
A Parallelization of ECDSA Resistant to Simple
Power Analysis Attacks

Sarang Aravamuthan1 and Viswanatha Rao2

1 Advanced Technology Center, Hyderabad, India.
2 Embedded Systems Group, Bangalore, India.?

E-mail: {a.sarangarajan, viswanatharao.t}@tcs.com

Abstract. The Elliptic Curve Digital Signature Algorithm admits a
natural parallelization wherein the point multiplication step can be split
in two parts and executed in parallel. Further parallelism is achieved
by executing a portion of the multiprecision arithmetic operations in
parallel with point multiplication. This results in a saving in timing as
well as gate count when the two paths are implemented in hardware and
software. This article attempts to exploit this parallelism in a typical
system context in which a microprocessor is always present though a
hardware accelerator is being designed for performance. We discuss some
implementation aspects of this design with reference to power analysis
attacks. We show how the Montgomery point multiplication and the
binary extended gcd algorithms can be adapted to prevent simple power
analysis attacks.

We implemented our design using a hardware/software parallel architec-
ture. We present the results when the software component is coded on
an 8051 architecture and an ARM7TDMI processor.

Keywords. authentication, ECDSA, parallel implementation, power anal-
ysis attacks.

1 Introduction

Public key cryptosystems emerged in the 1970’s with the advent of the
Diffie Hellman key exchange method that allowed two parties to negotiate
a secret key over a public channel. Since then, RSA has emerged as the
prevalent public key cryptosystem due to the accepted hardness of the
factorization problem on which its security is based.

In recent years, Elliptic Curve Cryptography (ECC) has emerged as
an attractive alternative to RSA. The smaller key size of ECC leads to
? Both ATC and ESG are research units of Tata Consultancy Services Limited.



faster computations making it the cryptosystem of choice on constrained
devices such as smart cards where memory and computing power are
limited.

The primary objectives of a public key cryptosystem are to enable
authentication and key exchange. Digital signatures using, for instance,
the Elliptic Curve Digital Signature Algorithm (ECDSA) authenticate the
signer since the signer’s private key is required to generate the signature.
Key exchange algorithms such as Elliptic-curve Diffie Hellman (ECDH)
allow two parties to negotiate a secret key over a public channel.

The computationally expensive step in both ECDSA and ECDH is the
point multiplication operation. This operation is of the form k.G where
G is referred to as the base point and k is an integer less than the order
of G. While G is fixed in ECDSA, it varies for each instance of ECDH.

Embedded resource constrained devices such as smart cards benefit
from a parallel implementation of these ECC algorithms. Assuming that
it is necessary to implement the algorithm in customized hardware logic
for performance reasons and noting the fact that every system has a
processor, it is advantageous to use any parallelism. The net effect of this
would be to improve the performance of the algorithm as well as reduce
the gate count requirement for the customized hardware logic.

In this article, we first describe an efficient implementation of ECDSA
signature generation using a parallel architecture. We assume the avail-
ability of two processing units P1 and P2 with P2 faster than P1 by a
factor of Θ ≥ 1. Our implementation splits the algorithm in the following
manner

– P1 executes some of the multiprecision arithmetic steps and a portion
of the point multiplication operation.

– P2 executes the remaining portion of the point multiplication opera-
tion.

We discuss how this parallelism can be achieved using a single pre-
computed point. Our implementation improves the performance of point
multiplication by a factor of approximately (Θ + 1). However, the execu-
tion of multiprecision arithmetic steps in P1 reduces the speedup for the
overall digital signature algorithm to less than (Θ + 1).

Our design has the advantage of requiring no synchronization or shar-
ing of memory between the two processing units. The two units run in-
dependently of each other. This is in contrast to other parallel imple-
mentations of the point multiplication [8, 12, 22] where each iteration of

2



the multiplication step is split to execute along parallel paths leading to
shared memory.

Power Analysis attacks on cryptographic systems study the power
consumed during the cryptographic operation of interest to deduce some
secret information such as the user’s private key. In Simple Power Anal-
ysis (SPA), the attacker directly correlates the power consumed to the
instructions performed by the processor. In Differential Power Analysis
(DPA), the attacker uses statistical analysis to extract the hidden infor-
mation from a large sample of power traces.

In the implementation of ECDSA, both point multiplication and the
modular inverse operation can be subject to SPA attacks. We describe
these attacks for the Montgomery point multiplication and the binary
extended gcd algorithms. Following the approach in [12], we show how
these operations can be made SPA resistant under the assumption that
the power trace of a swap() function of two variables is indistinguishable.

This paper is structured as follows. In the next section, we describe
the ECDSA signature generation algorithm. In Section 3, we describe par-
allelization of this algorithm and discuss some design trade-offs. Sections
4 and 5 describe SPA attacks and their countermeasures for the point
multiplication and modular inverse operations. In Section 6, we provide
the implementation details and conclude with Section 7.

1.1 Related Work

Survey chapters on ECC and side-channel resistant implementations can
be found in [2, 4]. The ANSI X9.62 ECDSA standard is described in [13].

The computationally intensive step in ECDSA is point multiplication
and most researchers have concentrated on efficient ways of implementing
this in hardware or software. A survey of different point multiplication
algorithms as well as the underlying field operations in prime and binary
fields can be found in [3, 10]. The Montgomery ladder on which the point
multiplication algorithm in Section 4 is based is analyzed in [16].

Practical implementations of the point multiplication step as well as
the signature algorithm have been carried out by several researchers. An
implementation of the point multiplication on a 134-bit field using an
8051 microcontroller is described in [25]. In [11], the authors describe
an implementation of ECDSA over a 160-bit prime field on a Mitsubishi

3



(M16C) microprocessor. The authors report a timing of 150 ms to gener-
ate a signature. In [6], a design of a cryptographic processor for arbitrary
elliptic curves over GF(2m) is described.

A number of papers discuss parallelism of the point multiplication
step. In [12], the authors describe variants of the Montgomery method
and the fixed base comb method of Lim and Lee [19] that lead to a
parallel implementation and is resistant to side channel attacks. In [22], a
2w-ary point multiplication method is described that is resistant to side
channel attacks and is parallelizable. Other parallel implementations of
the point multiplication step are discussed in [8, 9].

Power analysis attacks were introduced by Kocher et. al. [18]. The
first work to study these attacks on ECC and suggest countermeasures
was the paper by Coron [5]. Randomization techniques to defeat DPA
attacks are described in [15]. Special forms of elliptic curves that use the
same formulas for add and double operations to thwart SPA attacks are
presented in [14].

2 ECDSA Signature Generation

The standard signature generation algorithm is detailed below. n is the
order of the base point G = (x0, y0) of the elliptic curve, t is the message
to be signed and d < n is the signer’s private key. We assume n to be a
large prime number.

Algorithm 1: ECDSA Signature Generation

1. Compute the message digest e = SHA-1(t).
2. Generate a random number k, 0 < k < n.
3. Compute the value k.G = (x1, y1). Let r = x1 mod n. If r = 0, go to

step 2.
4. Compute z0 = (e + dr) mod n.
5. Compute s = k−1z0 mod n. If s = 0, go to step 2.
6. Output the signature (r, s).

The message digest is computed using a standard hash algorithm such
as SHA-1. The signature is generated on the hash and is a pair of multi-
precision integers (r, s).

Step 3 is the point multiplication operation. Step 4 requires a mod-
ular multiplication. The modular reduction can be computed using, for
example, the method of Barrett [1].

4



Step 5 requires a modular division operation to compute s so that ks =
z0 mod n. This can be realized by adapting a modular inversion algorithm
such as the binary extended gcd to perform division (see Section 5 for
details).

3 A Parallel Implementation

Our approach to the parallelization of Algorithm 1 hinges on two obser-
vations.

– The point multiplication step (step 3) can be parallelized.
– A part of the multiprecision arithmetic computation (steps 4 and 5)

is independent of the point multiplication operation.

We assume the availability of two processing units P1 and P2 to carry
out Algorithm 1. Let Θ be the ratio of the computing speed of P2 to
that of P1. We assume Θ ≥ 1, i.e. P2 is at least as fast as P1. Θ is a
predetermined constant that could be estimated by experimentation.

We split the point multiplication step in the following manner. Let
m be the size of n in bits. Since k < n, k is an m bit number. Let
m1 = bm/(Θ + 1)c and m2 = m−m1. Note that m2 ≈ Θm1. Let

Q = 2m1 .G (1)

be precomputed and stored. We split k as

k = k1 + 2m1k2

where k1 (resp. k2) is the number formed by the m1 least (resp. m2 most)
significant bits of k. Then, by (1),

k.G = k1.G + 2m1k2.G = k1.G + k2.Q (2)

The idea is for P1 to compute k1.G and P2 to compute k2.Q and finally
add the two points to get k.G. Since k2 has Θ times as many bits as
k1, P1 and P2 will take approximately the same time to perform their
computations.
Next, we split steps 4 and 5 in Algorithm 1 as

(a) Compute z1 = k−1 mod n
(b) Compute z2 = z1d mod n
(c) Compute z3 = z1e mod n

5



(d) Compute s = (z3 + z2r) mod n

Steps (a), (b) and (c) are independent of the point multiplication step
and could be executed by P1 or P2 in addition to its share of point mul-
tiplication. However, we focus on an embedded system context where a
microprocessor always exists and a hardware accelerator is implemented
for improving performance of ECDSA. In this context, P1 is the micro-
processor and P2 is the hardware accelerator. Thus, it is preferable for
P1 to execute these additional steps. This reduces the gate count of P2.

We observe that the computation of k.G in (2) can also be imple-
mented serially with the same efficiency using the method of joint scalar
multiplication of Shamir [7] or Solinas [24]. The authors are not aware of
any studies on making these algorithms SPA-proof. This is not surprising
as these methods are used more in signature verification. A naive ap-
proach to making these methods secure from SPA attacks increases their
complexity beyond the SPA-proof Montgomery method (Algorithm 3.1)
described in Section 4.

The parallelized version of Algorithm 1 is presented below.

Algorithm 2: ECDSA Signature Generation: A Parallel Implementation

1. Compute the message digest e = SHA-1(t).
2. Generate a random number k, 0 < k < n.
3. Compute z1 = k−1 mod n ‖ Compute P2 = k2.Q

4. Compute z2 = z1d mod n ‖
5. Compute z3 = z1e mod n ‖
6. Compute P1 = k1.G ‖
7. Compute k.G = P1 + P2 = (x1, y1). Let r = x1 mod n.
8. Compute s = (z3 + z2r) mod n. If r = 0 or s = 0, go to 2.
9. Output the signature (r, s).

The steps marked by ‖ are computed in parallel; the left side is com-
puted by P1 and the right side by P2. The remaining steps are computed
by P1.

3.1 Implications of Parallelization

Algorithm 2 provides a more efficient implementation of ECDSA. The
benefits of parallelization and some design issues are discussed below.

6



A reduction in timing: We calculate the improvement in timing with
respect to a serial implementation of Algorithm 1 on P1. Let tm, ti, ta
and tp denote the time taken by P1 to perform a modular multiplication,
modular inversion, point addition and point multiplication respectively.
The complexity of these operations suggest the following ordering of these
values.

tm < ti ≈ ta � tp

Assuming that the cost of modular division and inversion are the same
(this assumption is justified in Section 5), the time taken by Algorithm 1
is tp + tm + ti.3

In Algorithm 2, steps 3 through 6 compute a modular inversion, two
modular multiplications and a point multiplication in parallel. Thus the
effective cost of these operations is tp+ti+2tm

Θ+1 . The cost of steps 7 and 8
is ta + tm. We calculate the speedup of Algorithm 2 as a ratio of these
timings

tp + tm + ti
((tp + ti + 2tm)/(Θ + 1) + ta + tm)

≈ (Θ + 1)(1− α)

where α ≈ (Θ + 1)(tm + ta)/tp.

Splitting the point multiplication step: In (1), m1 was chosen in
such a way that the time taken by P1 and P2 to compute k1.G and k2.Q
is approximately the same. However, in Algorithm 2, P1 also performs
multiprecision arithmetic operations in parallel with P2.

A more precise estimate of m1 follows from equating the time taken
by P1 to perform the parallel operations with the overall time for these
operations. This gives

m1tp
m

+ 2tm + ti =
tp + ti + 2tm

Θ + 1

which yields

m1 =
m

Θ + 1

{
tp −Θ(ti + 2tm)

tp

}
(3)

3 We ignore the cost of the Steps 1 and 2. e is assumed to be given as input to the
algorithm while the cost of step 2 is assumed to be negligible.

7



The case of Θ � 1: If Θ � 1, then m1 can be set to 0 and the point
multiplication can be performed entirely by P2. For example, if P1 is
an 8051 microprocessor and P2 is a dedicated hardware accelerator for
performing point multiplication, then in Algorithm 2, P1 would execute
only steps 3, 4 and 5 and skip step 6. The point addition in step 7 would
be skipped as well.

Masking of power trace through parallelization: SPA attacks in
ECDSA attempt to discover the ephemeral key k by measuring the power
dissipated during operations involving k such as the point multiplication
or the modular inversion step. Using k and the signature, the attacker
can determine the secret key d through d = r−1(ks− e) mod n.

Algorithm 2 has the potential for resistance against such attacks. This
is because the point multiplication and modular inversion steps are exe-
cuted in parallel and the power trace of the two paths mask each other.

As masking is not generally perceived as an effective countermeasure
against side channel attacks, we describe more robust ways of securing
the operations of interest from SPA threats.

4 Securing the Point Multiplication Step

An efficient algorithm for point multiplication that requires no precom-
putation is the Montgomery method. The algorithm applies to curves
defined over GF(2m) and requires 6m + 10 field multiplications and 1
field inversion. The algorithm is based on an idea of Montgomery [23]
and was developed by López and Dahab [20].

In Montgomery’s method, affine points (x, y) ∈ GF(2m) are rep-
resented in projective co-ordinates as triples (X, Y, Z) such that x =
X/Z and y = Y/Z. The algorithm uses the fact that for a fixed point
P = (X, Y, 1) and points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) with
P2 = P1 + P , the X and Z coordinates of P1 + P2, 2P1 and 2P2 can be
expressed in terms of the X and Z coordinates of P1, P2 and P .

At iteration j, the algorithm maintains two points (l.P, (l + 1).P )
where l is the value given by the j leftmost bits of k. In the next iteration
the algorithm computes the pair (2l.P, (2l+1).P ) or ((2l+1).P, (2l+2).P )
depending on whether the (j+1)st bit from the left is 0 or 1. The algorithm
returns with the x coordinates of k.P and (k + 1).P from which the y
coordinate of k.P is derived as shown below.

8



Algorithm 3: Montgomery Point Multiplication
INPUT: k = (km−1, . . . , k0)2 with km−1 = 1 and P = (x, y) ∈ E(GF(2m))
with curve parameter b.
OUTPUT: k.P .

1. X1 ← x,Z1 ← 1, X0 ← x4 + b, Z0 ← x2. {Compute (P, 2P )}
2. For i from m− 2 to 0 do

2.1 If ki = 1 then
T ← Z1, Z1 ← (X1.Z0 + X0.T )2, X1 ← x.Z1 + (X1Z0).(X0T )
T ← X0, X0 ← X4

0 + b.Z4
0 , Z0 ← T 2.Z2

0

2.2 Else
T ← Z0, Z0 ← (X1.T + X0.Z1)2, X0 ← x.Z0 + (X1T ).(X0Z1)
T ← X1, X1 ← X4

1 + b.Z4
1 , Z1 ← T 2.Z2

1
3. x2 ← X1/Z1.
4. y2 ← (x+X1/Z1)[(X1+xZ1)(X0+xZ0)+(x2+y)(Z1Z0)](xZ1Z0)−1+y.
5. Return (x2, y2).

If the power trace of this algorithm enables an attacker to distinguish
between steps 2.1 and 2.2, then she will be able to recover the secret value
k. While distinguishing between these two steps may be hard, due to the
similarity of the operations carried out, nevertheless a more SPA resistant
implementation of this algorithm is desirable.

We describe our proposed modifications in the following algorithm.

Algorithm 3.1: Our proposed modification (SPA resistant)

INPUT: k = (km−1, . . . , k0)2 with km−1 = 1 and P = (x, y) ∈ E(GF(2m)).
OUTPUT: k.P .

1. X1 ← x,Z1 ← 1, X0 ← x4 + b, Z0 ← x2. {Compute (P, 2P )}
2. For i from m− 2 to 0 do

R1 ← X1.Z0

R2 ← X0.Z1

R3 ← X1−ki

Zki
← (R1 + R2)2

Xki
← x.Zki

+ R1.R2

X1−ki
← R4

3 + b.Z4
1−ki

Z1−ki
← R2

3.Z
2
1−ki

3. x2 ← X1/Z1.
4. y2 ← (x+X1/Z1)[(X1+xZ1)(X0+xZ0)+(x2+y)(Z1Z0)](xZ1Z0)−1+y.
5. Return (x2, y2).

9



4.1 Analysis of Algorithm 3.1

The correctness of Algorithm 3.1 is verified by substituting ki = 0 (resp.
ki = 1) and confirming that the variables X0, Z0, X1 and Z1 are updated
in the same manner as in Algorithm 3.

Assignments such as R3 ← X1−ki
are realized through indirect ad-

dressing modes. The algorithm maintains the addresses of Xki
, Zki

, X1−ki
,

Z1−ki
in variables aXk, aZk, aXk′, aZk′ respectively. Let addrX denote

the address of X. The variables are initialized as

aXk ← addr X1

aZk ← addr Z1

aXk′ ← addr X0

aZk′ ← addr Z0

and updated at the start of each iteration as

if ki 6= ki+1

swap (aXk, aXk′)
swap (aZk, aZk′)

where swap() is a function to swap two variables. Now, all the operations
in step 2 dependent on ki are realized through indirect addressing modes.

Thus, the only operations in Algorithm 3.1 dependent on ki are the
swap() functions. Assuming that the power trace of this operation is in-
distinguishable, Algorithm 3.1 is secure against SPA. We formulate this
as

Assertion 1: Algorithm 3.1 is secure from SPA on a computing archi-
tecture whose power trace of a swap() function is indistinguishable. More-
over, Algorithm 3.1 requires the same number of field multiplications and
inversion operations as Algorithm 3. ut

Security Against Fault Attacks: In [16], the authors describe how
inducing computational faults or memory errors during the execution
of the algorithm may lead one to recover bit(s) of the secret key. The
first type of attack is known as C safe-error attack and the second M
safe-error attack. Both attacks extract the secret over several iterations,
each iteration recovering a single bit of the key. Thus they do not apply
to Algorithm 3.1 as the key is ephemeral. Moreover, the C safe-error
attack relies on the presence of dummy operations (operations that do not
influence the final result) in the algorithm. All the steps in Algorithm 3.1
influence the final result, thus securing it from C safe-error attacks.

10



5 Securing the Modular Inversion Step

In Algorithm 2, the computation of the signature requires a modular
inversion operation to evaluate k−1 mod n. If not implemented carefully,
a power analysis of this operation can reveal the bits of k which can be
used to extract the secret key d.

Modular inversion is normally achieved through the binary extended
gcd algorithm [21, 14.61]. Algorithm 4 maintains the identities Ak = u
mod n, Ck = v mod n and gcd(n, k) = gcd(u, v) through each iteration.
When the algorithm terminates, u = 0 and thus v = gcd(n, k) = 1 and
C = k−1 mod n.

Algorithm 4: Binary extended gcd algorithm
INPUT: Integers k < n where n is a large prime.
OUTPUT: C = k−1 mod n.

1. u← k, v ← n, A← 1, C ← 0.
2. While u is even do

2.1 u← u/2
2.2 if A is even, then A← A/2; else A← (A + n)/2

3. While v is even do
3.1 v ← v/2
3.2 if C is even, then C ← C/2; else C ← (C + n)/2

4. If u ≥ v then u← u− v,A← A− C
else v ← v − u,C ← C −A.

5. If u = 0, then {if C > 0 then return(C) else return(n + C)};
else go to step 2.

Algorithm 4 can be adapted to perform a modular division [17, 4.5.2].
To compute k−1z0 mod n, step 1 is modified by replacing A ← 1 by
A ← z0. The algorithm now maintains the identities Ak = uz0 mod n,
Ck = vz0 mod n and gcd(n, k) = gcd(u, v) through each iteration. As
before, the algorithm terminates with v = 1 and thus C = k−1z0 mod n.

In each iteration of Algorithm 4, either step 2 or step 3 is executed but
not both. If, in each iteration, an attacker can determine how many times
step 2 or 3 is executed as well as which of the two possibilities occurred in
step 4, then she can work backwards and recover k. To see this, assume
that the symbols U, V,D stand for the following operations: V refers to
the subtraction step v ← v − u, U to the step u ← u − v and D to the
“divide by 2” operation of u or v.

11



Suppose from the power trace, the attacker extracts the sequence

X1D
α1X2D

α2 . . . XjD
αj

where each Xi stands for a U or a V and Dαi is αi copies of D and j is
the number of times step 4 is executed. The attacker now recovers k in
the following manner.

Analysis 1: Recovery of k through SPA attack on Algorithm 4

Set u← 1, v ← 1.
For i from j down to 1 do

if Xi = U then u← 2αiu + v
else v ← 2αiv + u

Return k = u.

A simple way to secure this from power analysis is to first multiply k
by a random number γ, compute (kγ)−1 mod n and multiply back by γ
and reduce to recover k−1 mod n. However, this requires two additional
modular multiplication operations.

Our solution is to render the operations U and V indistinguishable
to the attacker. Then Analysis 1 would yield 2j possible values for k. As
j = O(log n)‡, the attack is made computationally expensive.

As before, our solution relies on address arithmetic. We store the
addresses of variables u, v,A and C in auv+, auv−, aAC+ and aAC− re-
spectively if u ≥ v and in auv−, auv+, aAC− and aAC+ otherwise.

Let sub(aX, aY ) stand for the operation {∗aX ← ∗aX −∗aY } where
∗aX is the value pointed to by aX. We replace step 4 of Algorithm 4 by
the following sequence of operations.

Step 4̃: Replacement for step 4 of Algorithm 4

auv+ ← addr u
auv− ← addr v
aAC+ ← addr A
aAC− ← addr C
if (u < v)

swap (auv+, auv−)
swap (aAC+, aAC−)

‡ Algorithm 4 is analyzed in [17]. Empirical tests show that the average value of
j ≈ 0.5 log n + 0.203 log k; see [17, pp. 348–352] for details.

12



sub (auv+, auv−)
sub (aAC+, aAC−)

The only conditional statements in step 4̃ are the swap() operations.
Assuming these have indistinguishable power, the modified algorithm is
resistant to SPA attacks.

Let Algorithm 4.1 be Algorithm 4 with step 4 replaced by step 4̃.
Then we have

Assertion 2: Algorithm 4.1 is secure from SPA on a computing archi-
tecture whose power trace of a swap() function is indistinguishable. ut

6 Implementation Results

We present the results of applying the parallelism described in Section 3,
to a 163-bit binary curve recommended by NIST (see Curve B-163 in
[13]).

We have assumed the use of a software platform and a hardware plat-
form for P1 and P2, respectively. In one study an ARM7TDMI platform
was used for software. In another study an 8051 platform was employed
for software. In both studies, a Xilinx Virtex-II FPGA was used as the
hardware platform. Both hardware and software were run at a 10 MHz
clock. The low clock speed was chosen keeping in mind applications such
as smart cards.

The following subsections provide the results for the two studies.

6.1 ARM7TDMI as P1 and Xilinx Virtex-II FPGA as P2

As per Algorithm 2, the multiprecision arithmetic was run on the soft-
ware platform and the point multiplication operation was parallelized to
execute on both platforms using Algorithm 3.1. It was noted through
implementation that the hardware platform performance was 3.1 times
faster than the software platform for point multiplication. The point mul-
tiplication on software was carried out independently and timed 324 ms.
Using Θ = 3.1, tp = 324 and the values for ti and tm from Table 1, Equa-
tion 3 yields m1 ≈ 34. Thus, the partition used in this study was 129 bits
for hardware and 34 bits for software. The results are tabulated below.
With the above results, the total time for generation of a signature was
94.02 ms.

13



Algorithm Time (ms)

Modular multiplication on P1 1.82

Modular inversion on P1 11.3

Point multiplication, 34 bits, on P1 72.75

Point multiplication, 129 bits, on P2 89

Point addition on P1 3.2

Table 1. Implementation Statistics for ECDSA on ARM7TDMI and Xilinx Virtex-II

The clock could be increased for both the hardware and software plat-
forms to derive proportional gains in performance of the overall signature
operation.

6.2 8051 as P1 and Xilinx Virtex-II FPGA as P2

It was noted that the performance of 8051 for point multiplication was
quite poor as compared to the FPGA, (i.e., Θ � 1). Thus only the mul-
tiprecision arithmetic was executed on 8051 and the point multiplication
operation was executed in the FPGA. The results for this case are tabu-
lated below.

Algorithm Time (ms)

Modular multiplication on P1 23

Modular inversion on P1 120

Point multiplication on P2 111.9

Table 2. Implementation Statistics for ECDSA on 8051 and Xilinx Virtex-II

With the above results, the total time for generation of a signature
was 189 ms.

We note that the parallel paths consume unequal amounts of time
in carrying out their computations. In particular, the software compo-
nent requires 54 ms longer than the hardware. However, the complexity
of point multiplication is cubic while that of multiprecision arithmetic is
quadratic in the size of the field. Thus, for curves over larger fields, the
point multiplication step would consume more time and the implementa-
tion would be more optimal.

The idea of parallelism can be exploited without the use of hardware.
Two ARM processors can be used to speedup the signature operations

14



by a factor of 2. This direction of advancement seems imminent with the
advent of multi-core processors.

7 Conclusion

In this paper, we have shown how to use two processing units of unequal
speeds to implement the ECDSA signature generation algorithm. Our im-
plementation requires only the storage of a single precomputed point. We
discussed the design trade-offs and presented the implementation results
that brought out the advantages of a parallel design. We showed how the
algorithms for the point multiplication and modular inversion steps can
be adapted to provide security from SPA attacks. Our proposed design is
suitable for implementation over smart cards.

References

1. P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor”, Advances in Cryptology–
CRYPTO ’86, LNCS 263, 311–323.

2. I. Blake, G. Seroussi, and N. P. Smart, Eds. Advances in Elliptic Curve Cryptogra-
phy, London Mathematical Society Lecture Note Series 317, Cambridge University
Press, 2005.

3. M. Brown, D. Hankerson, J. López and A. Menezes, “Software Implementation
of the NIST Elliptic Curves Over Prime Fields”, Topics in Cryptology - CT-RSA
2001, LNCS 2020 (2001), 250–265.

4. H. Cohen and G. Frey, Eds. Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy: Theory and Practice, CRC Press, 2005.

5. J. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems”, CHES 1999, LNCS 1717, 292–302.

6. H. Eberle, N. Gura and S. Chang-Shantz, “A Cryptographic Processor for Arbi-
trary Elliptic Curves over GF(2m)”, ASAP 2003, 444–454.

7. T. ElGamal, “A Public key Cryptosystem and a Signature Scheme based on Dis-
crete Logarithms”, IEEE Transactions on Information Theory, 31, (1985), 469–
472.

8. W. Fischer, C. Giraud, E.W. Knudsen and J. Seifert, “Parallel scalar multiplication
on general elliptic curves over IFp hedged against Non-Differential Side-Channel
Attacks”, Cryptology ePrint Archive, Report 2002/007.

9. J. Garcia and R. Garcia, “Parallel Algorithm for Multiplication on Elliptic Curves”,
Cryptology ePrint Archive, Report 2002/179.

10. D. Hankerson, J. Hernandez and A. Menezes, “Software implementation of elliptic
curve cryptography over binary fields”, Proceedings of CHES 2000, LNCS 1965
(2000), 1–24.

11. T. Hasegawa, J. Nakajima and M. Matsui, “A Small and Fast Software Implemen-
tation of Elliptic Curve Cryptosystems over GF(p) on a 16-bit Microcomputer”,
IEICE Trans. Fundamentals, E82-A(1) January 1999, 98–106.

15



12. T. Izu and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Resistant
against Side Channel Attacks”, Public Key Cryptography, LNCS 2274, 2002, 280–
296.

13. D. Johnson and A. Menezes, “The Elliptic Curve Digital Signature Algorithm
(ECDSA)”, Technical Report CORR 99-34, Dept. of C&O, University of Waterloo,
1999.

14. M. Joye and J. Quisquater, “Hessian Elliptic Curves and Side-channel Attacks”,
CHES 2001, LNCS 2162, 402–410.

15. M. Joye and C. Tymen, “Protections against Differential Analysis for Elliptic Curve
Cryptography”, CHES 2001, LNCS 2162, 377–390.

16. M. Joye and S.-M. Yen, “The Montgomery Powering Ladder”, CHES 2002, LNCS
2523, 291–302.

17. D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms,
Third Edition, Addison Wesley, 1997.

18. P. Kocher, J. Joshua and J. Benjamin, “Differential Power Analysis”, Advances in
Cryptology–CRYPTO 99, LNCS 1666, 388–399.

19. C. Lim and P. Lee, “More Flexible Exponentiation with Precomputation”, Ad-
vances in Cryptology–CRYPTO ’94, LNCS 839, 95–107.

20. J. López and R. Dahab, “Fast Multiplication on Elliptic Curves over GF(2n) with-
out Precomputation”, CHES 1999, LNCS 1717, 316–327.

21. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

22. B. Möller, “Parallelizable Elliptic Curve Point Multiplication Method with Re-
sistance against Side-Channel Attacks”, Information Security ISC 2002, LNCS
2433, 2002, 402-413.

23. P. Montgomery, “Speeding up the Pollard and Elliptic Curve Methods of Factor-
ization”, Mathematics of Computation, 48 (1987), 243–264.

24. J. Solinas, “Low-Weight Binary Representations for Pairs of Integers”,
Tech. Report CORR 2001/41, CACR Waterloo, 2001. Available at
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps.

25. A.D. Woodbury, D. Bailey and C. Paar, “Elliptic Curve Cryptography on Smart
Cards without Coprocessors”, CARDIS 2000: 71–92.

16


