
Forgery and Partial Key-Re
overy Atta
ks on

HMAC and NMAC Using Hash Collisions

(Extended Version)

S
ott Contini

1

and Yiqun Lisa Yin

2

1

Ma
quarie University, Centre for Advan
ed Computing { ACAC,

NSW 2109, Australia

s
ontini�
omp.mq.edu.au

2

Independent Consultant, Greenwi
h CT, USA

yiqun�alum.mit.edu

Abstra
t. In this paper, we analyze the se
urity of HMAC and NMAC,

both of whi
h are hash-based message authenti
ation
odes. We present

distinguishing, forgery, and partial key re
overy atta
ks on HMAC and

NMAC using
ollisions of MD4, MD5, SHA-0, and redu
ed SHA-1. Our

results demonstrate that the strength of a
ryptographi
 s
heme
an be

greatly weakened by the inse
urity of the underlying hash fun
tion.

1 Introdu
tion

Many
ryptographi
 s
hemes use hash fun
tions as a primitive. Various assump-

tions are made on the underlying hash fun
tion in order to prove the se
urity

of the s
heme. For example, some proofs assume that the hash fun
tion behaves

as a random ora
le, while other proofs only assume
ollision resistan
e. With

the
ontinuing development in hash fun
tion resear
h, espe
ially several popular

ones are no longer se
ure against
ollision atta
ks, a natural question is whether

these atta
ks would have any impa
t on the se
urity of existing hash-based
ryp-

tographi
 s
hemes.

In this paper, we fo
us our study on HMAC and NMAC, whi
h are hash-

based message authenti
ation
odes proposed by Bellare, Canetti and Kraw
zyk [2℄.

HMAC has been implemented in widely used se
urity proto
ols in
luding SSL,

TLS, SSH, and IPse
. NMAC, although less known in the pra
ti
al world, is the

theoreti
al foundation of HMAC | existing se
urity proofs [2, 1℄ were �rst given

for NMAC and then extended to HMAC. It is
ommonly believed that the two

s
hemes have identi
al se
urity.

The
onstru
tions of HMAC and NMAC are based on a keyed hash fun
tion

F

k

(m) = F (k;m), in whi
h the IV of F is repla
ed with a se
ret key k. NMAC

has the following nested stru
ture: NMAC

(k

1

;k

2

)

(m) = F

k

1

(F

k

2

(m)), where k =

(k

1

; k

2

) is a pair of se
ret keys. HMAC is similar to NMAC, ex
ept that the key

pair (k

1

; k

2

) is derived from a single se
ret key using the hash fun
tion. Hen
e,

we
an view HMAC as NMAC plus a key derivation fun
tion.

The se
urity of HMAC and NMAC was
arefully analyzed by its designers [2℄.

They showed that NMAC is a pseudorandom fun
tion family (PRF) under the

two assumptions that (A1) the keyed
ompression fun
tion f

k

of the hash fun
-

tion is a PRF, and (A2) the keyed hash fun
tion F

k

is weakly
ollision resistant

3

.

The proof for NMAC was then lifted to HMAC by further assuming that (A3)

the key derivation fun
tion in HMAC is a PRF. The provable se
urity of HMAC,

besides its eÆ
ien
y and elegan
y, was an important fa
tor for its wide deploy-

ment. However, re
ent
ollision atta
ks on hash fun
tions [22, 25℄ imply that

assumption (A2) in the original proof no longer holds when
onsidering
on
rete

onstru
tions su
h as HMAC-MD5 and HMAC-SHA1. To �x this problem, Bel-

lare re
ently showed [1℄ that NMAC is a PRF under the sole assumption that

the keyed
ompression fun
tion f

k

is a PRF. This implies that the se
urity of

HMAC now depends only on assumptions (A1) and (A3). The main advantage

of the new analysis is that the proof assumptions do not seem to be refuted by

existing atta
ks on hash fun
tions.

The new se
urity proofs are quite satisfying, espe
ially sin
e they are based on

relatively weak assumptions of the underlying hash fun
tion. On the other hand,

they have also raised interesting questions as whether the proof assumptions

indeed hold for popular hash fun
tions. In parti
ular, does any existing
ollision

atta
k on a hash fun
tion
ompromise the PRF assumption? And if so, does it

lead to possible atta
ks on HMAC and NMAC?

1.1 Summary of main results

In this paper, we analyze the se
urity of HMAC and NMAC. We answer the

aforementioned questions in the aÆrmative by
onstru
ting various atta
ks on

HMAC and NMAC based upon weaknesses of the underlying hash fun
tion.

Our analysis is based upon existing analyses of hash fun
tions, espe
ially the

atta
ks on MD4, MD5, SHA-0, and redu
ed SHA-1 presented in [26, 9, 10, 7℄. We

�rst show that the
ollision di�erential path in these earlier atta
ks
an be used

to
onstru
t distinguishing atta
ks on the keyed
ompression fun
tion f

k

. Hen
e,

for MD4, MD5

4

, SHA-0, and redu
ed SHA-1, f

k

is not a PRF.

Building upon the above atta
ks, we show how to
onstru
t distinguishing,

forgery, and partial key re
overy atta
ks on HMAC and NMAC when the under-

lying hash fun
tions are MD4, MD5, SHA-0, and redu
ed SHA-1. The
omplexity

of our atta
ks is
losely related to the total probability of the
ollision di�erential

path, and in some
ases it is less than the 2

n=2

generi
 bound for birthday-type

atta
ks. A summary of our main results is given in Table 1.

We remark that in our key re
overy atta
k the adversary
an retrieve the

entire inner key k

2

. This
an greatly weaken the se
urity of the s
heme. In

parti
ular, when the keyed inner fun
tion is degraded to a hash fun
tion with a

known IV, further atta
ks su
h as single-blo
k forgeries be
ome possible.

3

Please refer to Se
tion 3 for pre
ise de�nitions of f

k

and F

k

. The notion of weakly

ollision resistant (WCR) was introdu
ed in [2℄. Roughly, F

k

is WCR if it is
ompu-

tationally infeasible to �nd m 6= m

0

s.t. F

k

(m) = F

k

(m

0

) for hidden k.

4

In the
ase of MD5, f

k

is not a PRF under related-key atta
ks.

Table 1. Result summary: number of queries in our atta
ks on HMAC/NMAC.

hash distinguish & key re
overy
omments

fun
tion forgery atta
ks atta
ks

HMAC/NMAC MD4 2

58

2

63

NMAC MD5 2

47

2

47

related-key atta
ks

HMAC/NMAC SHA-0 2

84

2

84

redu
ed 2

34

2

34

inner fun
tion

HMAC/NMAC SHA-1 is 34 rounds

1.2 Use of hash
ollisions in our atta
ks

Our atta
ks on HMAC and NMAC are based on
ollisions of the keyed inner

fun
tion F

k

2

. The main reason that an adversary
an observe su
h
ollisions is

that in our s
enario the outer fun
tion F

k

1

, although hiding the output of the

inner fun
tion, does not hide the o

urren
e of an inner
ollision.

In our key re
overy atta
ks, ea
h bit of
ollision information { whether or not

a
ollision o

urs from a set of properly
hosen messages { roughly reveals one bit

of the inner key. This is due to the fa
t that a
ollision holds information about

the entire hash
omputation, and hen
e the se
ret key. Our te
hniques illustrate

that
ollisions within a hash fun
tion
an potentially be very dangerous to the

se
urity of the upper-layer
ryptographi
 s
heme.

1.3 Other results

General framework for analyzing HMAC and NMAC.We extend the approa
h

in our atta
ks to provide a general framework for analyzing HMAC and NMAC.

This framework also points to possible dire
tions for hash fun
tion atta
ks that

most likely lead to further improved atta
ks on HMAC and NMAC.

Atta
ks on key derivation in HMAC-MD5.We study the key derivation fun
-

tion in HMAC-MD5, whi
h is essentially the MD5
ompression fun
tion keyed

through the message input. We des
ribe distinguishing and se
ond preimage

atta
ks on the fun
tion with
omplexity mu
h less than the theoreti
al bound.

New modifi
ation te
hnique. We develop a new message modi�
ation te
h-

nique in our key re
overy analysis. In
ontrast with Wang's te
hniques [22, 23℄,

our method does not require full knowledge of the internal hash
omputation

pro
ess. We believe that our new te
hnique may have other appli
ations.

1.4 Impli
ations

In pra
ti
e, HMAC is mostly implemented with MD5 or SHA-1. To a mu
h lesser

extent, there is some deployment of HMAC-MD4 (for example, see [12℄). We are

not aware of any deployment of NMAC. The atta
ks presented in this paper do

not imply any immediate pra
ti
al threat to implementations of HMAC-MD5 or

HMAC-SHA1. However, our atta
ks on HMAC-MD4 may not be out of range

of some adversaries, and therefore it should no longer be used in pra
ti
e.

We emphasize that our results on HMAC
omplement, rather than
ontra-

di
t, the analysis in [2, 1℄. While the designers proved that HMAC is se
ure under

ertain assumptions on the underlying hash fun
tion, we show that atta
ks are

possible when these assumptions do not hold.

1.5 Organization of the paper

In Se
tion 3, we provide brief des
riptions of HMAC, NMAC and the MDx family.

In Se
tion 5, we present all three types of atta
ks on NMAC-MD5, whi
h is

based on the MD5 pseudo-
ollision (Se
tion 4). The simpli
ity of the underlying

di�erential path in this
ase fa
ilitates our explanation, espe
ially the te
hni
al

details of our key re
overy atta
k. For atta
ks on HMAC and NMAC using other

underlying hash fun
tions, the methods are similar and thus we just fo
us on

what is di�erent in ea
h
ase in Se
tion 6. In Se
tion 7, we des
ribe a general

framework for analyzing HMAC and NMAC.

2 Related work

Our analysis on HMAC and NMAC is
losely related to various atta
ks on hash

fun
tions, espe
ially those in the MDx family. In addition, our work is also re-

lated to the ri
h literature on message authenti
ation
odes. Many early heuristi

designs for MACs were broken, sometimes in ways that allowed forgery and key

re
overy [17{19℄. These early analyses were the driving for
e behind proposals

with formal se
urity proofs, namely HMAC and NMAC [2℄. Sin
e their publi-

ation, most of the se
urity analysis was provided by the designers. Re
ently,

Coron et al. [11℄ studied the se
urity of HMAC and NMAC in the setting of

onstru
ting iterative hash fun
tions. After our submission to Asia
rypt'06, we

learned that Kim et al. [15℄ did independent work on distinguishing and forgery

atta
ks on HMAC and NMAC when the underlying fun
tions are MD4, SHA-0,

and redu
ed SHA-1. They did not
onsider key re
overy atta
ks. Also re
ently,

Re
hberger and Rijmen [20℄ improved upon their results on HMAC-SHA1.

Some of our atta
ks are in the related-key setting. Related-key atta
ks were

introdu
ed by Biham [5℄ and Knudsen [14℄ to analyze blo
k
iphers. A theoret-

i
al treatment of related-key atta
ks was given by Bellare and Kohno [4℄. The

relevan
e of related-key
ryptanalysis is debated in the
ryptographi

ommu-

nity. For example, some suggest that the atta
ks are only pra
ti
al in poorly

implemented proto
ols. On the other hand,
ryptographi
 primitives that resist

su
h atta
ks are
ertainly more robust, and vulnerabilities
an sometimes indi-

ate weaknesses in the design. See the introdu
tion to [13℄ for example settings in

whi
h related-key atta
ks
an be applied. We note that the designers of HMAC

and NMAC did not
onsider the related key setting in their se
urity analysis.

3 Preliminaries

3.1 Hash fun
tions and the MDx family

A
ryptographi
 hash fun
tion is a mathemati
al transformation that takes an

input message of arbitrary length and produ
es an output of �xed length,
alled

the hash value. Formal treatment of
ryptographi
 hash fun
tions and their prop-

erties
an be found in [21℄. In pra
ti
e, hash fun
tions are
onstru
ted by iterat-

ing a
ompression fun
tion f(
v; x) whi
h takes �xed length inputs: a
haining

variable
v of n bits and a message blo
k x of b bits. The hash fun
tion F is

de�ned as follows: First divide the input message m into x

1

; x

2

; :::; x

s

a

ording

to some prepro
essing spe
i�
ation, where ea
h x

i

is of length b. Then set the

�rst
haining variable
v

0

as the �xed IV, and
ompute
v

i

= f(
v

i�1

; x

i

) for

i = 1; 2; :::; s. The �nal output
v

s

of the iteration is the value of F .

The MDx family of hash fun
tions in
ludes MD4, MD5, SHA-0, SHA-1, and

others with similar stru
ture. Here we brie
y des
ribe the stru
ture of MD5 and

omit others. The
ompression fun
tion of MD5 takes a 128-bit
haining variable

and a 512-bit message blo
k. The
haining variable is split into four registers

(A;B;C;D), and the message blo
k is split into 16 message words m

0

; : : : ;m

15

.

The
ompression fun
tion
onsists of 4 rounds of 16 steps ea
h, for a total of 64

steps. In ea
h step, the registers are updated a

ording to one of the message

words. The initial registers (A

0

; B

0

; C

0

; D

0

) are set to be some �xed IV. Ea
h

step t (0 � t < 64) has the following general form

5

:

X

t

 (A

t

+ �(B

t

; C

t

; D

t

) + w

t

+K

t

)<<<s

t

(A

t+1

; B

t+1

; C

t+1

; D

t+1

) (D

t

; X

t

+B

t

; B

t

; C

t

)

In the above equation, � is a round-dependent Boolean fun
tion, K

t

is a step-

dependent
onstant, and s

t

is a step-dependent rotation amount. In ea
h round,

all 16 message words are applied in a di�erent order, and so w

t

is one of the

16 message words. After the 64 steps, the �nal output is
omputed as (A

64

+

A

0

; B

64

+B

0

; C

64

+ C

0

; D

64

+D

0

).

3.2 Message authenti
ation
odes, HMAC and NMAC

A message authenti
ation
ode is a mathemati
al transformation that takes as

inputs a message and a se
ret key and produ
es an output
alled authenti
ation

tag. The most
ommon atta
k on MACs is a forgery atta
k, in whi
h the adver-

sary
an produ
e a valid message/tag pair without knowing the se
ret key. For

MACs that are based on iterative hash fun
tions, there is a birthday-type forgery

atta
k [17, 3℄ that requires about 2

n=2

MAC queries, where n is the length of the

authenti
ation tag.

HMAC and NMAC are both hash-based MACs. Let F be the underlying

hash fun
tion and f be the
ompression fun
tion. The basi
 design approa
h

5

We use a slightly di�erent notation from previous work so that there is a uni�ed

des
ription for all the steps.

for NMAC is to repla
e the �xed IV in F with a se
ret key (aka keyed via the

IV). Following the notation in [2℄, we use f

k

(x) = f(k; x) to denote the keyed

ompression fun
tion and F

k

(x) = F (k; x) the keyed hash fun
tion. Let (k

1

; k

2

)

be a pair of independent keys. The NMAC fun
tion, on input message m and

se
ret key (k

1

; k

2

), is de�ned as:

NMAC

(k

1

;k

2

)

(m) = F

k

1

(F

k

2

(m)):

The
onstru
tion of HMAC was motivated by pra
ti
al implementation needs.

Sin
e NMAC
hanges the �xed IV in F into a se
ret key, this requires a modi�-

ation of existing implementations of the hash fun
tion. To avoid this problem,

the designers introdu
ed the �xed-IV variant HMAC. Let
onst

1

and
onst

2

be two �xed
onstants. The HMAC fun
tion, on input message m and a single

se
ret key k, is de�ned as:

k

1

= f(IV; k �
onst

1

) (1)

k

2

= f(IV; k �
onst

2

) (2)

HMAC

k

(m) = NMAC

(k

1

;k

2

)

(m):

In the above des
ription for HMAC, we
an
onsider Equations (1) and (2)

together as a key derivation fun
tion KDF whi
h takes a single se
ret key k and

outputs a pair of keys (k

1

; k

2

). That is, (k

1

; k

2

) = KDF(k). Hen
e, HMAC is

essentially \KDF + NMAC". We remark that the term \key derivation fun
tion"

was not used in [2℄, but this view of the HMAC
onstru
tion will be quite

onvenient for our later analysis.

4 Pseudo-
ollisions of MD5

In [9℄, den Boer and Bosselaers analyzed the
ompression fun
tion of MD5 and

found pseudo-
ollisions of the form f(
v;m) = f(
v

0

;m); where
v and
v

0

are

two di�erent IVs. Su
h pseudo-
ollisions of MD5 are the basis for our related-

key atta
ks on NMAC-MD5. In this se
tion, we dis
uss some properties of the

pseudo-
ollisions under the framework of di�erential
ryptanalysis.

Di�erential
ryptanalysis was introdu
ed by Biham and Shamir [8℄ to ana-

lyze the se
urity of DES. The idea also applies to the analysis of hash fun
tions.

In a hash
ollision atta
k, we
onsider input pairs with an appropriately de�ned

di�eren
e and analyze how the di�eren
es in the
haining variables evolve dur-

ing the hash
omputation. The intermediate di�eren
es
olle
tively are
alled

a di�erential path, and its probability is de�ned to be the probability that the

path holds when averaged over all input pairs satisfying the given di�eren
e.

For the MD5 pseudo-
ollisions in [9℄, the messages are the same and the input

di�eren
e is only in the
haining variables. The pair of initial
haining variables

(
v;
v

0

) as well as all the intermediate values satisfy the following di�eren
e:

v �
v

0

= (80000000 80000000 80000000 80000000)

def

= �

msb

: (3)

Putting in
on
rete terms, the di�eren
es are only in the most signi�
ant bit

(MSB) of ea
h register A

t

; B

t

; C

t

; D

t

. This simple pattern propagates through

all 64 steps of MD5. Be
ause of the extra addition operation at the end, the

di�eren
e disappears, yielding a pseudo-
ollision.

The di�erential path requires the following
onditions on the IV:

MSB(B

0

) = MSB(C

0

) = MSB(D

0

) = b; (4)

where b = 0 or 1. Moreover, the MSBs of the intermediate registers are the same

for most of the �rst round. Namely, for 1 � t < 15,

MSB(A

t

) = MSB(B

t

) = MSB(C

t

) = MSB(D

t

) = b:

The total probability of the di�erential is 2

�46

.

5 Related-key atta
ks on NMAC-MD5

In this se
tion, we present distinguishing, forgery, and partial key re
overy at-

ta
ks on NMAC-MD5 in the related-key setting. In this setting, the goal of the

adversary is to break the MAC by obtaining input/output pairs of two MAC

ora
les whose keys are di�erent but with a known relation.

As des
ribed in Se
tion 4, the di�erential path for the MD5 pseudo-
ollision

holds with probability 2

�46

. Given the path, we
an
onstru
t a related-key dis-

tinguishing atta
k on the keyed MD5
ompression fun
tion that requires about

2

47

queries. This distinguishing atta
k is the basis for all three types of atta
ks

on NMAC-MD5.

Re
all that in NMAC, the inner fun
tion F

k

2

is keyed through the IV. Hen
e,

in our related-key atta
ks, the di�eren
e in the inner key k

2

is set a

ording to

the input IV di�eren
e given by Equation (3). More spe
i�
ally, we have the

following setting for our related-key atta
ks on NMAC-MD5:

{ There are two ora
les NMAC

(k

1

;k

2

)

and NMAC

(k

0

1

;k

0

2

)

. The relation between

(k

1

; k

2

) and (k

0

1

; k

0

2

) is set as:

k

1

= k

0

1

and k

2

� k

0

2

= �

msb

: (5)

{ The adversary queries ea
h ora
le on input messages of its
hoi
e and is

given the
orresponding authenti
ation tag.

5.1 Related-key distinguishing atta
k on keyed MD5
ompression

fun
tion

We present a related-key distinguishing atta
k on keyed MD5
ompression based

on pseudo
ollisions of MD5. Let f

k

and f

k

0

be two keyed MD5
ompression

fun
tions su
h that k � k

0

= �

msb

. The adversary is given two ora
les (O;O

0

),

whi
h
an be either ora
les for (f

k

; f

k

0

) or ora
les for a truly random fun
tion.

In the atta
k, the adversary generates 2

46

random messages and queries the two

ora
les. If a
ollision O(m) = O

0

(m) is observed for any message m, it identi�es

the ora
les as MD5
ompression; otherwise, it identi�es them as a truly random

fun
tion.

The
omplexity of the above distinguishing atta
k is 2

46

random queries to

ea
h ora
le, for a total of 2

47

queries. The atta
k su

eeds if k satis�es the

ondition given by Equation (4), and so the su

ess probability is 1=4. This

atta
k shows that the keyed MD5
ompression fun
tion is not pseudorandom

against related-key atta
ks.

5.2 Related-key distinguishing atta
k on NMAC-MD5

The above distinguishing atta
k on MD5
ompression
an be easily
onverted

into a distinguishing atta
k on NMAC-MD5. The adversary is given two ora
les

(O;O

0

), whi
h
an either be the two NMAC ora
les as de�ned by Equation (5)

or ora
les for a truly random fun
tion. In the atta
k, the adversary generates

2

46

random messages and queries the two ora
les. If the adversary observes a

ollision O(m) = O

0

(m) for any of the messages, it identi�es the ora
les as

NMAC; otherwise, it identi�es them as a truly random fun
tion.

The
orre
tness of the atta
k is easy to see: After 2

46

messages, a
ollision of

the inner fun
tion is expe
ted. That is, F

k

2

(m) = F

k

0

2

(m). Sin
e the outer key k

1

is the same, the inner
ollision yields a
ollision for the two NMAC ora
les. The

omplexity of the distinguishing atta
k is 2

46

random queries to ea
h ora
le, for

a total of 2

47

queries. The atta
k su

eeds if k

2

satis�es the
ondition given by

Equation (4), and so the su

ess probability is 1=4.

It is worth noti
ing that the outer fun
tion in NMAC, although making the

output of the inner fun
tion hidden, does not hide the o

urren
e of an inner

ollision. This property is very useful for
onverting the distinguishing atta
k on

the inner fun
tion (whi
h is keyed MD5
ompression) to a distinguishing atta
k

on NMAC. Su
h a
onversion also applies to HMAC.

5.3 Related-key MAC forgery atta
k on NMAC-MD5

The atta
k
an be extended to a forgery atta
k as follows [17, 3℄: On
e a mes-

sage m is found that
auses a
ollision of the two NMAC ora
les, the adver-

sary queries the �rst ora
le on mjje for any extension e and obtains tag =

NMAC

(k

1

;k

2

)

(mjje). Then, it produ
es (mjje; tag) as a forgery for the se
ond ora-

le. Sin
e NMAC

(k

1

;k

2

)

(mjje) = NMAC

(k

0

1

;k

0

2

)

(mjje), the forged authenti
ation tag is

valid. The
omplexity is 2

47

random queries plus one
hosen query. Hen
e, the

total number of queries is about 2

47

and the su

ess probability is 1=4.

5.4 Related-key key re
overy atta
k on NMAC-MD5

We present a partial key re
overy atta
k on NMAC-MD5, in whi
h the adversary

an retrieve the entire inner key k

2

in NMAC. This is the most te
hni
al part of

the paper, so we start with a high level des
ription of the key re
overy algorithm

onsisting of four phases:

{ Phase 1. The atta
ker generates random messages until it obtains a message

m that
auses a
ollision of the two NMAC ora
les.

{ Phase 2. The atta
ker modi�es
ertain bits of m to
reate new messages

m

�

and observes whether any m

�

auses a new
ollision. This
ollision infor-

mation allows the atta
ker to re
over many bits in the intermediate registers

S = (A

14

; B

14

; C

14

; D

14

) in the
omputation of F

k

2

(m).

{ Phase 3. Similar to Phase 2, the atta
ker re
overs a few additional bits from

other registers, and uses this information to determine more bits of S with

a possible small additive error.

{ Phase 4. The atta
ker guesses all remaining unknown bits of S and steps

through the MD5
omputation ba
kwards to get (A

0

; B

0

; C

0

; D

0

) { a
andi-

date for k

2

. It veri�es whether F

k

2

(m) = F

k

0

2

(m). If so, it outputs k

2

as the

inner key; Otherwise, go ba
k to Phase 1.

Phase 1 and Phase 4 of the key re
overy algorithm are fairly straightforward,

and so for the rest of the se
tion we fo
us on Phase 2 and Phase 3. We �rst

explain the main idea and then present detailed analysis.

Main idea For Phase 2 and Phase 3, the obje
tive is to re
over bits of some

intermediate registers through
ollision information. To a
hieve this goal, we take

a
loser look at the
ollision di�erential paths and analyze what information
an

be derived from su
h paths. Let DP

m

denote the di�erential path indu
ed by m,

i.e., all the intermediate di�eren
es in the
omputation of F

k

2

(m) and F

k

0

2

(m).

Sin
e m yields a
ollision, we know that DP

m

follows the di�erential path for

the MD5 pseudo-
ollision. In parti
ular, for the
omputation of F

k

2

(m), we have

MSB(B

t

) = b for 1 � t < 15. WLOG, we assume b = 0.

For a given step t in the �rst round, we introdu
e a new message m

�

that is

de�ned based on message m as follows:

m

�

j

=

8

<

:

m

j

if 0 � j < t

m

j

+� if j = t

random if t < j < 16

(6)

We next
onsider the di�erential path DP

m

�

, indu
ed by m

�

. Sin
e m and m

�

are the same up to Step t�1, the two paths DP

m

and DP

m

�

are the same until this

step. For Step t, let B

�

t+1

be the newly
omputed register by repla
ing m

t

with

m

�

t

= m

t

+�. We know that B

�

t+1

will be di�erent from B

t+1

. A key observation

is that if MSB(B

�

t+1

)
hanges from 0 to 1, then the path DP

m

�

will drift away from

the
ollision di�erential path, and hen
e the
han
e of it produ
ing a
ollision

after 64 steps is negligible. More pre
isely, we have the following lemma.

Lemma 1 Let m

�

be a message de�ned as in Equation (6), and let p

�

be the

probability that m

�

auses a
ollision F

k

2

(m

�

) = F

k

0

2

(m

�

). If MSB(B

�

t+1

) = 0,

then p

�

= 2

t�45

when averaged over all random m

�

j

(j > t). If MSB(B

�

t+1

) = 1,

then p

�

� 2

�128

.

For a given value �, Lemma 1
an be used to dete
t the MSB of B

�

t+1

as follows:

generate about 2

45�t

messages satisfying Equation (6) and query both NMAC

ora
les on these messages. If a
ollision is observed, then the MSB of B

�

t+1

is 0;

otherwise, the bit is 1.

In what follows, we show how to use the above
ollision information to re
over

B

t+1

. To better illustrate the intuition, we
onsider a simpli�ed step fun
tion

where the rotate is eliminated. Hen
e Step t be
omes B

t+1

= m

t

+T and B

�

t+1

=

m

�

t

+ T , where the value T has been determined before Step t. To dete
t bit i

of B

t+1

, we set m

�

t

= m

t

+ 2

i

. This implies that

B

�

t+1

= B

t+1

+ 2

i

: (7)

We
onsider the e�e
t of the above in
rement, depending on whether bit i of

B

t+1

is 0 or 1:

{ If bit i of B

t+1

is 0, then the in
rement will not
ause a
arry. In this
ase,

MSB(B

�

t+1

) = MSB(B

t+1

) = 0, and we will observe a
ollision in the expe
ted

number of queries.

{ If bit i of B

t+1

is 1, then the in
rement
auses a
arry. Furthermore, if we

an set bits [(i+1)::30℄ of B

�

t+1

to be all 1, then the
arry will go all the way

to the MSB of B

�

t+1

. In this
ase, MSB(B

�

t+1

) = MSB(B

t+1

) + 1 = 1, and we

will not observe a
ollision.

To ensure
arry propagates to the MSB, we set m

�

t

= m

t

+ 2

i

+ d, for an

appropriate
hoi
e of d. So Equation (7) be
omes B

�

t+1

= B

t+1

+ 2

i

+ d.

The above analysis yields an algorithm for determining B

t+1

one bit at a time,

from bit 30 to bit 0. (Note that we already know bit 31 of B

t+1

is 0 by assump-

tion.) We refer to this algorithm as the bit
ipping algorithm, and the
omplete

des
ription is given in Appendix A.

Detailed analysis The main idea des
ribed above generally applies to any

register B

t

for 0 � t < 15. In Phase 2, the registers to be re
overed are

(B

11

; B

12

; B

13

; B

14

) = (A

14

; D

14

; C

14

; B

14

):

The reason why we
hoose later registers rather than earlier ones is to minimize

the number of ora
le queries, whi
h is 2

45�t

per ora
le per bit
omputed of

register B

t+1

. We leave B

15

; B

16

free so that there is enough randomness for

generating new
ollisions.

We now
onsider how to apply the bit
ipping algorithm in the presen
e of

rotation. We need to do B

�

t+1

= B

t+1

+ 2

i

+ d for i = 30; 29; : : : ; 0. However,

we are not able to do so by just setting m

�

t

= m

t

+ 2

i

+ d be
ause of the

rotation operation <<<s

t

. Instead, we use a modi�ed bit
ipping algorithm (see

Appendix A for details). In this algorithm, we set m

�

t

= m

t

+ 2

i

0

+ d

0

where

i

0

+ s

t

= i mod 32 and d

0

<<<s

t

= d:

Note that if addition and rotation
ould
ommute, then setting m

�

t

as above

would have the same e�e
t as B

�

t+1

= B

t+1

+ 2

i

+ d. Sin
e this is not the
ase,

some error might o

ur when applying the modi�ed algorithm. Fortunately, the

error is manageable | we
an show that the modi�ed algorithm almost always

su

eeds for re
overing the most signi�
ant (32�s

t

) bits of B

t+1

. In other words,

if it fails, it is almost always on the least signi�
ant s

t

bits. More pre
isely, we

have the following lemma whi
h is proved in Appendix A.1.

Lemma 2 For step t, let p

t

be the probability that the modi�ed bit
ipping algo-

rithm
orre
tly re
overs the most signi�
ant (32�s

t

) bits of B

t+1

, when averaged

over all possible input messages m. Then p

t

� 1� 2

�s

t

� 2

�s

t

�1

.

For the four steps t = 10; 11; 12; 13, the rotation amounts are s

t

= 17; 22; 7; 12.

Hen
e, we
an use the modi�ed bit
ipping algorithm to determine the following

bits of the registers:

A

14

= B

11

: most signi�
ant 15 bits

D

14

= B

12

: most signi�
ant 10 bits

C

14

= B

13

: most signi�
ant 25 bits

B

14

= B

14

: most signi�
ant 20 bits

In total we already re
over 70 bits of the registers. We
ould pro
eed to Phase 4

and guess the remaining 58 bits. This would yield a key re
overy algorithm with

query
omplexity 2

47

and time
omplexity equal to about 2

58

MD5 operations,

whi
h is mu
h less than exhaustive key sear
h. Instead, with re�ned analysis we

an redu
e the workload
omplexity further by doing an insigni�
ant number of

additional queries in Phase 3, whi
h is des
ribed in Appendix A.2.

Our analysis shows that the total number of queries of the algorithm is

dominated by that of Phase 1, whi
h is 2

47

. The
omputing time is less than

2

45

MD5 operations. Detailed
al
ulations are given in Appendix A.3. Similar

to the distinguishing and forgery atta
k, the key re
overy atta
k su

eeds with

probability 1=4.

Implementation results We have implemented the key re
overy atta
k on

NMAC-MD5. In our implementation, we used a redu
ed-round version of MD5,

in whi
h the last round (16 steps) is omitted. Sin
e the atta
k only depends on

properties of the �rst round, the redu
tion in rounds does not a�e
t the analysis

ex
ept that the query
omplexity is redu
ed from 2

47

to 2

31

. In our experiment,

the algorithm
orre
tly re
overed the inner key bits.

Remarks on message modi�
ation te
hniques In the key re
overy analy-

sis, we use information about the
ollision di�erential paths to derive information

about the intermediate registers. To generate useful paths, we developed a new

message modi�
ation te
hnique that works even when the internal hash
ompu-

tation is unknown due to the presen
e of the se
ret key.

It is worth
omparing our modi�
ation te
hniques with Wang's original mes-

sage modi�
ation te
hniques [22, 23℄, whi
h deals with the situation where the

entire hash
omputation is known sin
e there is no se
ret for a keyless hash

fun
tion. Note that the obje
tive of the modi�
ation is also di�erent for
ollision

atta
ks and our key re
overy atta
ks: the goal for the former is to modify mes-

sages so that
ollisions
an o

ur with high probability; the goal for the latter is

to modify messages so that
ertain
ollisions may or may not o

ur, depending

upon the value of the se
ret key.

5.5 Atta
ks on the KDF in HMAC-MD5

Given our related-key atta
ks on NMAC-MD5, an immediate question is whether

they are appli
able to HMAC-MD5. Sin
e the di�eren
e between HMAC and

NMAC is the extra key derivation fun
tion KDF, we analyze properties of KDF in

HMAC-MD5, whi
h
onsists of two fun
tions of the form k

i

= f(IV; k�
onst

i

).

Here the MD5
ompression fun
tion f is used as f(x;K), where x 2 f0; 1g

128

and the key K 2 f0; 1g

512

. For ease of referen
e, we denote f(x;K) by g

K

(x).

So fg

K

g

K2f0;1g

512
is a family of fun
tions indexed by K.

As noted in Se
tion 5.4 of [1℄, Rijmen observed that it seems possible to

extend the pseudo-
ollision of MD5 [9℄ to a distinguishing atta
k on fg

K

g. Here,

we des
ribe the details of su
h an atta
k: The adversary generates 2

46

random

pairs (x; x

0

) su
h that x�x

0

= �

msb

, and queries an ora
le, whi
h is either g

K

or

a truly random fun
tion. If the adversary observes a
ollision for any pair, then

it identi�es the ora
le as g

K

; otherwise, it identi�es the ora
le as a truly random

fun
tion. The
omplexity of the atta
k is 2

47

queries.

Re
all that the HMAC se
urity proofs [1, 2℄ require KDF to be a PRF. How-

ever, the above distinguishing atta
k implies that the KDF in HMAC-MD5 is not

a PRF. Despite the non-pseudorandomness, its presen
e does help HMAC-MD5

to resist our related-key atta
ks for the following reason. In order to apply the

atta
ks to HMAC-MD5, we would need to set appropriate di�eren
es in the sin-

gle key k and hope that (k

1

; k

2

) = KDF(k) would yield the required di�eren
e for

k

2

while keeping k

1

the same (see Equation (5)). However, this appears to be

very diÆ
ult, sin
e any di�eren
es in k would almost
ertainly
ause di�eren
es

in both k

1

and k

2

, thus making the atta
ks impossible.

Of independent interest, we present a se
ond preimage atta
k on g

K

, also

based on [9℄. Here the key K
an be either se
ret or known. The atta
k works as

follows: For a given random input x 2 f0; 1g

128

, the adversary sets x

0

su
h that

x�x

0

= �

msb

, and outputs x

0

as a se
ond preimage of x. The su

ess probability

is about 2

�48

, sin
e the probability that x satis�es Equation (4) is 2

�2

, and the

probability that the pair (x; x

0

) then follows the di�erential path to produ
e a

ollision is 2

�46

(meaning x

0

is a se
ond preimage of x). Hen
e, the above atta
k

requires O(1) workload, no queries, and su

eeds with probability 2

�48

, whi
h

is mu
h higher than the 2

�128

theoreti
al bound.

6 Atta
ks on HMAC/NMAC with other hash fun
tions

The basis for our atta
ks on NMAC-MD5 is a
ollision di�erential path for the

keyed MD5
ompression fun
tion that holds with relatively large probability. The

same ideas and te
hniques also apply to other underlying hash fun
tions su
h

as MD4, SHA-0, and redu
ed SHA-1. In this se
tion, we present three types of

atta
ks on HMAC and NMAC for these underlying hash fun
tions, all in the

standard setting.

6.1 Atta
ks on HMAC/NMAC-MD4

MD4 has long been known to be inse
ure, but it was an open question whether

HMAC-MD4
an still be used as a PRF or a se
ure MAC. We answer the question

in the negative by presenting atta
ks on HMAC/NMAC-MD4.

Our atta
ks are based upon the se
ond preimage atta
k on MD4 by Yu et

al. [26℄. Table 3 of [26℄ gives a di�erential path that leads to a
ollision with

probability 2

�62

. The details that are most relevant to our atta
ks are the mes-

sage di�eren
e: there is only a one-bit di�eren
e in one of the message words,

namely, m

4

�m

0

4

= 2

i

, and the path holds for any i (0 � i < 32), for a total of

32 possible paths.

Distinguishing atta
k on keyed MD4
ompression Using any of the 32

di�erential paths, we
an mount a distinguishing atta
k on the keyed MD4
om-

pression fun
tion with about 2

63

queries. This implies that keyed MD4
ompres-

sion is not a PRF.

Distinguishing and forgery atta
ks on HMAC-MD4 In the distinguishing

atta
k, there is a single ora
le O, whi
h
an be either HMAC

k

or a truly random

fun
tion. The adversary generates about 2

62

message pairs (m;m

0

) su
h that

m

4

� m

0

4

= 2

i

for some i, queries the ora
le, and observes whether a
ollision

O(m) = O(m

0

) o

urs. If so, it identi�es the ora
le as HMAC; otherwise, it

identi�es it as a truly random fun
tion. The expe
ted query
omplexity is 2

63

,

and the su

ess probability is one. From the
ollision, a forgery atta
k easily

follows (similar to Se
tion 5.1) whi
h requires an additional
hosen query.

We
an redu
e the query
omplexity to 2

58

by using a stru
ture, whi
h is a

ommon tri
k in di�erential
ryptanalysis. The idea is to take advantage of the

multiple di�erential paths by generating input pairs (m;m

0

) in a more
ompa
t

way as follows: First, generate 2

26

random m

3

(it
an a
tually be any message

word m

j

as long as j 6= 4). Se
ond, for ea
h m

3

, generate all 2

32

possible values

for m

4

. Hen
e, the total number of messages is 2

58

. It is easy to show that the

2

58

messages
olle
tively
reate 2

62

pairs of (m;m

0

) for whi
h m

4

�m

0

4

= 2

i

for

some i. One of the pairs is expe
ted to produ
e a
ollision.

Partial key re
overy atta
k on HMAC-MD4 We
an
onstru
t a partial

key re
overy atta
k on HMAC-MD4 following similar phases as that of NMAC-

MD5. Given the parti
ular form of the 32 di�erential paths and their asso
iated

onditions, it is best to use only a single path (�m

4

= 2

22

). The intermediate

registers that we try to re
over is

(B

11

; B

12

; B

13

; B

14

):

Using the
onditions given in Table 4 of [26℄, we
an
ount the number of bits in

these registers that
an be re
overed using the modi�ed bit
ipping algorithm,

and the results are listed in Table 2. We only list the
ondition onB

t;J

for whi
h J

is the maximum index among all the
onditions on B

t

. Following similar analysis

as in the
ase of NMAC-MD5, we know that the total number of bits in B

t

that

an be re
overed is J + 1� s

t

, where s

t

is the rotation amount in Step t. (Note

that for the di�erential path we used to atta
k NMAC-MD5, J is always 31.)

Table 2. Number of bits in register B

t

that
an be re
overed in our key re
overy atta
k

on HMAC-MD4.

Step Output Conditions on relevant bits rotation s

t

No. of re
overed bits

10 B

11

B

11;29

= 1 11 29 + 1� 11 = 19

11 B

12

B

12;31

= B

11;31

19 31 + 1� 19 = 13

12 B

13

B

13;31

= 0 3 31 + 1� 3 = 29

13 B

14

B

14;31

= 0 7 31 + 1� 7 = 25

Hen
e the total number of re
overed bits is 19 + 13 + 29 + 25 = 86, leav-

ing 42 bits for exhaustive sear
h. Using te
hniques su
h as early stopping (see

Appendix A.3), the workload
an be made mu
h less than 2

40

MD4 operations.

The reason why we
hose the parti
ular di�erential path with �m

4

= 2

22

is that for other paths (i.e., �m

4

= 2

i

), J is di�erent, and more bits would be

left for exhaustive sear
h. Sin
e we use only one path, the number of queries for

�nding the initial
ollision is 2

63

, rather than 2

58

. Hen
e, the query
omplexity

for the key re
overy atta
k is 2

63

.

6.2 Atta
ks on HMAC/NMAC-SHA0

Chabaud and Joux [10℄ presented the �rst
ollision atta
k on SHA-0 with
om-

plexity 2

61

. Their analysis also introdu
ed important
on
epts su
h as lo
al

ollisions and disturban
e ve
tors, whi
h prove to be the basis for all subsequent

atta
ks on SHA-0 and SHA-1. The di�erential path used in their atta
k holds

with probability p = 2

�83

(see Table 4 in [10℄ for detailed
al
ulation).

We
an use the above di�erential path to
onstru
t distinguish and forgery

atta
k on HMAC-SHA0, and the query
omplexity is about 2

84

. There is one

subtle issue for SHA-0 and SHA-1 that is di�erent from the
ase of MD4 and

MD5. For the
ollision di�erential path to hold, some extra
onditions need to

be set on the message bits. Hen
e, we should generate message pairs so that they

not only satisfy the required
onditions on the message di�eren
e but also extra

onditions on
ertain message bits.

A partial key re
overy atta
k on HMAC-SHA0
an also be
onstru
ted. In

fa
t, the analysis would be mu
h simpler than that of NMAC-MD5 due to the

parti
ular form of the SHA-0 (and SHA-1) step fun
tion, whi
h is

A

i

= (A

i�1

<<<5) + f

i

(B

i�1

; C

i�1

; D

i�1

) +E

i�1

+m

i�1

+ k

i

:

Sin
e there is no rotation asso
iated with the message word m

i�1

, we
an use

the bit
ipping algorithm dire
tly (rather than the modi�ed version) to re
over

bits in register A

i

. Also, the absen
e of rotation means that more bits
an be

re
overed for ea
h A

i

. Our analysis shows that the query
omplexity for the key

re
overy atta
k on HMAC-SHA0 is about 2

84

.

6.3 Atta
ks on redu
ed-round variants of HMAC/NMAC-SHA1

Biham et al. [7℄ presented
ollision atta
ks on several redu
ed-round variants of

SHA-1. Their atta
k on 34-round SHA-1 used a disturban
e ve
tor with very

low Hamming weight (see Table 1 of [7℄). Based on this ve
tor, we
an derive

the di�erential path whi
h
onsists of 6 lo
al
ollisions in Rounds 1-20 and 2

lo
al
ollisions in Rounds 21-34. This translates to 6� 5+2� 2 = 34
onditions

for the di�erential path, one of whi
h is in the IV. Hen
e, the probability of the

di�erential path is 2

�33

, and it holds for half of the randomly
hosen IVs.

We
an use the above di�erential path to
onstru
t a distinguishing atta
k

on the keyed SHA-1
ompression fun
tion redu
ed to 34 rounds, whi
h implies

that the fun
tion is not a PRF.

Using our te
hniques developed earlier, we
an
onstru
t all three types of

atta
ks on HMAC-SHA1 when the inner fun
tion is redu
ed to 34 rounds. The

query
omplexity is about 2

34

and the su

ess probability is 1=2 for a randomly

hosen key.

6.4 Further improvements

It is possible to further improve the
omplexity of our atta
ks. Kraw
zyk [16℄

pointed out a useful tradeo� between query
omplexity and the su

ess prob-

ability of the atta
ks. More spe
i�
ally, we
an
onstru
t new atta
ks with 2

t

queries and su

ess probability 2

t�q

, where 2

q

is the number of queries in our

original atta
ks and 1 � t � q. Biham [6℄ suggested that atta
ks on HMAC
an

be extended to 40-round SHA-1 using results in [7℄.

7 A general framework for analyzing HMAC/NMAC

In this se
tion we extend the approa
h in our atta
ks to provide a general frame-

work for analyzing HMAC/NMAC. Let DP be a
ollision di�erential path for the

ompression fun
tion f , and let � = (�
v;�m) be the required input di�eren
e

for the path. Suppose that the path holds with probability at least P

0

= 2

�w

for a fra
tion q of all randomly
hosen inputs (
v;
v

0

) and (m;m

0

) satisfying �.

We
onsider two
ases depending on �
v:

{ �
v = 0. In this
ase, the path DP yields a real
ollision. The atta
ks to be

onsidered are in the standard setting and apply to both HMAC and NMAC.

{ �
v 6= 0. In this
ase, the path DP yields a pseudo-
ollision. The atta
ks to

be
onsidered are in the related-key setting and apply only to NMAC.

There are three types of possible atta
ks, all having su

ess probability q.

1. Distinguishing atta
k. The
omplexity is about O(2

w+1

) queries.

2. Forgery atta
k. If the hash fun
tion F is iterative, the distinguishing atta
k

implies a forgery atta
k with one additional
hosen query.

3. Key re
overy atta
k. If F has similar step fun
tions as MDx, the
ollision

path may allow the re
overy of the inner key in HMAC and NMAC. The

query
omplexity is O(2

w+1

), and the time
omplexity depends on the form

of the
ollision path.

To beat the generi
 birthday-type forgery atta
k, we need to �nd a
ollision

di�erential path su
h that P

0

> 2

�n=2

, and to beat the exhaustive key sear
h

atta
k, we need P

0

> 2

�n

. Hen
e, the above general framework redu
es the

problem of atta
king HMAC/NMAC to the problem of �nding a \good"
ollision

di�erential path for the underlying
ompression fun
tion.

Finding suitable di�erential paths There have been many
ollision atta
ks

on hash fun
tions, ea
h relying on a spe
i�
 di�erential path. One important

point is that a di�erential path that works best for �nding
ollisions may not

be the best for the purpose of atta
king HMAC and NMAC. To better explain

this, we introdu
e a variable P

r

, whi
h is the probability of the di�erential path

from Step r to the last step.

{ For
ollision atta
ks, we should sele
t a path su
h that P

r

is minimized,

assuming message modi�
ation te
hniques
an apply up to Step r-1 of the

hash fun
tion.

{ For atta
ks on HMAC and NMAC, we should sele
t a path su
h that P

0

is

minimized.

For example, for the purpose of analyzing HMAC-SHA0, Chabaud and Joux's

atta
k o�ers a better di�erential path than the improved
ollision atta
k in [24℄,

sin
e the probability P

0

asso
iated with the di�erential path in the former atta
k

is mu
h larger than the latter.

To break HMAC-MD5, we would need to �nd di�erential paths that hold

with large enough probability P

0

and lead to real
ollisions. The di�erential

path in Wang's MD5 atta
k [22℄ was
onstru
ted to minimize P

17

(� 2

�37

) so

that it works best with modi�
ation te
hniques. The total probability P

0

of the

path is only about 2

�300

. So far, improvements to the MD5 atta
k were all due

to re�ned modi�
ation te
hniques: nobody has dis
overed new di�erential paths.

An open question is whether di�erential paths for MD5 with P

0

> 2

�128

an be

found. New automated sear
h methods may provide promising ways for �nding

su
h di�erential paths.

A
knowledgements We thank Mihir Bellare and Hugo Kraw
zyk for valuable

suggestions on an early draft of this work. We thank Eli Biham for enlightening

dis
ussions. We also thank Lily Chen, Antoine Joux, Josef Pieprzyk, and the

Asia
rypt reviewers for helpful
omments. The �rst author was supported by

ARC grant DP0663452.

Referen
es

1. M. Bellare. New Proofs for NMAC and HMAC: Se
urity without Collision-

Resistan
e. ePrint ar
hive, May 2006. To appear in CRYPTO 2006.

2. M. Bellare, R. Canetti and H. Kraw
zyk. Keyed Hash Fun
tions for Message Au-

thenti
ation. CRYPTO 1996.

3. M. Bellare, R. Canetti and H. Kraw
zyk. Pseudorandom Fun
tions Revisited: the

Cas
ade Constru
tion. FOCS 1996.

4. M. Bellare and T. Kohno. A Theoreti
al Treatment of Related-Key Atta
ks: RKA-

PRPs, RKA-PRFs, and Appli
ations. EUROCRYPT 2003.

5. E. Biham. New Types of Cryptanalyti
 Atta
ks Using Related Keys. EUROCRYPT

1993.

6. E. Biham. Personal
ommuni
ation. August 2006.

7. E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby and C. Lemuet. Collisions

in SHA-0 and Redu
ed SHA-1. EUROCRYPT 2005.

8. E. Biham and A. Shamir. Di�erential Cryptanalysis of DES-like Cryptosystems.

CRYPTO 1990.

9. B. den Boer and A. Bosselaers. Collisions for the Compression Fun
tion of MD5.

EUROCRYPT 1993.

10. F. Chabaud and A. Joux. Di�erential Collisions in SHA-0. CRYPTO 1998.

11. J.-S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard Revisited :

how to Constru
t a Hash Fun
tion. CRYPTO 2005.

12. The GNU Crypto proje
t. http://www.gnu.org/software/gnu-
rypto/.

13. J. Kelsey, B. S
hneier, and D. Wagner. Related-Key Cryptanalysis of 3-WAY,

Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. ICICS 1997.

14. L. Knudsen. Cryptanalysis of LOKI91. AusCrypt 1992.

15. J. Kim, A. Biryukov, B. Preneel and S. Lee. On the Se
urity of HMAC and NMAC

Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. SCN 2006. Also available at

http://eprint.ia
r.org/2006/187.

16. H. Kraw
zyk. Personal
ommuni
ation. June 2006.

17. B. Preneel and P.C. van Oors
hot. MDx-MAC and Building Fast MACs from Hash

Fun
tions. CRYPTO 1995.

18. B. Preneel and P.C. van Oors
hot. On the Se
urity of Two MAC Algorithms.

EUROCRYPT 1996.

19. B. Preneel and P. C. van Oors
hot. A key re
overy atta
k on the ANSI X9.19 retail

MAC. Ele
troni
s Letters 32(17), 1996.

20. C. Re
hberger and V. Rijmen Note on Distinguishing, Forgery, and Se
ond Preim-

age Atta
ks on HMAC-SHA-1 and a Method to Redu
e the Key Entropy of NMAC.

Crypto eprint ar
hive, http://eprint.ia
r.org/2006/290.

21. P. Rogaway and T. Shrimpton. Cryptographi
 Hash-Fun
tion Basi
s: De�nitions,

Impli
ations, and Separations for Preimage Resistan
e, Se
ond-Preimage Resis-

tan
e, and Collision Resistan
e. FSE 2004.

22. X. Wang and H. Yu. How to Break MD5 and Other Hash Fun
tions. EUROCRYPT

2005.

23. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Fun
tions

MD4 and RIPEMD. EUROCRYPT 2005.

24. X. Wang, H. Yu, and Y.L. Yin. EÆ
ient Collision Sear
h Atta
ks on SHA-0.

CRYPTO 2005.

25. X. Wang, Y.L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. CRYPTO

2005.

26. H. Yu, G. Wang, G. Zhang, and X. Wang. The Se
ond-Preimage Atta
k on MD4.

CANS 2005. Available on Springerlink web site.

A The bit
ipping algorithms

We �rst give the bit
ipping algorithm in Figure 1. This is for the simpli�ed

MD5 step fun
tion where the rotation is eliminated.

For j = 0; : : : ; t� 1, set m

�

j

= m

j

Set d = 0 (a)

For i = 30 downto 0 do (b)

f

Set m

�

t

= m

t

+ 2

i

+ d (
)

Repeat order 2

46�t

times

f

Choose m

�

t+1

; : : : ;m

�

15

at random.

/* now all 16 words of m

�

have been set */

Query the two nma
 ora
les on m

�

If there is a
ollision, then

f

Bit i of B

t+1

is 0

Set d = d+ 2

i

(d)

break;

g

g

If no
ollision found, then bit i of B

t+1

is 1

g

Figure 1: Bit
ipping algorithm for
omputing B

t+1

.

The modi�ed bit
ipping algorithm is similar, ex
ept the following four steps:

{ Step (a)) Set d

0

= 0

{ Step (b)) For i

0

= 30� s

t

downto 0 do

{ Step (
)) Set m

�

t

= m

t

+ 2

i

0

+ d

0

{ Step (d)) Set d

0

= d

0

+ 2

i

0

A.1 Proof of Lemma 2

For ease of dis
ussion, we introdu
e a few more variables and rewrite Step t of

MD5 for both m

t

and m

�

t

as follows:

Y

t

= m

t

+ Z

X

t

= Y

t

<<<s

t

B

t+1

= X

t

+B

t

Y

�

t

= m

�

t

+ Z

X

�

t

= Y

�

t

<<<s

t

B

�

t+1

= X

�

t

+B

t

In the modi�ed bit
ipping algorithm, we setm

�

t

= m

t

+�, where� = 2

i

0

+d

0

.

Given the
hoi
e of i

0

and d

0

, we know that � = 2

i

0

+d

0

< 2

31�s

t

and its rotated

value is 2

s

t

� = 2

i

+ d.

To prove the lemma, we need to analyze the di�eren
e between B

�

t+1

, the

value that is
omputed by the algorithm, and B

t+1

+ 2

s

t

�, the desired value

that would make the algorithm work
orre
tly. The di�eren
e between the two

values is the same as the di�eren
e between X

�

t

and X

t

+ 2

s

t

�, whi
h we will

analyze below. Be
ause of the rotate, these two quantities are
omputed in two

di�erent parts: the high order (32 � s

t

) bits whi
h
onsists of bits [s

t

::31℄, and

the low order s

t

bits whi
h
onsists of bits [0::s

t

� 1℄.

We �rst observe that the high order bits of X

�

t

and X

t

+ 2

s

t

� ar e always

the same, namely,

(2

s

t

Y

t

+ 2

s

t

�) mod 2

32

:

We next
onsider the low order bits of X

�

t

and X

t

+2

s

t

� . Let Carry be the

event that the addition Y

�

t

= Y

t

+�
auses a
arry into bit (32� s

t

) of Y

�

t

. If

Carry does not happen, then the low order bits of the two values are also the

same, and hen
e there is no di�eren
e between B

�

t+1

and B

t+1

+2

s

t

�. If Carry

happens, then there are two
ases where it
an a�e
t the MSB of B

�

t+1

for some

iteration of the algorithm. Below, we bound the probability of ea
h
ase.

The �rst
ase is when the
arry propagates all the way to bit 32. This
an

happen only if bits [31� s

t

::31℄ of Y

t

are all 1's, so the probability of this event

is � 2

�s

t

�1

. The se
ond
ase is when the
arry goes into bit 32� s

t

of Y

�

t

but

does not go over bit 31. In this
ase, we have X

�

t

= X

t

+ 2

s

t

� + 1, where the

extra 1 is the result of
arry after it is rotated to the least signi�
ant bits of X

�

t

.

So we now have B

�

t+1

= B

t+1

+ 2

s

t

� + 1, and the extra 1
an a�e
t the high

order bits of B

�

t+1

only if B

t+1

has all 1's in bits [0::(s

t

� 1)℄. The probability

of this event is 2

�s

t

. In fa
t, when this does happen, the modi�ed bit
ipping

algorithm will indeed fail be
ause by
onstru
tion we are setting the high order

bits of B

�

t+1

to all 1's, so the extra 1
auses a
arry to propagate all the way

through. Thus, the probability of failure for the se
ond
ase is exa
tly 2

�s

t

.

So the total failure probability is at most 2

�s

t

+2

�s

t

�1

, and we
an
on
lude

that the su

ess probability is p

t

� 1� 2

�s

t

� 2

�s

t

�1

. QED

A.2 Phase 3

In Phase 3, we will try to determine more bits of the states (A

14

; D

14

; C

14

; B

14

)

with additional queries. Let us
onsider the
omputation of B

14

in Step 13:

B

14

= (A

13

+ �(B

13

; C

13

; D

13

) +M

13

+K

13

)<<<12 +B

13

:

We �rst use the modi�ed bit
ipping algorithm to learn the most signi�
ant 20

bits of B

10

. Together with information obtained from Phase 2 (see Se
tion 5.4),

we already know 70 bits of the states on the RHS of the above equation. These

bits are:

A

13

= B

10

: most signi�
ant 20 bits

D

13

= B

11

: most signi�
ant 15 bits

C

13

= B

12

: most signi�
ant 10 bits

B

13

= B

13

: most signi�
ant 25 bits

We next set the unknown bits on the RHS to 0 and tra
e through the
ompu-

tation in this step. We
an
ompute the most signi�
ant 10 bits of �(B

13

; C

13

; D

13

).

Sin
e we also know the same bits from A

13

, we
an for sure
ompute bits [22..31℄

of A

13

+�(B

13

; C

13

; D

13

)+M

13

+K

13

, with a possible additive error of a 1 in bit

22 (i.e. additive error of 2

22

) whi
h may have
ome from a
arry. The rotation by

12 is then applied, whi
h means we have
omputed bits [2..11℄, with a possible

additive error of 2

2

. Then we add on B

13

, for whi
h we know bits [7..31℄. The

net result is that we have determined bits [7..11℄ of B

14

, with a possible additive

error of 2

7

. In Phase 2, we already know bits [12..31℄ of B

14

. So now we know in

total bits [7..31℄ of B

14

, with a possible additive error of 2

7

. In other words, we

an re
over 5 more bits of B

12

with a possible additive error.

Similarly, we
an learn more bits ofB

8

; B

9

and tra
e through the
omputation

from Step 11. We
an re
over 5 more bits of B

12

= D

14

with a possible additive

error. That gives us four possibilities that determine a total of 80 bits for the

state (A

14

; D

14

; C

14

; B

14

) (The \four" a

ounts for the possible additive errors).

Hen
e, the remaining sear
h e�ort is at most 4� 2

128�80

= 2

50

.

A.3 Complexity analysis

>From Lemma 2, the modi�ed
ipping algorithm su

eeds with probability �

1�2

s

t

�2

�s

t

�1

in Step t for re
overing (31�s

t

) (note that the MSB is assumed)

of B

t+1

. Thus, the probability of su

ess is at least

Q

13

t=7

1�2

�s

t

�2

�s

t

�1

> 0:97.

So one iteration of the four phases is usually enough to re
over the
orre
t inner

key.

Finding the original
ollision in Phase 1 requires order 2

46

queries for ea
h or-

a
le. For Phases 2 and 3, the number of queries is order 2�

P

13

t=7

(31�s

t

)2

45�t

<

2

44

. Thus, the total number of queries for the key re
overy algorithm is order

2

47

. In other words, the number of ora
le queries is dominated by that for �nding

the original
ollision.

The remaining work is order 2

50

MD5 operations. There are a variety of tri
ks

that
an be used to redu
e this further. For example, if the resulting A

13

does

not mat
h the expe
ted value when taking the �rst step ba
kwards in the MD5

omputation for a guessed key, then we
an do an early abort and go to the next

guess. This redu
es the workload by a fa
tor of 2

5

, down to 2

45

MD5 operations.

One
an easily �nd other short
uts, but 2

45

workload is already do-able with

moderate
omputing resour
es.

