 least significant bits
of d are zero, we have P(Y =0) = % Similarly, the event Y = 1 corresponds to
d having the form

w—1
—~
d=(---100---0)
after the assignment in line 5. Therefore, P(Y = 1) = i. In general, Y has the
same distribution as X, so FY = 1. Therefore, we will expect a zero-run (apart

from the first one) to have length w on average. We summarize these observations
in the following proposition:

36

The Width-w NAF Method

Proposition 3.7 (Length of zero-runs). For large k, one has on average:

(i) The length of the first (possibly empty) zero-run produced
by Algorithm 7 is 1.

(ii) The length of zero-runs other than the first one produced
by Algorithm 7 is w.

As the number of ECADD performed in the scalar multiplication algorithms we
have considered so far depends on the Hamming weight (and, thereby, on the
density) of the scalar, a scalar in NAF,, can be used to reduce the number of
elliptic curve operations involved in scalar multiplication. Algorithm 8 shows the
details of the method.

Algorithm 8 Width-w NAF scalar multiplication.

Input: An affine point P € E(F,) and k = (d; - - - do)~aF,, -
Output: [k]P € E(F,).
1: Compute the odd multiples [+3]P, [+5]P,. .., [+(2¥"! — 1)] P.
2: QQ«— O; 1«1
3: while 7 > 0 do
4 Q— [2]Q;
5. if d; # 0 then
6
7
8
9

Q — Q@ [d;|P; //If d; # 0, it is odd, and [d;] P has been precomputed.
end if
1—1—1;
: end while
10: return @

Proof of correctness: In line 8 the value of ¢ is decremented, and when ¢ = 0 the
algorithm terminates. Algorithm 8 maintains the loop invariant

L: In line 3, we have Q = [Zl d;27=1 P

j=i+1

The rest of the proof is identical to the proof of correctness of Algorithm 1 —
except for the use of the identity

[(di- -~ disadi)nar, P = [2)([(di - - - disa) var, | P) + [di] P
instead of equation (3.1).
|

Algorithm 7 performs one ECDBL for each bit in the representation of k. An ECADD
is performed for each non-zero bit in the representation. We assume that the first
ECDBL in line 4 and the first ECADD in line 6 are not performed, as) = O. The

37

Chapter 3. Scalar Multiplication Methods

precomputations require one ECDBL and (2*~2 — 1) - ECADD. Assuming that the
NAF,, representation of k is always one bit longer than the binary representation,
Proposition 3.6 gives

Proposition 3.8 (Requirement of the width-w NAF scalar multiplication). For
input k = (kj_1 -+ - ko)2, we have
l
t(Algorithm 8) = (I + 1) - ECDBL + (2w—2 —1+ ?) - ECADD
w

on average. Algorithm 8 requires storage for 2°~2 — 1 precomputed points.

As was the case with the 2¥-ary method and the sliding-window method, the
number of operations performed in the NAF,, method depends on the value of
w. Figure 3.4 shows the number of ECADD in the cases [= 192 and [= 521.

200 — - 200 .
- ; = .
150 — : = .
<8z 00— : <8z = +++
—] + — +
&J) :+++ +++ &J) g +"’+ +++
i o 100 — e, o
50— . e, o o = e
O TTTTTTTTITTTTTT]TTTT] SO—TTTTTTTTTTTT[TTTT]TTTT]
2 4 6 8 10 2 4 6 8 10
W W

Figure 3.4: The plots show the number of ECADD performed by the NAF,, method for
[=192 and | = 521 respectively when w € [1,10].

The expressions plotted in Figure 3.4 are minimized for w = 5 and w = 6
respectively. Table 3.3 shows a selection of optimal values of w.

I [[41,119] | [120, 335] | [336, 895]
w 4 5 6

Table 3.3: The table shows a selection of optimal values of w corresponding to different
values of [.

38

Comparison and Conclusion

Example 3.6. In the case [= 192, the value w = 5 is optimal, so Algorithm 7
requires
193 - ECDBL + 39 - ECADD

on average. Compared to the sliding-window method, the NAF,, method saves
6 ECADD, while it introduces an extra ECDBL. The NAF, method needs to store
only 7 precomputed points (one only needs to store the even multiples) instead
of the 15 precomputed points required by the sliding-window method. As long
as the cost of a ECDBL is strictly less than that of 6 ECADD, Algorithm 8 is the
better choice.

3.3 Comparison and Conclusion

In order to be able to compare the different scalar multiplication algorithms,
we count the total number of ECADD required on average by the methods. We
assume that all computations are done in affine coordinates. In Chapter 4 we
will see that it is reasonable to assume that an ECDBL corresponds to 1.05ECADD.
Figure 3.5 shows the average number of ECADD required by the different methods
as functions of [(the length of the binary representation of k), assuming that
t(ECDBL) = 1.05 - t(ECADD). The plots in Figure 3.5 correspond to an optimal
choice of w where this value is used (in the 2“-ary, sliding-window and NAF,,
methods, cf. Tables 3.1, 3.2 and 3.3).

The plots in Figure 3.5 show that the NAF,, method is the better choice
among the methods presented in Sections 3.1 and 3.2. Also, Algorithm 8 requires
less storage for precomputed values than Algorithms 2 and 3 do.

Remark 3.3. There is a generalization of the sliding-window method to a NAF
representation of the scalar. This generalization offers no improvement over the
NAF,, method and is not as easily implemented. An analysis can be found in
[Sem04].

e}

We now draw conclusions based on the observations made in this chapter. In
Sections 3.1 and 3.2 we have presented and analyzed a selection of algorithms for
performing scalar multiplication on an elliptic curve. The sliding-window method
(Algorithm 3) was superior among the methods using an unsigned representation
of the scalar, while the NAF,, method (Algorithm 8) was the better choice among
the methods using a signed representation. The NAF,, method was even better
than the sliding-window method in the case of k being a 192-bit integer (cf. Ex-
ample 3.1, 3.2, 3.3, 3.5 and 3.6). We have seen that the NAF,, method is actually
superior for all applied values of [. The algorithm uses storage for precomputed

39

Chapter 3. Scalar Multiplication Methods

700 -
600 -
500 1
a)
a)
S
D 400 1
300 1
200 §°
200 300 400 500
[
@ W-ary
+ Double and add
° Addition—subtraction
. Width-w NAF
d Sliding window

Figure 3.5: The plot shows the number of ECADD required by the different scalar
multiplication methods, assuming that ¢(ECDBL) = 1.05 - ¢(ECADD).

values, but the storage requirement is less than what is the case for other meth-
ods which uses precomputation, and we conclude that the storage requirement is
acceptable. Therefore, Algorithm 8 should be used for scalar multiplication.

40

Chapter 4

Coordinate Representations

In Chapter 3 we dealt with the task of minimizing the number of elliptic curve ad-
ditions/doublings performed during scalar multiplication. This chapter deals with
minimizing the number of field operations involved in the individual additions
and doublings. Doing so requires some knowledge of coordinate representations
of elliptic curves. This text covers five representations: Projective, affine and Ja-
cobian coordinates (see Section 1.1 for details on these representations), and the
Jacobian variants modified Jacobian coordinates and Chudnovsky-Jacobian coor-
dinates. We present formulas for addition and doubling on the NIST curves in all
five representations. In the cases of projective, affine and Jacobian coordinates,
the formulas are almost identical to the general formulas from Section 1.2.1. How-
ever, as the NIST curves have a = —3, there are differences affecting the number
of required field operations. Furthermore, we examine the advantages of using a
mixture of the aforementioned representations during scalar multiplication.

When evaluating the formulas for addition and doubling in different coordi-
nates, we let M, S and I denote multiplication, squaring and inversion modulo p
respectively. We assume that the time required to perform an addition, subtrac-
tion, comparison or negation in [F, is negligible (this assumption is discussed in
Section 5.2.1).

In the sequel we assume that the NAF,, of a positive integer k is always one
bit longer than the binary representation k = (k;_1--- ko) and that the most
significant bit of & = (d; - - - do)naF,, 1S positive.

4.1 Fixed Representations

In this section we present formulas for addition and doubling on the NIST curves
using a fixed coordinate representation. For each operation we count the number
of required field operations.

41

Chapter 4. Coordinate Representations

4.1.1 Projective Coordinates
The equation for E is
E:Y?Z=X3-3XZ*+bZ5

The group of rational points is (E(F,), ®) with neutral element (0 : 1 :0). Let
P,Q € E(F,) with P=(X,:Y,: 7)) and Q = (Xs: Yy : Zy) with P # Q. The
inverse of P is —P = (X : =Y; : Z;). Formulas for P® Q = (X3 : Y3 : Z3) and
[2]P = (X, :Y,: Zy) are:

Addition:
Set A = }/221 — }/122, B = X2ZI — X122 and C' = A2Z122 — Bg — 2BQX122.

Then, X3 = BC, YE; = A(B2X1Z2 — C) — B3}/1Z2 and Z3 = 33Z1Z2.

Doubling:
Set A=3(X?—-2%),B=Y,7,,C=X,Y,Band D= A?-8C.
Then, X, = 2BD, Y, = A(4C — D) — 8Y?*B? and Z, = 8B3.

As one can check in the formulas, an addition requires 12 multiplications and 2
squarings, written as 12M + 25, while a doubling requires 7M + 55.

Remark 4.1. If Z; = 1, the requirement reduces to 9M + 2§ for addition and
5M 445 for doubling. If Z; = Z; = 1, addition drops to 5M +25. These special
cases will be of interest later, when we discuss the use of mixed coordinates. For
now, the reader should simply note their existence.

4.1.2 Affine Coordinates

The equation for E' is
E :y*=2%—3z+0.

The group of rational points is (E(F,, ®)) with neutral element O.
Let P = (x1,y1) and Q = (x2, y2) be affine points on £ with P # £@). The inverse
of Pis —P = (x1, —y;). Formulas for P & Q = (3,y3) and [2]P = (x4, y4) are:

42

Jacobian Coordinates

Addition:
Set \ = 4=¥2
xr1—x2

Then, x5 = A* — 21 — x3 and ys = A(z1 — 3) — Y1.

Doubling:

3z2-3
Set \ = x21)
Y1

Then, x4 = A* — 2z, and yy = ANz, — 24) — y1.

An addition requires I + 2M + S, while a doubling requires I + 2M + 25.

4.1.3 Jacobian Coordinates
The equation for F is

E:Y?=X"-3XZ"+0bZ°.
The group of rational points is (E(F,), @) with neutral element (1 : 1 :0). Let
P=(& :m:¢G)and @ = (& : m2 ¢ () be Fy-rational points on E and as-
sume that P # Q. The inverse of P is —P = (& : —m : (;). Formulas for
P®Q=(&:m3:¢) and 2]P = (§4: 74 1 Gu) are:
Addition:
Set A=61(3, B=6&CG, C=mG, D=m, E=B—-Aand F=D - C.
Then, & = —E° — 2AE? + F?, gy = —~CE® + F(AE? — &) and G = (G E.
Doubling:
Set A =4&ni and B = 3(& — (7) (& + (7).
Then, & = —2A + B?, ny = —8n{ + B(A — &) and {4 = 2n,¢y.

An addition requires 12M + 4S5, and a doubling requires 4M + 4S.

Remark 4.2. If £, = 1, the cost of an addition and a doubling reduces to SM +3S
and 2M + 45 respectively.

43

Chapter 4. Coordinate Representations

4.1.3.1 Chudnovsky-Jacobian Coordinates

At this point we have seen that Jacobian coordinates provide faster doublings, but
slower additions, than projective coordinates. Addition in Jacobian coordinates
can be sped up by changing the internal representation of a point P from P =
(E:m:toP = (£:m:C:(¢%:¢3%. The latter representation is called the
Chudnouvsky-Jacobian coordinates of P. More storage is required, but by using
Chudnovsky-Jacobian coordinates one achieves a cost of 11M + 35 for addition,
while the cost of a doubling increases to 7M + 35.

4.1.3.2 Modified Jacobian Coordinates

Assume that the coefficient a can be any element of F, and internally represent
a Jacobian point P = (£ : 1 : ¢) as a quadruple (¢ : 7 : ¢ : a¢*). This quadruple
is called the modified Jacobian coordinates of P. For P = (& : my @ (1 : aly)
and Q = (& @ my @ G aly) with P # Q, this gives the following formulas for

POQ=(&:ms:Gragy) and [2]P = (€4 a2 Gt aly):

Addition:

Set A=61(3, B=6&CG, C=mG, D=m, F=B—-—Aand F=D - C.
Then, & = —E% —2AFE? + F?, n3 = —CE? + F(AE? — &) and (3 = (G F.
Doubling:

Set A =4&n?, B = 3£ + a(t and C = 8nf.

Then, & = —2A+ B2 n3 = B(A — &) — C, (3 =2,y and —3(§ = 2C(—3¢}).

The formula for addition is identical to the one in Section 4.1.3, but calculating
the element a(j requires 1M + 25 (25 for the NIST curves). Thus, the total
cost of addition is 13M + 65 (12M + 6S for the NIST curves). Doubling requires
4M + 48, regardless of the value of a, making modified Jacobian coordinates the
better choice for doublings unless a = —3, in which case Jacobian coordinates
and modified Jacobian coordinates are equally good.

4.2 Mixed Representations

Let A, P, J, J¢ and J™ symbolize affine, projective, Jacobian, Chudnovsky-
Jacobian and modified Jacobian coordinates respectively. We have seen, in Sec-
tions 4.1.1, 4.1.2 and 4.1.3, that the choice of coordinate representation affects
the number of field operations involved in scalar multiplication. Therefore, it is

44

Mixed Representations

natural to ask which coordinate system minimizes the number of field operations.
Unfortunately, the question is not as easy to answer as it is to ask. One coordi-
nate representation may be superior when performing doublings, but not when
performing additions (e.g. J) or vice versa (e.g. P).

Instead of trying to select one fixed representation among the available ones,
we will aim at combining the representations. As suggested in [CMO98|, one
can use the individual strengths of the different representations in a combined
manner. The idea is to perform each type of operation (ECADD or ECDBL) in
the optimal representation for that particular operation. The goal is to have a
strategy for the process of scalar multiplication defining exactly which coordinate
representation should be used at a given stage of the process.

Changing between representation is done during execution of the elliptic curve
operations. Let “—” symbolize any action which modifies a point on an elliptic
curve (for instance performing a doubling or disregarding one or more coordinates
of the point). If we wish to double a point (z,y) in A and express the result in
J., we do as follows:

A J J J
(,y) —(x:y: D)—2(z:y:)=(E:n:(). (4.1)

The doubling on the left hand side of the equation in (4.1) is performed in 7.
Similarly, we can add an affine point (x,y) to a Jacobian point (£ : n : () and
express the result in J¢ by performing the following steps:

A Je

(x,y) —(x:y:1:1:1)
Je J
—(z:y:1:1: 1)@ (€:n:Q)
Je Je
—(zry:1:1: D)@ (E:n:C: 2
e
=& (¢ 7). (4.2)

In both cases the technique is the same: We represent all points in the coordinates
of the “target system” and perform the operation in that system. However, not all
conversions between systems are equally simple. While conversions from A to P
and from A to J are done by performing (x,y) — (z,y, 1), and conversions from
J¢or J™ to J are done by disregarding one or more coordinates, conversions
between P and J require inverting and multiplying elements of IF,,. Because of the
overhead involved in the latter type of conversions, operations using a mixture of
projective and Jacobian coordinates are not suitable for efficient implementations.
Table 4.1 shows the cost of doubling and addition for the selection of combinations
of coordinate systems upon which our remaining analysis is based. In Table 4.1,
the notation
t(Cr +C* =%

45

Chapter 4. Coordinate Representations

represents the field operations involved in adding a point in representation C!
to a point in representation C? and expressing the result in representation C3.
Similarly, the notation

t(2C' = C?)

represents the field operations involved in doubling a point represented in C! and
expressing the result in the representation C?. The notations #(2C) and ¢(C + C)
denote the number of operations involved in doubling and addition respectively
in a fixed representation C.

Doubling Addition
Fixed: Fixed:
t(2A) = T+2M+2S | t(A+ A) = I+2M+S
t(2P) = TM +5S | t(TJ™+JT™) = 12M +6S
t(2J°) = TM+3S | t(J+J) = 12M + 4S8
t(2J™) = 4M +4S | t(P+P) = 12M +28
t(2J) = 4M +4S | t(T+ T°) = 11M +3S
Mixed Mixed
tRJm =J°) = A4M +58 | t(T™+Jc=J™) = 11M +5S
t(2A =P) = AM+4S | (T +T=T™) = 1IM+58
t2A=J°) = AM 43S | t(T +T=J™) = 10M +4S
tRJ=J) = AM+3S | T +T =J) = 11M +3S
tgm=J) = SM +4S | t(TJ+A=J™) = 8M + 58
tRIm=J) = SM+4S | t(J"+A=J") = 10M+3S
t2A=J) = QM +4S | (T +T=TJ) = 10M +2S
(T +A=7T° = 8M + 35
T+ A=T) = 8M + 38
HJI"+A=J0) = 8M +3S
(I +A=T") = TM +4S
tA+T =JT) = TM +2S
tA+A=7Jm) = 4M + 48
tA+A=J° = 4M + 28
t(A+A=7) = 4M + 25

Table 4.1: Number of field operations involved in ECDBL and ECADD using mixed
coordinates.

Example 4.1. Assume that we are given points P, on E with [4]P # Q,O.
We wish to perform the following sequence of operations:

46

Mixed Representations

1) P':=[2]P.
9) P" .= [2]P"
3) P" .= P" 3 Q

Assume that I = 16M and M = S, that @ is given in A and that P and P
must be in the same representation. Which representations should we choose for
P, P" and P” in order to minimize the number of field operations? Choosing A
as the representation for all points results in a cost of

202A) +t(A+A) =2(I +2M +25)+1+2M + S
=3[+4M +5S
= 57M.

The question is: Can we do better? To answer this, we need to find coordinate
systems C!, C? and C3 such that

t(2C =C?) +t(2C* =C*) +t(CP+ A=C") =
min (t(2C" =CT) +t(2¢7 =C*) +t(CF + A=C")), (4.3)
ckec

where C' = {A, P, J,J¢, J™}. From Table 4.1 we see that (C',C?,C?) = (J,J,J)

satisfies equation (4.3), and we get a total cost of

202T) + (T +A=T) =2(4M +4S) +8M + 35S
=16M + 118
= 27M.

This is a 30M reduction compared to the version using an exclusively affine
representation.

o

We will use the idea from Example 4.1 to optimize the efficiency our method of
scalar multiplication. Recall, from Section 3.3, that the NAF,, method (Algo-
rithm 8) was chosen as our method for scalar multiplication. Algorithm 8 uses
a NAF,, representation of k. As mentioned in Remark 3.2, this means that k is
written as

k= 2%02r (.. 21 (2" W, + W, _q) -+ - + W1) + W),
where

o W;is odd and =214+ 1 < W, <2v=1 — 1 for all i.

47

Chapter 4. Coordinate Representations

o W, >0, kg >0and k; > w for all 7 > 1.

We assume that the points [+£(2i+1)]P, 1 <4 < 2“~2—1, have been precomputed.
Algorithm 8 works by repeating

Q = [2M]Q + [W; 1] P,
Q=227 H]Q + [Wi_1]P. (4.4)

As k; = w+1 on average according to Proposition 3.7, the cost of the right hand
side of assignment (4.4) is

w-t(2CY) +t(2C = C*) +t(C* + C* = CY)

for coordinate representations (C',C? C?) on average (notice that the result of
the addition is expressed in C! such that the calculation of [2F+1 — 1]Q can take
place in C'). From Proposition 3.6 we get that the average density of a NAF,,

representation is w+r1 If k= (d;---do)xarF,, we have 1 + T non-zero bits on
average. Hence, Algorithm 8 requires
lw)
T,(C C? C3) = —— -t(2CY) + —— (t(2ct =C®) + t(c*+ 3 =Ct
(C1,€%,C%) = = - H2C") + —— (K) +H(C* +)

on average (excluding the cost for the precomputations). The most frequently
occurring value in T,,(C*,C? C3) is t(2C'). From the values in Table 4.1 we see
that we should choose either C' = J™ or C' = J.

The system C3 is the one used for representing the precomputed points. As
addition is the dominating operation involved in the precomputations, one should
choose C? in a way such that ¢(C® + C3) is as small as possible. From Table 4.1
one sees that both A and J°¢ are good candidates. Which system is the better is
determined by considering

1) The ratios I/M and S/M.
2) The possible values of ¢(2C' = C?) + t(C* + C* = C*).

As we shall see in Section 5.2.1, it is reasonable to assume that //M = 16 and
S/M = 1. For C! = J and C3 = A as well as C* = J¢ we get the lowest cost of
the right hand side in equation (4.4) by choosing C* = J. The costs, denoted ¢,
and t, when using C? = A and C? = J°¢ respectively, are:

(w+ 2T+ T +A=JT)
= (4w + 12)M + (4w + 7)S,
(
= (

w+ WtRI)+t(T+T =T)
4w 4 15)M + (4w + T7)S.

48

Mixed Representations

For C! = J™ we also get the lowest cost of (4.4), denoted t3 and ¢4 corresponding
to C3 = A and C3 = J¢ respectively, by choosing C* = J:

ts=w-tRI™) +tRI"=T)+t(T+A=T")
= (4w + 11)M + (4w +9)S,

ta=w-tRI™)+tRI"=T)+t(T+T =T™)
= (4w + 14)M + (4w +9)S.

As both t3 > t; and ty > t5 (recall that S = M), we set C! := J and proceed
with this choice.

49

Chapter 4. Coordinate Representations

4.2.1 Efficient Precomputations

When constructing the table of precomputed points in Algorithm 8, one would
normally calculate
2]P,[3]P,[5]P,...,[2° "t — 1] P,

which requires one ECDBL and (2*~2 — 1)ECADD. Doing this in affine coordinates
requires
2 2([+2M + S) + S

according to Table 4.1.

As this section will show, it is possible to reduce the number of inversions
involved in the precomputations by using a method due to Montgomery, known
as simultaneous inversion in F,. The method is shown in Algorithm 9.

Algorithm 9 Simultaneous inversion in I,

Input: ay,...,a; € F, witha; Z0fori=1,...,7.
Output: by,...,b; € F, with a;b; =1fori=1,...,7
C1 < aq;
1 2;
while : < j do
Ci < Q;Ci—1;
1 — 14 1;
end while
ue G
i J;
while 7 > 2 do
b; — uc;_1;
U — ua;;

—
N B2

1—1—1;

: end while

: by — u;

: return (by,...,b;)

—
U = W

Proof of correctness: The loops in lines 3-6 and 9-13 terminate due to the assign-
ments in lines 5 and 12 respectively, so Algorithm 9 terminates. The algorithm
maintains the loop invariant

L: At the beginning of the loop in lines 9-13 of algorithm 9,
—1 —1
u=a; ---aj .

To see this, notice that the loop in lines 3-6 ensures that ¢; = a;---a; for
1= 1,...,7, 0 L holds prior to the first iteration in line 9, due to the assignment
in line 7.

50

Efficient Precomputations

Assume that £ holds prior to the k’th iteration with £ < j — 2. After the
assignment in line 11, we have u = a;} ! 5o, when i is decremented, the
invariant is restored.

When the loop in lines 9-13 terminates, we have i = 1 and v = a; . Therefore,
the assignments in lines 10 and 15 ensure that the correct values are returned.

1-.-a1

Algorithm 9 requires I + (35 — 3)M. Cohen [CMO98| shows, that simultaneous
inversions can be used to reduce the number of inversions involved in precom-
putations but does not give a specific algorithm. To the author’s knowledge, no
such algorithm has been published. Therefore, we construct the algorithm, which
is shown in full detail in Algorithm 10. The algorithm makes use of the routines
ECADD_NI and ECDBL_NI. These are elliptic curve addition and doubling respec-
tively in affine coordinates which do not perform any inversions. The inverted
values are provided as input to the routines. Source code for Java implemen-
tations of Algorithm 10, ECADD_NI and ECDBL_NTI are enclosed in Appendix C.7
and C.2.

o1

Chapter 4. Coordinate Representations

Algorithm 10 Precomputations in .4 using simultaneous inversion.

Input: P € E(F,) given in A, w > 1.
Output: P, [3]P,...,[2¢"! —1]P € E(F,).
L (z1,y1) < P;
2: (xq,1ys) < ECDBL(P);
31— 1;
4: while i <w —2 do

5 if 7 < w — 2 then

6 m«— 201 4 1;

7: (1, m) < (Toi — X1, Toi — X3, ..., Toi — Toi_q,2Yoi);
8 else

9 m «— 2071

10: (e1,.-y€m) «— (Toi — X1, Toi — T3,...,Toi — Toi_1);

11: end if

12: (52i+1, 52i+3, ey Ogit1_q, 52z'+1) — SIMINV(el, ey em); //SIMINV is an im-
plementation of Algorithm 9.

13 204 1;

14: while j < 2! — 1 do

15: (x;,y;) < ECADD_NI((%j_oi, yj_o:i), (Z2i, Yai), 0;);

16: J—7+2

17 end while

18: if i <w — 2 then

19: (1’2¢+1, y2i+1) — ECDBL_NI((.TQi, yzi), 52i+1);

20: end if

21: i+ 1+ 1;

22: end while

23: return ((z1,v1), (3,Y3), - -+, (T2 _1,Y2i_1))

Proof of correctness: The incrementations in lines 16 and 21 ensure that the
inner loop in lines 14-17 and the outer loop in lines 4-22 both terminate, so the
algorithm terminates.

Algorithm 10 maintains the loop invariant

L: At the beginning of the loop in lines 4-22 of Algorithm 10,
(xlu y1)7 ('T37 y3)7 ceey (‘rZi—la y2i—1>
are the coordinates of P, [3]P, ..., [2" — 1] P respectively.

This is true prior to the first iteration due to the assignments in lines 1 and 3.
Assume that £ holds prior to the 7’th iteration for 1 < ¢ < w — 2. Using the

92

Efficient Precomputations

inverted elements from line 12, lines 14-20 calculate

(($2i+1, y2i+1)a ($2i+3> ?/21‘+3)a ceey ($2i+171, ?/21‘+171)a ($2i+1,?/2i+1)) =
(2" + 1P, 2" + 3]P,..., [2" — 1] P, 2] P).

When i is incremented in line 21, the invariant is restored. When ¢ = w — 1, the
algorithm terminates, and we have

((z1,90), (@3,93), - (@21, 0i0)) = (P8P, [2970 = 1]P).
|

The ECDBL in line 2 requires I + 2M + 25. Of the w — 2 iterations of the main
loop in lines 4-22, the first w — 3 iterations each require

¢ Simultaneous inversion of 2¢=! + 1 elements.
o 271 ECADD_NI.
¢ One ECDBL_NI.
The last iteration requires
¢ Simultaneous inversion of 2*~3 elements.
o 2¥~3 ECADD_NT.

The cost of the first w — 3 iterations is

-3

g

(I+3-27'M+2712M + S) +2M +25) =
=1

(w—3)T+ (52" 42w —11)M + (2“7 + 2w — 7)S,

while the cost of the last iteration is
I+ (3-2Y73 = 3)M +2“3(2M + S).
The total cost of Algorithm 10 is
(w— DI+ (5-2"2 42w —12)M + (2“2 + 2w — 5)S. (4.5)
For w =4, 5,6 (the values of w which we are using) this amounts to

w=4: 3[+16M +75=T71M
w=>5: 41 +38M + 135 = 115M
w=06: bl+80M + 235 = 183M,

when we assume that I /M = 16 and M = S.
Other possible schemes for precomputations are:

93

(a)
(b)

(e)

Chapter 4. Coordinate Representations

One doubling in A and 2¥~2 — 1 additions in A.

One doubling from A to P, one mixed addition A + P = P and 2¥ 2 — 2
additions in P. To get an affine representation of the precomputed points,
one needs an inversion of 2¥~2 — 1 elements using simultaneous inversions
and (2¢72—1)-2M.

One doubling from A to J, one mixed addition A+ J = J and 272 — 2
additions in J. To get an affine representation, one needs an inversion of
2¥=2 — 1 elements using simultaneous inversions and (272 — 1) - (3M + S).

One doubling in A, one addition A + A = P and 2¥~? — 2 mixed additions
A+P = P. To get an affine representation, one needs an inversion of 2*~2—1
elements using simultaneous inversions and (2¥~2 — 1) - 2M.

One doubling in A, one addition A+ A = J and 2*~2 — 2 mixed additions
A+J = J. To get an affine representation, one needs an inversion of 2¥~2—1
elements using simultaneous inversions and (2¥~2 — 1) - (3M + 5).

Table 4.2 shows the field operations required by these precomputation schemes
and Algorithm 10 for w = 4,5,6. Table 4.3 shows the total number of field

Algorithm 10 Scheme (a) Scheme (b)

w=4 |3+ 16M + 75 41 +8M + 55 I +49M + 108
w=2>5 |4l +38M +13S | 81 +16M +9S I+117M + 185
w=06 | 5] +80M + 23S | 161 +32M + 175 | I + 253M + 34S

Scheme (c) Scheme (d) Scheme (e)

w=4|1+49M + 185 21 +37TM +8S 21 +37M + 135
w=2>5|1+121M +38S | 2 +93M + 16S | 21 +93M + 295
w=06 | I+265M + 78S | 21 +205M + 325 | 2I +205M 4615

Table 4.2: The tables show the field operations required by different precomputation
schemes.

multiplications required by the same precomputation schemes and Algorithm 10
for w =4,5,6, assuming that I/M = 16 and S = M.

As one can see, Algorithm 10 is the most efficient method for doing pre-

computations. Also, it uses the same amount of storage as the other schemes.
Therefore, Algorithm 10 should be used, when precomputations are done in affine
coordinates.

54

Initial Doublings during Scalar Multiplication

Algorithm 10 | Scheme | Scheme | Scheme | Scheme | Scheme
(a) (b) (c) (d) (e)
w=4 1M TTM 75M 83M TTM 82M
w=>5 115M 153 M 151 M 175M 141 M 154 M
w=06 183 M 305M | 303M | 359M 269M 2909M

Table 4.3: The table shows the number of field multiplications required by different
precomputation schemes.

4.2.2 Initial Doublings during Scalar Multiplication

Regardless of the coordinate representations used, we perform the calculation
(25 - W,] P in Algorithm 8 immediately after doing the precomputations (cf. the
description on page 48). Cohen [CMO98| notices and uses that one can reduce
the number of elliptic curve operations involved in this calculation, but no general
formula is given. We construct such a general formula. The idea is to reduce the
number of ECDBL by accepting an additional ECADD. When W, = 1, this is done
by noticing that
[27|P = [2F vt (2wt — 1)P + P).

This reduces k, - ECDBL to (k, —w — 1) - ECDBL and one ECADD. In general, one
has, for W, with 1 < W, <2¥~! — 1, that W, = (a;_1 - - - ag)2 with [< w —1 due
to the definition of the NAF,,. Assuming that a;_; = 1, we have

(25 W, | P = 27 (20 — 1P + [(W, — 271 - 2@t 1 1]P). (4.6)
To see this, notice that
2nu7w+l(2w71 + (W,, _ 2%1) . wal) — 2/451/4’[71 4 Qv (ali2 . 2172 T 1)
— 2/{u . (2[*1 + R 2[72 4o 1)
=2 . W,.
For W, <15 we have
W,=1: [2&]P = [2m—wH]([2v! — 1]P + P)
W,=3: [2&.3]P =20 wF2]([2v~t —1]P + [2”‘2 +1]P)
W,=5: [2%.5]P=[2% w3)([20-1 —1]P + [2v~3 + 1|P)
W, =7: [207.7]P=[2%w+|([20-1 — 1P +[3-2¢73 + 1]P) «
W, =0 2 9P = [t (e 1P+ 2t 4 1)P)
W,=11: [2%.11]P = [2"‘”‘“’“]([2 1P+ [3-2v7* +1]P)
W,=13: [2".13]P = [2"‘”_“’“]([2“}_1 1P+ [5-2v=* +1]P)
W, =15: [2%.15]P = 2w ([2v=L — 1P+ [7-2v"* + 1]P) *

The equations marked with * are “critical”, in the sense that the addition involved
is actually a doubling for w = 4 and w = 5 respectively. In these cases, an

95

Chapter 4. Coordinate Representations

approach using equation (4.6) offers no improvement. For every w such a “critical”
case is found for W, = 2v—1 — 1.

Assuming that the most significant bit is one, there is one positive odd number
with binary length one, one with length two and 2/~2 with length [for [> 3. Each
of the aforementioned modifications saves (k, —w +) - ECDBL and introduces an
additional ECADD. From Proposition 3.7 we know that x, = w 4+ 1 on average.
Therefore, one saves

1-241-3+42-44+4-5+---+(23 - 1w
2w72
2 —w+ 32+ 3)
211}—2
(27"(—4w+4) +w — 1) - ECDBL

- ECDBL =

- ECDBL =

on average by using equation (4.6). An extra

2w—2
'\

T+1+--- 4140
Qw—2

- ECADD =

2w72
(1 —2%7) . ECADD

2w72
- ECADD =

is needed on average.

Remark 4.3. Notice that equation (4.6) also holds when W, is even. Assuming
that the most significant bit is one, there are 2/~! numbers with [bits, so if W;
is any positive number, one saves

iy 2(i+2) —w

- ECDBL =
Qw—l _ 1
(w—1)-2v71 —
- ECDBL,
u—l_ 1
and introduces an extra
qw—1l_7
1T+14+..-4+1
+ 1+ +140 ECADD —
2w71 _
2w—1 _
- ECADD,
2w71 _

on average.

o6

Double in J, Precomputed Points in A

4.2.3 Double in 7, Precomputed Points in A
We assume that C' = J and C? = A. We look for C? such that
t2T =CH) +tC*+A=7)

is minimized. From Table 4.1 we see that [J is the better choice. Therefore, we
choose (C',C%,C3) = (J,J,A). As precomputations are done in A, we use the
technique from Section 4.2.1 to get a cost of

PRE, = (w— DI+ (5-2"2 4+ 2w — 12)M + (2“2 + 2w — 5)S

for the precomputations.
When performing the first stage (FS) of doublings, we use the method from
Section 4.2.2. If 1 < W, < 2*~! — 1, this requires

FS'(s)=t(A+A=T)+ (s+ 1t2T)
= (45 4+ 8)M + (45 + 6)S,

where s is the binary length of W,,. If W, = 2*~! — 1, we get a cost of

FS2=t2A=7)+w t(2J)
=(dw+2)M +4(w+1)S

on average. The total cost for the first stage of doublings is

o _ PSM)+FSE - FS'(w—1)+ S b2t FSY(i4-2)
w Qw—2

= (27" +4w)M + (327" + 4w — 2)S

on average.

For the last stage (LS) of doublings (2"°(Q + [Wy]P), where @ is the inter-
mediate point, we observe that we need kg - ¢(2J). From Proposition 3.7 we
know, that the expected value of kg is one. Therefore, the last stage of doublings
requires

LS = t(2J) = 4M + 48

on average.

After having taken into account the requirements of the first and last stage
of doublings, we need only to be concerned with the subsequence of bits of k
marked with T in equation (4.7) below.

Ky >w Ky—12wW K1>w ko>0
—T——— —
k=,0 - 0W, 100 W0 - 0Wy0--0)war,. (4.7)
T 7
11

o7

Chapter 4. Coordinate Representations

Assuming that ko = 1 and k, = w + 1, there are m := [— w — 1 bits marked
with . Recall, from Proposition 3.6, that the density of an integer in NAF,, is
1 m

—57 on average. Each of the -5 non-zero bits of { corresponds to an addition.

Therefore, the average number of field operations is

T,(J,J,A) =PRE, + FS, + LS+
m
when using Algorithm 8 with (C!,C? C3) = (J,J,A). Here, C denotes the cost

of converting the final point from 7 to A. This conversion requires [+ 3M + S,
ie.

Tu(J, T, A) =
w—2 3—w 8m
w-I+ 52 + 2 + —— 44+ 2w—-13 | M+
w+1
3
(2w2+3~23w+—m+4z+2w— 10) S. (4.8)
w+ 1

4.2.4 Double in 7, Precomputed Points in J°¢
We assume that C! = 7 and C? = J¢. We look for C? such that

t2T =C) +t(C*+ T =J)

is as small as possible. From Table 4.1 we see that J is the better choice, so we
choose (C',C?,C3) = (T, T, T°).

When using non-affine (inversion-free) coordinates for the precomputed points,
there is nothing to gain from the modification discussed in Section 4.2.1. The
total requirement for the precomputations is

PRE, =tRA=J)+ (T +A=J)+ 2> =2)t(T+ T°)
= (11-2“"2 —10)M +3-2“ 28,

For the first stage of doublings we, once again, use the approach from Section
4.2.2. It W, =1, we take advantage of P being in affine coordinates to get

FS'=t(A+ T =T)+2-t(2J)
= 15M + 10S.

If1< W, <2v 1 —1, we get
FS*(s)=t(T +T°=JT)+ (s +1t(2T)
= (45 + 14)M + (45 +6)S,

o8

Double in 7, Precomputed Points in J¢

where s is the binary length of W,. In the case of W, = 2¥~1 —1, the requirement
is

FS3

t2J=J)+w-t(2J)
=4(w+1)M + (4w + 3)S

on average. This makes an average cost of

_FS' 4+ FS — FS(w—1) + 317 20 FS?(i + 2)

2w—2
=(=5-22"" + 4w+ 6)M + (5-2*°7" + 4w — 2)S

FS,

for the first stage of doublings.
With the same reasoning as in Section 4.2.3, the last stage of doublings re-
quires

LS =t(27) = 4M + 48

on average.

Even though we have chosen J¢ for the precomputations, the point P (and
—P) are still available in affine representation as input to the algorithm. As
mixed addition with affine points is faster than mixed addition with points in
J¢, we use the affine representation of P when W; = +1. The probability of the
event W; = £+1 to occur is 21“%2 We define the map v by

1
Y(w) = 5o HA+T = T) + (1 - 2w2) T+ T =).
With m =1 — w — 1, the total cost is
T3, 9,57 = PRE, + FS, +m-107) + "2y ¢

where, once again, C = I +3M + S. Thus,

Tw<j7k77jc):
11 — 3.92-w
I+(11-2w—2—5-22—W+< 3 >m+4l—5)M+
w+1
3
(3.2w—2+5~22—w+—m+45—5) S. (4.9)
w+1

99

Chapter 4. Coordinate Representations

4.3 Comparison and Conclusion

As mentioned in Section 4.2, the choice between C3 = A and C? = J¢ depends on
the ratio I /M, which in our case is assumed to be 16. In this section we analyze
the situation for a selection of values of [and determine when to use the different
representations.

The interesting cases are [= 192, 224, 256, 384, 521 (cf. Section 2.2). There-
fore, the values of T,,(J,J,A) and T,,(J, J, J¢) are determined for these values
of [. When performing these calculations, w should be chosen optimally. Figure
4.1 shows T,,(J, J, J¢) for w € [1,10]. One might suspect that w =5 and w = 6

10° 10°
+ 60 : +
24) . .
+ 58 *‘ +
M *z : M t +
22 . 56 t N
Frpg gt 54 Fhpgatt
20 (T T TrrT (T T TrrT
4 8 4 8
W W

Figure 4.1: The plots show the number of field multiplications in T,,(J,J,J¢) for
[=192 (left) and [= 521 (right) respectively, when w € [1,10].

are optimal values in the two cases, and, indeed, one finds that for [= 192:

TW(T,J,JT°) = 2120M,
T5(T,J, T¢) = 2084 M,
To(T, T, T¢) = 2139M.

Similarly, for [= 521:

T5(T, T, T°) = 5463M,
T6(T, T, TC) = 5420M,
T:(J,TJ,TJ) = 5522 M.
Let T (Ct,C?,C3) denote the value of T,,(C',C?,C?) for a fixed value of [. Deter-

mining when to use A instead of J¢ for the precomputed points boils down to

60

Comparison and Conclusion

solving the inequalities

min(TL(J,J,A)) < min(T,(T, T, T)), € {192,224, 256,384,521}

with respect to /M.

102 102
22; 56
¢o°°°° &,o"
0 o7 o &
c oo° c &
(@] o°°° o pes
2 91 M = 1 M
8 .>°°° 9 54] ¢°°°°°
E y”oo =3 °&°°°°°
= °o°° % &&&
> ©® &
£ 20{.+ E
© o°°°

% F_) 52 9 &o‘,ooo
L_L LL °°¢°°

19 : : - - - - -

20 40 60 20 40 60 80
IIM I'M
+ Chudnovsky-Jacobian + Chudnovsky-Jacobian
Affine . Affine

Figure 4.2: The plots show the value of min,, (7% (J,J,.A)) and min,(T. (7, T, T°))
for | =192 (left) and ! = 521 (right)

1 =102 |1 =224 [=256 | [=384 | [=52l
I/Me| [0,34] | 0,37] | [0,41] | [0,53] | [0,64]

Table 4.4: The values of I/M for which precomputations should be done in A.

Figure 4.2 shows the values of min, (7. (7,J,.A)) and min,(T.(J,J,J¢)) for
[= 192 and [= 521. Table 4.4 shows the values of I/M for which the opti-
mal choice is C3> = A. As we are working with I/M = 16, we should choose
cr,cx ey =(J,7,A).

We now draw conclusions based on our observations. In Sections 4.1.1-4.1.3,
formulas for the operations ECDBL and ECADD using the coordinate representa-
tions P, A, J,J¢ and J™ where presented. In Section 4.2 we showed that the
total number of field multiplications involved in scalar multiplication on an el-
liptic curve can be reduced by using a mixture of the coordinate representations.
Jacobian coordinates were chosen for performing sequences of doublings during
scalar multiplication. In Sections 4.2.3 and 4.2.4 we analyzed the cases where

61

Chapter 4. Coordinate Representations

precomputations are done in affine coordinates and Chudnovsky-Jacobian coor-
dinates respectively. We compared the two choices of representations for the
precomputations. The conclusion was that using affine coordinates is the more
efficient choice, when S = M and I/M = 16. Therefore, we should represent
the precomputed points in affine coordinates, perform doublings in Jacobian co-
ordinates and perform additions in mixed affine/Jacobian coordinates. We also
notice that the optimizations from Sections 4.2.1 and 4.2.2 should be used, as
they reduce the average number of required field operations.

62

Chapter 5

Implementations

In this chapter we analyze the test implementation developed by IBM and com-
pare it to our implementation of the scheme constructed in Chapters 3 and 4.
The goal is to determine how much is saved, measured in field multiplications
and execution time, by using our implementation in preference to the IBM test
implementation.

5.1 Setup for Time Measurements

All implementations are executed on a Lenovo ThinkPad T60P with Intel Core
Duo 2.16 GHz processor and 1GB DDRIT SDRAM using Sun Java SDK version
1.5.0. Test vectors used for the timings are enclosed in Appendix B.

When measuring the execution time of an implementation IMPL, the straight-
forward way is to execute a program similar to the one shown in pseudo code
below, where we assume that System.time returns the current time in millisec-
onds:

t := System.time();

IMPL();

t := System.time()-t;

return t;

However, some implementations require so little CPU time per execution that
this strategy results in the value ¢ = 0. Instead, we execute the implementation
IMPL as many times as possible within a fixed time period. Subsequently, we
determine the average execution time for the implementation. We select a time
period of two seconds and get the strategy shown in pseudo code below:

63

Chapter 5. Implementations

n := 0;

limit := 2000 + (start := System.time());

while (end := System.time()) < limit do
IMPL();
n := n+i;

end while

t := (end-start)/n;

return t;

This ensures that we always get a non-zero result when measuring the implemen-
tations.

When performing tests on a Java Virtual Machine (JVM), one must keep in
mind that the JVM makes use of a Just-in-time (JIT) compiler' to convert parts
of the Java bytecode, which are identified to be frequently occurring, into native
(assembler) code in order to improve execution speed. If no native code is pro-
duced, the implementation will be executed using the bytecode-interpreter. This
does not give a clear picture of the time required to perform modular arithmetic
on large integers, as we cannot assume that the bytecode-interpreter is optimized
for these operations. In order to ensure that native code is produced, one must
execute the time measuring routine a number of times successively, as this forces
the JI'T compiler into producing native code. We find that two successive execu-
tions of the routine is sufficient.

5.2 IBM Test Implementation

The original source code from IBM is enclosed in Appendix C.3.1. The implemen-
tation is one of Algorithm 5, which is based on the recommendations in [P1300].
It contains no separate field implementation and performs integer recoding dur-
ing scalar multiplication. In order to attain more clarity and better grounds
of comparison, the original IBM version is modified slightly. The modifications
encompass

(i) Creating a separate field implementation.

(ii) Performing integer recoding prior to scalar multiplication. This results in
Algorithm 6.

Source code for the modified implementation is enclosed in Appendix C.3.2.
Source code for implementations of integer recoding routines are enclosed in Ap-
pendix C.7.

'In our case the JIT compiler is part of the the Sun Hotspot JVM.

64

Field Implementations

5.2.1 Field Implementations

We construct an implementation of each of the fields Fpi92, Fpaooa, Fpose, Fpasa
and F501. Source code for the field implementations is enclosed in Appendix
C.1. The implementations are based on Java’s BigInteger class, which is capa-
ble of performing modular arithmetic on large integers. Only modular addition
and subtraction are implemented differently in order to reduce the execution
time for these operations. Timings of a selection field operations are shown in
Table 5.1. With these implementations one can reasonably assume that S = M

Fpigo Fpao4 Fpose Fpsso | Fpsor
Operation Time Time Time Time Time
Addition 266ns | 276ns | 291ns | 338ns | 400ns
Subtraction 248ns | 439ns | 273ns | 323ns | 686ns
Multiplication (M) | 3184 ns | 3856ns | 4746 ns | 8 us 16 ps
Squaring (S) 3318ns | 4149ns | 4950ns | 8 us 15 pus
Inversion (I) 51ms | 59ms | 80ms | 136 ms | 223 ms

Table 5.1: The table shows timings of a selection of field operations.

and I/M = 16. We have a multiplication-to-addition ratio of approximately 21
on average, and will assume that the time required to perform an addition or
subtraction is negligible compared to the time required to perform a multiplica-
tion. When comparing our field implementations to field implementations such
as the one described in [BHLMO1], which has a multiplication-to-addition ratio
of approximately 15 on average and in which additions and subtractions are as-
sumed to be negligible, it seems valid to make this assumption. Furthermore,
optimization of field operations is not a subject of this examination. Therefore,
no further steps will be taken to reduce the execution times of modular addition
and subtraction. However, as addition and subtraction does require some execu-
tion time, we must be prepared that our assumption will result in discrepancies
between theoretical estimates and experimental values later on.

The time required to perform negation and comparison in the fields is even
less than that required to perform addition and subtraction. Negations and
comparisons are, therefore, also assumed to be negligible.

5.2.2 Scalar Multiplication

The method used for scalar multiplication in the IBM test implementation is the
addition-subtraction method (Algorithm 6) using exclusively affine coordinates.
From Section 3.2.1 we know that this scheme requires

[-t(2A) + é A+ A),

65

Chapter 5. Implementations

where [is the number of bits in the scalar. Using the values from Table 4.1, we
see that the average requirement is

3
a1 8l 7l
=]+ —-M+~=S8
313 T3
LIS
3

The average number of field multiplications and timings of the implementation
are shown in Table 5.2.

=192 | [=224 | [=256 | [=382 | [=521
Trpa | D056M | B899M | 6741M | 10112M | 13720M
Time | 15625 us | 22222 pus | 30769 pus | 80ms 175ms

Table 5.2: The table shows the average number of field multiplications required by
the scheme implemented by IBM and timings of the implementation.

5.3 An Efficient Scheme

Using the same field implementations as the ones described in Section 5.2.1, we
implement Algorithm 8 with (C!,C?,C3) = (J,J,.A) (in the notation of Section
4.2). Also, we use the modifications described in Sections 4.2.1 and 4.2.2. Source
code for the implementation is enclosed in Appendix C.3.3.

With Toptimizea := ming, (T(J, T, A)) (the average number of field multipli-
cations required by our efficient scheme in the notation of Section 4.2.3), we get
the values in Table 5.3. The table also shows the average reduction compared to
the IBM test implementation. As Table 5.3 shows, we get an approximate reduc-

[=192 | [=224 |1 =256 | | =382 | =521
Toptimizea | 2011M | 2326M | 2640M | 3866M | 5177M
Reduction | 60.0% | 60.6% | 60.8% | 61.8% | 62.3%.

Table 5.3: The table shows the average number of field multiplications required by
our efficient scheme and reduction compared to the scheme implemented by IBM.

tion of 61% on average. Timings of the implementation of our scheme are shown
in Table 5.4. The reduction in execution time compared to the IBM implemen-
tation is approximately 55% on average. The main reason for the discrepancy

66

Conclusion

=192 | 1 =224 | | =256 | | =382 |l=0521
Time | 7352 us | 10050 ps | 13698 us | 34482 us | 81 ms

Table 5.4: The table shows timings of the optimized implementation.

between the theoretical and the empirically observed reduction is that we do not
take into account the number of modular additions/subtraction required by the
scalar multiplication schemes (cf. our discussion in Section 5.2.1). However, the
timings support our conclusions in that our scheme remains advantageous in the
experiments, and we conclude that the discrepancy is acceptable.

The relative improvement gained by using our implementation in preference
to the IBM test implementation could potentially be even greater. The NIST
primes allow for very fast modular reduction compared to the speed of modular
inversion, as shown by Solinas in [Sol99]. This makes it even more beneficial to
move from a system based on affine coordinates to a system using coordinates
which allows for elliptic curve operations without inversions.

5.4 Conclusion

The implementation developed by IBM is an addition-subtraction method based
on the standards in [P1300], developed for test purposes. It uses exclusively affine
coordinates. The IBM test implementation contains no separate field implemen-
tation, and integer recoding is performed during scalar multiplication. Therefore,
the implementation is modified slightly, in order to be able to compare the im-
plementation with one based on the construction in Chapters 3 and 4.

Our field implementations are based on Java’s BigInteger class with a custom
implementation of modular addition and subtraction. Our implementations can
all be assumed to have S = M and I/M = 16. Also, we assume negligible
costs for addition and subtraction. The field implementations are used in the
modified IBM implementation as well as in our implementation of an efficient
scalar multiplication scheme.

Our scalar multiplication scheme is a NAF,, method with precomputations
in affine coordinates, doublings in Jacobian coordinates and addition in mixed
affine/Jacobian coordinates. We also implement the modifications discussed in
Sections 4.2.1 and 4.2.2. This gives a 61% reduction in the average number of
required field multiplications, while timings show a 55% reduction on average. We
claim that the reason for the discrepancy between the theoretical reduction and
the empirically observed reduction is that our theoretical examination does not
take into account the number of modular additions and subtractions performed.
The experiments do support our conclusions, and we disregard the discrepancy.

67

Part 111

Countermeasures against Power
Analysis

69

Chapter 6

Power Analysis

One of the major threats against ECC-systems is the use of side channel analysis
to break the systems, i.e. gain knowledge of sensitive information (most com-
monly the secret key of the system). A side channel is a source of information
about the system which is available to anyone having access to measurements of
the hardware executing the algorithms of the system, e.g. timing information or
power consumption measurements. A side channel attack is an attack based on
side channel analysis (more details can be found in [Joy05]).

Side channel attacks can be invasive or non-invasive. Invasive attacks par-
tially or fully destroys the chip executing the system; therefore, they are likely
to be detected. Furthermore, these kinds of attacks require use of laboratory
stations and are time-consuming. Countermeasures against invasive attacks are
usually implemented in hardware.

Non-invasive side channel attacks leave the physical system (chip, patching
etc.) undamaged; therefore, they are difficult to detect. Performing non-invasive
attacks is also relatively inexpensive compared to performing invasive attacks.
Countermeasures against non-invasive attacks are usually implemented in soft-
ware and are based on a mathematical foundation. In this chapter we will focus on
non-invasive side channel attacks and the mathematical countermeasures against
them.

So far, no comparison between the efficiencies of these countermeasures has
been published. We perform such a comparison in the following sections.

We assume that the hardware executing the system is located on a smart card
or a similar, easily accessible, device (see [ACDT05] for a detailed introduction
to smart cards). The operation performed by the hardware is [k]P, where k
is the secret key. The purpose of an attack is to learn the value of k. Notice
that the attack only applies to protocols using long-term keys, e.g. the ElGamal
cryptosystem (cf. Section 2.1.1). For protocols using ephemeral keys, e.g. the
ECDSA, the attacks described in this chapter are not useful.

The most commonly known side channel attacks are timing attacks, attacks
based on simple power analysis (SPA) and attacks based on differential power

71

Chapter 6. Power Analysis

analysis (DPA). By implementing countermeasures against SPA and DPA one
also thwarts timings attacks. Therefore, we will not consider countermeasures
against timing attacks and only focus on SPA attacks and DPA attacks. Suc-
cessful attacks based on power analysis have been documented (for instance in
[KJJ99] and [AOO00]). Both types of attacks use information about power con-
sumption as a side channel. What makes SPA and DPA possible is that the
power consumption in the hardware executing an ECC-system depends on the
data being manipulated in the system. Under some circumstances, measurements
of the power consumption reveal information about the secret key k.

Almost all chip design today is based on CMOS (Complementary Metal Ox-
ide Semiconductor) technology. A change of state in a CMOS logical gate results
in a change in power consumption. This change can be detected by using an
oscilloscope. Any electronic device (PC, smart card etc.) performs calculations
by switching a number of logical gates (in the CPU, buses, memory etc.). The
total number of gates used in a computation depends on the values (the data in-
volved in the computation) in the registers of the device. As power consumption
depends on the number of gates switching, different data inputs for the same op-
eration will result in different power consumption traces (measurements of power
consumption during the time of execution). By monitoring (and possibly per-
forming a statistical evaluation of) the traces, an attacker can sometimes attain
knowledge about sensitive information in the system. In our case, the sensitive
information is the value of the integer k being used in scalar multiplication.

6.1 Simple Power Analysis

SPA is based on a single power consumption trace from the chip. As Chapter 4
shows, the number and composition of field operations involved in an ECADD differs
from the number and composition of field operations involved in an ECDBL. Each
type of field operation has its own unique power consumption trace. Therefore,
an ECADD and an ECDBL have different power consumption traces in general.

If the double-and-add algorithm (Algorithm 1) is used for scalar multiplica-
tion, an attacker will see a power consumption trace consisting of a mixture of
two distinguishable sub-traces corresponding to ECDBL and ECADD respectively
(see Figure 6.1).

As doublings occur more frequently than addition on average, the attacker
can identify the most frequently occurring sub-trace as an ECDBL and the other
sub-trace as an ECADD. Knowing that an ECDBL corresponds to a zero-bit in the
scalar k£ and that an ECDBL followed by an ECADD corresponds to a one-bit in the
scalar, an attacker will be able to deduce all the bits of £ by observing the power
consumption trace from a single execution of the algorithm. In Figure 6.1 the
observed sequence of bits is 001.

72

Simple Power Analysis

ECDBL ECDBL ECDBL ECADD

Tl g, i ,MM\MMMHMMMH\M

A A UH \ \ \ Time

Figure 6.1: Schematic SPA trace for the double-and-add algorithm

A straightforward way of securing the algorithm is to always perform an ECADD
and an ECDBL, regardless of the value of the current bit. Subsequently, a superflu-
ous ECADD is disregarded. This approach is known as the double-and-add always
method. The method is shown in Algorithm 11.

Algorithm 11 Double-and-add-always
Input: P € E(F,) and k = (kj—1 - - - ko)2
Output: [k]P € E(F,).
Qo+ P; Q1+ 051 1—-2;
while 1 > 0 do
Qo + [2]Qo;
Q1 «— Q1k, © P;
1—1—1;
end while
return @)

Notice that Algorithm 11 performs one ECDBL and one ECADD for each bit of k.
A power consumption trace from the execution of the algorithm will, therefore,
be useless in an SPA attack. Algorithm 11 requires (I — 1)(ECDBL + ECADD).

In general, a scalar multiplication algorithm is vulnerable to SPA if it behaves
differently according to the values of the individual bits of the scalar. On the
other hand, it is impossible to mount a successful SPA attack if the algorithm
behaves exactly the same regardless of the values of the bits of k. Because of this,
all countermeasures against SPA attacks modify the algorithm to get a uniform
power consumption trace. The countermeasures can be split into three categories:

1) Algorithms with uniform behaviour.

73

Chapter 6. Power Analysis

2) Algorithms with unified addition and doubling.
3) Algorithms with dummy field operations.

When evaluating countermeasures against SPA attacks, one should consider se-
curity against fault injection attacks (FI attacks). These attacks are based on
the idea that one can deduce information about k& by forcing the system to per-
form erroneous instructions during scalar multiplication. The first published FI
attack was the “Bellcore attack” on an RSA implementation (see [BDLI7]). In
ECC-systems, FI attacks can be used to disclose dummy operations in SPA coun-
termeasures. They are carried out by injecting power into, or emissioning light
onto, the chip executing the scalar multiplication. This will perturb the compo-
nents of the chip and alter the value of one or more bits in the representation of
the point being multiplied. When the scalar multiplication algorithm terminates,
one can compare the result with the correct value of [k]P. If the result of the
scalar multiplication is correct, regardless of the fault injection, one can deduce
that the operation being performed at the time of the injection was a dummy.
Consider Algorithm 11 as an example. If k; = 0, the operation in line 4 is a
dummy. If the calculation Q;_x, < Q1_x, ® P is perturbed, it will not influence
the return value of the algorithm.

A successful FI attack requires the ability to execute the algorithm a number
of times with a fixed k£ as well as access to a correct result of the calculation
[k]P for comparison. Therefore, if the value of k is changed every time the
algorithm is executed, FI attacks are not possible. Algorithms without dummy
operations are also secure against FI attacks. Conversely, algorithms which use
dummy operations are a priori vulnerable to FT attacks, unless the value of k is
randomized in some way.

6.1.1 Algorithms with Uniform Behaviour

The simplest example of a scalar multiplication algorithm with uniform behaviour
is the double-and-add always method (Algorithm 11). With an optimal choice of
coordinate representations, the algorithm requires

Tagn = (1= D)(tRI) + 4T+ A=T))+C
=1+ (121 — 9)M + (71 — 6)S.

Here, C' = I + 3M + S is the cost of conversion from 7 to A. Table 6.1 shows
the number of field multiplications performed by Algorithm 11 and the overhead
compared to the efficient, non-secure scheme described in Section 5.3.

Algorithm 11 uses no extra storage for precomputation. As it introduces dummy
operations, it is, however, vulnerable to FI attacks. One cannot hope for im-
provements by adapting Algorithm 11 to a scalar in NAF,, (cf. Section 3.2.2).
Indeed, the whole point of the NAF,, method is to reduce the number of ECADD

74

Algorithms with Uniform Behaviour

[=192 |1 =224 |1=256 | =384 | | =521
Tatg11 3649M | 4257M | 4865M | T297M | 9900M
Overhead | 81.5% | 83.0% | 84.2% | 88.7% | 91.2%

Table 6.1: The table shows the number of field multiplications required by Algorithm
11 and overhead compared to the efficient, non-secure scheme.

involved in scalar multiplication by lowering the Hamming weight of the scalar.
As Algorithm 11 executes both an ECDBL and an ECADD for every bit of the scalar,
the NAF,, method does not apply in any sensible way.

In [OT03] Okeya and Takagi show that it is possible to construct a more
efficient scheme, which uses a different representation of the scalar. The repre-
sentation is constructed using Algorithm 12. The algorithm returns the non-zero
bits in a representation on the form

w w w

—~ = —~ = —~ =
k:(UdO"'OquO"'O"'UoO-'-O)z, (6.1)

written (Uq - - - Up)nars,. This representation satisfies Definition 3.3 except for the
fact that the U;’s are allowed to be even.

Algorithm 12 Okeya & Takagi recoding

Input: k= (kl,1 e 'ko)g,w > 1.
Output: Uiy, ..., Up such that k = (U[” ~-Up)NaFs -

s d =[5
1« 0;
while i < d do
U; «<— k mods 2%,
k—k—U;
k «— 2%;
1— 1+ 1;
end while
return Uy, ..., U,

If k£ is even in line 4 of Algorithm 12, we ensure that mods is well-defined by
always choosing the positive residue in situations where the absolute values of
the positive and negative residue are equal.

The advantage of the NAF? representation in equation (6.1) is that it consists
of repetitions of a single, fixed pattern. This is used in Algorithm 13, which
thwarts SPA.

75

Chapter 6. Power Analysis

Algorithm 13 W-double-one-add always
Input: P € E(F,), w>1and k= (Us---Up)nars-
Output: [k|P € E(F,).

1: Compute [+£2|P, [+3]|P, [£4]P, ..., [+(2v~!1 - 1)]P.

2: Qo — [Ud]P;

3 1—d—1;

4: while i > 0 do

5.] «— w;

6: while j > 1 do
& Qo — [2]Qo;
8 jej- L
9: end while

10: Q1 — Qo @ [Us]P;
11: Qo — Q5w

12 Qi1

13: end while

14: return Q)

If U; = 0, the addition in line 10 is a dummy operation, as the result of the
addition is never used. In this case, any point can be used for [U;]P (if addition
with the point at infinity O is faster than addition with other points, one must
use a point different from O for [0]P). Algorithm 13 has the fixed pattern

w w
A A

ECDBL, ..., ECDBL, ECADD, ECDBL, ..., ECDBL, ECADD, - - -

This makes it impossible to deduce any information about k by using SPA. For
proofs of correctness of Algorithms 12 and 13 see [OT03].

In line 1, Algorithm 13 precomputes 2*~! — 2 points. If the precomputed
points are represented in A, we can extend the use of simultaneous inversions
discussed in Section 4.2.1. Algorithm 14 computes [2] P, [3] P, [4] P, ..., [2v~ ' —1]P
using Algorithm 9 for inversions. As was the case with Algorithm 10, Algorithm
14 is based on the idea of Cohen (JCMO98]|) but has been constructed for this
examination. It has, to the author’s knowledge, not been published previously.

76

Algorithms with Uniform Behaviour

Algorithm 14 Precomputations in .4 using simultaneous inversion.

Input: P € E(F,) given in A, w > 1.
Output: P, [2]P, [3]P,...,[2v ' —1]P € E(F,).
L (z1,y1) «— P;
2: (xq,1ys) < ECDBL(P);
31— 1;
4: while i <w — 2 do
5t (dl, ceey dzz) — (:L’2¢ — X1,T9i — L2, ...,Toi — Loi_q, 2y2¢);
6: (52¢+1, Oi 9y ...y Ogi1_1, 52i+1) — SIMINV(dl, R in); //SIMINV is an im-
plementation of Algorithm 9.
7. j e 204 1;
. while j < 2! — 1 do
: (2;,y;) < ECADD_NI((2;_oi, Yj_o:), (T2i, Yai), 0;);
10: J—J+1
11: end while
12: (ZL‘2i+1 , y2i+1) — ECDBL_NI((ZL‘Qi, yQi), 52i+1);
13: 1 «— 14 1;
14: end while
15: return ((z1,v1), (T2, y2), -+, (Toi_1,Y2i_1))

The ECDBL requires I + 2M + 2S. The w — 2 iterations of the main loop each
requires

e One simultaneous inversion of 2 elements.
e (2' — 1)ECADD_NTI.
e One ECDBL_NI.

This makes a total requirement of

w—2

PREj :=T+2M+25+ Y (I+2/(5M+5)—3M +5) =
i=1

(w—DI+(5-2""=3w—-2)M+ (2" 4w —2)S
for the precomputations. If 7¢ are used for the precomputations, the cost is

PRE] = 1(2A = J%) + A+ J° = J) + (27 = 4) - 4(J" + T°)
= (11-2¥ —32)M + (3-2*"1 — 6)S.

For the fist stage of doublings ([2*-U4| P) we could potentially use the modification
discussed in Section 4.2.2. As mentioned in Remark 4.3, the modification is
valid for any U; > 0. Therefore, with appropriate precautions, we could use

7

Chapter 6. Power Analysis

the modification for U; < 0 by setting [2% - Uy|P = [-1-2¥ - (=Uy)]P. This
would, however, corrupt the idea of having a uniform behaviour, as the power
consumption corresponding to the first stage of doublings would wary according
to the value of Uy. Because of this, we refrain from using the modification.
Algorithm 13 requires w[L] - ECDBL and ([1] — 1) - ECADD so, by using A for

w w

precomputations, we get a cost of

T; :==PRE} +t(2A=7J) + (w- [H — 1) t(2T)+

(Pw —1) HA+T =T)+C,

w
where C' = [+3M + S is the cost of converting the result from J to A. By using
J¢ for precomputations, we get a cost of
¢ [
T7" .=PREJ +t2J°=J) + (w- [—w — 1) t(2T)+
w

(PW —1) HT+T=T)+C.

w

Using the values from Table 4.1, we get

l
TA =wl + (5-2w—1+ [—w (4w+8)—3w—9) M+

w

(2”1 + Pw (4w +3) +w — 4) S

w

and

. l
TI =1+ (11-2@”—1 + [—w (4w + 11) —3w—40) M+
w

(3 vty [H (4w + 3) — 9) S.

The values of min,,(7) and min,(77°) are shown in Figure 6.2 for [= 192 and
[= 521 respectively.

78

Algorithms with Uniform Behaviour

10? 102
601
0 " %
-§ 5 58 1 %’/’
© I
= o
= = <
5 £ 56 i
S IS S
o o 4
(6]]
o St ”f
¥
25 50 75 100
I'M
+ Chudnovsky-Jacobian * Chudnovsky-Jacobian
Aff o Affine
° ine

Figure 6.2: The plots show the number of field multiplications in min,(7:) and
min, (T7°) for I = 192 (left) and [= 521 (right).

As the figure indicates, we should choose A for precomputations, when /M is
less than some value depending on [. This value is shown in Table 6.2 for the
applied values of [(see Section 2.2). As we have I/M = 16, we choose A for

[=192 | [=224 |1 =256 | | =384 | | =521
v 55 61 67 82 98

Table 6.2: For different values of [, the table shows a value v which satisfies that A is
the better choice for precomputations if I/M < v.

precomputations and get the average number of field multiplications shown in
Table 6.3. The table also shows the overhead we introduce by using Algorithm
13 in preference to the efficient, non-secure scheme described in Section 5.3.
Algorithm 13 needs to store twice as many precomputed points as the non-secure
scheme. Additionally, it introduces dummy operations, so the algorithm is vul-
nerable to FI attacks.

In 1987, Montgomery proposed Algorithm 15 for scalar multiplication. The
algorithm performs both an addition and a doubling for each bit of the scalar.
Thereby, it makes SPA impossible. It does not introduce dummy operations, as
every operation is used. The requirement of Algorithm 15 is

| - ECDBL + (I — 1) - ECADD.

79

Chapter 6. Power Analysis

=192 |1 =224 |[=256 |1 =384 | [=521
lej‘ 2142M | 2448 M | 2800M | 4039M | 5396 M
w=2>5 w=2>5 w =206 w =206 w =206

Overhead | 6.5% 5.2% 6.1% 4.5% 4.2%

Table 6.3: The table shows the average number of field multiplications required by
Algorithm 13 and overhead compared to the efficient, non-secure scheme.

Algorithm 15 Montgomery’s ladder algorithm

Input: P € E(F,) and k = (kj—1 - - - ko)2-
Output: [k|P € E(F,).

1. P — P; P, — [2]P;

2: 7« [—2;

3: while i > 0 do

4: if k; = 0 then

5: Py — P ® Py; P — [2]P;
6: else

T P — P, @ Py; Py — [2]Py;
8 end if

9: 1« 1—1;

10: end while

11: return P;

What makes the Montgomery ladder algorithm interesting is that the structure
of the algorithm allows for the use of efficient formulas for addition and doubling.
Notice that, throughout Algorithm 15, the difference P, — P, is always equal to
P at the beginning of the main loop in lines 3-10. Montgomery showed that for
curves on the form
By =2+ Az +z, B#0

(Montgomery form) in large characteristic, an ECADD can be performed in 4M+2S
— provided that the difference between the addends is a known point. An ECDBL
requires 3M + 25.

A curve in Montgomery form can always be converted into a curve in short

. . 2 _ A3 .
Weierstraf form by setting a = é — ?;AF and b = 27% — ag%, but the converse is
not true.

We say that two elliptic curves £ and E are 1somorphic over K if there exists
u € K" and r, s,t € K such that the map

(z,y) — (x4 7, udy + u’sz +t)

transforms the equation of E into the equation of E. The map given above is
called an admissible change of variables. The general result is:

80

Algorithms with Uniform Behaviour

Theorem 6.1. An elliptic curve E : y?> = 23 + ax + b is isomorphic to a curve
in Montgomery form if, and only if,

1) 2% + ax + b has at least one root o in F,.
2) 302+ a is a quadratic residue in F,.

This result tells us that we cannot, in general, expect a curve in short Weierstraf
form to have a Montgomery form representation. The NIST curves over prime
fields have no Montgomery form representation, as the polynomial 2® — 3z + b is
irreducible over I, for these curves.

In 2002, Brier and Joye [BJ02| generalized Montgomery’s idea to arbitrary
curves in short Weierstrafs form. Their result was:

Proposition 6.2. Let K be a field with char(K) # 2,3, and let E : y* = 2° +
ax + b be an elliptic curve over K. Let P = (x1,y1) and Q = (x2,y2) be given
such that P,Q € F(K)\ {O} and P # £Q. Let P — Q = (x3,y3). Then, the
z-coordinate (P ® Q) of P ® Q satisfies

(v129 — a)? — 4b(xy + x2)

o(PoQ) a3 = o 1)’ (6.2)
If y1 # 0, the x-coordinate x([2)P) of [2]P satisfies
(2 —a)* — 8bxy
=([21P) = 4(z3 + axy +b) (6:3)
The y-coordinate y(P) of P satisfies
y(P) = Qb+(a+l‘3l’1)(l‘3+l’1)—l’2($3—$1)2. (6.4)

2y3

Notice that the y-coordinate does not appear anywhere in equations (6.2) and
(6.3). Equation (6.4) ensures that the y-coordinate can be recovered.

To eliminate inversions in the addition formula, we will use projective coordi-
nates (cf. Section 1.1). As P,Q # O and P # —Q, we have 71 = 21, 15 =)Z(—; and

Z1)

t(P® Q) =% for some X;,7;, Z € K, i =1,2,3, with Z;Z,Z # 0. Substituting

into equation (6.2) gives

X (FgE)’ —4b(G + 2)

7T T
<X1X2 — aleg)z — 4()2122()(122 —+ XQZl)

.’,173<X122 — X221)2

81

Chapter 6. Power Analysis

From this we see that formulas for X and Z are

X = (X1 Xy — aZ,Z5)* — 4bZ, Z5(X 1 Zy + X2 7))

7 = 13(X1Z5 — Xo71)>. (6.5)

Similar calculations result in the following formulas for the first and third pro-
jective coordinate of 2]P = (X : Y : Z):

X = (X} —aZ})? - 8bX, 7}

7 =AZ,(X; +aX Z7 +bZ}). (6.6)

When a = —3, an addition requires 7M + 25, while a doubling requires 5M + 35.
The first doubling in Algorithm 15 requires ¢(2.4 = P). Using formula (6.6)

with Z; = 1, this can be done in 2M + 25.

The algorithm performs (I — 1) - (ECDBL + ECADD). As P, — P, = P (which is in

A), we can use formula (6.5) and (6.6) to get a cost of

Ty :=2M +25+ (I —1)- (12M 4 55)
= (121 — 10)M + (51 — 3)S.

Recovering the y-coordinate of [k]P is done by using equation (6.4) with x; = X%

Z1
and zo = % The recovery requires 21 + 2M (for calculating x; and z3) plus

I +4M + S" This makes a cost of
Ty :=3[+6M+ S
for the y-recovery. The total cost of Algorithm 15 is

TMontgomeT’y = Tl + T2
— 31+ (120 — 4)M + (51 — 2)S.

This gives the values in table 6.4.

[=192 | [=224 |1 =256 | | =384 | | =521
Triontgomery | 3306 M | 3850M | 4394M | 6570M | 8899M
Overhead 64.4% | 65.5% | 66.4% | 70.0% | 71.9%

Table 6.4: The table shows the number of field multiplications required by Algorithm
15 and overhead compared to the efficient, non-secure scheme.

Remark 6.1. Montgomery’s ladder algorithm maintains the invariant P, — P =
P. When the algorithm terminates, P, = [k]P, so Py = [k+1]P. This means that
choosing k = |E(F,)| — 1 will result in P, = O, and in this case equation (6.4)

82

Algorithms with Unified Addition

does not apply. This is not an issue of concern in the established literature on
the subject; nonetheless, it should be noted that Algorithm 15 (using the result
in Proposition 6.2) returns the z-coordinate of [k]P for any k € [1,|E(F,)| — 1],
but y-recovery is not possible for k = |E(F,)| — 1. When using the protocols in
Section 2.1, this must be taken into consideration.

o

Despite the substantial overhead involved, Montgomery’s ladder algorithm is a
useful alternative to the double-and-add always method and the w-double-and-
add always method. It uses less field multiplications than the former, and, unlike
the latter, it does not need storage for precomputed points. Furthermore, Algo-
rithm 15 uses no dummy operations. Therefore, it is secure against FI attacks.

6.1.2 Algorithms with Unified Addition

Instead of altering the scalar multiplication scheme to ensure a fixed pattern of
ECDBL and ECADD, one can make the ECDBL indistinguishable from the ECADD.
This is done in [BJ02|. The starting point is Proposition 6.3:

Proposition 6.3. Let E : y> = 23 + ax + b be an elliptic curve over a field K
with char(K) # 2,3. Let P = (x1,y1) and Q = (x2,y2) be K-rational points on
E with P,Q # O and P # —Q. Then, P ® Q = (z3,y3) with

x3 = X — 11 — 23, Y3 = A1 — 23) — 1, (6.7)

where

2 2
]+ 21T+ 25+ a

Y1+ Yo

A\ =

If we recall that z% + z129 + 23 = (21 + 22)* — 2129, when char(K) # 2, we see
that the cost of an addition (which might be a doubling) using equation (6.7) is
I+ 3M +28S.

In order to deduce formulas for projective coordinates, one notices that

(.Tl + 1’2)2 — X129 + a
Y1+ Y2

A\ =

is symmetric in P and Q. As (E(F,), ®) is abelian, equation (6.4) says that
Yz = A(za — 3) — ¥,

SO
2ys = N1 + 22 — 2x3) — (y1 + ya2).

83

Chapter 6. Power Analysis

Using this observation, one gets, by setting x; = %, Y = % for e =1, 2,3, that

X3
= Z -
(X122 + X2 21)2 — X122 X0 20 + a(Z120)%)
(Z1722)2(Y1Zy + Yo Z1)?
B 21Z5(Y1Zo + Yo 20) (X1 Zo + X2 Z1)
(Z125)*(Y1Zy + Yo Zy)?

€3

and
2 = — =
Y3 7
3[(X1Z0+ X221)? — X122 X071 + a(Z12:)?] (X1 Zy + X2 Z1) 21 Z2(Y1Z2 + Yo 21)?
2[(X1Zs + XoZ1)% — X1ZXo 71 + a(Z122)2)* + (Y1 Zo + Yo Z1) (21 Zs)?
(2129)2(Y1Z2 + Y2 Z1)? '

With a common denominator of Z3 = 2(Z,Z5(Y1Zy + Y2Z1))3, one gets

X3 =2JM, Ys=H(L—-2M)—K? Z3=2J% where

A=2717Zy, B=X1Z,, C=Xy2,, D=YZ,, E=Y7,
F=B+C, G=D+E, H=F*>—BC+aA? J=AG,
K=GJ, L=FK, M=H?—1L. (6.8)

When a = —3, the unified addition formula (6.8) requires 12M +5S. If one point
is given in affine coordinates, the requirement drops to 9M + 5S.

As opposed to Montgomery’s ladder algorithm, scalar multiplication using the
unified addition formula does not exclude the possibility of precomputing points,
so one can use an adapted version of Algorithm 8. In [BSS04] the authors give
an analogue of the addition-subtraction method (Algorithm 6) which is adapted
to the use of formula (6.8). No algorithm adapted to a scalar in NAF,, is given,
so we construct one. Algorithm 16 shows the result, in which § and ¢ are given
by

ki #0 ki, 0=0

84

Algorithms with Unified Addition

Algorithm 16 Scalar multiplication with unified addition formulas

Input: P e E(F,), w>1land k= (d;---do)NaF,-
Output: [k|P € E(F,).
. Compute the odd multiples [3]P,...[2v~! — 1]P.
(R, R3,...,Row-1_1) « (P,[3]P,...[2¢"t — 1] P);
RQ — [dl]P,
1—1l—1;,0«0;
while 7 > 0 do
Ry +— Ry @ R,; //Use unified addition and doubling.
0 90(07 dl)v
i—i+446(d;) -1,
end while
return R,

_.
=

Algorithm 16 performs the same operation for each iteration of the main loop
in lines 5-9. This makes it secure against SPA. Precomputations can a priori
be done in A or P. While it may be tempting to precompute in A in order
to make use of the efficient mixed addition in formula (6.8), one must bare in
mind that our goal is to maintain indistinguishability of ECDBL and ECADD. If the
precomputed points are represented in A, then all points must be represented in
A. Otherwise, doublings will consume more power than additions — resulting in
a power consumption trace like the one in figure 6.1 (only with ECDBL consuming
more power). This would make the algorithm vulnerable to SPA.

If points are represented in P, we use the idea from precomputation scheme
(d) in Section 4.2.1 to get a cost of

PRE! =t2A=P)+t(A+P=P)+ (2" > =2)t(P+P)
=(3-2" - 1M+ (2" +2)S

for the precomputations. Using formula (6.8), Algorithm 16 performs [+ wLH
additions on average. With C' = I 4+ 2M (the cost of converting [k|P from P to
A), the total cost becomes

l
Tf:PREZjJr(H—) -(12M 4+ 55) + C
w+1

1
:[+<3-2w+12l<1+—)—9)M+
w+1

1
(2“’1 + 51 (1 + —) + 2) S
w+1
on average.

Precomputations in A require

PREA = (w— 1T+ (5-2°72 4 2w — 12)M + (5- 2% + 2w — 5)S.

85

Chapter 6. Power Analysis

The total average requirement, when using A for precomputation, is

l
szpREg‘+(z+—) (I 4 3M +29)
w+1

:(w—1+l+L)I+
w4+ 1

1
(5-2w—2+2w++3l (1+—) —12) M+
w+ 1

1
<2w—2+2w+2z (1+—) —5) S,
w+1

The values of min,,(77) and min,, (T:) are shown in Figure 6.3 for [= 192 and
[=521. For I/M > 13, projective coordinates are the better choice for all values

10° 10°
8 00 o
%) Lo n 14 .
S 3 o 5 .
§ 5) 8 12 °
.9- 00 §- o
= o = N
E4:‘i+++++++++4+++++++ E LR R
5 E10 .
() [}
iC iC
10 15 20 25 30 8T TTTT I TTTT]
M 10 15 20 25 30
I'M
+ Projective + Projective
. Affine . Affine

Figure 6.3: The plots show the number of field multiplications in min,(7:) and
min,, (7)) for I = 192 (left) and I = 521 (right) respectively.

of [. As we are working with I /M = 16, we choose P and get the values shown in
Table 6.5. The use of precomputations implies the need for storing 2°~2—1 points
in memory. As the algorithm uses no dummy operations, it is secure against FI
attacks. Omne should, however, be aware that other attacks against algorithms
using unified addition has been proposed (see [SST04]).

86

Algorithms with Dummy Field Operations

[=192 |1 =224 |1=256|1=384| | =521
Tf 3929M | 4564M | 5198M | 7694M | 10355M
w=2>5 w=2>5 w=2>5 w =206 w =206

Overhead | 95.4% | 96.2% | 96.9% | 99.0% | 100.0%

Table 6.5: The table shows the average number of field multiplications required by
Algorithm 16 and overhead compared to the efficient, non-secure scheme.

6.1.3 Algorithms with Dummy Field Operations

Section 6.1.3 is excluded from this version.

87

88

Chapter 6. Power Analysis

Section 6.1.3 is excluded from this version.

Algorithms with Dummy Field Operations

Section 6.1.3 is excluded from this version.

89

90

Chapter 6. Power Analysis

Section 6.1.3 is excluded from this version.

Algorithms with Dummy Field Operations

Section 6.1.3 is excluded from this version.

91

92

Chapter 6. Power Analysis

Section 6.1.3 is excluded from this version.

Algorithms with Dummy Field Operations

Section 6.1.3 is excluded from this version.

93

94

Chapter 6. Power Analysis

Section 6.1.3 is excluded from this version.

Comparison and Conclusion

Section 6.1.3 is excluded from this version.

6.1.4 Comparison and Conclusion

We now compare the efficiency and security of the five SPA-secure scalar mul-
tiplication algorithms examined in Sections 6.1.1, 6.1.2 and 6.1.3. For timing
purposes, the algorithms are implemented in Java (source code is enclosed in
Appendix C.4). Timings are done using the same setup as the one described in
Section 5.1.

95

Chapter 6. Power Analysis

Table 6.6 shows the number of field multiplications (M) required on average
by the five methods, the number of points (£) which need to be precomputed and
timings of the implementations. For comparison, the same values are shown for
our efficient, non-secure implementation.

From Table 6.6 one can see that an SPA countermeasure based on side chan-
nel atomicity is the better choice if speed is the primary focus. We have seen
that the matrix used is small enough to make side channel atomicity more ef-
ficient with respect to storage requirements than the w-double-and-add always
method (Algorithm 13), which precomputes twice as many points (even more in
the case [= 256 when I/M = 16). Both methods use dummy operations and
are ,therefore, vulnerable to Fl-attacks. If one does not have extra storage at
hand, Montgomery’s ladder algorithm (Algorithm 15) should be used, as it is the
fastest method among those which use the same storage as Algorithm 8 or less.
Additionally, Montgomery’s ladder algorithm uses no dummy operations, so it is
secure against FI attacks.

96

Comparison and Conclusion

Field multiplications:

=192 =224 I =226 [=384 [=521
Countermeasure | M f M i M f M i M i
None 2011 | 7 [2326 | 7 | 3640 | 7 | 3866 | 15 | 5177 | 15
(algorithm 8)
Double-and-
add always 3629 | 0 | 4237 | 0 | 4845 | 0 | 7277 | O | 9880 | O
(algorithm 11)
W-double-one-
add always 2142 | 14 | 2448 | 14 | 2800 | 30 | 4039 | 30 | 5396 | 30
(algorithm 13)
Montgomery’s
ladder algorithm | 3306 | O | 3850 | O | 4394 | 0 | 6570 | O | 8899 | 0
(algorithm 15)*
Unified addition
(algorithm 16)* 3929 | 7 | 4564 | 7 | 5198 | 7 | 7694 | 15 | 10355 | 15
Side channel
.. 2023 | 7 | 2338 | 7 | 2652 | 7 | 3878 |15 | 5190 | 15
atomicity
* Secure against FI attacks.
Timings:
=192 | =224 | =226 | [=384 |l=521
Countermeasure Time Time Time Time Time
g‘fgﬂthm) 7352ps | 10050 ps | 13698 pus | 34482 s | 81mis
Double-and-
add always 13513 s | 18691 ps | 25641 us 68 ms 166 ms
(algorithm 11)
W-double-one-
add always 8368 s | 11235 us | 15503 pus | 38769 us | 92ms
(algorithm 13)
Montgomery’s
ladder algorithm | 12048 us | 16806 s | 22988 s 61ms 149ms
(algorithm 15)*
E;Tglifi;‘idig;n 12987 s | 18018 pus | 24888 s | 66ms | 162ms
Sii;ﬁgnel 8163 s | 11173 s | 15037 ps | 37735 s | 87ms
* Secure against FI attacks.

Table 6.6: The tables show the average number of field multiplications required (M),
the number of precomputed points () and timings of implementations of the secure
algorithms presented in Sections 6.1.1, 6.1.2 and 6.1.3.

97

Chapter 6. Power Analysis

6.2 Differential Power Analysis

This section examines attacks of the kind described by Coron in [Cor99]. We as-
sume that the scalar multiplication algorithm is secure against SPA, e.g. through
implementation of one of the countermeasures discussed in Section 6.1. We exam-
ine the situation where an attacker is in possession of n > 1 power consumption

traces corresponding to the calculation of [k] Py, ..., [k]P, for known and distinct
points P, ..., P, € E(F,) (situations with P, = P; for some i, j are more similar
to SPA).

Let A be a scalar multiplication algorithm, and let G = {¢1, ..., g} be the set
of logical gates in the hardware executing 2. Let t,,,, be the maximum number
of time units, e.g. ns or us, required to execute 2A. Let

flg,t), g€ G, tel0,tnul

denote the power consumption of gate g at time t. We aim at defining a function
for measuring the total power consumption of the hardware at a given time during
the execution of 2. Such a function should take into account various sources of
noise distorting the measurements. Sources include external noise (generated by
some external object), intrinsic noise (generated by certain random movements
within conductors in the hardware), quantification noise (from the quantizer in
the analog-to-digital converter used to sample the power signals) and algorithmic
noise (due to the random data being processed by the hardware). For details of
noise characteristics see [MDS99].

We will take the approach of Oswald [AO00] and model the noise components
as a normally distributed random variable N(¢) € [0, 00[for each t € [0, t4a).
We define the simple power model F' by

Ft)=) f(g:t)+ N(t), t€ [0, tmal-

geG

For every pair (g,t), we will view f(g,t) as a random variable with unknown
distribution. For every ¢ we assume that f(g1,%),..., f(gm,t) are independent and
identically distributed. The Central Limit Theorem says that % Yoy fgist) is
(asymptotically) normally distributed, so for every ¢, F'(t) is normally distributed
(viewing F'(t) as a random variable).

There are a lot of assumptions in the model described above. Not all of these
assumptions can be proven valid, and one should be careful not to overestimate
the scope of the simple power model. On the other hand, the simple power
model is a priori the best model one can hope for, when doing cryptanalysis on
a tamper-resistant device, and successful use of the model has been documented
(see [MDS99] and [AO00]).

As in the previous section, the purpose of the attack is to find the value of
k = (ki_1---ko)2. The attacker is assumed to know

98

Differential Power Analysis

(i) The points P, ..., P,.

(ii) The internal representation of points in the hardware.
(iii) The number of bits [in the binary representation of k.
(iv

Assume that the s most significant bits k;_q,...,k_, of k are known to the
attacker, who wants to find the value of k;_,_;. The attack consists of five steps!:

The scalar multiplication scheme.

1) The attacker makes a guess that k;_s_1 = k, where xk € {0,1}.

2) He/she computes

P, i=1,...,n.

-1
Qi:[z kj - 2

=l-s—1

These calculations can be carried out on a separate device with an implemen-
tation of the same scalar multiplication scheme as the one used by the target
device (e.g. smart card).

3) Based on the knowledge of the representation of points in hardware, the at-
tacker constructs a map
(I) : E(Fp) - {07 1}

such that ®(P;) = ®(F;) if, and only if, the representations of P, and P; does
not differ “significantly”. This is a vague description, which must be made more
precise in an concrete situation. We will assume that the Hamming weigh v
of the representation rep(P;) of a point P; influences the power consumption
in the system. We define ® as

1, v(rep(P)) > w1y
oP) = { 0. vlrep(P)) < 1o

for some fixed value vy. The map ® is used to construct the sets
So:={i|®(Q;) =0} and S :={i|P(Q;)=1}.
This construction can be done on a separate device.
4) With a partitioning

0:A1<A2<"'<Ad:tmaz

1One iteration over the five steps determines one bit of k. By repeating the five steps, one
can recover all the bits of k, starting with the most significant one.

99

Chapter 6. Power Analysis

of [0, t;maz], the attacker constructs the vectors
(Fi(Ay), ..., Fi(Ag), i=1,...,n,

where Fj(A;) is the value of F' at time A; during the calculation of [k]F;.
He/she sets

AO . ZF , Al] = |81|ZF

zeSo 1€S1

forj=1,...,d.

The collection of power measurements
Fi(4;), i=1,...,n,5=1,...,d
requires access to the target device, while the calculation of
Ao(A)), Ai(4y), j=1,....d
can be done on a separate device.

5) If
max [Ao(8;) = A1(A,)] ~ 0,
the calculation of @; never took place during the calculation of [k]P; , i.e. the
guess in step 1 was incorrect. In this case, the correct value of k;_,_1 is —x. If

max |A0<A) — A1<A])| > O,

1<5<d

the guess was correct, and the attacker proceeds to determine the next bit.

Determining whether the guess was correct or not can be done on a separate
device.

Notice that the attacker only needs access to the target device during step 4.
The rest of the attack can be carried out on a separate device. Figure 6.4 shows
averaged traces corresponding to a wrong and correct guess. We have assumed
that £ is in binary representation, but the attack works for other representations
of k as well.

Remark 6.2. The analysis performed in steps 1-5 above is largely a T-test for
testing significant differences between two normally distributed observations, as-
sumed to have the same variance. The method in steps 1-5 only take into account
the empirical means of the two distributions, which is assumed to be sufficient
(see [AO00]). Because of this, the method is also known as the mean-method.

100

Differential Power Analysis

MWmwmmnnmmmwnmumnum U A S A
\]H 100 UITYTTTvorey U MU AT \H]\y\“’ H‘\‘y“! I HHH'

Time

Time

Figure 6.4: The figure shows schematic power consumption traces corresponding to a
wrong (top) and a correct (bottom) DPA-guess respectively.

e}

A necessary condition for being able to perform DPA is knowledge of the represen-
tation of the scalar k and the points P, ..., P,. Because of this, countermeasures
against DPA apply randomness to the scalar, the base point or the curve, making
it impossible to perform the simulation in step 2 of the attack. We will consider
the following randomization schemes:

¢ Scalar randomization by variation.
¢ Point randomization by blinding.
¢ Point randomization by redundancy.

¢ Curve randomization by curve isomorphisms.

Remark 6.3. Other randomization techniques are available (see for instance
[ACD*05] and [OAO01]). The more prominent among these are scalar random-
ization by representation and curve randomization by field isomorphisms. The
security of the former and the efficiency of the latter has, however, been ques-
tioned (see [Wal04] and [ACDT05]).

101

Chapter 6. Power Analysis

6.2.1 Scalar randomization by variation

For all NIST curves, the group order |E(F,)| = o is a known prime number. For
every s € 7, we have
[k]P = [k + solP.

Hence, a randomization ¢ of the scalar k is given by (k) = k + so, where s
is a random positive integer. The map ¢ should be applied every time a scalar
multiplication is performed. Algorithm 17 shows the general method, where
ECMULT is any scalar multiplication algorithm.

Algorithm 17 Scalar multiplication with randomized scalar

Input: Pec E(F,) and k € Z, k > 1.
Output: [k|P € E(F,).

1 K — p(k);

2: () < ECMULT(P, k');

3: return (@

The requirement of Algorithm 17 depends on the length of the binary represen-
tation of k' := k 4+ so. We have that

[logy(s)] + [logy(o)] < ﬂogz(l{:'ﬂ < [logy(s)] + [logy(o)] + 1,

as k € [1,0 — 1].

In order to thwart DPA, we want to ensure that the probability p of the
same k' appearing two or more times during n independent executions of [k'| P is
low. Assuming that the values of s are evenly distributed over 1,...,2" — 1 for
r = [logy(s)], one finds that

p=1- H?:z(Qr — Z)
<2r _ 1)n71

An attack by Oswald & Aigner [AO00| on a DES implementation needed less

than 200 samples to succeed. In light of this, we will demand that p is less than

107 for n = 200, i.e. we want the probability of the same k’ appearing more

than once during 200 independent executions to be less than 107°. A choice of

r = 32 satisfies our demand.

We can use any algorithm as ECMULT in Algorithm 17, so we choose Algo-
rithm 8 (with the modifications discussed in Sections 4.2.1 and 4.2.2). We have
[log,(0)] = 192, 224, 256, 384 and 521 for P-192,P-224,P-256,P-384 and P-521
respectively. Assume that [log,(k+ so)] = [logy(s)] + [logy(o)] + 1, and let [be
the length of the binary representation of k. Table 6.7 shows the average number
of field multiplications required by Algorithm 17. The overhead introduced by
the countermeasure compared to the efficient, non-secure scheme is also shown.

102

Scalar randomization by variation

[=192 |1 =224 |1=256 | [=384 |1=521
Field multiplications | 2336 M | 2650M | 2957M | 4182M | 5493 M
Optimal value of w w=>5 | w=55 | w=6| w=6 | w=6
Overhead 16.2% | 14.0% | 12.0% 8.2% 6.1%

Table 6.7: The table shows the average number of field multiplications required by
Algorithm 17 and overhead compared to the efficient, non-secure scheme.

Not surprisingly, we see that the overhead for larger values of [reflects that the
relative increase in the length of the binary representation of the scalar becomes
smaller. Algorithm 17 uses no extra storage except for the case [= 256, which
we will disregard.

A possible variant of DPA was described by Goubin. Assume that the algo-
rithm for scalar multiplication has been secured against DPA by using a random-
ization scheme, such that the analysis in steps 1-5 is not possible. Also, assume
that the algorithm has been secured against SPA by using the double-and-add
always method in Algorithm 11. Assume that the curve contains a point P, with
a- or y-coordinate equal to zero (this is the case with all NIST curves except for
P-224, as these curves have b to be a quadratic residue modulo p). Assuming that
the most significant bits k;_1, ..., k; 11 are known, the attacker makes a guess of
k; =0 or k; = 1 and defines the point

-1 -1
P1 = (Z k’j2j_i+1 +]_ + 2]@) mod |E(1Fp)| Po.

j=it+1

This is possible, as |E(F,)| is a prime in the NIST recommendations.
The attacker now collects power consumption curves

Ci={{t. Fi(1)[0<t <tpa}, j=1,...,n

corresponding to n executions of [k]P;. Because of the randomization, the curves
will all be different. However, if the randomization scheme preserves the zero-
valued coordinate and the guess was correct, all curves will show the character-
istics of operating on a point with a coordinate equal to zero. This will show up
as peaks in the averaged curve

{5

If C' shows no peaks, the guess was incorrect. After having determined k;, the
attacker moves on to k;_; and so forth. Similar attacks also exist for other SPA
countermeasures.

OStStmaaﬂ}-

103

Chapter 6. Power Analysis

Attacks of this type are known as Goubin-type attacks. Any countermeasure
against DPA which leaves zero-valued coordinates unchanged is a priori vulner-
able to Goubin-type attacks.

However, Although scalar randomization leaves zero-valued coordinates un-
changed, the algorithm is not vulnerable to Goubin-type attacks, since the scalar
is changed every time the algorithm is executed. The frequent changing of k also
implies that implementing scalar randomization secures the algorithm against FI
attacks.

Remark 6.4. If an attacker is able to mount an extremely precise FI attack,
he or she may be able to perturb the calculation of [k]P in such a way that P
becomes a point P’ on a less secure curve and that [k]P’ is calculated on this
curve. By solving the ECDLP on the less secure curve, the attacker can determine
the randomized value of k. Recovering the original k£ can then be done by brute
force, trying the 232 — 1 different values of k—b-|FE(F,)| (notice that this requires
knowledge of the point [k]|P).

6.2.2 Point randomization by blinding

To simulate a random base point P, one can calculate

[k]P = [k](P ® Q) @ [K](-Q),

where () is some point on the curve E being used. Finding a random point () on
FE for each scalar multiplication being performed would require either

— calculating [k]@Q every time [k|P is calculated (increasing running time by
a factor two) or

— maintaining a table of pairs (Q;, [k]Q;) containing every point @); on F
(introducing a massive storage requirement).

Therefore, we select a set of points {Q1,...,Q,} on E, calculate [k]Q1, ..., [k]Qn
and store the pairs

R ={(Q: [K(=Q:))|i=1,...,n}

in a table (notice that this scheme only applies to situations where a fixed scalar
is used). A point @ and the corresponding [k](—Q) can then be chosen at random
from R on every execution of [k] P. The general method is shown in Algorithm 18.
We use Algorithm 8 as ECMULT in line 3, so the addition in line 2 should be done
in affine coordinates. Algorithm 18 introduces two additional ECADD compared
to the efficient, non-secure scheme. The addition in line 4 can be done in mixed
affine/Jacobian coordinates. The total cost of the two additions is

TAdd:t(A+A)+t(j+A:j)
=1+ 10M +45.

104

Point randomization by redundancy

Algorithm 18 Scalar multiplication with point blinding

Input: Pe E(F,), Rand k€ Z, k > 1.

Output: [k|P € E(F,).

: (Q, [K](—Q)) — (Qiy, [K](—Q4,)) € R; //Randomly chosen
R— P®Q;

R «— ECMULT(R, k);

R— R® [K(-Q);

return R

[=192 | [=224 |l =256 |1 =384 | =521
Field multiplications | 2041M | 2356M | 2670M | 3896M | 5207M
Overhead 1.5% 1.3% 1.1% 0.8% 0.6%

Table 6.8: The table shows the average number of field multiplications required by
Algorithm 18 and overhead compared to the efficient, non-secure scheme.

The total averages are shown in Table 6.8. As the table shows, the constant
amount of extra field multiplications implies a small overhead for large values
of [. Algorithm 18 requires storage for the table R. As the algorithm does
not preserve zero-valued coordinates, the scheme is secure against Goubin-type
attacks.

6.2.3 Point randomization by redundancy

To reduce the number of extra field multiplications involved in a DPA counter-
measure, one can randomize the base point P in a way different from the one
described in Section 6.2.2. Recall, from Section 1.1, that a point (£ : i : {) in
Jacobian coordinates is equivalent to the point (A% : A3n : X() for any \ € F7.
This makes it possible to construct an efficient randomization technique using
redundant representations of the base point: Whenever a scalar multiplication
is performed, one simply uses the map (£ : n : {) — (A2 : X3 : X() with a
randomly chosen A € F,. Combining the randomization with Algorithm 8, we
get the method shown in Algorithm 19. The randomization only introduces an
extra 3M + S = 4M. In order to be able to use the modifications from Sec-
tion 4.2.2 to reduce the amount of initial doublings, one must, however, accept
an overhead of 4M 4+ S = 5M, as the randomization should take place in 7,
when using equation (4.6). The randomization is performed after the addition in
equation (4.6) and before the doublings are done. Alternatively, the addition in
equation (4.6) could be done by J + A = J. However, this is not optimal, as
(T+A=T)>t(A+A=7T)+ M. We get the average requirements shown
in Table 6.9.

105

Chapter 6. Power Analysis

Algorithm 19 Width-w NAF scalar multiplication with point randomization by
redundancy.
Input: A point P € E(F,), w> 1, and k = (d;-- - do)naF,
Output: [k|P € E(F,).
1: Compute the odd multiples [+£3] P, [£5]P, ..., [£(2¥~'—1)]P. //Use the mod-
ification from section 4.2.1.
(€:n:1)« [d]P; //Precomputed points are represented in A.
Randomly choose A € [F}.
Q «— (\%¢: X3 : \); //Redundant representation of [d;|P.
1— [—1;
while 1 > 0 do
Q — [2]Q;
if d; # 0 then
Q — QO [d]P;
end if
1—1—1;
: end while
: return Qin A

— e

[=192

[=224

[=256

[=384

[=521

Field multiplications

2016 M

2331M

2645M

3871M

0182M

Overhead

0.24%

0.21%

0.19%

0.13%

0.10%

Table 6.9: The table shows the average number of field multiplications required by
Algorithm 19 and overhead compared to the efficient, non-secure scheme.

Remark 6.5. Due to the small overhead of randomization by redundancy, one
can perform several randomizations of the intermediate points in Algorithm 19
without introducing a high performance penalty.

o

Point randomization by redundancy preserves zero-valued coordinates. There-
fore, the scheme is not secure against Goubin-type attacks.

6.2.4 Curve randomization by curve isomorphisms

Another possibility is to randomize the curve E itself. The idea is to pick a
random curve E for which there exists an isomorphism

v B(F,) — E(E@)
and calculate [k]P as ¢~!([k]y(P)). The situation is shown in the diagram in

Figure 6.5. The ability to randomize the curve rests on the following proposition:

106

Curve randomization by curve isomorphisms

PeE[F,) — [k|P e E(F),)

v | [

Pe E(F,) — [k|P € E(F,)

Figure 6.5: Calculation of [k]P by using the isomorphism .

Proposition 6.4. Let K be a field with char(K) # 2,3. Let E and E be elliptic
curves over K given by

The curves E and E are isomorphic if, and only if, there exists u € K such_that
a=u""*a and b = u=%b. In the affirmative, an isomorphism v : E(K) — E(K)
18 given by

Y(P) = { 0, P=0. (6'9)
The inverse v~' : E(K) — E(K) is given by

= { e D28 o0

Applying Proposition 6.4 to the case of the NIST curves, we see that a curve
E:y*=2"-32+b (6.11)

is isomorphic to a curve

E:y*=a+ax+b (6.12)

if, and only if, @ = —3u~* and b = bu~5 for some u € F*. Algorithm 20 uses this
result to thwart DPA.

107

Chapter 6. Power Analysis

Algorithm 20 Width-w NAF scalar multiplication with curve randomization by
isomorphism.

Input: A point P = (x,y) € E(F,), and a positive integer k.
Output: [k|P € E(F,).

: Select a random u € F,,.

a «— —3u~;

P — (u %z, u3y);

(%,7) < ECMULT(P, k, @);

return (u’%, u3y)

Notice that, in line 4, we have to give a as input to the scalar multiplication
algorithm, as this element is used in the formulas for ECDBL and ECADD. The
element b is never used.

Apart from the cost of ECMULT, Algorithm 20 requires I +6M +3S. If a # —3,
we cannot use our analysis from Section 4.2.3. In this case, one needs to perform
a similar analysis using the general formulas from Section 1.1 to determine the
number of field operations involved in the elliptic curve operations for different
coordinates (see for instance [ACDT05] and [CMO98]| for such an analysis). With
the notation of Chapter 4, the conclusion is that ifa # —3, S = M and I /M = 16,
one should represent the precomputed points in A, perform (x; — 1) doublings in
J™ and one doubling from J™ to J. Additions are done by A+ 7 = J™. In
other words, one should choose (C!,C?,C3) = (J™,J,.A). Also, one should use
the modifications from Sections 4.2.1 and 4.2.2.

To calculate the average number of field operations required by Algorithm 20,
one needs to know the probability of the event @ = —3 occurring. This event
corresponds to u=* = 1 for the randomly selected u € 7, i.e. the event that the
order of u is 1, 2 or 4. As [} is cyclic, there is exactly one subgroup H; C F; of
order 2 and exactly one subgroup Hy C F; of order 4, if 4|p—1. If4 fp—1,no
subgroups of order 4 exist.

Assume that 4 |p — 1. We know that both H; and H, are cyclic. The sub-
group H; contains one element g of order 2. The element ¢ is also in Hy which
additionally contains two elements h; and hy of order 4. No subgroups of higher
order contains elements of order 2 or 4 different from ¢, h; and h,. This means
that I, contains exactly 4 elements of order 1,2 or 4. Therefore, the probabil-
ity of @ = —3 occurring is zﬁ, when wu is selected randomly. Assuming that
4 fp— 1, the probability is]%. In the case of the NIST primes, the only p for
which 4 |p — 1 is p = poas.

Let ¢(ECMULT;) denote the average requirement of Algorithm 8 using

(CI,CQ,CB) — (jm,j, A)
(the case @ # —3). Similarly, let ¢(ECMULT,) denote the average requirement of

108

Curve randomization by curve isomorphisms

Algorithm 8 with

chcr et =(J,7,A)

(the case @ = —3). The average requirement of Algorithm 20 is

T, 20:I+6M+3S+(

p_

r T
1— —1) +H(ECMULTy) + —— - H(ECNULT,),
p p—

where r = 4 for p = paoy and r = 2 otherwise. This gives the values shown in

table 6.10.

=192 | =224 |1 =256 |1 =384 |] =521
Field multiplications | 2039M | 2353M | 2668M | 3894M | 5205M
Overhead 1.4% 1.2% 1.0% 0.7% 0.5%

Table 6.10: The table shows the average number of field multiplications required by
Algorithm 20 and overhead compared to the efficient, non-secure scheme.

Algorithm 20 is a less efficient countermeasure than point randomization using
redundant representations (Algorithm 19). Even in the case a = —3, Algorithm
20 introduces an overhead of I + 6M + 3S = 25M, while Algorithm 19 requires

only an extra 5M.

Curve randomization preserves zero-valued coordinates. Therefore, the scheme
is not secure against Goubin-type attacks.

109

Chapter 6. Power Analysis

6.2.5 Comparison and conclusion

Algorithms 17-20 are implemented in Java (source code is enclosed in Appendix
C.5). Table 6.11 shows the number of field multiplications (M) required on aver-
age by the five methods and timings of the implementations. For comparison, the
same values are shown for the efficient, non-secure scheme. As one can see from
Table 6.11, point randomization by redundancy is the more efficient choice. As
previously mentioned, this countermeasure provides no security against Goubin-
type attacks. For curves containing no points with zero-valued coordinates or
curves being used in protocols with short-term keys, this is not a problem, as
Goubin-type attacks cannot be used in these situations. In all other cases, one
should use point blinding or scalar randomization as countermeasure. We notice
that scalar randomization requires precomputation of 15 points when [= 256
instead of the 7 points needed by the non-secured version. This special case is
disregarded.

When choosing a countermeasure against DPA attacks, one must consider
both the number of required field multiplications, storage requirements and vul-
nerability to Goubin-type attacks. Assuming that one wants to secure a scalar
multiplication algorithm against DPA attacks and that Goubin-type attacks are
disregarded, point randomization by redundancy should be used. If the algorithm
should be secure against Goubin-type attacks, point randomization by blinding
is the better choice. Scalar randomization is also an alternative, as this counter-
measure secures the algorithm against both Goubin-type attacks and FI attacks.

110

Comparison and conclusion

Field multiplications:
=192 | [=224 I = 256 =384 =521
Countermeasure M |t M || M f M f M f
None
(algorithm 8)
Scalar randomization
(algorithm 17)*
Point randomization
by blinding 2031 | 7| 2346 | 7| 2661 | 7 | 3886 | 15 | 5198 | 15
(algorithm 18)*
Point randomization
by redundancy 2006 | 72321 | 7| 2636 | 7 | 3861 | 15 | 5173 | 15
(algorithm 19)
Curve randomization
by isomorphism 2029 | 7| 2344 | 7| 2658 | 7 | 3884 | 15| 5196 | 15
(algorithm 20)
*: Secure against Goubin-type attacks.

2011 | 712326 | 7| 3640 | 7 | 3866 | 15 | 5177 | 15

2336 | 712650 | 7 | 2957 | 15 | 4182 | 15 | 5493 | 15

Timings:
=192 | | =224 | = 256 =384 | | =521
Countermeasure Time Time Time Time Time

None
(algorithm 8)
Scalar randomization
(algorithm 17)*
Point randomization
by blinding 7490 s | 10204 ps | 13888 s | 35087 us | 82ms
(algorithm 18)*
Point randomization
by redundancy 7352 pus | 10101 ps | 13698 pus | 34741 us | 81l ms
(algorithm 19)
Curve randomization
by isomorphism 7380 s | 10101 ps | 13793 pus | 35087 us | 81l ms
(algorithm 20)
*: Secure against Goubin-type attacks.

7352 pus | 10052 us | 13698 s | 34482 us | 81l ms

8810 pus | 11764 pus | 16250 us | 38018 us | 87ms

Table 6.11: The table shows the average number of field multiplications required (M),
number of points stored (f) and timings of implementations.

111

Chapter 7

Securing an Implementation

The purpose of this chapter is to construct a scalar multiplication scheme which is
secure against SPA and DPA. As is apparent form Chapter 6, such a construction
is partially based on choices of what amount of extra storage one is willing to use
and whether one wants security against FI attacks and/or Goubin-type attacks.

7.1 Combinations of Countermeasures

We need to examine all combinations of the following cases:
Storage
A: Unlimited

B: Limited (only storage available for the precomputed points in the
non-secure version of algorithm 8.

Security against FI attacks

1: Yes
0: No

Security against Goubin-type attacks

1: Yes
0: No

A combination of unlimited storage, security against FI attacks and Goubin-type
attacks are written as (A,1,1). Similar notation is used for the remaining com-
binations. Regardless of the combinations, the resulting algorithm must always
be secure against both SPA and DPA. For each of the eight combinations of the
conditions, we seek a pair (M, Ms), where M is a countermeasure against SPA
and M, is a countermeasure against DPA. We want the implementation of the

113

Chapter 7. Securing an Implementation

combined countermeasures to involve the least possible overhead compared to the
efficient, non-secure version. There are eight combinations to examine. In the
sequel, the countermeasures will be denoted as follows:

DA := Double-and-add always (Algorithm 11)

WD := W-double-and-add always (Algorithm 13)

MG := Montgomery’s ladder algorithm (Algorithm 15)

UA := Unified addition (Algorithm 16)

AT := Side channel atomicity

SR := Scalar randomization (Algorithm 17)

PB := Point randomization by blinding (Algorithm 18)

PR := Point randomization by redundancy (Algorithm 19)

CR := Curve randomization (Algorithm 20)

(A,1,1): We assume unlimited storage available and want security against both
FT attacks and Goubin-type attacks. The straightforward choice is

(My, My) = (MG,PB), as Montgomery’s ladder algorithm is the only SPA coun-
termeasure which is secure against FI attacks, and point blinding is the most
efficient DPA countermeasure with security against Goubin-type attacks. This
results in a total cost of

t(Algorithm 15) + I + 10M + 48.

We can, however, do better if we remember, that SR is a DPA countermea-
sure which provides security against both FI attacks and Goubin-type attacks.
Therefore, (M, Ms) = (AT, SR) is the optimal choice. Table 7.1 shows the average
number of field operations required by this combined countermeasure.

=192 | [=224 |l =256 | =384 | =521
Field multiplications | 2348M | 2662M | 2969M | 4194M | 5505M
Overhead 16.8% | 14.4% | 12.5% 8.5% 6.3%

Table 7.1: The table shows the average number of required field multiplications for
scalar multiplication with countermeasures (M7, Ms) = (AT, SR) and the overhead com-
pared to the efficient, non-secure scheme.

(A,1,0): We assume that we have unlimited storage available. We want security
against FI attacks and disregard Goubin-type attacks. One combined counter-
measure, which satisfies the conditions, is (M;, M) = (MG,PR). However, the

114

Combinations of Countermeasures

large overhead of MG makes the combination inferior to (Mi, Ms) = (AT, SR),
which is the optimal choice. Table 7.1 shows the average number of required field
multiplications.

(A,0,1): We assume that we have unlimited storage available. We disregard
FI attacks and want security against Goubin-type attacks. As AT is the most
efficient SPA countermeasure, we set M; = AT. The most efficient DPA coun-
termeasure with security against Goubin-type attacks is PB. Therefore, we get
(M, Ms) = (AT,PB) to be optimal. Table 7.2 shows the average number of re-
quired field multiplications.

=192 | [=224 |l =256 | =384 | [=521
Field multiplications | 2053M | 2368M | 2682M | 3908M | 5220M
Overhead 2.1% 1.8% 1.6% 1.1% 1.0%

Table 7.2: The table shows the average number of required field multiplications for
scalar multiplication with countermeasures (M, My) = (AT, PB) and overhead compared
to the efficient, non-secure scheme.

(A,0,0): We assume that we have unlimited storage available and disregard FI
attacks and Goubin-type attacks. This is the most straightforward case, and we
get the optimal choice to be (M;, My) = (AT,PR). Table 7.3 shows the average

number of required field multiplications.

[=192 | [=224 |l =256 |1 =384 | =521
Field multiplications | 2028M | 2343M | 2657M | 3883M | 5195M
Overhead 0.85% | 0.73% | 0.64% | 0.44% | 0.35%

Table 7.3: The table shows the average number of required field multiplications for
scalar multiplication with countermeasures (M, M) = (AT, PR) and overhead compared
to the efficient, non-secured version.

(B,1,1): We assume that we have limited storage available. We want security
against both FI attacks and Goubin-type attacks. We cannot use M; = AT or
M; = WD, because of the need to store the matrix and extra precomputed points
respectively. Similarly, we cannot use My = PB, because of the need to store the
table of points. Therefore, the optimal choice is (M, M) = (MG, SR). Table 7.4
shows the number of required field multiplications.

(B,1,0): We assume that we have limited storage available. We want security
against FI attacks and disregard Goubin-type attacks. As in the previous case,

115

Chapter 7. Securing an Implementation

[=192 | [=224 |1=256 | | =384 | | =521
Field multiplications | 3867M | 4411M | 4955M | 7131M | 9460M
Overhead 92.3% | 89.6% | 87.7% | 84.5% | 82.7%

Table 7.4: The table shows the number of required field multiplications for scalar
multiplication with countermeasures (M7, M3) = (MG, SR) and overhead compared to
the efficient, non-secure scheme.

we have M; # AT, WD, because of the storage requirements. The optimal choice is
(M, Ms) = (MG, PR). Table 7.5 shows the number of required field multiplications.

[=192 | [=224 |1=256 | | =384 | | =521
Field multiplications | 3311M | 3855M | 4399M | 6575M | 8904 M
Overhead 64.6% | 65.7% | 66.6% | 70.1% | 72.0%

Table 7.5: The table shows the number of required field multiplications for scalar
multiplication with countermeasures (Mj, My) = (MG,PR) and overhead compared to
the efficient, non-secure scheme.

(B,0,1): We assume that we have limited storage available. We disregard FI
attacks and want security against Goubin-type attacks. The storage limitations
still exclude AT and WD as SPA countermeasures and PB as DPA countermeasure.
Therefore, we choose (M, My) = (MG,SR). Table 7.4 shows the number of re-
quired field multiplications.

(B,0,0): We assume that we have limited storage available. We disregard FI
attacks and Goubin-type attacks. The storage limitations, once again, exclude

M; = AT, WD. Therefore, the optimal choice is (M;, Ms) = (MG,PR). Table 7.5
shows the average number of required field multiplications.

7.2 Comparison and Conclusion

We now compare the five combinations of countermeasures selected in Section
7.1. The five combinations are:

(AT, SR)
(AT, PB)
(M, M) = { (AT,PR)
(MG, SR)
(MG, PR)

116

Comparison and Conclusion

Table 7.6 summarizes the number of required field multiplications, the number
of precomputed points and the overhead compared to the efficient, non-secure
scheme. Timings of implementations of scalar multiplication using the combined
countermeasures are also shown in the table (source code for all implementations
is enclosed in Appendix C.6). The timings are done as described in Section 5.1.

Field multiplications:

[=192 | [=224 | [=256 [=384 [=521
Countermeasure | M |4 | M |4| M i M i M i
None 2011 | 7| 2326 | 72640 | 7 | 3866 | 15 | 5177 | 15
(AT,SR)* 2348 | 712662 | 7| 2969 | 15 | 4194 | 15 | 5505 | 15
(AT,PB)** 2053 | 72368 | 7| 2682 | 7 | 3908 | 15| 5220 | 15
(AT,PR)* 2028 | 7| 2343 | 7| 2657 | 7 | 3883 | 15| 5195 | 15
(MG,SR) 3867 | 0| 4411 [04955 | O | 7131 | O | 9460 | O
(MG,PR) 3311 | 0| 385504399 | 0 | 6575 | 0 | 8904 | O
* Needs storage for matrix.
*x Needs storage for matrix and table of points.
Overhead:
[=192 [=224 [=256 [=384 [=521
Countermeasure | Overhead | Overhead | Overhead | Overhead | Overhead
(AT,SR) 16.8% 14.4% 12.5% 8.5% 6.3%
(AT,PB) 2.1% 1.8% 1.6% 1.1% 1.0%
(AT,PR) 0.85% 0.73% 0.64% 0.44% 0.35%
(MG,SR) 92.3% 89.6% 87.7% 84.5% 82.7%
(MG,PR) 64.6% 65.7% 66.6% 70.1% 72.3%
Timings:
=192 | =224 | [=256 | [=384 |1=521
Countermeasure | Time Time Time Time Time
None 7352 pus | 10052 ps | 13698 s | 34482 s | 81 ms
(AT,SR) 9803 s | 13333 s | 17391 us | 41ms 93 ms
(AT,PB) 8333 us | 11299 us | 15267 pus | 38037 us | 87 ms
(AT,PR) 8196 s | 11173 us | 15037 us | 37735 us | 87ms
(MG,SR) 14285 s | 19230 s | 25974 pus | 67ms | 159ms
(MG,PR) 12195 us | 16949 us | 22988 us | 62ms | 150ms

Table 7.6: The tables show the average number of field multiplications (M), number of
precomputed points (f) and timings of implementations using the combined SPA /DPA

countermeasures.

We will assume that the algorithm must always be secure against both FI at-
tacks and Goubin-type attacks.

From the discussion above, one sees that we

117

Chapter 7. Securing an Implementation

should choose (M, My) = (MG, SR) if storage is limited and (M;, M) = (AT, SR)
otherwise.

We now compare the fully secured implementation to the non-secure test im-
plementation from IBM and to our efficient, non-secure implementation (both
described in Chapter 5). In the sequel, T{ss, as,) denotes the number of field mul-
tiplications required on average by our scalar multiplication scheme with coun-
termeasures M; and M,, while Trgy and Tgyficiens denote the number of field
multiplications required on average by the scheme implemented by IBM and our
efficient, non-secure scheme respectively. Table 7.7 shows the average number of
field multiplications and timings. As the table shows, one can achieve an imple-

[=192 =224 =226 =384 [=521
M/Time | M/Time | M/Time | M/Time M /Time
T 5056M/ | 5899M/ | 6741M/ | 10112M/ | 13720M/
IBM 15625 us | 22222ps | 30769 s 80 ms 175 ms
_ 2011M/ | 2326M/ | 2640M/ 38661/ 5177M)
Efficient | 7359 jis 10052 s | 13698 s | 34482 s 81 ms
T 3867M/ | 4411M/ | 4955M) 7131M/ 9460 M /
(MG, SR) 14285 s | 19230 s | 25974 s 67 ms 159 ms
. 2348M/ | 2662M/ | 2969M/ 41940/ 55050M /
(AT.SR) 9803 1 13333 s | 17391 pus 41 ms 93 ms

Table 7.7: The table shows the average number of field multiplications and timings of
implementations.

mentation which is secure against SPA, DPA, FT attacks and Goubin-type attacks
and which uses approximately 57% less field multiplications than the scheme im-
plemented by IBM does on average, if extra storage is available. If one cannot
afford to use extra storage, the secure implementation requires approximately
27% less field multiplications than the scheme implemented by IBM does.

If extra storage is available, secure scalar multiplication introduces an average
overhead of 12% compared to the efficient, non-secure scheme. If no extra storage
is available, the secure version introduces an overhead of 87% on average.

The timings in Table 7.7 supports our conclusions in that the choices we
have made remains advantageous in the experiments. However, the timings do
not entirely match the number of field multiplications required by the individual
schemes. Our assumptions on the time required to execute the individual field
implementation is the cause of the discrepancies (cf. Section 5.3).

When combining SPA and DPA countermeasures, one must consider both the
available storage and the need for security against FI attacks and Goubin-type
attacks. We demand full SPA /DPA-security as well as security against both FI
attacks and Goubin-type attacks. The result of Section 7.1 is that if storage
is limited, one should use Montgomery’s ladder algorithm as an SPA counter-

118

Comparison and Conclusion

measure and scalar randomization as a DPA countermeasure. If extra storage is
available, one should use side channel atomicity as an SPA countermeasure and
scalar randomization as a DPA countermeasure. Comparing our secured versions
of the scalar multiplication algorithm with the scheme implemented by IBM, we
see that, even with full security against SPA, DPA, FI attacks and Goubin-type
attacks, we achieve a 57% reduction in field multiplications on average in the case
where extra storage is available and a 27% reduction in the case where no extra
storage is available. Compared to the efficient, non-secure scheme, the secure
scheme introduces an average overhead of 12% in the case where extra storage is
available and an average overhead of 87% if no extra storage is available. Timings
of the implementations support our conclusions in that the choices we have made
remains advantageous in the experiments.

119

Part IV

Conclusion

121

Chapter 8

Results and Recommendations

In this chapter we summarize the observations and results acquired in Part I,
IT and III of our examination. The goal is to sum up the necessary and recom-
mended steps to take when implementing an efficient and secure scalar multipli-
cation algorithm in an ECC-system. Our point of reference is the implementation
provided by IBM. This is an implementation of the addition-subtraction method,
using exclusively affine coordinates, which is developed solely for test purposes.
It provides no security against side channel attacks.

We have chosen to focus on the NIST curves in our examination, as these
curves are considered to be secure for cryptographic purposes. Additionally, these
curves are described in details in standards and are used in real-life applications.
We cover only NIST curves over prime fields.

In Chapter 2 we saw that the most time-consuming operation performed in an
ECC-system is scalar multiplication. In Chapter 3 we performed an examination
and comparison of various scalar multiplication methods with a greater degree
of detail than other publications on the subject. We observed that NAF,, scalar
multiplication (Algorithm 8) is the optimal choice. This method uses storage
for precomputed points, but the storage requirement is acceptable compared to
other scalar multiplication methods using precomputation.

In Chapter 4 an examination of different coordinate representations showed
that, given our computational environment, we should choose affine coordinates
for precomputed points, Jacobian coordinates for intermediate points being dou-
bled and perform additions in mixed affine/Jacobian coordinates. We concluded
that one should use Montgomery’s trick of simultaneous inversions for the pre-
computations, and we constructed an algorithm for doing this. We also saw that
one should take steps to reduce the number of initial doublings performed, and
we deduced a formula for this purpose.

In Chapter 5 we showed that we achieve a 61% reduction in field multiplica-
tions compared to the scheme implemented by IBM on average, when using the
scalar multiplication method, coordinate representations and optimizations de-
scribed above. Timings of the implementations were documented and supported

123

Chapter 8. Results and Recommendations

our conclusions.

In Chapter 6 we remarked that the existence of successful SPA/DPA attacks
have shown that power analysis should be considered a threat against the security
of ECC-systems. The established literature on elliptic curve cryptography de-
scribes various mathematical countermeasures against side channel attacks based
on power analysis, but, so far, no comparisons of these countermeasures have
been published. In Chapter 6 we performed such a comparison based on a de-
tailed examination of a number of known countermeasures. We presented the
overhead in field multiplications and extra storage requirements introduced by
the countermeasures. We also documented timings of implementations of all
countermeasures and evaluated the security of the countermeasures against FI
attacks and Goubin-type attacks.

Section 6.1 showed that one must base countermeasures against SPA on the
use of algorithms with uniform behaviour, unified addition formulas or dummy
field operations. A countermeasure based on side channel atomicity was shown to
be the most efficient SPA countermeasure. We constructed specifications for side
channel atomic ECDBL adapted to the NIST curves and side channel atomic ECADD
in mixed affine/Jacobian coordinates on the NIST curves. No such specifications
have previously been published. Side channel atomicity requires extra storage for
the matrix being used and is not secure against FI attacks. If one cannot afford
to use extra storage, Montgomery’s ladder algorithm should be used. Aside from
introducing no extra storage requirements, Montgomery’s ladder algorithm is also
secure against FI attacks.

In Section 6.2 we saw that countermeasures against DPA are based on ran-
domization. We showed that point randomization by redundancy is the better
choice, when Goubin-type attacks are disregarded. If the algorithm must be
secure against Goubin-type attacks, point randomization by blinding should be
used. We noticed that scalar randomization provides security against both DPA|
Goubin-type attacks and FI attacks. Scalar randomization requires extra stor-
age for precomputed points, when the scalar is a 256-bit integer. We chose to
disregard the extra requirement in this special case.

In Chapter 7 we constructed an efficient scalar multiplication scheme which is
secure against both SPA, DPA, FI attacks and Goubin-type attacks. We showed
that if one can afford to use extra storage, a combination of side channel atomic-
ity and scalar randomization should be used. If no extra storage is available, one
should use a combination of Montgomery’s ladder algorithm and scalar random-
ization. When comparing our efficient, secure scheme to the scheme implemented
by IBM, we saw that our version uses 57% fewer field operations in the case where
extra storage is available and 27% fewer field operations in the case where no extra
storage is available. We also saw that the efficient, secure scheme introduces an
average overhead of 12% in the case where extra storage is available and 87% if no
extra storage is available, compared to the efficient, non-secure scheme. Timings
of the implementations were documented and supported our conclusions.

124

Based on the computational environment at hand, we have thus made optimal
choices of

1) Scalar multiplication method.
2) Coordinate representations.
3) Countermeasures against SPA/DPA.

The resulting algorithms have been compared to the scheme implemented by IBM
and timings of all implementations have been documented. We have developed an
efficient scalar multiplication scheme which is secure against both SPA, DPA, FI
attacks and Goubin-type attacks. Our efficient and secure scheme offers a higher
degree of efficiency than the scheme implemented by IBM — both when storage
is limited and when extra storage is available. This concludes our examination.

125

Part V

Appendix

127

Appendix A

Random Processes and Markov
Chains

Markov chains is a useful tool when analyzing scalar multiplication methods. This
section provides a brief introduction to the theory. The presentation is based on
the one by Semay ([Sem04]).

A.1 Basic Definitions and Results

Let (X,)n, be a sequence of random variables with X; € § = {sy,...,s;} for
all 7 € Ny and some integer & > 1. The sequence (X,,)y, is known as a random
process with state space S.

Definition A.1 (Memoryless process). The random process (X,,)y, is a memo-
ryless process if

\V/TLGNO\V/’L.(),...,’L.n_lE{l,...,k’}Vi,je{l,...,k’}Z
P(Xn+1 :Sj|X0 :Sioa"'aXn—l :SinflaXn:Si) =
P(Xn,1:8j|Xn:Si).

e}

Considering n as a point in time, a memoryless process can be interpreted as
a random process, for which the outcome of the next event in the process only
depends on the outcome of the previous event (if any at all).

Definition A.2 (Homogeneity). The random process (X,)y, is homogeneous if

Vn,n' € NoVi,j € {1,...,k} :
P(Xn+1 =S5j | Xn = Si) = P(Xn/+1 =S5j | Xn’ = Si)-

If n denotes steps in time, we speak of time homogeneity.

129

Appendix A. Random Processes and Markov Chains

Example A.1. As an example of a time homogeneous memoryless process, we
will consider the process of starting a car in the morning (Xo, X1,..., X,,...).
The state space is S = {“The car starts”,“The car doesn’t start”}. It is assumed,
that the possibility of starting the car is only dependant on whether the car could
start the day before or not and that the possibility of being able to start the car
given that it could start the day before is the same at all times. The following
probabilities are defined for the example:

P(X,+1 = “The car starts” | X,, = “The car starts”) = 1—70
P(X,+1 = “The car doesn’t start” | X,, = “The car starts”) = 1_30
P(X,11 = “The car starts” | X,, = “The car doesn’t start”) = %
P(X, 11 =“The car doesn’t start” | X,, = “The car doesn’t start”) = %

Let s; = “The car starts” and s, = “The car doesn’t start”. The matrix 7" below
contains probabilities such that 7}; is the probability of getting from state j to
state ¢ in one step.

We now introduce the notion of a Markov chain:

SR
Slog|w

Definition A.3 (Homogeneous Markov chain). A a homogeneous memoryless
process M = (X,)y, with finite state space S = {s1,...,s;} is said to be a
homogeneous Markov chain. Let T be a k x k matrix such that

W,je{l,...,k‘}VnENo : P(Xn+1:Sj|Xn:Si):T‘ij.

The matrix T is called the transition matriz of M, and the entries of T" are called
transition probabilities.

From definition A.3 we see, that every transition matrix 7" must satisfy
i) Vi,je{l,....k} : T;; > 0.
(ii) Vie{1,....k} : X5 Ty =1.

130

Basic Definitions and Results

Sl

Ble

Figure A.1: Transition graph for the Markov chain in the car example.

It is often useful to illustrate a Markov chain with a transition graph. A transition
graph is a graph G = (N, V) with nodes N, vertices V and |N| = k, |V| = k? such
that the nodes in NV represent the states of the Markov chain and the vertices in
V represent the transition probabilities. This means, that

Vn;,n; € N @ (nj,n;) € Ve T, >0.
Example A.2. The transition graph of the car example is shown in figure A.1.

Definition A.4 (Initial distribution). The initial distribution of a Markov chain
(X,)n, with state space S = {s1,...,s;} is a vector u(®) € R* such that

1O = (i) = (P(Xo = s1),..., P(Xo = s1).
@)

The initial distribution, in some sense, provides information about how the
Markov chain “starts”.

Example A.3. Returning to the car example, we assume that the car is brand
new and in perfect condition. If we assume, that this is enough to ensure that
the car will start the first day, we get the initial distribution x4 = (1,0).

o

Using notation similar to the one in definition A.4, we let 1), u® ... € R* be
given by

p = () = (P(X = 51),. .., P(Xy = s1)), n €N,

so ') represents the distribution of X;. The distributions x4, ... can all be
computed using the initial distribution and the transition matrix 7"

131

Appendix A. Random Processes and Markov Chains

Theorem A.1. Let M be a Markov chain with initial distribution (%) and tran-
sitton matrixz T'. For all n € Ny, we have

p™ = O7m, (A.1)
Proof: The proof is by induction on n, the case n = 0 being trivially true. Assume
that n > 0 and that (A.1) holds for smaller n. One has that
/,L(O)Tn — (M(O)Tn71>T
= T

= u™),

because for each j = 1,... k we have
W = P(Xpo1 = s1)P(Xo = 5| X = 1) + -+
P(X,—1 =s,)P(X, =s;| X, = sk)
= " T Ty
[|
Corollary A.2. The probability of being in state s; at time n when starting in

state s; 18

Example A.4. In our car example, the probability that the car doesn’t start at
day one (the second day after having bought the car) equals the second coordinate
of

p =, 07
7 3
= (LO)(1 130)
5 5
7 3
- (E? 1_0)’
i.e. the probability is 1%.

A.2 Properties

Three important properties of Markov chains, irreducibility, aperiodicity and sta-
tionary distributions, will play a role in our analysis. The properties will come
into play, when the theorem about the asymptotic behaviour of certain Markov
chains is stated in Section A.3.

If T;; > 0 for some i,j € {1,...,k}, we write s; — s; and say that s;
communicates with s;, meaning that there is a chance that state s; will be reached
in a finite number of steps when starting at state s;.

132

Properties

Definition A.5 (Irreducible chain). A Markov chain with state space & =
{s1,..., sk} is irreducible if s; — s; for all s;,s; € S. Otherwise the chain is
said to be reducible.

@)
In other words, a chain is irreducible if all states communicate with each other.

Example A.5. From the transition graph in figure A.1 one can see, that the
Markov chain in our car example is irreducible as all states communicate with
each other. Equivalently, one sees, that all the entries in the transition matrix
are non-zero.

Definition A.6 (Aperiodicity). Let M be a Markov chain with state space S
and transition matrix 7. The period d(s;) of a state s; € S is defined as

d(s)) = ged({n > 1| (T"); > 0}).

If d(s;) = 1, we say that s; is aperiodic. M is said to be aperiodic if all states in
S are aperiodic. Otherwise, M is said to be periodic.

e}

The period of a state s; is the greatest common divisor of the set of points in
(discrete) time at which the chain has a chance of being in state s;. It is assumed,
that the starting state is s;.

Example A.6. In the car example, we have 171,75 > 0, so
le{n>1[(T")u >0} fori=1,2.
This gives d(s1) = d(s2) = 1, so the Markov chain is aperiodic.

Definition A.7 (Stationary distribution). Let M be a Markov chain with finite
state space and transition matrix 7. A row vector m = (my,...,m) is said to be
a stationary distribution for M if

i)m>0i=1,....kand X% m =1.
() i=1
(i) 7T = .
@)

This implies, that if 7 is a stationary distribution and y™¥) = 7 for some N, then
p™ = 7 for all n > N. Condition (ii) in definition A.7 says, that the stationary

distribution is a left eigenvector of 1" corresponding to the eigenvalue one.
Example A.7. In the car example, the distribution 7 = (2, 2) is a stationary

7T
distribution.

133

Appendix A. Random Processes and Markov Chains

A.3 Asymptotic Behaviour

What can be said about a Markov chain which has been running for a long time?
More precisely: What happens to (™ as n — 0o? As we shall see, the distri-
butions p™ will converge to a fixed distribution under suitable circumstances.
To apply meaning to this, one has to define, what is meant by convergence of
sequences of probability distributions.

Definition A.8 (Total variation). Let P and @ be probability distributions. The
total variation V (P, Q) is defined as

V(P,Q) =) |P(a) - Q(a)].

a€A

Let (P,)n be a sequence of probability distributions. We say, that P, converges
to @ in total variation if lim, ...V (P,, Q) = 0. In this case, we write P, Y, Q.

o

With the notion of convergence for distributions at hand, we can state the main
theorem of this chapter:

Theorem A.3. Let M be an irreducible aperiodic Markov chain with finite state
space and initial distribution (0. Then, there exists a unique stationary distri-

bution 7 for M, and p™ Yo

Example A.8. The Markov chain in the car example is irreducible, aperiodic
and has a finite state space. Theorem A.3 says, that

A
77)

so according to this model, the car would tend to start % ~ 57% of the mornings
as the car got older.

134

Appendix B

Test Vectors

The tables in this chapter show the scalar &, the base point P = (x1,%;) and the
point [k]P = (z3,y2) used in the timings of the operations on the NIST curves
P-192, P-224, P-256, P-384 and P-521.

P-192

k

Ox

TFFFFFFF FFFFFFFF FFFFFFFF CCEF7C1B OA35E4D8 DA691418

X

Ox

188DA8BOE B03090F6 7CBF20EB 43A18800 F4FFOAFD 82FF1012

Y1

Ox

07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

X2

(0D4

7B4603CC 4AC84726 4022B071 44C25277 F2ADS8FBE 9224728F

Y2

(0D4

7890050B B4048924 ODEBBC68 5B5B68A9 FE531DES 9F92BLHA2

Table B.1:

Scalar k, base point P = (z1,y;) and value of [k]P = (x2,y2) for P-192

P-224

Ox

TFFFFFFF FFFFFFFF FFFFFFFF FFFF8B51 705C781F 09EE94A2
AE2E151E

X

Ox

B70EOCBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6
115C1D21

U1

Ox

BD376388 BbEF723FB 4C22DFE6 CD4375A0 5A074764 44D58199
85007E34

X2

Ox

E7F24028 5C2D03A7 EES519EFB 8DA7OF8F F7292C0D F5E20B89
668CDDDA

Y2

Ox

D8DDF2DB A3C1E407 6BF19DC7 FODCA56B A5BA9A1E A7FCBA26
CF993DEC

Table B.2: Scalar k, base point P = (x1,y;) and value of [k]P = (z2,y2) for P-224

135

Appendix B. Test Vectors

P-256

k | Ox

TFFFFFFF
79DCEbL61

80000000
7E3192A8

TFFFFFFF

FFFFFFFF DE737D56 D38BCF42

T 0x

6B17D1F2
F4A13945

E12C4247
D898C296

F8BCEGED

63A440F2 77037D81 2DEB33A0

Y1 Ox

4FE342E2
CBB64068

FE1A7F9B
37BF51F5

S8EE7EB4A

7COF9E16 2BCE3357 6B315ECE

) 0x

2AFA386B
DD6BF3D1

3F2BDCDB
F2DA8DB6

83F4D83F

8FA3874D 7B74DCB4 54BD644F

Y2 Ox

72184BE1
946AD589

CAA8B5634
796F729C

62B536F1

0852D665 AES8A64FD F1EB8D4C

Table B.3:

Scalar k, base point P = (z1,y1)

and value of [k]P = (x2,y2) for P-256

P-384
k | Ox 7TFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
E3B1A6CO FA1B96EF ACODO6D9 245853BD 76760CB5 666294B9
z1 | Ox AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98
59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7
11 | Ox 3617DE4A 96262C6F 5DO9E98BF 9292DC29 F8F41DBD 289A147C
EODA3113 B5FOB8CO OA60BICE 1D7E819D 7A431D7C 90EAQESF
To | Ox D36FED39 CA71063A 5163E811 9A37AFF1 OF6B86D5 OFO02F1D3
24238D2B 090D8067 08495505 66396FF5 778738C0 B39B107A
1Yo | Ox 46C3E62B 85B82FOD DFACB8F5 32101B4B 82E07DB1 C8FDC36D
1F572843 416840AC DCF2BC1C BD532667 81FCFBA9 739AAES51

Table B.4: Scalar k, base point P = (z1,y1) and value of [k]P = (z2,y2) for P-384

136

P-521

(0D4

0000O0OQFF
FFFFFFFF
T7B84D2ES8

FFFFFFFF
FFFFFFFF
1DDAE4DC

FFFFFFFF
FFFFFFFD
44CE23D7

FFFFFFFF
28C343C1
5DB7DBS8F

FFFFFFFF
DF97CB35
489C3204

FFFFFFFF
BFE600A4

X

(0D4

000000C6
053FB521
A2FFA8DE

858E06B7
F828AF60
3348B3C1

0404E9CD
6B4D3DBA
856A429B

9E3ECB66
A14B5SETT
FOTETE31

2395B442
EFE75928
C2E5BD66

9C648139
FE1DC127

U1

Ox

00000118
579B4468
3FAD0O761

39296A78
17AFBD17
353C7086

9A3BC004
273E662C
A272C240

5C8A5FB4
97EE7299
88BE9476

2C7D1BD9
5EF42640
9FD16650

98F54449
C550B901

X2

Ox

0000007C
451943B3
42BB46B6

1BB67BC4
5EEB82B7
8EOFA5CB

F1A47A2C
05FD4132
05B53558

AB98F683
7338840F
C1CA8E31

2FD9681F
7B531313
D783223F

D803A639
F188DETE

Y2

(0D4

000000EOQ
D5014495
146970BC

F5C012BC
8EB2F55A
87CDAC12

C94FE001
BDC30EAF
D98D9376

953F1E6F
239F0274
DD2E3EBA

96550AEQ
00854830
550A9CBF

E02D9950
6FCE7TEFB

Table B.5: Scalar k, base point P = (x1,y;) and value of [k]P = (x2,y2) for P-521

137

—
w
Ne)

Appendix C

Source Code

C.1 Field Implementations

C.1.1 Field Interface

1 interface IFieldElement{

2 public IFieldElement add(IFieldElement val);
3 public int compareTo(IFieldElement val);

4 public boolean equals(java.lang.Object pObj);
5 public IFieldElement inv();

6 public TFieldElement mul(int n);

7 public IFieldElement mul(IFieldElement val);
8 public TFieldElement negate();

9 public IFieldElement pow(int exp);

10 public TFieldElement shl(int val);

11 public IFieldElement shr(int val);

12 public IFieldElement sqr();

13 public TFieldElement sub(IFieldElement val);
14 public java.math.BigInteger toBiglnteger ();
15 public java.lang.String toString();

16 }

00~ O Ui WN -

10

12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37

C.1.2 Implementation of I,

192

import java.math.Biglnteger;
import java.lang.Math;
import java.util.Random;

public final class P192Impl implements IFieldElement {
private BigInteger n;
private static final BigInteger pl92 —
new BigInteger ("
6277101735386680763835789423207666416083908700390324961279

")
Vex:

* Constructor
* @param a

*/

public P192Impl(BigInteger a){
n = a;

}

Vex:

* Adddition

* @param wval

*/

public P192Impl add(IFieldElement val){
BigInteger b = val.toBigInteger ();
BigInteger ¢ = modularAdd(n,b);
return new P192Tmpl(c);

}
/o x

* Compare
* @param val
x/
public int compareTo(IFieldElement val){
return n.compareTo(val.toBiglnteger (
}

Vex:
* FEquality testing
* @param pObj

DE

*/

public boolean equals(java.lang.Object pObj){
return n.equals (pObj);

}

Vaxs
* Inversion
*/
public P192Impl inv () {
return new P192Tmpl(n.modInverse (p192));
}

Vaxs
* Multiplication by integer
* @param m
*/
public P192Tmpl mul(int m){
return new P192Impl(n.multiply (BigInteger.
valueOf(m)).mod(pl192));

}
Vaxs

* Multiplication
* @param val
*/
public P192Impl mul(IFieldElement val){
return new P192Impl(n.multiply(val.toBiglnteger

()) -mod(p192));

Vaxs
* Negation
*
public P192Impl negate (){
return new P192Impl(n.negate().mod(pl192));
}

Vaxs
* Fzponentiation
* @param ezp
*/
public P192Tmpl pow(int exp){
return new P192Impl(n.pow(exp).mod(pl192));

80
81
82
83
84
85
86
87

88

90
91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

}
/s x

* Multiplication by power of two
* @param value
*/
public P192Tmpl shl(int value){
return new P192Impl(n.shiftLeft (value).mod(pl192)
)5
}

/s x
* Division by power of two
* @param value
*/
public P192Tmpl shr(int value){
return new P192Tmpl(n.shiftRight (value).mod(p192

))s
}
/s x
* Squaring
*/

public P192Impl sqr(){
return new P192Impl(n.pow(2) .mod(pl192));
}

/s x

* Subtraction

* @param val

*/

public P192Impl sub(IFieldElement wval){
Biglnteger ¢ = modularSub(n,val.toBigInteger ());
return new P192Impl(c);

}
/s x

* Conversion to Biglnteger
*
public Biglnteger toBiglInteger (){
return n;
}

opoy) 9o1nog - xrpueddy

vl

121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153

}

C.1.3 Implementation of F

Vaxs

* Conversion to String

*/

public String toString(){
return n.toString();

}

Vaxs
* Addition modulo p
* @param a
* @param b
*/
private BigInteger modularAdd (BigInteger a,
Biglnteger b){
BigInteger ¢ = a.add(b);
if (c.bitLength() > 192)
¢ = c.subtract (p192);
if (¢c.compareTo(pl92) — 1)
¢ = c.subtract (p192);
return c;

}
/%%

* Subtraction modulo p
* @param a
* @param b
*/
private BigInteger modularSub(BigInteger a,
BigInteger b){
BigInteger ¢ = a.subtract(b);
if (¢c.signum() ==-1)
¢ = c.add(p192);
return c;

D224

import java.math.Biglnteger;

public final class P224Impl implements IFieldElement {

private BigInteger n;

31
32
33
34
35
36
37
38
39
40
41
42
43

45
46

private static final BigInteger p224 =

new BigInteger ("269599466671506397946670150
87019630673557916260026308143510066298881 ") ;

Vex:
* Comnstructor
* @param a

*/

public P224Impl(BigInteger a){
n = a;

}

/s x

* Adddition
* @param val
*/
public P224Tmpl add(IFieldElement val){
BigInteger c¢ —
modularAdd (n, val.toBiglnteger ());
return new P224Tmpl(c);

}
Vex:

* Compare
* @param wval
*/
public int compareTo(IFieldElement val){
return n.compareTo(val.toBiglnteger (
}

/s x

* Fquality testing

* @param pObj

*

public boolean equals(java.lang.Object pObj){
return n.equals(pObj);

}

Vex:
* Inversion
*
public P224Impl inv (){
return new P224Tmpl(n.modInverse (p224));
}

DE

veed o 10 uoryejuauaTduy

48
49
50

52
53
54

55
56

58
59
60
61
62

63
64
65
66
67
68

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

86
87

Vaxs
* Multiplication by integer
* @param m
*
public P224Impl mul(int m){
return new P224Impl(n.multiply (BigInteger.
valueOf(m)) .mod(p224));

}
Vaxs

* Multiplication
* @param val
*/
public P224Impl mul(IFieldElement val){
return new P224Tmpl(n.multiply(val.toBigInteger

()) -mod(p224)) ;

Vs
* Negation
*/
public P224TImpl negate () {
return new P224Impl(n.negate().mod(p224));
}

Vaxs
* FKzponentiation
* @param exp
*/
public P224Impl pow(int exp){
return new P224Tmpl(n.pow(exp).mod(p224));
}

Vars
* Multiplication by power of two
* @param value
*/
public P224TImpl shl(int value){
return new P224Impl(n.shiftLeft (value) .mod(p224)

)

88
89
90

92
93

94
95
96

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

Vex:
* Division by power of two
* @param wvalue
*/
public P224Impl shr(int value){
return new P224Impl(n.shiftRight (value).mod(p224

))s

/s x
* Squaring
*
public P224Impl sqr(){
return new P224Tmpl(n.pow(2) .mod(p224));
}

/s x

* Subtraction

* @param val

*/

public P224Impl sub(IFieldElement val){
BigInteger ¢ = modularSub(n,val.toBiglnteger ());
return new P224Impl(c);

}
/s x

* Conversion to Biglnteger
*/
public BigInteger toBiglnteger (){
return n;
}

/s x

* Conversion to String

*/

public String toString(){
return n.toString();

}

/s x

* Addition modulo p
* @param a

* @param b

opoy) 9o1nog - xrpueddy

vl

130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152

}

C.1.4 Implementation of F

public final class P256Impl implements [FieldElement {

*
/
private BigInteger modularAdd (BigInteger a,
BigInteger b){
BigInteger ¢ = a.add(b);
if (c.bitLength () > 224)
¢ = c.subtract (p224);
if (c.compareTo(p224) — 1)
¢ = c.subtract (p224);
return c;

}
Vars

* Subtraction modulo p
* @param a
* @param b
*/
private BigInteger modularSub(BigInteger a,
BigInteger b){
BigInteger ¢ = a.subtract(b);
if (¢c.signum() ==-1)
¢ = c.add(p224);
return c;

D256

import java.math.Biglnteger;

private BigInteger n;
private static final BigInteger p256 =

new BigInteger ("1157920892103562487626974469
49407573530086143415290314195533631308867097

853951") ;

Vaxs

* Constructor
* @param a
*/

public P256Impl(BigInteger a){

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Vex:

* Adddition

* @param wval

*/

public P256Impl add(IFieldElement val){
BigInteger ¢ =

modularAdd (n,val.toBigInteger ());

return new P256Impl(c);

}
/s x

* Compare
* @param val
*/
public int compareTo(IFieldElement val){
return n.compareTo(val.toBiginteger (
}

Vex:

* FEquality testing

* @param pObj

*/

public boolean equals(java.lang.Object pObj){
return n.equals (pObj);

}

/s x
* Inversion
*
public P256ITmpl inv(){
return new P256Impl(n.modInverse (p256));
}

/s x

* Multiplication by integer
* @param m

*

public P256Impl mul(int m){

))s

return new P256Impl(n. multiply (BigInteger.

valueOf (m)) .mod(p256)) ;

9%d 1 10 uoryejuRUIATd]

44!

57
58
59

61
62
63
64

65

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87

88
89
90
91
92
93
94
95

96

}
Vars

* Multiplication
* @param val
*/
public P256Impl mul(IFieldElement val){
return new P256Impl(n.multiply(val.toBiglnteger
()) .mod(p256)) ;

Vaxs
* Negation
*/
public P256Impl negate (){
return new P256Impl(n.negate().mod(p256));
}

/%%
* FEzrponentiation
* @param ezp
*/
public P256Impl pow(int exp){
return new P256Impl(n.pow(exp).mod(p256));
}

Vaxs
* Multiplication by power of two
* @param wvalue
*/
public P256Impl shl(int value){
return new P256Impl(n.shiftLeft(value).mod(p256)
)3
}

Vaxs
* Division by power of two
* @param wvalue
ES
public P256Impl shr(int value){
return new P256Impl(n.shiftRight (value).mod(p256

))s

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138

Vex:
* Squaring
*/
public P256Impl sqr(){
return new P256Impl(n.pow(2) .mod(p256));
}

Vex:

* Subtraction

* @param wval

*

public P256Impl sub(IFieldElement val){
Biglnteger ¢ = modularSub(n,val.toBigInteger ());
return new P256Impl(c);

) 1

ko)

@

Vex: =

* Conversion to Biglnteger E"
*/

public Biglnteger toBiglInteger (){ a

) return n; wn

@]

=

=

Vex: 2

* Conversion to String @)

@]

*/ g

@

public String toString () {
return n.toString();
}

/s x
* Addition modulo p
* @param a
* @param b
*/
private BigInteger modularAdd (BigInteger a,
BigInteger b){
BigInteger ¢ = a.add(b);
if(c.bitLength() > 256)
¢ = c.subtract (p256);
if (c.compareTo(p256) — 1)
¢ = c.subtract (p256);

vl

139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154

return c;

}
Vaxs

* Subtraction modulo p
* @param a
* @param b

*/

private BigInteger modularSub(BigInteger a,

Biglnteger b){
BigInteger ¢ = a.subtract (b);
if (c.signum() ==-1)

¢ = c.add(p256);

return c;

}
C.1.5 Implementation of F

P3s4

import java.math.BigInteger;

public final class P384Impl implements IFieldElement {

private BigInteger n;
private static final BigInteger p384 —

new BigInteger ("394020061963944792122790
4010014361380507973927046544666794829340
4245721771496870329047266088258938001861

606973112319");

Vs
* Constructor
* @param a

*/

public P384Impl(BigInteger a){
n = a;

}

Vars

* Adddition
* @param val

*/

23
24
25
26
27
28
29
30
31

51
52
53
54
55
56
57

58
59
60
61
62
63
64

public P384Impl add(IFieldElement val){
BigInteger ¢ =
modularAdd (n,val.toBigInteger ());
return new P384Impl(c);

}
/s x

* Compare
* @param wval
*/
public int compareTo(IFieldElement val){
return n.compareTo(val.toBiginteger (
}

Vex:

* FEquality testing

* @param pObj

*/

public boolean equals(java.lang.Object pObj){
return n.equals (pObj);

}

/s x
* Inversion
*/
public P384Tmpl inv(){
return new P384Impl(n.modInverse (p384));
}

/s x

* Multiplication by integer
* @param m

*

public P384Impl mul(int m){

))s

return new P384Impl(n.multiply (BigInteger.

valueOf (m)) .mod(p384));
}

/s x

* Multiplication

* @param wval

*/

public P384Impl mul(IFieldElement val){

86d 1 10 uoryejuRuaTduy

971

89
90
91
92
93
94
95
96

97
98

100
101
102
103
104

return new P384Impl(n.multiply(val.toBiglnteger
()) -mod(p3as4)) ;

Vars
* Negation
*/
public P384Impl negate (){
return new P384Impl(n.negate().mod(p384));
}

Vars
* FKrponentiation
* @param exp
*/
public P384Impl pow(int exp){
return new P384Impl(n.pow(exp).mod(p384));
}

Vaxs
* Multiplication by power of two
* @param wvalue
*/
public P384Impl shl(int value){
return new P384Impl(n.shiftLeft(value).mod(p384)
)
}

Vaxs
* Division by power of two
* @param wvalue
*
public P384Impl shr(int value){
return new P384Impl(n.shiftRight (value) .mod(p384

))s

Vaxs
* Squaring
*
public P384Impl sqr(){
return new P384Impl(n.pow(2) .mod(p384));
}

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146

Vex:

* Subtraction

* @param wval

*

public P384Impl sub(IFieldElement val){
Biglnteger ¢ = modularSub(n,val.toBigInteger ());
return new P384Impl(c);

}
Vex:

* Conversion to Biglnteger
*/
public Biglnteger toBiglInteger (){
return n;
}

Vex:

* Conversion to String

*/

public String toString () {
return n.toString();

}

Vex:
* Addition modulo p
* @param a
* @param b
*/
private BigInteger modularAdd (BigInteger a,
BigInteger b){
BigInteger ¢ = a.add(b);
if(c.bitLength() > 384)
¢ = c.subtract (p384);
if (c.compareTo(p384) — 1)
¢ = c.subtract (p384);
return c;

}
/s x

* Subtraction modulo p
* @param a
* @param b

opo) 9o1nog - xrpueddy

147
148

149
150
151
152
153
154
155

*
/
private BigInteger modularSub(BigInteger a,
Biglnteger b){
BigInteger ¢ = a.subtract(b);
if (c.signum() ==-1)
¢ = c.add(p384);

return c;

}
C.1.6 Implementation of F

D521

import java.math.BigInteger;

public final class P521Impl implements IFieldElement {
private BigInteger n;
private static final BigInteger p521 —
new BigInteger ("686479766013060971498190

0799081393217269435300143305409394463459
1855431833976560521225596406614545549772
9631139148085803712198799971664381257402
8291115057151");

Vars

* Constructor
* @param a

*/

public P521Tmpl(BigInteger a){
n = a;

}

Vaxs

* Adddition
* @param val
*
public P521Impl add(IFieldElement val){
BigInteger ¢ =
modularAdd (n, val.toBigInteger ());
return new P521Impl(c);

30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58

59
60
61
62
63
64
65

67
68
69
70

Vex:

* Compare

* @param val

*/

public int compareTo(IFieldElement val){
return n.compareTo(val.toBiglnteger (

}

Vex:

* FEquality testing

* @param pObj

*

public boolean equals(java.lang.Object pObj){
return n.equals(pObj);

}

/s x
* Inversion
*
public P521Impl inv (){
return new P521Tmpl(n.modInverse (p521));
}

Vex:
* Multiplication by integer
* @param m
*/
public P521Tmpl mul(int m){
return new P521Impl(n.multiply (BigInteger.
valueOf (m)) .mod(p521));

DE

}
/s x

* Multiplication
* @param val
*/
public P521Tmpl mul(IFieldElement val){
return new P521Impl(n.multiply(val.toBiglnteger
} ()) .mod(p521)) ;

/s x

* Negation

1e6d r 10 uoryeyuatardury

id!

90
91
92
93

95
96
97

98

100
101
102
103
104
105
106
107
108
109
110
111

*/
public P521Impl negate (){

return new P521Tmpl(n.negate().mod(p521));
}

Vaxs
* FKzponentiation
* @param exp
*/
public P521Tmpl pow(int exp){
return new P521Impl(n.pow(exp).mod(p521));
}

/%%
* Multiplication by power of two
* @param value
*/
public P521Impl shl(int value){
return new P521Tmpl(n.shiftLeft (value) .mod(p521)
)
}

Vars
* Division by power of two
* @param wvalue
*
public P521Impl shr(int value){
return new P521Tmpl(n.shiftRight (value).mod(p521

1)
/%%
* Squaring
*/

public P521Tmpl sqr(){
return new P521Impl(n.pow(2) .mod(p521));
}

Vars

* Subtraction

* @param val

*/

public P521Impl sub(IFieldElement val){

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152

BigInteger ¢ =
modularSub(n, val.toBiglnteger ());
return new P521Tmpl(c);

}
Vex:

* Conversion to Biglnteger
*/
public BigInteger toBiglnteger (){
return n;
}

Vex:

* Conversion to String

*/

public String toString () {
return n.toString();

}

Vex:
* Addition modulo p
* @param a
* @param b
*/
private BigInteger modularAdd (BigInteger a,
BigInteger b){
BigInteger ¢ = a.add(b);
if (c.bitLength () > 521)
¢ = c.subtract (p521);
if (c.compareTo(p521) — 1)
¢ = c.subtract (p521);
return c;

}
/o x

* Subtraction modulo p

* @param a

* @param b

*/

private BigInteger modularSub(BigInteger a,
BigInteger b){
BigInteger ¢ = a.subtract(b);
if(c.signum() ==-1)

opo) 9o1nog - xrpueddy

671

153
154
155
156

0~ U WN —=

NN RN = b e e e e e
N—=OQ©Co~ID Ok WNHFHOO©O

23
24
25
26
27
28
29
30
31
32
33

¢ = c.add(phH21);
return c;

C.2 Addition and Doubling

import java.math.Biglnteger;
import java.lang.Math;
import java.util.ArrayList;
import java.util.HashMap;
import java.util .Map;

public final class Addition{

/% sk sk sk sk ok sk sk ok sk oK oK oK oK oK oK oK KK K oK
* Addition of distinct points
Sk KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KRR R R R Rk k /)

Vaxs
* Add two points in Chudnovsky Jacobian coordinates
* and express the result in Chudnovsky Jacobian

* coordinates .

* @param xl1

* @param yl

* @param 21

* @param z1_ 2

* @param z1 3

* @param 2

* @param y2

* @param 22

* @param z2_ 2

* @param 22 3

* @param pq

* @throws IllegalArgumentExzception

*/

static void addPointsJC (IFieldElement x1,
IFieldElement y1,
IFieldElement =zl ,

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

IFieldElement 2zl 2,
IFieldElement zl1 3,
IFieldElement x2,
IFieldElement y2,
IFieldElement z2,
IFieldElement z2 2,
IFieldElement z2 3,
IFieldElement [| pq)
throws IllegalArgumentException {

if (z1.equals(BigInteger .ZERO)) { // P = O?

pa[0] = x2;
pa[l] = y2;
pa[2] = z2;

pa[3] = z2_2;
pq[4] = 72 3;
return;

}

if(z2.equals (BigInteger .ZERO)) // Q==0?
{

pa[0] = x1;
pa[l] = y1;
pa[2] = z1;

pa[3] = z1_2;
pa[4] = z1_3;
return;

}

//Temporary variables
IFieldElement t1,t2,t3,t4,t5,t6 ,t7;

t1 = x1.mul(z2 2); //A
t3 = yl.mul(z2 3); //C

t2 = x2.mul(zl 2); //B
t4 = y2.mul(z1_3); //D

t5 = t2.sub(t1); //E
t2 = t4.sub(t3); //F

if (t5.equals (BigInteger .ZERO) &&
t2.equals (BigInteger .ZERO)) //P=Q?

surqno pue uonIppy

0ST

78
79
80

82
83
84
85
86
87

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

}
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*

//Should use double instead
throw new IllegalArgumentException () ;

t4 = t5.sqr(); //E"2
t6 = t4 .mul(tb); // E~3
t4 = t1.mul(t4); // AE"2
t7 = t2.sqr(); // F~2

tl = t6.negate().sub(t4.shl(1)).add(t7); // z3
t2 = t2.mul(t4 .sub(t1));

t2 = t2.sub(t3.mul(t6)); // y3

t3 = thH;

t3 = t3.mul(z
t3 = t3.mul(z
t4 = t3.sqr();
t5 = t4.mul(t

//Return wvalues
pq[0] = t1;
pa[l] = t2;
pa[2] = t3;
pa[3] = t4;
paf4] = t5;

*
Add two points in Chudnovsky Jacobian / Jacobian
coordinates and express the result in Jacobian
coordinates .

@param x1

@param yl

@param z1

@param z1_ 2

@param z1 3

@param x2

@param y2

@param 22

@param pq

@throws IllegalArgumentEzception

*/

st

atic void addPointsJCJtoJ (IFieldElement x1,
IFieldElement y1,
IFieldElement z1,

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

IFieldElement z1 2,

IFieldElement z1 3,

IFieldElement x2,

IFieldElement y2,

IFieldElement z2,

IFieldElement [] pq)
throws IllegalArgumentException {

if (z1.equals(Biglnteger.ZERO)){ // P == 0%

pa[0] = x2;
pafl] = y2;
pa[2] = z2;
return;

}

if (z2.equals (BigInteger .ZERO)){ // Q==07
pa[0] = x1;
pafl] = yi;
pa[2] = zl;
return;

}

//Temporary variables
IFieldElement t1,t2,t3,t4,t5,t6 ,t7;

th = z2.sqr();

t1 = x1.mul(ts); // A
t5 = t5.mul(z2);

t3 = yl.mul(t5); // C

t2 = x2.mul(zl_2); // B
t4 = y2.mul(zl1_3); // D

t5 = t2.sub(tl1); // E
t2 = t4.sub(t3); // F

if (t5.equals (BigInteger .ZERO) &&
t2.equals (BigInteger .ZERO)) //P=Q?
//Should use double instead
throw new IllegalArgumentException () ;

t4 = t5.sqr(); // E"2
t6 t4.mul(t5); // E"3

opo) 9o1nog - xrpueddy

164 t4 = t1.mul(t4); // AE~2 207
165 t7 = t2.sqr(); // F~°2 208 if (z1.equals(BigInteger.ZERO)) { // P == O?
166 t1 = t7.sub(t6). Sub(t4.shl(1)); /) 8 209 pa[0] = x2;
167 t2 — t2.mul(t4.sub(tl)); 210 pall] = y2;
168 t2 = t2.sub(t3.mul(t6)); // y3 211 pal2] = z2;
169 t5 = t5.mul(zl); 212 pal3] = pal2].sar();
170 t5 = t5.mul(z2); //z3 213 pal3] = pal3].sar();
171 214 pa[3] = pq[3].mul(a);
172 //Return values 215 return;
173 pal|0] = t1; 216 }
174 pal1] = t2; 217
175 pal2] = t5; 218 if (z2.equals (BigInteger .ZERO)){// Q==07
176 } 219 pal0] = x1;
177 220 pall] = y1;
178 221 pal2] = z1;
179 /o 222 pa[3] = pa[2].sar(); o
180 * Add two points in Chudnovsky Jacobian / Jacobian 223 pal3] = pal3].sar(); o
181 * coordinates and express the result in modified 224 pal3] = pq[3].mul(a); %
182 * Jacobian coordinates . 225 return; s
183 * @param xz1 226 } =
184 * @param yl 227 o
185 * @param z1 228 //Temporary variables a
186 * @param z1_ 2 229 IFieldElement t1 ,t2,t3 ,t4,t5,t6 ,t7; w
187 * @param z1 3 230 Q
188 * @param z2 231 t5 = z2.sqr(); g‘
189 * @param y2 232 tl = x1.mul(t5); // A E'_'
190 * @param 22 233 t5 = t5.mul(2z2); e
191 * @param a 234 t3 = yl.mul(t5); // C
192 * @param pq 235
193 * @throws IllegalArgumentEzception 236 t2 = x2.mul(zl 2); // B
194 %/ 237 t4 = y2.mul(z1 3); // D
195 238
196 static void addPointsJCJtoJM (IFieldElement x1, 239 th = t2.sub(t1); // E
197 IFieldElement yl1, 240 t2 = t4.sub(t3); // F
198 IFieldElement z1, 241 if (t5.equals (BigInteger .ZERO) &&
199 IFieldElement zl 2, 242 t2.equals (BigInteger .ZERO)) //P=Q?
200 TFieldElement zl 3, 243 //Should use double instead
201 IFieldElement x2, 244 throw new IllegalArgumentException () ;
202 IFieldElement y2, 245
203 IFieldElement z2, 246 t4 = t5.sqr(); // E"2
204 IFieldElement a, 247 t6 = t4.mul(tb); // E"3
— 205 TFieldElement || pq) 248 t4 = t1.mul(t4); // AE"2
— 206 throws IllegalArgumentException { 249 t7 = t2.sqr(); // F°2

—_
g 250
2561
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

tl = t7.sub(t6).sub(t4.shl(1)); // z3
t2 = t2.mul(t4 .sub(t1));

t2 = t2.sub(t3.mul(t6)); // y3

t3 = t5.mul(zl);

t3 = t3.mul(z2); //z3

t4 = t3.sqr ()
t4 = t4.sqr ()
t4 = t4.mul(a

5 // 2372
5 // 2874
)i // az87Y

//Return values
pa[0] = t1;
pafl] = t2;
pal2] = t3;
pa[3] = t4;

—
Il

*

@param xz1
@param yl
@param z2
@param y2
@param 22
@param pq
@throws IllegalArgumentEzception

¥ X X ¥ ¥ X ¥ ¥ ¥ *

*
N

static void addPointsAtoJ (IFieldElement x1,

IFieldElement yl1,
IFieldElement x2,
IFieldElement y2,
IFieldElement [] pq,
TFieldElement one)

throws IllegalArgumentException {

if (xl=—=null){ // P = O°?

pa[0] = x2;
pa[l] = y2;
pa[2] = one;
return;

Add two points in Affine / Jacobian coordinates
and express the result in Jacobian coordinates.

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

.

¥ K X X X K X X X ¥

*

if (x2=—null){ // Q-—0?

pq[0] = x1;
pa[l] = y1;
pa[2] = one;
return;

}

IFieldElement t1,t2,t3,t4,t5,t6 ,t7;

th = x2.sub(x1); // E

t2 = y2.sub(yl); // F

if (t5.equals (BigInteger .ZERO) &&
t2.equals (BigInteger .ZERO)) //P=Q?
//Should use double instead
throw new IllegalArgumentException () ;

t4 = t5.sqr ()

t6 = t4.mul(t

t4 = x1.mul(t

t7 = t2.sqr(); // F~2
t1 = t7.sub(t6).sub(t4.shl(1)); // z3
t2 = t2.mul(t4.sub(t1));

t2 = t2.sub(yl.mul(t6)); // y3

t3 = t5; // 23

//Return wvalues

pa[0] = t1;
pafl] = t2;
pal2] = t3;

Add two points in Affine / Jacobian coordinates
and express the result in Jacobian coordinates.
@param w1

@param yl

@param 2

@param y2

@param 22

@param pq

@throws IllegalArgumentException

opo) 9o1nog - xrpueddy

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
3567
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
= 377
o 378

*/

static void addPointsAJtoJ

(IFieldElement x1,
IFieldElement yl1,
IFieldElement x2,
IFieldElement y2,
IFieldElement z2,
IFieldElement [] pq,
IFieldElement one)

throws IllegalArgumentException {

if (xl=mull) { // P == O°?

}

if (z2.equal

}

pa[0] = x2;
pal[l] = y2;
pal2] = 22;
return;

pa[0] = x1;

pq[1]

vl

pq[2] = one;
return;

s (BigInteger .ZERO)){ // Q==07

TFieldElement t1,t2,t3,t4,t5,t6,t7;

t2
t4

t5
t1
t5
t3

t5H

t2 =

= x2
y2;

z2 .
x1.
t5.

yl.

t2.
t4.

5 // B

// D

sub(tl); // F
sub(t3); // F

if (t5.equals (BigInteger .ZERO) &&

t4

t5H

t2.equals (BigInteger .ZERO)) //P=Q?
//Should use double
throw new IllegalArgumentException () ;

.sqr(); // E"2

instead

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

t6 = t4.mul(tb); // E"3

t4 = t1.mul(t4); // AE"2

t7 = t2.sqr(); // F°2
t6).sub(t4.shl(1)); // z3

t2 = t2.mul

(
(
(
t1 = t7.sub(
t2 = t2.subgt3.mu1(t6));
(

x1,
yl,

y2,
72

)

[l pa,

t3 = t5.mul(2z2); // 23
//Return wvalues
pq[0] = t1;
pa[l] = t2;
pa[2] = t3;
}
/s x
* Add two points in Affine / Jacobian coordinates
* express the result in modified Jacobian
* coordinates .
* @param z1
* @param yl
* @param 12
* @param y2
* @param 22
* @param a
* @param pq
* @param one
* @throws IllegalArgumentFEzception
*/
static void addPointsAJtoJM (IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement

throws IllegalArgumentException {

if (xl==null) { // P == 0¥
pa[0] = x2;
pa[l] = y2;

one)

surqno pue uonIppy

—_
g 422 pal2

| = 22; 465 t4 = t4.mul(a); // az374
423 pa[3] = pa[2].sar(); 466
424 pal3] = pal3].sqr(); 467 //Return wvalues
425 pal[3] = pq[3].mul(a); 468 pq[0] = t1;
426 return; 469 pall] = t2;
427 } 470 pal2] = t3;
428 47 pa[3] = t4;
429 if (2z2.equals (BigInteger .ZERO)){ // Q==0? 472
430 pq[0] = x1; 473 }
431 pall] = y1; 474
432 pal[2] = one; 475 Vex:
433 pal3] = a; 476 * Add two points in Affine coordinates and
434 return; 477 * express the result in modified Jacobian
435 } 478 * coordinates .
436 479 * @param 1zl
437 IFieldElement t1,t2,t3,t4,t5,t6,t7; 480 * @param yl
438 481 * @param 2
439 t2 = x2; // B 482 * @param y2
440 t4 = y2; // D 483 * @param 22
441 484 * @param a
442 th = z2.sqr(); 485 * @param pq
443 t1 = x1.mul(tb); // A 486 * @param one
444 t5 = t5.mul(z2); 487 * @throws IllegalArgumentFEzception
445 t3 = yl.mul(t5); // C 488 %/
446 489
447 th = t2.sub(tl); // E 490 static void addPointsAtoJM (IFieldElement x1,
448 t2 = t4.sub(t3); // F 491 IFieldElement yl,
449 if (t5.equals (BigInteger .ZERO) && 492 TFieldElement x2,
450 t2.equals (BigInteger .ZERO)) //P=Q? 493 IFieldElement y2,
451 //Should use double instead 494 TFieldElement a,
452 throw new IllegalArgumentException () ; 495 IFieldElement [| pq,
453 496 TFieldElement one)
454 t4 = ts.sqr(); // E~2 497 throws IllegalArgumentException {
455 t6 = t4.mul(t5); // E~3 498
456 t4 = t1.mul(t4); // AE"2 499 if (x1=—null) { // P == 07
457 t7 = t2.sqr(); // F~°2 500 pal0] = x2;
458 t1 = t7.sub(t6). Sub(t4.shl(1)); /) 8 501 pall] = y2;
459 t2 — t2.mul(t4.sub(tl)); 502 pq[2] = one;
460 t2 = t2.sub(t3 mul(t6)); // y3 503 pal3] = a;
461 t3 = t5.mul(z2); //28 504 return;
462 505 }
463 t4 = t3.sqr(); // 2872 506

464 t4 = td.sqr(); // 2874 507 if(x2 = null){ // @Q==0?

opo) 9o1nog - xrpueddy

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
= 549
ot 550

N

pa[0] = x1;
pafl] = yl;
pa[2] = one;
pa[3] = a;
return;

}

IFieldElement t1,t2,t3,t4,t5,t6,t7;

ts = x2.sub(x1); // E

t2 = y2.sub(yl); // F

1f(t5.equals(BlgInteger.ZERO) &&
t2.equals (BigInteger .ZERO)) //P=Q?
//Should use double instead
throw new IllegalArgumentException () ;

t4 = ts.sqr(); // E~2

t6 = t4.mul(tb); // E~3

t4 = x1.mul(t4); // AE"2

t7 = t2.sqr(); // F~2

t1 = t7.sub(t6). Sub(t4.shl(1)); /) 8
t2 = t2.mul(t4 .sub(t1));

t2 = t2.sub(yl.mul(t6));
t3 = th; //28

// y3

t4 = t3.sqr();
t4 = t4.sqr();
t4 = t4.mul(a

s /) 2372
S /) 2874
)i // az8°4

//Return wvalues
pq[0] = t1;
pa[l] = t2;
pal2] = t3;
pa[3] = t4;

Add two affine points ..
@param xz1
@param yl
@param z2
@param y2

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

* @param pq
* @throws IllegalArgumentEzception

*/

static void addPointsA (IFieldElement x1,

N.

EE O S R R D

*
N

*

IFieldElement yl1,
IFieldElement x2,
IFieldElement y2,
IFieldElement [| pq)
throws IllegalArgumentException {
if (x1 == null) { // P = 07?

pal0] = x2; pq[l] = y2;
return;

}

if (x2 =— null){ // Q==07?
pa[0] = x1;
pafl] = y1;
return;

}

if (x1.equals(x2) &&
(y1.equals(y2) || yl.equals(y2.negate())))
//P = |pm Qf

throw new IllegalArgumentException () ;

IFieldElement d =
(y2.sub(yl)).mul((x2.sub(x1)).inv());

pa|0] = d.sqr () .sub(x1).sub(x2);
pa[l] = d.mul(x1.sub(pq[0])) .sub(yl);

Add two affine points without doing inversion.
@param x1

@param yl

@param x2

@param y2

@param d

@param pq

@throws IllegalArgumentEzception

surqno pue uonIppy

&
< 594
595

596
597
598
599
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

static void addPointsA Nolnversions (IFieldElement

e

* X ¥ X *x *

x1,

IFieldElement
vl,
IFieldElement
X2,
IFieldElement
y2,
IFieldElement e

TFieldElement ||

pa)

throws IllegalArgumentException {
if (x1 = null) { // P == 07

pa[0] = x2; pq[l] = y2;

return;
}
if (x2 =— null){ // Q==07?

pa[0] = x1;

pa[1] = y1;

return;

}

if (x1.equals(x2) &&
(y1.equals(y2) || yl.equals(y2.negate())))
throw new IllegalArgumentException () ;

//The element e is the inverted one.
IFieldElement d = (y2.sub(yl)).mul(e);

pal0]

d.sqr () .sub(x1).sub(x2);

pa[1] = d.mul(x1.sub(pq[0])).sub(y1);

Adds two points

of difference
@param x1

]

in projective coordinates wusing
Montgomerys trick (in general form by Briet
and Joye). The algorithm assumes that the point

in affine

coordinates .

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

@param
@param
@param
@param
@param
@param
@param

* X X X ¥ X ¥ *

*
N

21
z2
22
T
a
b

pq

@throws IllegalArgumentException

static void addPointsMontgomeryP (IFieldElement x1,

IFieldElement z1,
IFieldElement x2,
IFieldElement z2,
IFieldElement x,
IFieldElement a,
IFieldElement b,
IFieldElement [] pq

)

throws IllegalArgumentException {

if(z1.equals (BigInteger .ZERO) ||
z2 . equals (BigInteger .ZERO)) //P=0 or Q=07
throw new IllegalArgumentException () ;

//Temporary wvalues
IFieldElement t1,t2,t3,t4 ,t5,t6;

tl =
tl =
t2 =
tl =

t3 =
t4 =
tH =
tl =

t5 =

b.shl(2); // 4b

t1.negate () ;
z1.mul(2z2);
t1.mul(t2);

x1.mul(z2)
x2.mul(z1)
t3.add (t4);
t1.mul(t5)

x1.mul(x2);

//—4b
//z2122
//—4bz122

//x122

//x2z1
//x122 + x2z21

J/—4bz122 (122 + z2z1)

//z1z2

J/t2 = a.mul(t2); //azl122

t2 =
t6 =

t2.negate () ;
t2;

opoy) 9o1nog - xrpueddy

surqno pue uonIppy

673 t2 = t2.shl(1); 716 t1 = y2.mul(zl); //y2z1
674 t2 = t2.add(t6); //—321z2 717 t2 = yl.mul(2z2); //yl122
675 718 t1 — t1.sub(t2); //A
676 t2 = t5.sub(t2); //zlz2—az122 719 t3 = x2.mul(zl); //z2z1
677 t2 = t2.sqr(); //(z1z2—az122)"2 720 t4 = x1.mul(z2); //z1z2
678 721 t3 = t3.sub(t4); //B
679 pql0] = tl.add(t2); //z3 722 if(tl.equals(BigInteger .ZERO) &&
680 723 t3.equals (BigInteger .ZERO)) //P=Q?
681 t1 = t3.sub(t4); //x122 — 1221 724 //Should use double instead
682 725 throw new IllegalArgumentException () ;
683 if (t1.equals (BigInteger .ZERO)) //P= \|pm Q7 726
684 throw new IllegalArgumentException () ; 27 th = z1.mul(z2); //z122
685 728 t6 = t1.sqr(); //A"2
686 t1 = tl.sqr(); //(z122 — z221)°2 729 t6 = t6 .mul(t5); //A"2z122
687 730 t7 = t3.sqr(); //B"2
688 pall] = x.mul(t1); //28 731 t8 = t7.mul(t3); //B"3
689 732 t6 — t6.sub(t8); //A"22122—-B~3
690 } 733 t7 = t7.mul(t4); //B 22122
691 734 t6 = t6.sub(t7.shl(1)); //C
692 Jxk 735 t3 = t3.mul(t6); //X3
693 * Add two points in projective coordinates. 736 t7 = t7.sub(t6); //B"2x122—C
694 * @param xz1 737 t7 = t1.mul(t7); //A(B"2z122-C)
695 * @param yl 738 t4 = t7.sub(t8 . mul(t2)); //Y3
696 * @param z1 739 t5 = t8.mul(t5); //Z3
697 * @param 2 740
698 * @param y2 741 pal|0] = t3;
699 * @param 22 742 pal[l] = t4;
700 * @param pq 743 pal2] = th;
701 * @throws IllegalArgumentExzception 744 }
702 * 745
703 %/ 746
704 static void addPointsP (IFieldElement x1, 747
705 IFieldElement y1, 748 /s s sk s sk sk ok sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk ok ok ok sk sk sk ok ok sk sk sk sk ok Kk sk sk ok ok ok
706 IFieldElement zl, 749 * Doubling of a point
707 IFieldElement x2, 750 st sk sk s sk sk sk ok ok K sk ok sk sk ok ok K s ok sk sk sk ok K sk ok sk sk sk ok Kk ok sk sk ok sk sk ok sk sk ok ok ok /
708 IFieldElement y2, 751
709 IFieldElement 22, 752 /o x
710 IFieldElement [] pq) 753 * Double a point in modified Jacobian coordinates.
711 throws IllegalArgumentException { 754 * FKzpress the result in Jacobian coordinates.
712 755 * @param w1
713 //Temporary variables 756 * @param yl
= 714 IFieldElement t1,t2,t3,t4,t5,t6,t7,t8; 757 * @param z1
~1 715 758 * @param azl /4

—
()]
co

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

793
794
795
796
797
798
799
800

* @param pp

*/

static void doublePointJMtolJ

//Temporary variables

(IFieldElement
IFieldElement
IFieldElement
IFieldElement

x1,
vl,
zl,
azl 4,

IFieldElement []

IFieldElement t1,t2,t3,t4,t5,t6;
tl=yl.sqr();
t2=x1.sh1(2) .mul(t1); //A
t3=x1.sqr();
t3=t3.add(t3).add(t3);
t3=t3.add(azl 4); //B
t1=t1.sqr().shl(3); //C
t4=t3 .sqr(); //B"2
t4=t4 .sub(t2.shl(1)); //z3
t5=t3 .mul(t2.sub(t4)).sub(t1); //y3
t6=yl.shl(1).mul(zl); //23
//Return values
pp[0]
pp[l] = t5;
pp[2] = 16;

}

/%%

* Double a point in modified Jacobian coordinates .

* Kzxpress the result in modified Jacobian

coordinates .
@param x1
@param yl
@param z1
@param azl 4
@param pp

* ¥ ¥ X *

*/

static void doublePointJM

(IFieldElement x1,

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

831
832
833
834
835
836
837
838
839
840
841
842

//Temporary variables

IFieldElement yl1,
IFieldElement z1,
IFieldElement azl 4,
IFieldElement [| pp){

TFieldElement t1,t2,t3,t4,t5,t6,t7;

tl=yl.sqr();

t2=x1.shl1(2) .mul(t1); //A
t3=x1.sqr () ;
t3=t3.add(t3).add(t3);
t3=t3.add(azl 4); //B
t1=t1.sqr () .shl(3); //C

t4=t3 .sqr(); //B"2

t4=t4 .sub(t2. shl(l)); //x3
t5=t3 .mul(t2.sub(t4)).sub(t1); //y3
t6=yl.shl(1) .mul(zl); //z3
t7=t1.shl (1) .mul(azl 4); //az3"4

//Return wvalues

pp[0] = t4;
pp[1] = t5;
pp[2] = t6;
pp[3] = t7;
}
/s x

* Double a point in affine coordinates.
* FEzpress the result in modified Jacobian

coordinates .
@param w1
@param yl
@param z1
@param azl 4
@param pp

* X ¥ X *x

*/

static void doublePointAtoJM (IFieldElement xI1,

IFieldElement y1,
IFieldElement a,
IFieldElement [] pp) {

opo) 9o1nog - xrpueddy

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
— 884
© 885

D

* ¥ ¥ X X ¥

//Temporary variables
IFieldElement t1,t2,t3,t4,t5,t6,t7;

tl=yl.
t2=x1.
t3=x1.
t3=t3.
t3=t3.

tl1=t1

t4=t3.
t4=t4 .

t5=t3

t6=yl.

t7=t1

sqr () 3

shl1(2).mul(t1); //A
sar () ;

add (t3).add(t3);

add (a); //B
-sqr().sh1(3); //C
sar(); //B"2
sub(t2.shl (1)), //x3
.mul(t2.sub(t4)).sub(t1); //y3
shl(1); //23
.shl(1).mul(a); //az8"4

//Return wvalues

pp[0]
pp[1]
pp[2]
pp[3]

Double
result
@param
@param
@param

*/

= t4d;
= thH;
= t6;
= t7;

a point in affine coordinates. FExpress the
in Chudnovsky Jacobian coordinates .

Tl

yl

pp

static void doublePointAtoJC (IFieldElement x1,

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three ,
TFieldElement || pp)

throws IllegalArgumentException {

if (x1 = null) { // P == 0¢?
pp[0] = one;
pp[1] = one;
pp[2] = zero;
pp[3] = zero;
pp[4] = zero;

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

return;

}

//Temporary variables
TFieldElement t1,t2,t3,t4,t5,t6;

tl =
t2 =
t2 =
t3 =
t4 =
t5 =
ts =
t6 —
t6 =
tl =
tl =
t2 =
t2 =

pp [0

N

EE I

*/

yl.sqr()s; // y1°2

x1.mul(t1);

t2.shl(2); // A

yl.shl(1); // 23

t1.shl(2); // 28372 = 4y1~2

t4.shl(1);

t5.mul(yl); // 2373 8y1~3

x1.sqr ()

t6 .add (t6 .add (t6)).sub(three); // B

t6.sqr(); // B"2 P

t1.sub(t2.shl(1)); // z3 =¥

t6 .mul(t2.sub(t1)); %

t2.sub(t5.mul(yl)); // y3 =
=

urn values &

= tl; a

= 12 W)

= t3; o

= t4; g‘

= t5; E'_'
o

a point in affine coordinates. Fzpress the
in Jacobian coordinates.

zl

yl

pp

static void doublePointAtoJ (IFieldElement xI,

if (

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement [| pp) {

xl==null) { // P = 0?

—_
= 929 pp[0] = one; 972 if (z1.equals(BigInteger .ZERO)) { // P == O?

930 pp[1] = one; 973 pp[0] = one;

931 ppl2] = zero; 974 pp[1] = one;

932 return; 975 pp[2] = zero;

933 } 976 return;

934 977 }

935 //Temporary variables 978

936 IFieldElement t1,t2,t3,t4,t5; 979 //Temporary variables

937 980 IFieldElement t1,t2,t3,t4,t5;
938 t1 = yl.sqr(); // yl°2 981

939 t2 = x1.shl(2); 982 t1 = yl.sqr(); // y1°2

940 t2 = t2.mul(tl); // A 983 t2 = x1.shl(2);

941 984 t2 = t2.mul(tl); // A

942 t3 = x1.sub(one).mul(x1.add(one)); 985 t3 = z1.sqr();

943 t3 = t3.shl(1).add(t3); // B 986 t3 = x1.sub(t3).mul(x1.add(t3))
944 t4 = t3.sqr(); // B2 987 t3 = t3.shl(1).add(t3); // B
945 th = t1.shl(1); 988 t4 = t3.sqr(); // B"2

946 t5 = t5.sqr(); 989 t5 = t1.shl(1);

947 t5 — t5.shl(1); // 8yl~/ 990 t5 = t5.sqr();

948 t1 = t4.sub(t2.shl(1)); // 23 991 t5 = t5.shl(1); // 8yi-4

949 t2 = t3.mul(t2.sub(t1)).sub(t5); // y3 992 t1 = t4.sub(t2.shl(1)); // z3
950 t3 = yl.shl(1); 993 t2 = t3.mul(t2.sub(t1)).sub(t5); // y3
951 994 t3 = yl.shl(1);

952 //Return values 995 t3 = t3.mul(zl); // 23

953 pp[0] = t1; 996

954 ppll] = t2; 997 //Return wvalues

955 pp[2] = t3; 998 pp[0] = t1;

956 } 999 pp|1] — t2;

957 1000 pp[2] = t3;

958 Vars 1001 }

959 * Double a point in Jacobian coordinates. 1002

960 * @param zl1 1003 /s x

961 * @param yl 1004 * Double a point in affine coordinates.
962 * @param 21 1005 * @param z1

963 * @param pp 1006 * @param yl

964 */ 1007 * @param a

965 static void doublePointJ (IFieldElement x1, 1008 * @param pp

966 IFieldElement yl1, 1009 * @throws IllegarArgumentException
967 IFieldElement z1, 1010 */

968 IFieldElement zero, 1011

969 IFieldElement one, 1012 static void doublePointA (IFieldElement xI1,
970 IFieldElement [| pp){ 1013 IFieldElement y1,

971 1014 IFieldElement a,

opo) 9o1nog - xrpueddy

1015 IFieldElement [| pp){ 1058

1016 1059 static void doublePointA Nolnversions (IFieldElement
1017 if (x1 = null) { // P == 07 x1,
1018 pp[0] = pp|[1] = null; 1060 IFieldElement
1019 return; yl,
1020 } 1061 IFieldElement
1021 a,
1022 if (yl.equals(yl.negate())) 1062 IFieldElement
1023 throw new IllegalArgumentException () ; d,
1024 1063 IFieldElement
1025 //Temporary variables [T pp)
1026 IFieldElement t1 ,t2,t3,t4,t5,t6; 1064 throws IllegalArgumentException {
1027 1065
1028 t1 = x1.sqr(); 1066 if (x1 == null) { // P == 07
1029 t1 = t1.shl(1).add(t1); 1067 pp[0] = pp|1] = null;
1030 t1 = t1l.add(a); 1068 return; o
1031 1069 } o
1032 t2 = y1.shl(1); 1070 e
1033 t2 = t2.inv(); 1071 if (yl.equals(yl.negate())) =
1034 1072 throw new IllegalArgumentException () ; =
1035 t3 — t1.mul(t2); 1073 &
1036 1074 IFieldElement t1,t2,t3,t4,t5,t6; =
1037 t4 = t3.sqr(); 1075 w,
1038 t4 = t4.sub(x1.shl(1)); 1076 t1 = x1.sqr(); o)
1039 1077 t1 = t1.shl(1).add(t1); =3
1040 t5 = x1.sub(t4); 1078 t1 = tl.add(a); E'_'
1041 t6 = t3.mul(t5); 1079 t2 = d; &
1042 t6 = t6.sub(yl); 1080 t3 = t1.mul(t2);
1043 1081
1044 pp[0] = t4; 1082 t4 — t3.sqr();
1045 pp[1] = t6; 1083 t4 = t4.sub(x1.shl(1));
1046 } 1084
1047 1085 t5 — x1.sub(t4);
1048 Jxk 1086 t6 = t3.mul(t5);
1049 *+ Double a point in affine coordinates 1087 t6 = t6.sub(yl);
1050 * with no iversions. 1088
1051 * @param z1 1089 ppl0] = t4;
1052 * @param vyl 1090 pp[l] = t6;
1053 * @param a 1091 }
1054 * @param d 1092
1055 * @param pp 1093
—1056 * @throws IllegalArgumentFEzception 1094 /s x
—1057 */ 1095 * Double a point in projective coordinates using

—_
%1096
1097
1098
1099
1100
1101
1102
1103
1104

1105

1106
1107
1108

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

Briet and Joye).
@param xz1

@param z1

@param a

@param b

@param pp

* ¥ X ¥ X ¥ *

Montgomerys trick (in general form by

*/

static void doublePointMontgomeryP

)

IFieldElement

IFieldElement
IFieldElement

(IFieldElement

x1
z1

a,

b b

IFieldElement |[]

pp)
throws IllegalArgumentException

//Temporary wvalues
IFieldElement t1,t2,t3,t4,t5;

t1 = x1l.sqr(); //z1°2
t2 = zl.sqr(); //z21°2
t3 = zl.mul(t2); //21°3
t3 = b.mul(t3); //bz1"3

//t2 = t2.mul(a); //azl "2
t2 = t2.negate();

t4 = t2;

t2 = t2.shl(1);

t2 = t2.add(t4); //azl "2

t4 = t1.sub(t2); //zl1°2—azl"2
t4 = td.sqr(); //(z1"2—azl1"2)"2
t5 = x1.mul(t3);// xz1bzl "3

t5 = t5.sh1(3); // Szlbzl"3

pp|0] = t4.sub(t5); //z3

t4 = t1.add

(t //xl " 24+azl "2
t4 = t4 . mul(x

(t

(z

//xl(x1 " 24+azl "2)
t4 = t4.add
t4 = t4.mul

2)

1)

3); //xl(xl1"2+azl "2)+bz1"3

1); //z1(xz1(zl 2+azl "2)+bzl"3);

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1152

1153

1154

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

N

*

pp[1]

Double

= t4.shl(2); //238

a point in affine coordinates using

Montgomerys trick and give the result in
projective coordinates (in general form

by Briet and Joye).
@param x1
@param z1
@param a
@param b
@param pp

¥ K K X K K X X ¥ ¥

*
N

static void doublePointMontgomeryAtoP
x1

)

//Temporary wvalues
TFieldElement t1,t2,t3,t4,t5;

//xl "2
sar(); //(z172-a)"2
;) /bol
; //8b:tl
(t3); //(z1°2—a) 2-8

//xl1"3

t1 = x1.sqr();
t2 = t1.sub(a
t3 = b.mul(x1
t3 — t3.shl(3
pp[0] = t2.su

).
);
)
b

t1 = t1.mul(x1);
t2 = x1.negate();
t3 = t2;

t2 = t2.shl(1
t2 = t2.add(t
t1 = t1.add(t
pp|1] = tl.sh

5 //—3x1
dd (b) ;

)3
3
2).a

1(2);

);
).
(

Vex:

(TFieldElement

IFieldElement
a’7

IFieldElement
b7

IFieldElement
[1 pp){

bx1

opoy) 9o1nog - xrpueddy

1175

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
—=1215
w1216

Double a point in affine coordinates to
projective coordinates.

@param xz1

@param yl

@param pp

static void doublePointAtoP (IFieldElement

}

IFieldElement
IFieldElement

x1,

yl,
three ,

IFieldElement [] pp){

//Temporary variables
IFieldElement t1,t2,t3,t4;

t1 = x1l.sqr(); //z1°2

t1 = t1.shl(1).add(t1); //8z1°2
tl = t1.sub(three); //A

t2 = yl.sqr(); //yl1°2

t3 = x1.mul(t2); //C

t4 = tl.sqr J/A"2

i //4C
.shl(1)); //D
)i //4C-D

)
t4 = t4.sub(t3
4
8): //A(4C-D)
2
)
)

t3 = t3.sub
t3 = t1.mul
t3 = t3.sub
t1 = t2.shl
t2 = yl.shl

.sqr () .shl(3)); //Y3
.mul(yl); //Z3

0
(1
(t
0
(t
0
t3 = t3.shl(2
(t
(t
(t
(t
(3
(1) .mul(t4); //X3;

pp[0] = t2;
pp[1] = t3;
pp[2] = t1;

/*>(<>(<>(<***

* Adds two points

Unified addition

sk 3k sk ok sk sk */

in projective coordinates using
* the wunified addition formula (in general form
* by Briet and Joye).

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259

* X ¥ X ¥ X ¥ *

*
N

@param x1
@param yl
@param z1
@param x2

@param y2
@param 22
@param pq
@throws IllegalArgumentException
static void addPointsUnifP (IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement

throws IllegalArgumentException {

if(yl.equals(y2.negate())) //P=—Q?

x1,
yl,
zl,
X2,
y2,
z2
[l pa)

throw new IllegalArgumentException () ;

//Temporary wvalues
IFieldElement t1,t2,t3,t4 ,t5,t6;

t1 = z1.mul(2z2) ; //A
t2 = x1.mul(2z2); //B
t3 = x2.mul(z1); //C
t4 = yl.mul(2z2); //D
th = y2.mul(z1); //E
t6 = t2.add(t3); //F
t4 = t4.add(t5); //G
th = t6.sqr(); //F~2
t5 = t5.sub(t2.mul(t3)); //F*2—-BC

t2 = tl.sqr(); //A"2

t2 = t2.negate(); //—A"2
t3 = t2.shl(1); //—24"2
t2 = t3.add(t2); //—3A"2
t5 — t5.add(t2); //H

t2 = t1.mul(t4); //J
t1 = t2.mul(t4); //K

surqno pue uonIppy

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

C.3 Scalar Multiplication without
SPA /DPA Countermeasures

C.3.1 Original IBM Test Implementation

t3 =
t4 =
t3 =
th =
t5 =
t4 =
t4 =
t6 =
t6 =
t6 —

pq[0]
pal1]
pal2]

t6
t5.
t3.
t5
t5.
t4.
t4
t2.
t6
t6.

.mul(t1); //L

sqr () .sub(t3); //M
sub(t4.shl(1)); //L—2M
.mul(t3); //H(L-2M)
sub(tl.sqr()); //Y3
shl(1); //2M
.mul(t2); //X38
sar(); //9°8
.mul(t2); //J"3
shl(1); //2J°8

t4

t5;

t6 ;

import java.math.BigInteger;

public final class ECCIBM {

private static final BigInteger THREE —

/

*

* X X X X X X X X * ¥

*
N

BigInteger .valueOf(3);

Scalar multiplication wusing addition—subtraction ;

see IEEE P1363—2004: A.10.3.

@param
@param
@param
@param
@param
@param
@param

@throws

p_
p
a
m
k
bi
kp

T

Y

tlen

IllegalArgumentFEzception

18

25

36

51
52
53
54
55
56
57
58
59
60

static void fp multiplyPointA (Biglnteger p

BigInteger p
Biglnteger a
BigInteger m,
BigInteger k
int bitlen ,
BigInteger || kp)

throws IllegalArgumentException {

BigInteger ¢ = k.mod(m) ;

BigInteger h =

k. multiply (BigInteger.valueOf(3));

BigInteger ||
Biglnteger|[| R = { p

|
—_~—
o

for (int i = h.bitLength() — 2; i > 0; i—) {
fp doublePointA(R[O0] ,R[1],a,mR);
if (h.testBit (i) && 'e.testBit(i))

fp addPointsA (R|O0] ,R[1],P[0],P[1] ,m,R);

else if ('h.testBit(i) && e.testBit(i))
fp addPointsA (R[0] ,R[1],P[O],
P[1].negate() ,m,R);

}
kp[0] = R[0];
kp[1] = R[1];
}
/s x
* Add two affine points;
* see IEEE P1363—2004: A.10.1.
* @param p_ =x
* @param p y
* @param q_x
* @param q_y
* @param m
* @param pq
* @throws IllegalArgumentFEzception
*
/

static void fp addPointsA (BigInteger p x,
BigInteger p vy,
BigInteger q x,
BigInteger q vy,
BigInteger m,

opo) 9o1nog - xrpueddy

61
62
63

65
66
67
68
69
70
71
72
73
74
75
76

78
79
80
81
82
83

85
86
87
88
89
90

92
93
94
95
96
97

99
100
101
= 102
ot 103

—

*

* ¥ ¥ X ¥ ¥ X * ¥

*/

BigInteger || pq)
throws IllegalArgumentException {
if (p x =— null) { // P == 0%
pq[0] = a_x; pq[l] = q_y;
return;

}

if (p_x.equals(q x) &&
(p_y-equals(q_y) ||

p_y-equals(q_y.negate())))
throw new IllegalArgumentException () ;

BigInteger d =

(a_y-.subtract(p y))-
multiply ((q_x.subtract (p_x)).modInverse (m));

pql0] =

d.pow(2) .subtract (p_x).subtract (q_x).mod(m) ;
pa[l] =

d.multiply (p_x.subtract (pq[0])).

subtract (p_y) .mod(m) ;

Double a point in affine coordinates;
see IEEE P1363—2004: A.10.1.

@param p =x

@param p_y

@param a

@param m

@param pp

@throws IllegalArgumentFEzception

static void fp doublePointA (BigInteger p x,

Biglnteger p vy,
BigInteger a,
BigInteger m,
BigInteger || pp)
throws IllegalArgumentException {
if (p x =— null) { // P == 0%
pp[0] = pp[1] = null;
return;

104
105
106
107
108
109
110
111
112
113
114
115
116
117

15

17
18
19
20
21
22
23
24
25

}

if (p_y.equals(p_y.negate()))
throw new IllegalArgumentException () ;

BigInteger d —

(p_x.pow(2).multiply (THREE) .add (a)).

multiply(p_y.shiftLeft (1).modInverse (m));
pp[0] =

d.pow(2) .subtract (p_x.shiftLeft (1)) .mod(m) ;
pp[1] =

d.multiply(p_x.subtract (pp[0])).

subtract (p_y).mod(m) ;

C.3.2 Modified IBM Implementation

import java.math.BigInteger;

public

Vex:

*

* X K X X X X X

*/

final class ECCIBM implements TECCMultiply{

Scalar multiplication wusing addition—subtraction ;

see IEEE P1363—2004: A.10.3.
@param p =z

@param p_y

@param a

@param m

@param k

@param kp

@throws IllegalArgumentEzception

public void multiplyPoint (IFieldElement x1,

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three
int[] naf,int w,
BigInteger k,
TFieldElement [| kp)
throws IllegalArgumentException {

IFieldElement [] P = { x1, yl1 };

uonyejuawa[dw] NET POYIPOIN

@26 IFieldElement [] Q = { x1, yl1 }; 22

27 23 public void multiplyPoint (IFieldElement x1,
28 for(int i=naf.length —2;i>=0;i——) { 24 IFieldElement y1,
29 Addition .doublePointA (Q[0] ,Q[1], 25 IFieldElement zero ,
30 three.negate () ,Q); 26 TFieldElement one,
31 if (naf[i] = 1) 27 IFieldElement three ,
32 Addition . addPointsA (Q[0],Q[1], 28 int[] naf,int w,
33 P[0],P[1],Q); 29 BigInteger k,
34 else if (naf[i] = -1) 30 IFieldElement [] kp)
35 Addition .addPointsA (Q[0] ,Q[1],P[0], 31 throws IllegalArgumentException {
36 P[1].negate() ,Q); 32 int limit = ((int)Math.pow(2,w—1))—1;
37 } 33
38 kp[0] = Q[0]; 34 HashMap<Integer ,IFieldElement[] > precomputed =
39 kp[1] = Q[1]; 35 new HashMap<Integer ,IFieldElement|]|>
40 } 36 (3x1limit);
41 37
42 38 //Use simultaneous inversions in
43 } 39 //the precomputations
40 Auxiliary . precompAffine (x1,y1,w,three.negate (),
C.3.3 Efficient Implementation o precomputed) ;
43
1 import java.math.BigInteger; 44 //Use the modification to reduce the number of
2 import java.lang.Math; 45 //initial doublings.
3 import java.util.ArrayList; 46 IFieldElement [| q;
4 import java.util.HashMap; 47 int s;
5 import java.util .Map; 48 int k 1 = naf[naf.length —1];
6 49
7 50 //Get the wvalue of kappa
8 public final class BECCNCM implements TECCMultiply { 51 int kappa = 1;
9 52 int ¢ = naf.length —2;
10 53 while (naf|c]==0){
11 /xx 54 kappa+-+;
12 * Scalar multiplication wusing wNAF method and mized 55 c——3
13 * coordinates assuming I/M < 238; 56
14 * @param z1 57 //If k 1 < limit, something can be saved.
15 * @param yl 58 if(k_1 < limit){
16 * @param a 59 q = new IFieldElement [3];
17 * @param m 60 int 1 = Biglnteger.valueOf(k 1).bitLength();
18 * @param k 61 int t = (k_1—(int) Math.pow(2,1—-1))=x
19 * @param kp 62 ((int)Math.pow (2,w—1))+1;
20 * @throws IllegalArgumentEzception 63 IFieldElement || pl = precomputed .get (limit);
21 */ 64 IFieldElement [| p2 = precomputed .get (t);

opo) 9o1nog - xrpueddy

65

73

191

}

Addition .addPointsAtoJ (pl1[0],pl[1],p2[0],
p2[1],q,o0ne);
for (int i=1; i<= kappa—wtl —1;i++)
Addition .doublePointJ(q[0] ,q[1],q[2],
zero ,one ,q);
s = ¢;

//If k_l==limit, nothing can be saved.
else{

}

IFieldElement [| temp = precomputed .get(k 1);

q = new IFieldElement [3];

Addition .doublePointAtoJ (temp[0] ,temp[1],
zero ,one ,q);

s = naf.length —3;

for(int i=s;i>=0;i——){

}

Addition .doublePointJ(q[0] ,q[1],q[2], zero,
one 7Q)a
if(naf|i] != 0){
J/1If naf[i] = 0 it is odd,
//and iP has been precomputed.
IFieldElement || pre =
precomputed . get (naf[i]) ;
Addition .addPointsAJtoJ (pre [0] ,pre[1],
al0] ,q[1],q[2],
q,one);

//Convert the result to affine coordinates
Auxiliary . jacobianToAffine(q,kp) ;

22

30
31
32
33
34
35

C.4 Scalar Multiplication with SPA
Countermeasures

C.4.1 Double-and-add Always

import java.math.BigInteger;
import java.lang.Math;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

public final class ECCDAA implements IECCMultiply{

/

*

Scalar multiplication using wNAF method and
mized coordinates assuming I/M < 28;
@param w1

@param yl

@param a

@param m

@param k

@param kp

@throws IllegalArgumentException

* K K X K K X X ¥ ¥

*
~N

public void multiplyPoint (IFieldElement x1,
IFieldElement y1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three ,
int [] naf,int w,
BigInteger k,
TFieldElement [| kp)

throws IllegalArgumentException {

TFieldElement || g 0 =

new IFieldElement []{x1,yl,o0ne};
TFieldElement || g 1 =

new IFieldElement []{one,one,zero };

SOINSLIULIAIUNO) VIS UM uorjedrdiy[njy Iefesg

[a—y

o 36 21 %/
*® 37 for(int i=k.bitLength () —2;i >=0;i——){ 22 public void multiplyPoint (IFieldElement x1,
38 Addition .doublePointJ(q 0[0],q 0[1],q 0[2], 23 TFieldElement y1,
39 zero ,one,q_ 0); 24 IFieldElement zero ,
40 if(k.testBit(i)){ 25 IFieldElement one,
41 Addition .addPointsAJtoJ (x1,yl,q 0[0], 26 IFieldElement three ,
42 q 0[1],q 0]2], 27 int [] naf,int w,
43 q 0,o0ne); 28 Biglnteger k,
44 } 29 IFieldElement [] kp)
45 else{ 30 throws IllegalArgumentException {
46 Addition .addPointsAJtoJ (x1,yl,q 0[0], 31
47 q 0[1],q 0]2], 32 //Precomputations
48 q 1l,one); 33 int limit = ((int)Math.pow(2,w—1));
49 } 34
50 } 35 HashMap<Integer ,IFieldElement || > precomputed =
51 Auxiliary . jacobianToAffine(q 0,kp); 36 new HashMap<Integer ,IFieldElement||>(3%limit
52 })
53 37
54 } 38 //Both even and odd multiples should be
39 //precomputed
C.4-2 W_double_and_add Always i(l) Auxiliary . precompAffineWithEven(f}ll,yl SW,
ree.negate (),
42 precomputed) ;
1 import java.math.BigInteger; 43 precomputed . put (0 ,new IFieldElement [|{x1,y1});
2 import java.lang.Math; 44
3 import java.util.ArrayList; 45
4 import java.util.HashMap; 46 IFieldElement [| start =
5 import java.util.Map; 47 precomputed . get (naf|[naf.length —1]);
6 48 IFieldElement [|] q0 =
7 49 new IFieldElement []{start|[0],start[1],one};
8 public final class ECCWDIA implements TECCMultiply{ 50 IFieldElement [] ql = new IFieldElement [3];
9 51
10 VLT 52 for(int i=naf.length —2;i >=0;i ——){
11 * Scalar multiplication using wNAF method 53 for (int j=w; j>0;j—){
12 x (w—double—and—one—add—always) and mized 54 Addition .doublePointJ(q0[0],q0([1],q0[2],
13 * coordinates . 55 zero ,one,q0);
14 * @param zl1 56 }
15 * @param yl 57
16 * @param a 58 IFieldElement || pre = precomputed .get(naf]i
17 * @param m DR
18 * @param k 59 Addition .addPointsAJtoJ (pre[0],pre[1],q0[0],
19 * @param kp 60 q0[1],q0[2],ql,0ne);
20 * @throws IllegalArgumentEzception 61

opo) 9o1nog - xrpueddy

691

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

W N =

00~ O U

10
11
12
13
14
15
16
17
18
19

21

NN
W N

}

if(naf[i] !'= 0){

q0[0] = ql[0];
q0[1] = ql[1];
q0[2] = ql[2];

else{
q0[0] = qO[0];
q0[1] = qO[1];
, q0[2] = q0[2];

}

Auxiliary . jacobianToAffine(q0,kp);

C.4.3 Montgomery’s Ladder Algorithm

import
import
import
import
import

public

{
/

* ¥ X ¥ ¥ X ¥ ¥ * ¥

java.math.BigInteger;
java.lang.Math;
java.util.ArrayList;
java.util .HashMap;
java.util .Map;

final class ECCMontgomery implements IECCMultiply

*

Scalar
@param
@param
@param
@param
@param
@param
@param

multiplication wusing Montgomery’s ladder;
zl

yl

a

b

one

k

kp

@throws IllegalArgumentEzception

*
N

public void multiplyPoint (IFieldElement x1,

IFieldElement yl1,

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53

55
56
57
58
59
60

62
63
64
65
66

IFieldElement a,

IFieldElement b,

IFieldElement one,

int[] naf, int w,

BigInteger k,

IFieldElement [] kp)
throws IllegalArgumentException {

IFieldElement [| pl,p2;
pl = new IFieldElement |[]{x1,one};
p2 = new IFieldElement [2];

//First doubling in affine —> projective
Addition .doublePointMontgomeryAtoP (x1,a,b,p2);

for (int i = k.bitLength() — 2; i >= 0; i——) {
if ('k.testBit(i)){
//Addition and doubling
Addition .addPointsMontgomeryP(pl1[0],
pl[1],
p2[0],
p2[1],
x1,a,b,
p2);
Addition .doublePointMontgomeryP (p1[0],
pl[1],
a,b,pl);

}

else{
//Addition and doubling
Addition .addPointsMontgomeryP(pl1[0],
pl[1],
p2[0],
p2[1],
x1l,a,b,
pl);
Addition .doublePointMontgomeryP (p2[0] ,
p2[1],
a,b,p2);

}

//Get the affine representation of [k]P

w03y Iopper] S,L1omwo3juoN

= 67

68
69
70

25

27
28
29
30
31
32
33
34

}

Auxiliary . get Affine(p1[0],pl1[1],p2[0],p2[1],x1,

yl,a,b,kp);

C.4.4 Unified Addition

import
import
import
import
import

public

/

* X X X ¥ X X X X X X * ¥

*
N

*

java .math.BigInteger;
java.lang.Math;
java.util.ArrayList;
java.util .HashMap;
java.util .Map;

final class ECCUnif implements IECCMultiply {

Scalar multiplication wusing unified
addition formulas.

@param xz1

@param yl

@param zero

@param one

@param three

@param naf

@param w

@param k

@param kp

@throws IllegalArgumentFEzception

public void multiplyPoint (IFieldElement x1,

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three,
int[] naf, int w,
BigInteger k,
TFieldElement || kp)
throws IllegalArgumentException {

//Precomputations

36
37
38
39

40
41

int limit = ((int)Math.pow(2,w—1))—1;

HashMap<Integer ,IFieldElement[] > precomputed =
new HashMap<Integer ,IFieldElement[]>(3%1limit

)

precomputed . put (1 ,new IFieldElement [|{x1,yl,one
s
precomputed . put(—1,
new IFieldElement []{x1,

yl.negate (),
one});

IFieldElement [] p_ sqr = new IFieldElement [3];

Addition .doublePointAtoP (x1,yl,three ,p sqr);

//Precompute [\pm 3|P,...,[\pm(2 {w—1}—1)]|P
IFieldElement || most recent =
new IFieldElement []{x1,yl,one};

for(int i =3; i <= limit;i+=2){
//Calculate [i]P
Addition .addPointsP (most recent [0],
most recent [1],
most _recent [2],
p_sqr[0],p_sqr[1],
p_sqr[2],most recent);
precomputed . put (i ,new IFieldElement []{
most recent [0],
most _recent [1],
most recent [2]});
//Calculate [—1i]P
precomputed . put(—i ,new IFieldElement []{
most recent [0],
most _recent [1]. negate (),
most recent [2]});

}

IFieldElement [| start =
precomputed . get (naf|[naf.length —1]);
IFieldElement || q =
new IFieldElement []{start[0],
start [1],
start [2]};

opoy) 9o1nog - xrpueddy

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94 }

precomputed . put (0,q) ;

int sigma = 0;
int i = naf.length —2;
while(i >= 0)
{
TFieldElement || pre =
precomputed . get (sigma) ;

Addition .addPointsUnifP(pre[0],pre[1],
pre[2],q[0],
all],af2],a);

sigma = Auxiliary . psi(sigma,naf[i]);

i = it+Auxiliary . phi(sigma) —1;

}

Auxiliary . projectiveToAffine(q,kp);

C.4.5 Side channel Atomicity

1 import java.lang.Math;
2 import java.util.ArrayList;

5 public final class AtomicityMatrix{

—_
3 20
= 21

Vaxs

* Returns a matriz defining the side—channel
* atomic blocks wused in the atomicity algorithm.

*/
public static int[][] getMatrix(){

return new int [][]{
//Define double

new int[]{4,3,3,5,1,4,4,4,1,4},
new int|[]{4,4,5,5,4,4,6,6,4,5},
new int|[|{6,2,3,5,4,5,5,3,6,6},
new int[]{4,2,2,4,4,4,6,6,4,5},
new int|[|{6,4,1,6,6,6,6,7,6,6},
new int[]{8,5,5,1,7,8,7,7,2,3},

22 new int[]{4,4,4,4,4,4,4,6,1,6},
23 new int[]{6,5,6,2,4,6,8,8,4,5},
24 //Define addition

25 new int[]{4,3,3,5,2,3,5,5,3,4},
26 new int[]{5,10,4,6,10,4,5,6,5,10},
27 new int[]{6,11,3,7,1,5,7,8,5,7},
28 new int|[]{6,6,4,8,6,4,8,8,4,8},
29 new int[]{3,7,3,8,7,3,3,8,8,7},
30 new int[]{8,7,7,9,10,11,9,9,8,7},
31 new int[]{5,5,8,9,5,5,6,4,5,8},
32 new int[]{7,7,8,9,7,9,4,4,2,6},
33 new int[]{1,4,4,1,1,9,4,5,1,5},
34 new int[]{5,4,5,8,5,5,7,8,5,7},
35 new int[]{2,6,7,2,2,5,7,7,2,5}};
36 }

37 }

1 import java.math.Biglnteger;

2 import java.lang.Math;

3 import java.util.ArrayList;

4 import java.util.HashMap;

5 import java.util .Map;

6

7

8 public final class ECCAtomicity implements IECCMultiply{
9

10 private static final int[][] A low =

11 AtomicityMatrix . getMatrix () ;

12

13 /s x

14 * Scalar multiplication wusing wNAF method and
15 * mized coordinates. SPA countermeasure:
16 * stde—channel atomicity.

17 * @param 1zl

18 * @param yl

19 * @param a

20 * @param m

21 * @param k

22 * @param kp

23 * @throws IllegalArgumentFEzception

24 */

25

26 public void multiplyPoint (IFieldElement x1,

AyDIUI0}Y [ouuRyD OPIg

s 27
28
29
30
31
32
33
34
35
36

38
39
40
41
42
43
44
45

46
47
48
49

51
52
53
54
55

57
58
59
60
61
62
63
64
65
66
67
68

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three ,
int [] naf,int w,
BigInteger k,
TFieldElement || kp)
throws IllegalArgumentException {

//Initialise temporary wvariables
IFieldElement [] R = new IFieldElement [12];
for(int 1=0;i <12;i++)

R[i] = one;

//Precomputations
int limit = ((int)Math.pow(2,w—1))—1;

HashMap<Integer ,IFieldElement [| > precomputed =
new HashMap<Integer ,IFieldElement[]>(3*1imit

)

Auxiliary . precompAffine (x1,yl,w,three.negate (),
precomputed) ;
precomputed . put (0 ,new IFieldElement [|{x1,y1});

IFieldElement [] start =
precomputed . get (naf|[naf.length —1]);
R[1]=start [0];
R[2]=start [1];
int s=1;
int m=0;
for(int i=naf.length —2;i >=0;i—=s){
int k i = naf[i];
IFieldElement || p = precomputed .get(naf[i]);
R[10] = p[0];
R[11] = p[1];
m= (s==1)7 0 : m+1;
int t = Auxiliary .phi(k _i);
s = (int) ((t==0)7 Math.floor (m/7)
Math. floor (m/18)) ;

//Perform the side—channel atomic block

69
70
71
72
73
74
75
76
7
78

80
81
82

N =

3

ot

0o~

10
11
12
13
14
15
16
17
18

C.5

R[A low[m][0]] =
R[A low[m][1]]. mul(R[A low[m][2]]) ;
R[A low[m]|[3]] =
R[A low[m][4]].add(R[A low[m][5]]) ;
R[A low[m]|[6]] =
R[A low[m][6]]. negate();
R[A low[m]|[7]|] =
) R[A low[m][8]].add(R[A low[m]|[9]]) ;
Auxiliary . jacobianToAffine (new IFieldElement []{
o) RI1],R[2],R[3]},
p);

Scalar Multiplication with
DPA Countermeasures

C.5.1 Point Randomization by Blinding

import
import
import
import
import

java.math.BigInteger;
java.lang.Math;
java.util.ArrayList ;
java.util .HashMap;
java.util .Map;

public final class ECCPointBlinding implements
TECCMultiply{

/

* O K X K K X X X

*

Scalar multiplication using wNAF method and mized
coordinates. DPA countermeasure: Point
randomization by blinding.

@param x1

@param yl1

@param a

@param m

@param k

opo) 9o1nog - xrpueddy

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
= 59
d 60

* @param kp
* @throws IllegalArgumentExzception

*/

public void multiplyPoint (IFieldElement x1,

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three ,
int [] naf,int w,
BigInteger k,
TFieldElement || kp)
throws IllegalArgumentException {

//Get the random pair (Q,[—k]Q). The method
//getRandom of the class RandomPoints simulates
//a random point on the curve.
IFieldElement || r =

RandomPoints.getRandom (k. bitLength ());
IFieldElement [] t = new IFieldElement [2];
Addition .addPointsA (x1,y1,r[0] ,r[1],t);

//Precompute [\pm 3|P,... [\pm(2"{w—1}—1)]|P

int limit = ((int)Math.pow(2,w—1)) —1;

HashMap<Integer ,IFieldElement [| > precomputed =
new HashMap<Integer ,IFieldElement|]>(3*1imit

)

Auxiliary . precompAffine (t [0] ,t[1] ,w,
three.negate (),
precomputed) ;

//Use the modification to reduce the number
J//of initial doublings.

IFieldElement []| q;

int s;

int k 1 = naf[naf.length —1];

//Get the walue of kappa

int kappa = 1;

int ¢ = naf.length —2;

while (naf|c|]==0){
kappa++;

//If k 1 < limit, something can be saved.
if(k 1< limit){
q = new IFieldElement [3];
//Number of bits in k_ I
int 1 = BigInteger.valueOf(k 1).bitLength();
int m = (k_1—(int) Math.pow(2,1-1))=*
((int)Math.pow (2 ,w—1))+1;
IFieldElement [| pl = precomputed .get (limit);
TFieldElement || p2 = precomputed .get (m);
Addition .addPointsAtoJ (p1[0],pl[1],
p2[0],p2[1],q,0ne);
for(int i=1; i<= kappa—wtl —1;i++)
Addition .doublePointJ(q[0] ,q[1],q[2],
zero ,one ,q);
s = ¢

}

J/If k_l==limit, nothing can be saved.
else{
IFieldElement || temp = precomputed .get(k 1);
q = new IFieldElement [3];
Addition .doublePointAtoJ (temp[0] ,temp[1],
zero ,one ,q) ;
s = naf.length —3;

}

for (int i=s;i>=0;i——){
Addition .doublePointJ(q[0] ,q[1],q[2],
zero ,one ,q);
if(naf|i] !'= 0){
J/If naf[i] = 0 it is odd, and
//[i]P is precomputed.
IFieldElement [|] pre =
precomputed . get (naf[i]);
Addition .addPointsAJtoJ (pre[0] ,pre[1],
al0] ,q[1],q[2],
q,one);

Surpurg Aq uonyezimopury JuI0g

EN |

104
105

106
107
108

W N =

00~ O U

11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30

}
C.5.2

import
import
import
import
import

public
TEC

/

*

* X X X X X X X X ¥ ¥

*
N

J/Add [-k]Q to get [k]P.

Addition .addPointsAJtoJ (r[2],r[3],q[0],q[1],q
[2],q,0ne);

Auxiliary . jacobianToAffine(q,kp) ;

Point Randomization by
Redundancy

java .math.BigInteger;
java.lang.Math;
java.util.ArrayList;
java.util .HashMap;
java.util .Map;

final class ECCPointRandomization implements
CMultiply {

Scalar multiplication using wNAF method and mized
coordinates. DPA countermeasure: Point
randomization by redundancy.

@param x1

@param yl

@param a

@param m

@param k

@param kp

@throws IllegalArgumentFEzception

public void multiplyPoint (IFieldElement x1,

IFieldElement y1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three,
int[] naf,int w,
BigInteger k,
IFieldElement [] kp)

31
32
33
34
35
36
37

38
39

41
42
43
44
45
46
47
48
49
50
51
52
53

55
56
57
58
59

61
62
63
64
65
66

68
69
70
71
72

throws IllegalArgumentException {

//Precomputations
int limit = ((int)Math.pow(2,w—1))—1;

HashMap<Integer ,IFieldElement[] > precomputed =
new HashMap<Integer ,IFieldElement||>(3%limit

) k)

Auxiliary . precompAffine (x1,y1,w, three.negate (),
precomputed) ;

//Randomize the representation in

//Jacobian coordinates

IFieldElement rfe =
RandomFieldElement.getRandom (k. bitLength ());

IFieldElement rfe 2 = rfe.sqr();

TFieldElement rfe 3 = rfe 2.mul(rfe);

//Use the modification to reduce the number of
//initial doublings.

TFieldElement [| q;

int s;

int k 1 = naf[naf.length —1];

//Get the wvalue of kappa
int kappa = 1;
int ¢ = naf.length —2;
while (naf|c]==0){
kappa-++;
c——;

}

//If k 1 < limit something can be saved.

if(k 1 < limit){
q = new IFieldElement [3];
//Number of bits in k_1
int 1 = Biglnteger.valueOf(k 1).bitLength();
int t = (k_1—(int) Math.pow(2,1—1))=*

((int)Math.pow (2 ,w—1))+1;

IFieldElement || pl = precomputed.get (limit);
IFieldElement [| p2 = precomputed .get (t);

opo) 9o1nog - xrpueddy

73

Addition .addPointsAtoJ (pl1[0],pl[1],p2[0],
p2[1],q,0mne);

//Randomize the point
q[0] = q[0].mul(rfe_2);
] = a[l].mul(rfe 3);
a[2] = q[2].mul(rfe);
for (int i=1; i<= kappa—wtl —1;i++)
Addition .doublePointJ(q[0] ,q[1],q[2],
zero ,one ,q);

5§ = C;

}

J/If k_l==limit nothing can be saved.
else{
IFieldElement || temp =
precomputed . get (k_1);
q = new IFieldElement [3];
Addition .doublePointAtolJ

)

9
(temp[0] ,temp[1],
zero ,one ,q);

//Randomize the point
ql0] = q|0].mul(rfe 2);
q[1l] = q[1].mul(rfe 3);
al2] = qf2].mul(rfe);
s = naf.length —3;

}

for (int i=s;i>=0;i——){
Addition .doublePointJ(q[0] ,q[1],q[2],
zero ,one,q);

f(naf|i] != 0){ //If naf[i] != 0 it is odd,

//and [i|P has
//been precomputed.

TFieldElement || pre =

precomputed . get (naf|[i]) ;

Addition .addPointsAJtoJ (pre [0] ,pre[1],
alol.al1],al2],
q,one);

}
}

Auxiliary . jacobianToAffine(q,kp) ;

116 }

C.5.3 Curve Randomization by

00~ O Ui W~

10

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Isomorphisms

import java.math.BigInteger;
import java.lang.Math;
import java.util.ArrayList;
import java.util.HashMap;
import java.util .Map;

public final class ECCCurveRandomization implements

IECCMultiply{

private static final BECCNCM ncm = new ECCNCM() ;

/

*

coordinates. DPA countermeasure: Point
randomization by redundancy.

@param w1

@param yl

@param a

@param m

@param k

@param kp

@throws IllegalArgumentEzception

* K K X X K XK X X X X

*
~N

public void multiplyPoint (IFieldElement x1,

IFieldElement yl1,
IFieldElement zero ,
IFieldElement one,
IFieldElement three
int[] naf,int w,
BigInteger k,
TFieldElement [| kp)

throws IllegalArgumentException {

int limit = ((int)Math.pow(2,w—1))—1;

Scalar multiplication using wNAF method and mized

swistydiowos] £q UOIIRZIWIOPURY] 9AIN)

=~ 36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

HashMap<Integer ,IFieldElement [| > precomputed =
new HashMap<Integer ,IFieldElement[]>(3*1limit

)

//Randomize the curve
IFieldElement mu =

RandomFieldElement. getRandom (k. bitLength ());
IFieldElement mu inv = mu.inv();
IFieldElement mu inv_2 = mu inv.sqr();
IFieldElement mu_inv_3 = mu_inv_2.mul(mu_inv);

//The coefficient a’ on the new curve
IFieldElement a prime = mu inv_2.sqr();
a prime =

a_ prime.negate () .sub(a_ prime).sub(a_prime);

if (a_ prime.equals (BigInteger.valueOf(—-3))){
//We can use the efficient scheme
ncm. multiplyPoint(x1,yl,zero ,one,three ,naf ,w

sk, kp);
return;
}
//The point P’ on the mew curve
x1 = x1.mul(mu_inv_2);

yl = yl.mul(mu_inv_3);

//Values needed to retrieve [k|P
IFieldElement mu 2 = mu.sqr();
TFieldElement mu 3 = mu_2.mul(mu);

//Precomputations
Auxiliary . precompAffine (x1,y1,w,
a_prime,precomputed) ;

//Use the modification to reduce the number
//of initial doublings.

IFieldElement [] g m;

int s;

int k 1 = naf[naf.length —1];

//Get the walue of kappa
int kappa = 1;

int ¢ = naf.length —2;
while (naf[c]==0){
kappa++;
c——;

}

//If k 1 < limit something can be saved.
if(k 1 < limit){
q m = new IFieldElement [4];
//Number of bits in k_ |
int 1 = Biglnteger.valueOf(k 1).bitLength();
int t = (k_1—(int) Math.pow(2,1—1))=*
((int)Math.pow (2 ,w—1))+1;
IFieldElement || pl = precomputed.get (limit);
IFieldElement [|] p2 = precomputed .get (t);
Addition .addPointsAtoJM (p1]0] ,pl[1],p2][0],
p2[1],a_ prime,
q7m70ne);
for(int i=1; i<= kappa—w}l —1;i++)
Addition . doublePointJM (q m[0] ,q m[1],
q_m|[2],q m[3],

q_m);
s = c;
}
J/If k_l==limit nothing can be saved.
else{
IFieldElement || temp = precomputed.get(k 1);
q m = new IFieldElement [4];
Addition .doublePointAtoJM (temp|0] ,temp|[1],
a_prime,q m);
s = naf.length —3;
}

//Perform the scalar multiplication
IFieldElement [| q j = new IFieldElement [3];
for(int i=s;i>=0;i——){
if(naf[i] !'=0){
//Double to Jacobian coordinates .
//This gives a more efficient addition .
Addition . doublePointJMtoJ (¢ m[0] ,q m[1],
o m|[2] g m[3] |
a_j);

opo) 9o1nog - xrpueddy

—
EN |
~J

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148 }

//Get the precomputed point
TFieldElement || pre =
precomputed . get (naf|[i]) ;

//Ezpress the result of the addition in
//modified Jacobian coordinates
//to get a more efficient doubling.

Addition .addPointsAJtoJM (pre [0] ,pre[1],
a_jl0],q j[1],
a_jl2],a_prime,
q m,one);

}
else

Addition .doublePointJM (q¢ m[0] ,q m[1],
q m[2],q m[3],
q.m);

}

//Return the affine point [k]P wusing the

//random isomorphism to get from [k|P’ to [k]P.

Auxiliary . jacobianToAffine (new IFieldElement []{
q m|[0] ,q m[1],
a_m[2]} ,kp);

kp[0] = kp[0].mul(mu 2);

kp[1] = kp[1].mul(mu 3);

C.6 Scalar Multiplication with
SPA & DPA Countermeasures

C.6.1 Montgomery’s Ladder Algorithm
& Point Randomization by Redundancy

1 import java.math.BigInteger;
2 import java.lang.Math;

34

36
37
38
39
40
41

43
44
45

import java.util.ArrayList;
import java.util.HashMap;

public final

import java.util.Map;

class ECCMgPr implements IECCMultiply{

Vex:

* Scalar multiplication. SPA countermeasure:

* Montgomery’s ladder. DPA countermeasure:

* Point randomization by redundancy.

* @param w1

* @param vyl

* @param a

* @param b

* @param one

* @param k

* @param kp

* @throws IllegalArgumentFEzception

*/

public void multiplyPoint (IFieldElement x1,
IFieldElement y1,
IFieldElement a,
IFieldElement b,
IFieldElement one,

int[] naf, int w,

BigInteger k,

IFieldElement [] kp)

throws IllegalArgumentException {

//Randomize the representation in
//projective coordinates
IFieldElement rfe —

RandomFieldElement.getRandom (k. bitLength ());

IFieldElement rndx = x1.mul(rfe);
TFieldElement rndy = yl.mul(rfe);
IFieldElement [| pl,p2;

pl = new IFieldElement [|{rndx, rfe};
p2 = new IFieldElement [2];

//First doubling is affine —> projective

Addition .doublePointMontgomeryP (x1,one,a,b,p2);

saInseauLIIUNO) VA 2 VS

s uoryedtdiny refeng

[a—y

3 46 for (int i = k.bitLength() — 2; i >= 0; i——){ 6
47 if (1k.testBit(i))] 7
48 //Addition and doubling 8 public final class ECCAtPb implements TECCMultiply{
49 Addition .addPointsMontgomeryP(pl1[0], 9
50 pl[1], 10 //The atomicity matriz
51 p2[0], 11 private static final int[][] A low =
52 p2|1], 12 AtomicityMatrix . getMatrix () ;
53 x1,a,b, 13
54 p2); 14 Vex:
55 Addition .doublePointMontgomeryP (pl1[0], 15 * Scalar multiplication wusing wNAF method and mized
56 pl[1], 16 * coordinates. SPA countermeasure: Atomicity. DPA
57 a,b,pl); 17 * countermeasure: Point randomization by blinding.
58 18 * @param 1zl
59 } 19 * @param yl
60 else{ 20 * @param a
61 //Addition and doubling 21 * @param m
62 Addition .addPointsMontgomeryP(p1]0], 22 * @param k
63 pl[1l], 23 * @param kp
64 p2(0], 24 * @throws IllegalArgumentFEzception
65 p2[1], 25 x/
66 x1,a,b, 26 public void multiplyPoint (IFieldElement x1,
67 pl); 27 IFieldElement y1,
68 Addition .doublePointMontgomeryP (p2[0], 28 IFieldElement zero ,
69 p2[1], 29 IFieldElement one,
70 a,b,p2); 30 IFieldElement three ,
71 } 31 int[] naf, int w,
72 } 32 Biglnteger k,
73 //Get the affine representation of [k]|P 33 TFieldElement [| kp)
74 Auxiliary . get Affine(p1[0],p1[1],p2[0],p2[1],x1, 34 throws IllegalArgumentException {
75 yl,a,b,kp); 35
76 } 36 //Get the random pair (Q,[—k]Q) The method
I 37 //getRandom of the class RandomPoints simulates
38 //a random point on the curve.
C.6.2 Side channel Atomicity & Point 59 IieldBlement [] r —
s 40 RandomPoints.getRandom (k.bitLength ());
: : : : 41 IFieldElement [|] t = new IFieldElement [2];
Randomlzatlon by Bllndlng 42 Addition .addPointsA (x1,y1,r[0],r[1],t);
43
1 import java ,math,BigInteger; 44 IFieldElement [] R — new IFieldElement [12];
2 import java.lang.Math; 45 for (int i=0;i <12;i++)
3 import java.util.ArrayList; 46 R[i] = one;
4 import java.util.HashMap; 47

5 import java.util .Map; 48 int limit = ((int)Math.pow(2,w—1))—1;

opo) 9o1nog - xrpueddy

6L1

49
50
51

52
53
54
55

HashMap<Integer ,IFieldElement [| > precomputed =
new HashMap<Integer ,IFieldElement|]>(3*1limit

)

Auxiliary . precompAffine (t [0] ,t[1] ,w,
three.negate (),
precomputed) ;

precomputed . put (0,t) ;

IFieldElement [] start =
precomputed . get (naf|naf.length —1]);
R[1]=start [0];
R[2]=start [1];
int s=1;
int m=0;
for(int i=naf.length —2;i >=0;i—=s){
int k i = naf[i];
IFieldElement || p = precomputed .get(naf[i]);
R[10] — p[0];
R[11] — p|1];
m= (s==1)7 0 : m+1;
int u = Auxiliary .phi(k _i);
s = (int) ((u==0)? Math. floor (m/7)
Math. floor (m/18)) ;

//Perform the side—channel atomic block
R[A low[m][0]] =

R[A low[m][1]]. mul(R[A low[m][2]]) ;
R[A low[m][3]] =

R[A low[m]|[4]].add(R[A low[m][5]]) ;
R[A low[m][6]] =

R[A low|m]|[6]].negate();
R[A low[m][7]] =

R[A low[m]|[8]].add(R[A low[m][9]]) ;

IFieldElement |] q = new IFieldElement [3];
Addition .addPointsAJtoJ (r[2],r[3],R[1],R[2],

R[3],q,one);
Auxiliary . jacobianToAffine(q,kp) ;

00~ O Ui WN -

C.6.3 Side channel Atomicity & Point
Randomization by Redundancy

import java.math.BigInteger;
import java.lang.Math;
import java.util.ArrayList;
import java.util.HashMap;
import java.util .Map;

public final class ECCAtPr implements IECCMultiply{

//The atomicity matriz
private static final int[][] A low =
AtomicityMatrix . getMatrix () ;

x1,
vl,
zZero ,
one ,

/s x

* Scalar multiplication wusing wNAF method and mized

* coordinates. SPA countermeasure: Atomicity. DPA

* countermeasure: Point randomization by redundancy

* @param z1

* @param yl

* @param a

* @param m

* @param k

* @param kp

* @throws IllegalArgumentEzception

*/

public void multiplyPoint (IFieldElement
IFieldElement
IFieldElement
IFieldElement
IFieldElement

int [] naf,int
BigInteger k,

three ,
W7

IFieldElement [] kp)

throws IllegalArgumentException {

//Initialize temporary variables

IFieldElement [] R = new IFieldElement[12];

Kouepunpay £q uorjezIWIOpURY JUIOJ 29 A}DTWO)Y [PUURYD dPIS

® 39

40
41
42
43
44
45
46

for(int i=0;i <12;i++)
R[i] = one;

//Precomputations
int limit = ((int)Math.pow(2,w—1))—1;

HashMap<Integer ,IFieldElement[]> precomputed =
new HashMap<Integer ,IFieldElement[]>(3*1limit

)

Auxiliary . precompAffine (x1,yl,w,three.negate (),
precomputed) ;
precomputed . put (0 ,new IFieldElement [[{x1,y1});

//Randomize the representation in
//Jacobian coordinates
IFieldElement rfe =
RandomFieldElement. getRandom (k. bitLength ());
IFieldElement rfe 2 = rfe.sqr();
IFieldElement rfe 3 = rfe 2.mul(rfe);

//Randomize the point
IFieldElement [| start =
precomputed . get (naf|[naf.length —1]);
R[1]=start [0].mul(rfe 2);
R[2|=start [1].mul(rfe 3);
R[3] = rfe;
int s=1;
int m=0;

for(int i=naf.length —2;i >=0;i—=s)
{ int k i = naf[i];
IFieldElement [] p =
precomputed . get (naf[i]);
R[10] = p[0];
R[11] — p|1];
(s==1)7 0 : m+1;
int t = Auxiliary.phi(k i);
(int) ((t==0)? Math.floor (m/7)
Math. floor (m/18)) ;

//Perform the side—channel atomic block.

81
82
83

85
86
87
88
89
90

92
93
94

C.7

import
import
import
import

public

Vex:

*
*
*

*/

R[A low[m][0]] =
R[A low[m][1]]. mul(R[A low[m][2]]) ;
R[A low[m]|[3]] =
R[A low[m][4]].add (R[A low[m][5]]) ;
R[A low[m]|[6]] =
R[A low[m][6]]. negate();
R[A low[m]|[7]] =
. R[A low[m][8]].add (R[A low[m][9]]) ;
Auxiliary . jacobianToAffine(new IFieldElement []{
o) RI1],R[2],R[3]},
p);

Auxiliary Methods

java.util .HashMap;
java.util .Map;
java.util.ArrayList ;
java.math.BigInteger;

final class Auxiliary{
Calculation of the non adjacent form.

@param n
@param w

static int || getNAF(Biglnteger n){

}

Vex:

*
*
*
*

*/

return getWNAF(n,2);

Calculation of the width—w non—adjacent form.
@param n

@param w

@throws IllegalArgumentEzception

opo) 9o1nog - xrpueddy

25
26
27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53
54

56
57
58
59
60
61
62
63
64
65
= 66
= 67

static int[]| getWNAF (Biglnteger n, int w)

{

}
Vars

ArrayList <Integer> ns =
new ArrayList<Integer >();

BigInteger two = Biglnteger.valueOf(2);
BigInteger pow = two.pow(w);

if(w<=1)
throw new IllegalArgumentException () ;

while (n.compareTo(BigInteger.valueOf(0)) =— 1){
//n odd?
if(n.testBit (0)){
BigInteger n_i = mods(n,pow);
ns.add(n_i.intValue());
n = n.subtract (n_i);
}
else
ns.add (0) ;
//Divide by 2
n = n.shiftRight (1) ;

}

int || res = new int|ns.size ()];

for (int i=0j;i<ns.size();i++)
res|[i] = ns.get(i);

return res;

* Simultaneous inversion in F _p.
* @param a
* @param b

*/

static void simlInv(IFieldElement []

a’
TFieldElement [| b){
int j = a.length;
IFieldElement [] ¢ = new IFieldElement]|j];
clo] — alo];
for(int i=1;i<= j—1; i++)

c[i] = ali].mul(c[i—-1]);
IFieldElement u = c¢[j—1].inv () ;
for (int i=j—1; i>=1; i—){

b[i] = u.mul(c[i—-1]);

u = u.mul(ali]);

—

*

NS

EEE SRR D SR T

Precomputation in affine coordinates using
simultaneous inversion.

Returns [1]P,[3]P,...,[2"{w—1}—1]P.
@param w1

@param yl

@param w

@param a

@param precomputed

*

*/

static void precompAffine (IFieldElement xI1,
IFieldElement yl1,
int w, IFieldElement a,
HashMap<Integer ,
IFieldElement [] >
precomputed){

//Tempotary arrays for the coordinates of the
//precomputed points .
TFieldElement || x =

new I[FieldElement [((int)Math.pow(2,w—1))];
TFieldElement || y =

new IFieldElement [((int)Math.pow(2,w—1)) |;
IFieldElement [| temp = new IFieldElement [2];

Addition .doublePointA (x1,yl,a,temp);
x[0] = x1;
y[0] = y1;
x[1] = temp|[0]; //z—coordinate of 2p
y|1] = temp[1]; //y—coordinate of 2p

TFieldElement || d;
IFieldElement [| e;

SPOTJRIN ATeT[IXny

—
oo
[\]

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

for(int i=1; i<=w—2;i++){
int s = ((int)Math.pow(2,i-1))+1;
int pw = ((int)Math.pow(2,i));
int t = ((int)Math.pow(2,i+41))

3

//Use simultaneous inversion
if(i 1= w-2){
d = new IFieldElement [s];
e = new IFieldElement|[s|;
for (int k=0; k< s—1; k++)
dlk] = x[pw—1].sub(x[2xk]);
d[s—1] = y[pw—1].shl(1);

}
else{//[2"{w—1}]P is not used

5——;
d = new IFieldElement |s];
e = new IFieldElement [s];

for(int k=0; k<= s—1; k++)
, d[k] = x[pw—1].sub(x[2xk]) ;

simInv(d,e);

//Compute [2s—1]P,... [2s=8+2"i]P,[2~{i+1}]P

int k=0;
for (int j=pw+1l; j <= t—1; j+=2){
Addition .
addPointsA Nolnversions(x|j—pw—1],
y[i-pw—1],
x[pw—1],
e[k],
temp) ;
X[J —1] = temp[0];
ylj—1] = temp[1];
k++;

if(i '= w—2){ //[2"{w—1}|P is not used
int h = 2xpw;
Addition .
doublePointA Nolnversions(x|[pw—1],

y[pw—1],

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

a,e[s—1],
temp) ;
x|h—1] = temp|0];
y[h—=1] = temp[1];

}

//Return the precomputed points in the
//supplied Hashmap .
int limit = ((int)Math.pow(2,w—1))—1;
for(int i = 1; i<=limit; i+=2){
precomputed .put (i ,new IFieldElement []{
xli—1],y[i—-1]});
precomputed . put(—i ,new IFieldElement []{
x[i-1],
vli—1] negate () })

Calculation of the width—w non—adjacent form for

* w—double—one—add always (Okeya & Takagi).
* @param n
* @param w

static int[] getWNAFDummy(BigInteger n, int w){

ArrayList <Integer> ns =
new ArrayList<Integer >();
BigInteger two = Biglnteger.valueOf(2);
BigInteger pow = two.pow(w);
while (n.compareTo(BigInteger.valueOf (0))==1){
BigInteger n i = mods(n,pow);
ns.add(n_i.intValue());
n = n.subtract (n_i);
n = n.shiftRight (w);
}
int|[] res = new int|ns.size () |;
for(int i=0;i<ns.size();i++)
res[i] = ns.get(i);
return res;

opo) 9o1nog - xrpueddy

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
= 238
w 239

* X X X X X X ¥

*

*/

static void precompAffineWithEven(IFieldElement x1,
IFieldElement yl1,

*

Precomputation in affine coordinates wusing
simultaneous inversion.

Returns [1]P,[2]P,...,[2"{w—1}]P.

@param xz1

@param yl

@param w

@param a

@param precomputed

int w,
IFieldElement a,
HashMap<Integer ,
IFieldElement [| >
precomputed){

//Tempotary arrays for the coordinates of the
//precomputed points .
IFieldElement [|] x =

new IFieldElement [((int)Math.pow(2,w—1))];
IFieldElement [] y =

new IFieldElement [((int)Math.pow(2,w—1))];
IFieldElement || temp = new IFieldElement [2];

Addition .doublePointA (x1,y1,a,temp);
x[0] = x1;
y[0] = y1;
x|1] = temp|[0]; //z—coordinate of 2p
y[1] = temp[1]; //y—coordinate of 2p

for(int i=1; i<=w—2;i++){
int s = ((int)Math.pow(2,i—1))+1;
int pw = ((int)Math.pow(2,1));
int h = ((int)Math.pow(2,i+41))

)

//Use simultaneous inversion
IFieldElement [| d = new IFieldElement [pw];
IFieldElement [] e new IFieldElement [pw];

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

for(int k=0; k < pw—1; k++)

d[k] = x[pw—1].sub(x[k]);
dlpw—1] = y[pw—1].sh1(1);
simInv(d,e);

//Compute [2s—1]P,[2s]P...,[25—3+27i]P,
//[27{i+1}]P

int k=0;
for (int j=pw+1; j <= h—-1; j++){
Addition .
addPointsA Nolnversions(x[j—pw—1],
yli-pw—1],
x[pw—1],
y [pw—1],
e[k],temp);
x[j—1] = temp[0]:
yli—1] = temp[1];
k++;
}
Addition .
doublePointA Nolnversions(x[pw—1],
y[pw—1],
a’e[pw_1]7
temp) ;

x|h—=1] = temp|0];
y[h—1] = temp[1];

}

//Return the precomputed points in the
//supplied Hashmap .
int limit = ((int)Math.pow(2,w—1));
for(int i = 1; i<=limit; i++){
precomputed . put (i ,new IFieldElement []{
x[i=1],y[i=1]});
precomputed . put(—i ,new IFieldElement []{
x[i—-1],
vli—1] negate () }):

* Returns mn mod s — the smallest residue in

SPOTJRIN ATeT[IXny

—_
ﬁ 283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

absolute wvalue. This is unique
if n is odd.

@param n

@param s

* X ¥ ¥

*/

private static BigInteger mods(BigInteger n,
BigInteger s){

BigInteger rl = n.mod(s);
BigInteger r2 = rl.subtract(s);
if (r2.abs().compareTo(rl.abs()) = —1)

return r2;
else
return rl;
/%%

* Convert a Jacobian point to an affine one.

* @param j
* @param a

*/

static void jacobianToAffine(IFieldElement []
IFieldElement []
if(j[2].equals (BigInteger.valueOf(0))){

al0] = null;
a[l] = null;

return;
}
IFieldElement z_ inv = j[2].inv();
IFieldElement z_ sqr inv = z_inv.sqr();
IFieldElement z_ cube inv = z_sqr_inv.mul(z inv);

al0] = j|0].mul(z _sqr_inv);
. a[l] = j[1].mul(z cube inv);

Vaxs

* Returns a point from the HashMap
* @param j

* @param a

*/

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

static IFieldElement []
getPrecomputed (HashMap<Integer ,IFieldElement[]| >
p, int n, IFieldElement p x,
IFieldElement p y){

IFieldElement || pre = p.get(n);
return (pre != null)? pre : p.get(3);

*

Calculation of affine coordinates
including y—recovery .

@param x1

@param z1

@param 2

@param 22

@param

@param
@param
@param
@param
@throws IllegalArgumentException

¥ K K X K K X X X K X X K
S o8 w

*
N

static void getAffine (IFieldElement x1,
IFieldElement =zl ,
IFieldElement x2,
IFieldElement z2,
IFieldElement x,
IFieldElement y,
IFieldElement a,
IFieldElement b,
IFieldElement [| r){

opo) 9o1nog - xrpueddy

if(z2.equals (BigInteger .ZERO)) //Q-07
throw new IllegalArgumentException () ;

//Temporary variables
IFieldElement t1,t2,t3,t4,t5,t6 ,t7;

t1 = x1.mul(zl.inv());

G8I

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

t2

t3 =

t4

t3 =

t4

t4 =
t4 =

t3 =
t3 =

t2
t3 =
r[0
r[1]

}

Vars

*/

t3.

= (y-

x2.mul(z2.inv ());

t1.mul(x).add(a);

t1.add(x);

t3.mul(t4); //(z3z1—-3)(z3+z1)
= x.sub(t1);

t4.sqr();

t4.mul(t2); //z2(xz3—x1)"2

t3.sub(t4);

add(b.shl(1)); //2b+(z3z1—3)(z3+z1)—
//x2(x8—x1) "2

shl(1)).inv();
t3.mul(t2);
= tl;
= t3;

Calculation of affine coordinates from
projective ones.

@param p
@param a
@throws IllegalArgumentFEzception

static void projectiveToAffine (IFieldElement [] p,

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430 }

IFieldElement [] a){

if(p[2].equals (BigInteger .ZERO)) //P=0°?
throw new IllegalArgumentException () ;

IFieldElement inv = p[2].inv();

a[0] = p[0].mul(inv);
a[l] = p[1].mul(inv);

}
/s x

* Returns 0 or k depending on the
* @param sigma
* @param k

*/

static int psi(int sigma, int k){
return (sigma == 0)? k : 0;

}

Vex:

* Returns 0 or 1 depending on the
* @param sigma

*/

static int phi(int sigma){
return (sigma =— 0)? 0 : 1;
}

value of sigma

value of sigma

SPOTJRIN ATeT[IXny

Bibliography

[ACD*05] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen,

[AO00]

[Ava05]

[BDL97]

and F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. CRC Press, 2005.

M. Aigner and E. Oswald. Power Analysis Tutorial, 2000. Available
online at http://www.iaik.tugraz.at/research/index.php.

R. M. Avanzi. A note on the signed sliding window integer recoding
and a left-to-right analogue. In H. Handschuh and M.A. Hasan, ed-
itors, Selected Areas in Cryptography, volume 3357, pages 130-143.
Springer-Verlag, 2005.

D. Boneh, R. DeMillo, and R. Lipton. On the importance of check-
ing cryptographic protocols. In Advances in Cryptology - Eurocrypt
1997, volume 1233 of Lecture Notes in Computer Science, pages 37—
51. Springer-Verlag, 1997.

[BHLMO01| M. Brown, D. Hankerson, J. Lopez, and A. Menezes. Software Imple-

[BJ02]

[BSS99)

[BSS04]

mentation of the NIST Elliptic Curves Over Prime Fields. In Topics
in Cryptology — CT-RSA 2001, pages 250-265. Springer, 2001.

E. Brier and M. Joye. Weierstrass Elliptic Curves and Side-Channel
Attacks. In D. Naccache and Pascal Paillier, Eds., Public Key Cryp-
tography, volume 2274 of Lecture Notes in Computer Science, pages
335-345. Springer-Verlag, 2002.

I. Blake, G. Seroussi, and N. Smart. Elliptic Cruves in Cryptography.
Cambridge University Press, first edition, 1999.

I. Blake, G. Seroussi, and N. Smart. Elliptic Cruves in Cryptography
1I: Further Topics. Cambridge University Press, 2004.

[CLRSO1] T. H. Cormen, C. E. Leisereson, R. L. Rivest, and C. Stein. Introduc-

tion to Algorithms. MIT Press, second edition, 2001.

187

Bibliography

[CMCJ04] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-Cost Solutions for

[CMO9S]

[Cor99|

[ECRO5]

[Joy05]

[KJJ99

[Koh87]

[Kob94]

[LVOO]

[MDS99]

[Mil85)

188

Preventing Simple Side-Channel Analysis: Side-Channel Atomicity.
In IEEFE Transactions on Computers, volume 53, 2004.

H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponen-
tiation using mized coordinates. In Advances in Cryptology — ASI-
ACRYPT 98, volume 1514 of Lecture Notes in Computer Science,
pages 51-65. Springer-Verlag, 1998.

J. S. Coron. Resistance Against Differential Power Analysis for Ellip-
tic Curve Cryptosystems. In Cryptographic Hardware and Embedded
Systems, volume 1717 of Lecture Notes in Computer Science, pages
292-302. Springer-Verlag, 1999.

ECRYPT. Yearly Report on Algorithms and Keysizes, 2005.
D.SPA.16. Available online at http://www.ecrypt.eu.org/
documents/D.SPA.16-1.0.pdf.

Marc Joye. Defences Against Side-Channel Analysis. In LF Blake,
G. Seroussi and N.P. Smart, Eds., Advances in Elliptic Curve Cryp-
tography, volume 317 of London Mathematical Society Lecture Note
Series, pages 89-114. Cambridge University Press, 2005.

P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Ad-
vances in Cryptology - Ctypto 99 Proceedings, volume 1666 of Lecture
Notes in Computer Science, M. Wiener (ed.). Springer-Verlag, 1999.

N. Koblitz. FElliptic curve cryptosystems. In Mathematics of Compu-
tation, volume 48, pages 203—-209, 1987.

N. Koblitz. A Course in Number Theory and Cryptography. Springer-
Verlag, second edition, 1994.

A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. In
PKC °00: Proceedings of the Third International Workshop on Prac-
tice and Theory in Public Key Cryptography, pages 446-465. Springer-
Verlag, 2000.

T. Messerges, E.A. Dabbish, and RH. Sloan. Investigation of Power
Analysis Attacks on Smartcards. USENIX Workshop Electronic Com-
merce, pages 151-161, 1999.

V. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO 85, Lecture Notes in Computer Science, pages
417-426. Springer-Verlag, 1985.

[MS04]

[NIS06]

[0AO1]

[0T03]

[P1300]

[P1304]

[RY97]

[Sem04]

[Sil92]

[Sol99]

[SST04|

[Wal04]

[X9.98]

Bibliography

J. A. Muir and D. R. Stinson. Minimality and other properties of the
width-w nonadjacent form. Technical report, University of Warerloo,
2004. Combinatorics and Optimization Research report CORR 2004-
08.

NIST. Recommendation for Key Management, 2006. Special
Publication 800-57. Available online at http://csrc.nist.gov/
CryptoToolkit/tkkeymgmt.html.

E. Oswald and M. Aigner. Randomized addition-subtraction chains as
a countermeasure against power attacks. In Cryptographic Hardware
and Embedded Systems - CHES 2001, volume 2162 of Lecture Notes
in Computer Science, pages 39-50. Springer-Verlag, 2001.

K. Okeya and T. Takagi. The Width-w NAF Method Provides Small
Memory and Fast FElliptic Scalar Multiplications Secure against Side
Channel Attacks. In CT-RSA, pages 328-342. Springer-Verlag, 2003.

IEEE Working Group P1363. IEEFE Standard Specifications for Public-
Key Cryptography, 2000.

IEEE Working Group P1363a. [FEEE Standard Specifications for
Public-Key Cryptography - Amendment 1: Additional Techniques,
2004.

M.J.B. Robshaw and Y.L. Yin. Ouerview of Elliptic Curve Cryptosys-
tems. Technical report, RSA Laboratories, 1997.

O. Semay. FEfficiency analysis of window methods using Markov chains,
2004. Diploma thesis.

J. H. Silverman. Rational Points on FElliptic Curves. Springer-Verlag,
second edition, 1992.

J. A. Solinas. Generalized Mersenne Numbers, 1999. CACR.

H. Sato, D. Schepers, and T. Takagi. Fzact Analysis of Montgomery
Multiplication. In INDOCRYPT, pages 290-304. Springer-Verlag,
2004.

C.D. Walter. Security constraints on the Oswald-Aigner exponentia-
tion algorithm. In Topics in Cryptology - CT-RSA 2003, volume 2523,
pages 391-402. Springer-Verlag, 2004.

ANSI X9.62. Public Key Cryptography for The Financial Service In-
dustry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
1998.

189

