
Computational Soundness of Formal

Indistinguishability and Static Equivalence

Gergei Bana⋆, Payman Mohassel, and Till Stegers

Department of Computer Science
University of California at Davis, USA

gebana@cs.upenn.edu mohassel@cs.ucdavis.edu stegers@cs.ucdavis.edu

Abstract. In the investigation of the relationship between the formal
and the computational view of cryptography, a recent approach, first
proposed in [10], uses static equivalence from cryptographic pi calculi as
a notion of formal indistinguishability. Previous work [10, 1] has shown
that this yields the soundness of natural interpretations of some inter-
esting equational theories, such as certain cryptographic operations and
a theory of XOR. In this paper however, we argue that static equiva-
lence is too coarse to allow sound interpretations of many natural and
useful equational theories. We illustrate this with several explicit exam-
ples in which static equivalence fails to work. To fix the problem, we
propose a notion of formal indistinguishability that is more flexible than
static equivalence. We provide a general framework along with general
theorems, and then discuss how this new notion works for the explicit
examples where static equivalence fails to ensure soundness.

1 Introduction

In the past few years, significant effort has been made to link formal and compu-
tational methods of cryptography. These directions had largely been developing
independently; the first based on the seminal work of Dolev and Yao [15], and the
second growing out of the work of Goldwasser and Micali [16]. While the com-
putational method gives a more realistic and detailed description of an actual
protocol, using probability theory and taking limited computational power into
account, security proofs in this model are done by hand and are often notoriously
hard to verify.

The formal method is a high-level treatment, amenable to automatization,
but its reliability is sometimes questionable; namely, a protocol that is formally
secure may not be so computationally, and, therefore, may be insecure in reality.
It is therefore important how to translate one model into the other, and to
characterize which security proofs in the simpler formal framework carry over to
the computational setting.

The first paper to address this question was that of Abadi and Rogaway
[4], which considered only passive adversaries. In their approach, the notion of

⋆ Supported by a Packard Fellowship.

security is formalized via equivalence relations on the formal and on the compu-
tational side that specify which messages look indistinguishable to an adversary
of the corresponding view. Fixing an encryption scheme for the computational
implementation of the formal operations, a natural interpretation assigns a com-
putational object – an ensemble of probability distributions over bit strings – to
each formal expression. The question then arises: Under which circumstances is
the equivalence relation preserved by the interpretation? If the formal equiva-
lence of any two expressions implies the computational equivalence of their inter-
pretations, then we say the model is sound. This is the mathematical equivalent
of saying that security in the formal model implies security in the computational
model. Conversely, the model is complete if the computational equivalence of the
interpretations of any two formal expressions implies that these expressions are
equivalent. Completeness of a model indicates that the formal equivalence notion
in question is not too fine, and helps in finding attacks: if completeness holds,
the existence of a formal attack implies the existence of a computational one.

Abadi and Rogaway proved soundness for their language if the encryption
scheme used in the interpretation is what they call type-0 secure (basically, it
hides everything about the plaintext). A number of other papers followed, prov-
ing completeness as well [20, 6], generalizing for weaker, more realistic encryp-
tions schemes [6], considering purely probabilistic encryptions [17, 6], including
limited models for active adversaries [19], and addressing the issue of forbidding
key-cycles [5]. Other approaches including active adversaries are considered by
Backes et al. and Canetti in their reactive simulatability [8, 7] and universal com-
posability [11, 12] frameworks, respectively. Using probabilistic polynomial-time
semantics without explicit probabilistic reasoning in [14] is also notable.

1.1 Previous Work

Our paper addresses issues when the equivalence relation on the formal side
is static equivalence (from cryptographic pi calculi [3, 2]), induced by an equa-
tional theory. Equational theories model algebraic axioms in the formal world,
such as axioms for groups, rings, XOR, etc. Once an equational theory is fixed,
which means setting certain formal terms equal, static equivalence is uniquely
determined. Roughly speaking, two n-tuples of formal terms are statically in-
equivalent, i.e. formally distinguishable, if an adversary is able to come up with
two formal computations that, on one of the tuples yield two results that are
identical according to the equational theory but yield different results on the
other tuple. Baudet et al. [10] use this equivalence notion on the formal side,
proving soundness of a theory of exclusive or as well as of certain symmetric en-
cryptions that are deterministic and length-preserving. Abadi et al. [1] employ
this framework to analyze a principled formal account of guessing attacks.

A shorter version of this paper [9], excluding proofs, was presented at ASIAN 2006.

1.2 Our Contributions

In this paper, we show that even though static equivalence works well to obtain
soundness results for the cases analyzed in [10, 1], it does not work well in other
important cases, and a more flexible notion is needed. For a brief exposition of
why this is so, consider the Decisional Diffie-Hellman assumption. As Baudet
et al. describe in [10], in an equational theory modeling group exponentiation
without including logarithm, the 4-tuples (g, ga, gb, gab) and (g, ga, gb, gc) are
statically equivalent. Therefore, if the interpretation of the theory in a certain
computational group scheme is sound, then this scheme satisfies the DDH as-
sumption. However, formally much more is equivalent. For example, (g, ga, gb, ab)
and (g, ga, gb, c) are also equivalent, and so on; an infinitude of statements not
necessarily implied by the DDH assumption would be satisfied. There is no rea-
son to think that such a computational group scheme exists at all. Moreover, the
analysis often goes in the other direction: not a given formal model has to be
interpreted in a sound manner, but for a given computational model we are look-
ing for a formal theory that is simplifying, yet sound. A computational scheme
that satisfies the DDH assumption may not satisfy the condition above (not to
mention the infinitely many more that follow from static equivalence), so static
equivalence cannot be used with such a group scheme to achieve soundness. Of
course, if we know that the interpretations of two formal n-tuples are compu-
tationally distinguishable, then we may be able to incorporate the distinguisher
into the formal theory, forcing those two n-tuples to be formally inequivalent.
However, in many cases, we do not know whether the interpretations are in-
equivalent, so we have no explicit distinguishers. In such a case, to play it safe,
it is better to assume that they are distinguishable, and that is how the formal
theory should be constructed.

We argue that an equivalence relation finer than static equivalence is nec-
essary to fit a number of interesting cases for which static equivalence is not
suitable. We will call this type of equivalence relation a formal indistinguishabil-
ity relation (FIR). We require four properties from any FIR, and through these
properties an initial set of relations will generate a FIR. Each pair that is stati-
cally inequivalent is also inequivalent with respect to a formal indistinguishability
relation. Moreover, static equivalence is one instance of a FIR. In order to test
soundness with respect to a computational interpretation, it is enough to check
soundness on a set of relations that generate the FIR in question. If soundness
holds on the generating set of relations, then soundness holds in total.

Besides introducing the above equivalence notion, we also make some other
improvements in the theory. Baudet et al. require the interpretations to be such
that if a distribution is sampled twice, the probability of collision is negligible.
We will not assume this because it would exclude the formal representation of
interesting functions such as the least significant bit. We also use ordered sorts,
allowing names to have multiple sorts.

After introducing the basic framework and proving some general proposi-
tions about FIRs, we discuss three examples. The first is the above-mentioned
DDH assumption: We discuss how to introduce a FIR such that soundness is

equivalent to the DDH assumption. Our second example considers the case of
key-cycles and Laud’s solution to them [18]. Laud proposed that if we do not
want to exclude key-cycles from our theory and we do not want to assume that
the encryption scheme is stronger than the usual assumptions (CPA, CCA-2,
etc.), then we can simply assume that the formal adversary can decrypt all ci-
phertexts that were encrypted with keys that are in a key-cycle. We show how
this assumption corresponds to a formal indistinguishability relation. Finally,
the third example describes an embedding of Boolean propositional logic which
fails to be sound with respect to static equivalence because two formal terms
that are computationally distinguishable turn out to be statically equivalent.

We would like to thank Jonathan Herzog, Phillip Rogaway, and Andre Sce-
drov for valuable discussions on the topic.

2 Formal Model

2.1 Signatures, Terms, and Frames

A signature is a pair (S,F), with S = (S,S′,≤S), S being a countably infi-
nite set of sorts with partial order ≤S , S′ ⊆ S, and F a finite set of function
symbols. We use the notation s, s1, s2, . . . for sorts, and f, f1, f2, . . . for symbols.
We assume that every f ∈ F has a unique arity s1 × · · · × sk → s for some
s1, . . . , sk, s ∈ S. If k = 0, then f is a constant, and we denote this as f : s.

Furthermore, let X , N be countably infinite sets such that S, F , X , N are
pairwise disjoint. The elements of X are called variables, the elements of N
names. We assume that both names and variables are sorted, that is, to each
name or variable u, a subset Su is assigned; we write u : s and say u is of sort s
whenever s ∈ Su. We require that u : s1 and s1 ≤S s2 implies u : s2, and that
the set Su has a minimum, which we denote by s(u). For any subset U of the
set of names or of the set of variables, let [U]s = {u ∈ U | s(u) = s}. Finally,
we require that for each sort s, [X]s is infinite, and [N]s is infinite whenever
s ∈ S′ and empty whenever s 6∈ S′. A renaming is a bijection τ : N → N such
that s(a) = s(τ(a)) for each name a. The terms of our language are sorted by
elements of S. As usual, if a term T has sort s, we write T : s. Terms of sort s
are defined as follows:

T : s ::= x : s | a : s | f(T1, . . . , Tk)

where x is a variable, a is a name, and f is a function symbol of arity s1× · · · ×
sk → s′ for some s1, . . . , sk ∈ S, s′ ≤S s, and each term Ti is of sort si for
i = 1, . . . , k. The set of all terms will be denoted by T . For a term T, we use
var(T) for the set of variables occurring in T, and names(T) for the set of names
occurring in T. A term T is said to be closed if var(T) = ∅.

Let x1, . . . , xn be distinct variables, and let T1, . . . , Tn be terms so that
s(Ti) ≤S s(xi). A well-sorted substitution σ is written as σ = {x1 = T1, . . . , xn =
Tn}. Since in this paper we will only have well-sorted substitutions, we will omit
the term “well-sorted”. The image of T under the substitution σ = {xi = Ti}ni=1

is written as Tσ, and is obtained by replacing every occurrence of xi in T by
Ti for each xi. If all Ti are closed, σ is said to be closed ; the domain of σ is
dom(σ) = {x1, . . . , xn} and the set of variables of σ is var(σ) =

⋃n
i=1 var(Ti).

Similarly, we write names(σ) for the union of all sets names(Ti). As examples,
we refer to the first paragraph of Subsection 5.1 or the second paragraph of 5.2.

Now we can define how to postulate axioms. In short, an equational theory is
an equivalence relation on terms that is stable under (well-sorted) substitution
of terms for variables, application of contexts, and renaming.

Definition 1. An equational theory for a given signature is an equivalence re-
lation E ⊆ T × T (written =E in infix notation) on the set of terms such that
(i) T =E T ′ implies Tσ =E T ′σ for every substitution σ; (ii) T1 =E T2 im-
plies T {x = T1} =E T {x = T2} for every term T and every variable x with
s(x) ≥S s(Ti); (iii) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

If R is a relation on T , then the intersection 〈R〉 of all equational theories
containing R is the smallest equational theory containing R. We say 〈R〉 is
the equational theory generated by R. For examples, we refer to the second
paragraph of Subsection 5.1 and the third paragraph of Subsection 5.2.

A frame ϕ is an expression νã.σ, where σ is a substitution and ã = names(σ).
Since ã is uniquely determined by its underlying substitution σ, we may some-
times only write the substitution for a frame to save space. We say that ϕ is
closed if σ is closed. The set of all frames (with respect to an understood signa-
ture) is denoted by F, the set of closed frames are denoted by Fc.

If E is an equational theory and ϕ = νã.σ is a frame, we say that a term T
is deducible from ϕ with respect to E, written ϕ ⊢E T, if there is a term M
with var(M) ⊆ dom(ϕ) and names(M) ∩ (names(ϕ) ∪ names(T)) = ∅ such that
Mϕ =E T, where Mϕ = Mσ.

Suppose that for closed frames ϕ1, ϕ2 with dom(ϕ1) = dom(ϕ2), there are two
terms M,N sharing no names with ϕ1 and ϕ2, var(M)∪var(N) ⊆ var(ϕi), such
that Mϕ1 =E Nϕ1, but Mϕ2 6=E Nϕ2. Intuitively, this means that carrying
out two computations – permitted by the model and determined by M and N –
on the inputs provided by ϕ1, we get identical results, whereas carrying out the
same computations on the input provided by ϕ2 produces distinct results. If the
distinction of two closed frames is not possible this way, then we say that these
two frames are statically equivalent.

Definition 2. Two closed frames ϕ1, ϕ2 of the same domain are statically
equivalent with respect to an equational theory E, written ϕ1 ≈E ϕ2, if for
all terms M,N with var(M) ∪ var(N) ⊆ var(ϕi) and using no names occurring
in ϕ1 or ϕ2, we have Mϕ1 =E Nϕ1 ⇐⇒ Mϕ2 =E Nϕ2. Let Ẽ denote static
equivalence as a subset of Fc × Fc.

2.2 Formal Indistinguishability

For a frame ϕ = ν ∪n
i=1 names(Ti).{xi = Ti}ni=1, if ϕ′ is another frame, let

ϕϕ′ denote the frame ν ∪n
i=1 names(Ti) ∪ names(ϕ′).{xi = Tiϕ

′}ni=1. For frames

ϕ1, . . . , ϕn with disjoint domains, let {ϕ1|ϕ2| . . . |ϕn} be the frame corresponding
to the combination of all substitutions of ϕ1, . . . , ϕn.

Definition 3. A formal indistinguishability relation with respect to an equa-
tional theory E is an equivalence relation ∼= on the set of closed frames such
that

(i) ϕ1
∼= ϕ2 only if dom(ϕ1) = dom(ϕ2);

(ii) for any frame ϕ, if ϕ1 and ϕ2 are closed frames such that var(ϕ) ⊆ dom(ϕi),
names(ϕ) ∩ names(ϕi) = ∅ and ϕ1

∼= ϕ2 then ϕϕ1
∼= ϕϕ2;

(iii) for any two frames ϕ′ = {xi = T ′
i}

n
i=1 and ϕ′′ = {xi = T ′′

i }
n
i=1, if T ′

i =E T ′′
i

for all i, then ϕ′ ∼= ϕ′′; moreover, ϕ′ 6≈E ϕ′′ implies ϕ′ 6∼= ϕ′′;
(iv) for any renaming τ , τ(ϕ) ∼= ϕ.

Remark 1. Corresponding sections of equivalent frames are equivalent. That is,
for example, if ϕ1 = {xi = Ti}4i=1

∼= ϕ2 = {xi = T ′
i}

4
i=1, then {x2 = T2, x4 =

T4} ∼= {x2 = T ′
2, x4 = T ′

4}. This follows from (ii) by setting ϕ = ν∅.{x2 =
x2, x4 = x4}.

If ϕ1, ϕ2, ϕ
′
1, ϕ

′
2 are frames such that dom(ϕ1) ∩ dom(ϕ2) = ∅, dom(ϕ′

1) ∩
dom(ϕ′

2) = ∅, names(ϕ1)∩names(ϕ2) = ∅, names(ϕ′
1)∩names(ϕ′

2) = ∅, and ϕi
∼=

ϕ′
i, then {ϕ1|ϕ2} ∼= {ϕ′

1|ϕ
′
2}. The reason is the following. Choose a renaming τ

such that τ(ϕ1) = ϕ1, τ(ϕ
′
1) = ϕ′

1, τ(ϕ
′
2) = ϕ′

2, and names(τ(ϕ2))∩names(ϕ1) =
names(τ(ϕ2)) ∩ names(ϕ′

1) = ∅. This can be done because we assumed that
there are infinitely many names of each sort. Using (iv), we see that {ϕ1|ϕ2} ∼=
τ({ϕ1|ϕ2}) = {ϕ1|τ(ϕ2)}. If dom(ϕ1) = dom(ϕ′

1) = {x1, . . . , xk}, then let ψ =
{x1 = x1, . . . , xk = xk|τ(ϕ2)}. Using (ii), it follows that {ϕ1|τ(ϕ2)} = ψϕ1

∼=
ψϕ′

1 = {ϕ′
1|τ(ϕ2)}. Since by (iv) again, τ(ϕ2) ∼= ϕ2, and ϕ2

∼= ϕ′
2 by assumption,

τ(ϕ2) ∼= ϕ′
2 holds, and applying (ii) in a similar fashion as before, we obtain

{ϕ′
1|τ(ϕ2)} ∼= {ϕ′

1|ϕ
′
2}. Putting all these together, {ϕ1|ϕ2} ∼= {ϕ′

1|ϕ
′
2}.

The following useful propositions are proved in the appendix.

Proposition 1. Static equivalence ≈E is a formal indistinguishability relation
with respect to the equational theory E.

Proposition 2. The intersection of an arbitrary number of formal indistin-
guishability relations (with respect to the same equational theory E) is a formal
indistinguishability relation.

Proposition 3. Consider static equivalence as a subset Ẽ ⊆ Fc×Fc. If S ⊆ Ẽ,
then there is a unique smallest subset 〈S〉 ⊆ Ẽ containing S, such that 〈S〉 (∼=S

in infix notation) is a formal indistinguishability relation with respect to E. 〈S〉
can be generated in the following way: Let

S′ :=






(ϕ′, ϕ′′)
∈

Fc × Fc

∣∣∣∣∣∣

ϕ′ = ϕ{ϕ′
1| . . . |ϕ

′
n} and ϕ′′ = ϕ{ϕ′′

1 | . . . |ϕ
′′
n} such that

names(ϕ) = ∅ and for all i = 1, . . . , n, (ϕ′
i, ϕ

′′
i) ∈ S, or

(ϕ′′
i , ϕ

′
i) ∈ S, or ϕ′′

i =E τi(ϕ
′
i) for some renaming τi.




 .

Then 〈S〉 is the transitive closure of S′.

3 Relating Formal and Computational Models

We now present the computational interpretation of the formal model. Our def-
inition is equivalent to the one given by Baudet et al. [10]; the only difference is
that we allow probabilistic as opposed to only deterministic interpretations for
the symbols in F , and that we have ordered sorts. To each closed term, the in-
terpretation assigns an ensemble of probability distributions on bit strings. This
is a generalization of Abadi and Rogaway’s definition in [4].

Given a signature (S,F), where S = (S,S′,≤S), an (S,F)-computational
algebra A is a triple A = ({JsK

A
}s∈S , {JsKA}s∈S′ , {fA}f∈F) as follows: For each

sort s in S, JsK
A

= {JsK
Aη
}η where JsK

Aη
⊆ {0, 1}∗ such that checking whether

a bit string is in JsK
A

is computable in polynomial-time; for each s in S′,
JsKA = {JsKAη

}η, each JsKAη
being a probability distribution on {0, 1}∗ with

supp(JsKAη
) = JsK

A
such that there is a polynomial time algorithm to draw

random elements from JsKAη
; for each f ∈ F , with arity s1 × · · · × sk → s,

fA = {fAη
}η, where fAη

: Js1KAη
×· · ·×JskK

Aη
→ JsK

Aη
is a probabilistic function

computable in polynomial time. Here, supp denotes the support of a probability
distribution, which is the set where the distribution gives non-zero probability.

Once a computational algebra is fixed, we can associate a probability dis-
tribution to each closed term M through the following two algorithms. The
interpretation of M is INTERPRETη(M), which makes use of the algorithm

CONVERTλ
η(M) converting M to a tuple of values in Aη whenever a function

λ : names(M)→ supp(Js(a)KAη
) is given:

algorithm CONVERTλ
η(M)

if M = a with name a then

return λ(a)
if M = f(M1, . . . ,Mk) then

for i = 1, . . . , k do

ei
R
←− CONVERTλ

η (Mi)

v
R
←− fAη

(e1, . . . , ek)
return v

algorithm INTERPRETη(M)
for a ∈ names(M) do

λ(a)
R
←− Js(a)KAη

v
R
←− CONVERTλ

η(M)
return v

algorithm INTERPRET′
η(ϕ)

for a ∈ names(ϕ) do λ(a)
R
←− Js(a)KAη

if ϕ = {x1 = T1, . . . , xn = Tn} then

ei
R
←− CONVERTλ

η(Ti) i = 1, . . . , n
v ←− {x1 = e1, . . . , xn = en}
return v

For each η, the probability distribution of v
R
←− CONVERTη(M) is denoted

by JMKAη
. The ensemble {JMKAη

}η is denoted by JMKA. We call JMKA the
computational interpretation of the term M . For any name a : s with s ∈ S′,
JsKA = Js(a)KA = JaKA. We define the interpretation of a closed frame ϕ =
{x1 = T1, . . . , xn = Tn} via the algorithm INTERPRET′

η(ϕ). We use JϕKAη

for the probability distribution given by INTERPRET′
η(ϕ) and JϕKA for the

ensemble of these distributions, which we call the computational interpretation
of the frame ϕ in the model A.

Two ensembles of probability distributions are said to be computationally
indistinguishable, if no probabilistic polynomial time algorithm can distinguish
them. Once the formal expressions are interpreted, then we can consider the
computational indistinguishability of interpretations of two closed terms or two
closed frames. We will use the notation JM1KA ≈ JM2KA and Jϕ1KA ≈ Jϕ2KA,
respectively. Explicitly, this latter means that for any PPT algorithm A,

∣∣∣Pr[ϕ̂1
R
←− Jϕ1KAη

: A(η, ϕ̂1) = 1]− Pr[ϕ̂2
R
←− Jϕ2KAη

: A(η, ϕ̂2) = 1]
∣∣∣ ,

denoted by AdvA
η (Jϕ1KA, Jϕ2KA), is a negligible function; that is, for each n ∈ N

and all sufficiently large η, AdvA
η (Jϕ1KA, Jϕ2KA) < η−n.

4 Soundness, Completeness and Faithfulness

The computational model of a cryptographic scheme is in a sense closer to reality
than its formal representation by being a more detailed description. Therefore,
the accuracy of a formal model can be characterized based on how close it is to
the computational model; more specifically, how formal and computational indis-
tinguishability relate to each other via the interpretation. The most important
concepts to describe this are given in the following definition.

Definition 4. Let A be an (S,F)-computational algebra, and let ∼= be a formal
indistinguishability relation on the set of frames, and let F ⊆ Fc. We say that
the computational algebra A is ∼=-sound on F if for every closed pair of frames
ϕ1, ϕ2 ∈ F , ϕ1

∼= ϕ2 implies that Jϕ1KA ≈ Jϕ2KA. A is ∼=-complete on F if for
every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 6∼= ϕ2 implies that Jϕ1KA 6≈ Jϕ2KA.
A is ∼=-faithful on F if for every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 6∼= ϕ2

implies that the statistical distance ∆(Jϕ1KAη
, Jϕ2KAη

) is not negligible and there

is a PPT algorithm A such that |AdvA
η (Jϕ1KAη

, Jϕ2KAη
)−∆(Jϕ1KAη

, Jϕ2KAη
)| is

negligible. For all three notions, we adopt the convention that if no such set F
is mentioned, it is assumed that F = Fc.

It is well known that the advantage of an adversary trying to distinguish two
distributions is less than or equal to the statistical distance between the two
distributions. Faithfulness therefore means that if two frames are formally dis-
tinguishable, then there is an algorithm that distinguishes their interpretations
almost optimally.

Remark 2. If a model is sound, then formal proofs of indistinguishability are
valid proofs of computational indistinguishability.

Our faithfulness definition is different from the one by Baudet et al. given
in [10]. They require the existence of an adversary whose advantage is negligi-
bly close to 1. However, there are interesting cases where their requirement is
too strong, as the following example shows. Nevertheless, we will not discuss
faithfulness in this paper beyond this example.

Example 1. Suppose that we add a function symbol LSB: Data → Data to
our theory, where Data is a sort. We think of this as the least significant bit,
and accordingly, we define the interpretation for the LSB function such that
LSBAη

(x) is the least significant bit of x. Suppose that names of sort Data get
interpreted as bit strings with a certain maximum length with uniform distri-
bution. Now, consider the two frames νab.{x1 = LSB(a), x2 = LSB(b)} and
νa.{x1 = LSB(a), x2 = LSB(a)}. After interpretation, for each security param-
eter, the first frame will result in two independent bits of uniform distribution,
whereas the interpretation of the second frame will contain two completely cor-
related bits of uniform distribution. No adversary can distinguish these two
distributions with advantage greater than 1/2, which is the statistical distance.
However, the adversary that outputs 1 if the two bits are identical and 0 if they
are different is clearly the best possible.

Remark 3. Completeness can be rewritten in the form that for every closed pair
of frames ϕ1, ϕ2, Jϕ1KA ≈ Jϕ2KA implies ϕ1

∼= ϕ2. This notion is weaker then
faithfulness, i.e., a faithful interpretation is also complete.

Let us introduce some notation. Let A be an (S,F)-computational alge-
bra, and let {x1 = T1, x2 = T2} be a closed frame in this setting. Then by

e1, e2
R
←− JT1, T2KAη

, we will denote the random sampling {x1 = e1, x2 =

e1}
R
←− INTERPRET′

η({x1 = T1, x2 = T2}).

Definition 5. Let A be a (S,F)-computational algebra, and let E be an equa-
tional theory. We say that A is =E-sound if for each pair of closed terms T1 and

T2, T1 =E T2 implies that Pr[e1, e2
R
←− JT1, T2KAη

: e1 6= e2] is negligible. It is
=E-complete if for each pair of closed terms T1 and T2, T1 6=E T2 implies that

Pr[e1, e2
R
←− JT1, T2KAη

: e1 6= e2] is not negligible.

Remark 4. The reader may ask why no adversaries are used in this definition. For
example, would it not make more sense to define =E-soundness so that for each
pair of closed terms T1 and T2 if T1 =E T2 holds, then JT1, T2KA ≈ JT1, T1KA?
However, using the fact that the advantage of an adversary trying to distinguish
the two distributions cannot exceed the statistical distance, it is easy to show
that this definition would be equivalent to what is given above.

The following proposition shows that if a FIR ∼= is generated by a set S ⊆
Fc × Fc, then it suffices to check soundness for pairs of frames in S to see that
〈S〉 is sound. The proof is included in the appendix.

Proposition 4. Let A be an (S,F)-computational algebra that is =E-sound.
Suppose S ⊆ Ẽ is a binary relation on closed frames such that (ϕ, ψ) ∈ S
implies JϕKAη

≈ JψKAη
. Then JϕKAη

≈ JψKAη
whenever ϕ ∼=S ψ. That is, A is

∼=S-sound.

Corollary 1. Let A be a (S,F)-computational algebra with S ⊆ Fc × Fc such
that A is ∼=S-sound on F . Let S′ := S ∩ (F × F). Then A is ∼=S′-sound.

5 Applications

In this section, we exemplify the utility of formal indistinguishability relations
that refine static equivalence. In the theory of groups with exponentiation, we
obtain an FIR such that soundness is equivalent to the Decisional Diffie-Hellman
Assumption. Next, we show how to handle key-cycles by encoding Laud’s ap-
proach in a formal indistinguishability relation. Finally, we give an example from
propositional Boolean logic whose natural model would not be sound with re-
spect to static equivalence, but is sound with respect to a particular FIR.

5.1 Decisional Diffie-Hellman Assumption

Consider the following equational theory to model a commutative group with
exponentiation (as in [10]). Let A and G be sorts, S = S′ with the trivial
ordering, and let F contain the following function symbols: ∗ : G × G → G;
1G : G; · : A×A→ A; +: A×A→ A; − : A→ A; 1A : A; 0 : A; exp: G×A→ G.
To simplify our notation, we write UV for exp(U, V).

Let the equational theory E be generated by the following equations:

x ∗ 1G = x a+ (−a) = 0 (a+ b) · c = a · c+ b · c
x ∗ y = y ∗ x a+ (b+ c) = (a+ b) + c (xa)b = x(a·b)

x ∗ (y ∗ z) = (x ∗ y) ∗ z a · 1A = a xa ∗ xb = xa+b

a+ 0 = a a · b = b · a x1A = x
a+ b = b+ a a · (b · c) = (a · b) · c x0 = 1G

Observe that we did not include a symbol for the discrete logarithm in the
language. The reason is that we want to assume that computing a from ga is
not feasible for an adversary.

Once a computational group scheme is set (for computational group schemes
see for example the full version of [13]), the computational interpretation of this
signature is straightforward. Names of sort G will be mapped to the ensem-
ble of distributions corresponding to the generation of random group elements
whereas names of sort A will correspond to the generation of ring elements.
Addition, multiplication etc. will be translated to addition, multiplication etc.
of ring or group elements, respectively. As Baudet et al. point out in their pa-
per, in this theory, the frames νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = gab}
and νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc} are statically equivalent.
Distinguishing the interpretations of these two frames is the Decisional Diffie-
Hellman problem. So, a computational implementation that is sound with re-
spect to static equivalence will imply that the DDH assumption holds for the
given group scheme. Unfortunately, soundness would imply much more than the
DDH assumption. For example, νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ganbm

} ≈E

νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = gc} for some naturals n,m ≥ 1, and
therefore ≈E-soundness would imply that the computational interpretations of
these are indistinguishable as well. Moreover, even νgab.{x1 = g, x2 = ga, x3 =
gb, x4 = ab} ≈E νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = c}. It is unreasonable to
require that all these hold for a computational implementation.

We therefore suggest to use a formal indistinguishability relation instead.
Since we only want to assume that the DDH assumption holds and nothing
more, simply let S be the set consisting of the pair

(
νgab.{x1 =g, x2 =ga, x3 =gb, x4 =gab}, νgabc.{x1=g, x2 =ga, x3 =gb, x4 =gc}

)
.

Then, by Proposition 4, a computational interpretation is ∼=S-sound if and only
if the DDH assumption holds. In this model, ∼=S will make exactly those frames
equivalent for which equivalence necessarily follows from the DDH assumption
and the algebraic identities that we included in the model. Hence, for example,
νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ab} 6≈E νgabc.{x1 = g, x2 = ga, x3 =
gb, x4 = c}, but νgg′ab.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)ab} ∼=S

νgg′c.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)c}. This follows from the
commutativity of the group operation, from property (ii) and (iv) of the formal
indistinguishability relation, and the definition of S.

Often (for example in the case of uniform distributions), J{x1 = g, x2 = g′}KA

and J{x1 = g, x2 = gg′}KA are computationally indistinguishable. In this case, we
can include the pair of frames (νgg′.{x1 = g, x2 = g′}, νgg′.{x1 = g, x2 = gg′})
in S, and then the above equivalence will follow without the use of commuta-
tivity. Alternatively, if we include (νab.{x1 = a, x2 = b}, νab.{x1 = a, x2 = ab})
in S, then it follows that νgg′adf.{x1 = g, x2 = gad, x3 = gf , x4 = g′gadf} ∼=S

νgg′df.{x1 = g, x2 = gad, x3 = gf , x4 = g′gc}.

5.2 Key-Cycles

In their paper, Baudet et al. [10] also consider an equational theory for encryp-
tion schemes, and prove the soundness of static equivalence when key-cycles are
excluded. Another such example in the framework of static equivalence can be
found in the paper of Abadi et al. [1], where key-cycles are excluded as well. The
problem of key-cycles is not specific to static equivalence. It necessarily comes
up in the investigation of the relationship of formal and computational models;
already Abadi and Rogaway in [4] had to exclude key-cycles. There are two ways
to include them: Either the encryption scheme used for the interpretation has
to be secure even in the presence of key-cycles, or the formal indistinguishabil-
ity notion has to be relaxed. The problem with the former is that no realistic
encryption scheme is known to be secure for key-cycles. Laud proposed a simple
solution pursuing the second approach in [18]: Simply assume that the formal
adversary can decrypt all the ciphertexts that were encrypted by keys that are
part of a key-cycle. In the present formalism this means switching from static
equivalence to another indistinguishability relation. We illustrate this by first
recasting the original Abadi-Rogaway treatment into the present formalism and
then showing how Laud’s solution provides a special FIR.

The Abadi-Rogaway formal language of [4] gives a signature (Ssenc,Fsenc),
where Ssenc = (Ssenc,S′senc,≤S), with Ssenc = {Key,Data,Cipher,Pair}, S′senc =
{Key}, Key ≤S Data, Cipher ≤S Data, Pair ≤S Data. The following function
symbols are in Fsenc:

enc : Data×Key→ Cipher symmetric encryption
dec : Data×Data→ Data symmetric decryption
pair : Data×Data→ Pair pairing
fst : Data→ Data first projection
snd : Data→ Data second projection

0, 1, error : Data constants

Let the equational theory Esenc be generated by the following equations:
dec(enc(x, y), y) = x, fst(pair(x, y)) = x, snd(pair(x, y)) = y,
pair(fst(x), snd(x)) = x, and furthermore, dec(x, y) = error whenever the sort
s(x) is ≤S-incomparable with Cipher or s(y) is incomparable with Key, and
fst(x) = snd(x) = error whenever s(x) is incomparable with Pair.

Given a computational encryption scheme (E ,D,K), along with a compu-
tational way of pairing, it is straightforward how to assign a computational
algebra Asenc to this signature: Simply interpret the formal function symbols as
their computational counterpart, and let JKeyKAsenc

be the distribution of key
generation.

Definition 6. A frame ϕ is well-formed if ϕ does not contain the symbols
dec, fst, snd, error. For a well-formed frame ϕ, the set of recoverable keys
of ϕ are those keys that are deducible from ϕ, i. e., R-Keys(ϕ) = {k | k ∈
names(ϕ), k : Key, ϕ ⊢Esenc

k}. The set B-Keys(ϕ) consists of those keys that
encrypt the outermost undecryptable terms in ϕ, namely, those undecryptable
terms that are deducible from ϕ:

B-Keys(ϕ)={k∈names(ϕ) | ϕ⊢Esenc
enc(T, k) for some T, and k 6∈ R-Keys(ϕ)}

We say that B-Keys(ϕ) is cyclic in ϕ, if for some keys k1, k2, . . . , km ∈ B-Keys(ϕ)
with k1 = km, there are terms M1, . . . ,Mm with M1 = Mm such that ki oc-
curs in Mi in positions other than in the second argument of enc and ϕ ⊢Esenc

enc(Mi, ki+1).

The reason for excluding some symbols from well-formed frames is that Abadi
and Rogaway only considered expressions built via encryption and pairing. But
these symbols of course can be used in the distinguishers M and N in the
definition of static equivalence! The result of Abadi and Rogaway then says
that if the encryption scheme is type-0 secure (as defined in [4]), then for two
well-formed frames, ϕ ≈Esenc

ψ implies JϕKAsenc
≈ JψKAsenc

whenever neither
B-Keys(ϕ) nor B-Keys(ψ) are cyclic in the corresponding frames..

The exclusion of key-cycles is necessary if the encryption scheme is just type-0
secure. In fact, all standard computational notions of security make it necessary
to exclude key-cycles. If the encryption scheme satisfies stronger security defi-
nitions, for instance if it is KDM-secure (see [5]), then key-cycles do not cause
problems, but no realistic KDM-secure encryptions are known at this time.

As we mentioned, following Laud’s method, we can keep the computational
algebra Asenc but switch from static equivalence to another formal indistinguisha-
bility relation on the formal side which is sound even in the presence of key-cycles.
Define S as static equivalence Ẽsenc minus pairs that contain key-cycles on at

least one side. Then ∼=S-soundness including key-cycles will hold. More precisely,
the following proposition is true:

Proposition 5. Let Asenc be the above (Ssenc,Fsenc)-computational algebra. Let
S ⊆ Fc × Fc be the following set:

S :=
{
(ϕ1, ϕ2)

∣∣∣(ϕ1, ϕ2)∈Ẽsenc and, ifϕi is well-formed,B-Keys(ϕi) is not cyclic
}
.

Let ∼=S be the formal indistinguishability relation generated by S. Then, for all
well-formed frames ϕ1 and ϕ2, ϕ1

∼=S ϕ2 implies Jϕ1KAsenc
≈ Jϕ2KAsenc

.

The proposition clearly holds on S, because from there we removed the the
key-cycles. Then the proof is similar to that of Proposition 4.

5.3 Boolean Algebra

We give an example where static equivalence identifies frames that are compu-
tationally clearly distinguishable, whereas a more fine-grained formal indistin-
guishability relation can do better.

Consider a signature (S,F), where S = ({B,S}, {B,S},=), and F contains
the symbols ∧,∨ : B → B, constants 0, 1: B, as well as LSB: S → B. Let
E be the equational theory generated by the set {(M,N) | M,N : B, M ↔
N is a tautology of propositional Boolean algebra}.

Let A denote the following (S,F)-computational algebra: supp(JSKAη
) =

{0, 1}η ⊂ {0, 1}∗, supp(JBKAη
) = {0, 1} ⊂ {0, 1}∗, where both spaces are

equipped with the uniform distribution over their support. The operations 0,
1, ∧, ∨ are interpreted as the obvious operations on the Boolean algebra {0, 1},
and LSBAη

is defined by LSBAη
(b1 . . . bη) = bη. It is clear that A is =E-sound.

However, it is not ≈E-sound because

νab.{x = LSB(a) ∧ LSB(b)} ≈E νcd.{x = LSB(c) ∨ LSB(d)}

if a, b : S, or, even more simply, νab.{x = a ∧ b} ≈E νcd.{x = c ∨ d} for
a, b : B, whereas the interpretation of the left-hand side is distributed so that
Pr[{x = 1}] = 1/4, and for the right-hand side Pr[{x = 1}] = 3/4, which are
clearly distinguishable. (We remark that while A does not satisfy a requirement
of Baudet et al. that, for two names a, b : B, Pr[e1, e2 ← Ja, bKAη

; e1 = e2] be
negligible, this can also be satisfied by making minor changes to the model.)

To remedy the problem, we can use instead of static equivalence a custom
formal indistinguishability relation. For a frame which has only sort B in its
domain, it is easy to compute explicitly the probability distribution of its inter-
pretation using only the formal expressions. Without writing down the explicit
recursive formula, just consider for example that for νab.{x1 = a ∧ b, x2 = a},
Pr[{x1 = 1, x2 = 1}] = 1/4, Pr[{x1 = 1, x2 = 0}] = 0, Pr[{x1 = 0, x2 = 1}] =
1/4, Pr[{x1 = 0, x2 = 0}] = 1/2. We can therefore define the binary relation S
generating the FIR so that S contains those pairs for which the domains only
have variables of sort B, and have identical probability distributions. This defi-
nition gives a formal indistinguishability relation that is both sound and faithful.

6 Conclusion

We suggested a generalized notion of formal indistinguishability which provides
greater flexibility than static equivalence. This is needed because computational
distinguishability is much more than just trying to distinguish with the algebraic
manipulations allowed by the formal model. It is unrealistic to expect that an
indistinguishability relation defined in a purely algebraic manner in a relatively
simple formal model will cover all subtleties of computational indistinguisha-
bility. However, even though computational indistinguishability is a complex
notion, in many cases it is possible to distill a simple formal indistinguishability
relation, impose it on the formal model, and get a sound, meaningful theory.
The utility of this new definition was demonstrated in Section 5: We pointed out
natural models of certain equational theories in which static equivalence seems
to be an insufficiently coarse notion of formal indistinguishability, and showed
how to come up with different indistinguishability relations that do not identify
more expressions than needed.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational
soundness of static equivalence. In L. Aceto and A. Ingólfsdóttir, editors, Proceed-
ings of the 9th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS ’06), volume 3921 of Lecture Notes in Computer
Science, pages 398–412. Springer-Verlag, March-April 2006.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 104–115, New York, NY, USA, 2001.
ACM Press.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi
Calculus. Information and Computation, 148(1):1–70, January 1999. Full version
available as SRC Research Report 149, January 1998.

4. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
January 2002.

5. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption
in the presence of key-cycles. In S. De Capitani di Vimercati, P. Syverson, and
D. Gollmann, editors, Proceedings of the 10th European Symposium on Research
in Computer Security (ESORICS), volume 3679 of Lecture Notes in Computer
Science, pages 374–396, Milan, Italy, September 12–14 2005. Springer.

6. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic
soundness and completeness of formal encryption. In Proceedings of the 18th
IEEE Computer Security Foundations Workshop (CSFW), pages 170–184, Aix-
en-Provence, France, June 20–22 2005. IEEE Computer Society Press.

7. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW), pages 204–218, Pacific Grove, CA, USA, June
28–30 2004. IEEE Computer Society Press. Full version available at IACR ePrint
Archive, Report 2004/059.

8. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations. In S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings
of the 10th ACM Conference on Computer and Communications Security (CCS),
pages 220–230, Washington D.C., USA, October 27–30 2003. ACM Press. Full
version available at IACR ePrint Archive, Report 2003/015, January 2003.

9. Gergei Bana, Payman Mohassel, and Till Stegers. Computational soundness of
formal indistinguishability and static equivalence. In Proceedings of ASIAN 2006,
Lecture Notes in Computer Science. Springer-Verlag, 2007. To appear.

10. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations
of equational theories against passive adversaries. In Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Programming (ICALP’05),
volume 3580, pages 652–663. Springer-Verlag, July 2005.

11. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145, Las Vegas, NV, USA, October 14–17 2001. IEEE Computer Society
Press. Full version available at IACR ePrint Archive, Report 2000/067.

12. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key exchange protocols. In Proceedings, Theory of
Cryptography Conference (TCC), March 2006.

13. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances in
Cryptology CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science,
pages 13–25, Santa Barbara, CA, USA, August 23–27 1998. Springer. Full version
available at IACR ePrint Archive, Report 2001/108, Dec 2001.

14. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In L. Caires, G. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, editors, Proceedings of the The 32nd
International Colloquium on Automata, Languages and Programming (ICALP),
volume 3580 of Lecture Notes in Computer Science, pages 16–29, Lisbon, Portugal,
July 11–15 2005. Springer.

15. D. Dolev and A. C. Yao. On the security of public-key protocols. IEEE Transac-
tions on Information Theory, 29(2):198–208, March 1983.

16. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
Systems Sciences, 28(2):270–299, April 1984.

17. J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract protocol
analysis: Message authentication. In P. Samarati, editor, Proceedings of the 8th
ACM Conference on Computer and Communications Security (CCS), pages 186–
195, Philadelphia, PA, USA, November 05–08 2001. ACM Press.

18. P. Laud. Encryption cycles and two views of cryptography. In Proceedings of the
7th Nordic Workshop on Secure IT Systems (NORDSEC), number 31 in Karlstad
University Studies, pages 85–100, Karlstad, Sweden, November 7–8 2002.

19. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In Proceedings of the 2004 IEEE Symposium on Security and
Privacy (S&P), pages 71–85, Oakland, CA, USA, May 9–12 2004. IEEE Computer
Society Press.

20. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–130, 2004.

A Proofs

A.1 Proof of Proposition 1

Proof. Items (i) and (iii) are trivially satisfied by ≈E . Consider frames ϕ,ϕ1, ϕ2

as in (ii). Let M,N be terms whose variables are included in dom(ϕϕ1) =
dom(ϕϕ2) = dom(ϕ) and that have no names in common with ϕϕi, i = 1, 2.
Then names(Mϕ) = names(M) ∪ names(ϕ), and names(M) ∪ names(ϕ) is dis-
joint from names(ϕi) by the assumption on M and condition (ii). Therefore
names(Mϕ) and names(ϕi) are disjoint (and likewise for N). If ϕ1 ≈E ϕ2

holds, then by the definition of static equivalence, (Mϕ)ϕ1 =E (Nϕ)ϕ1 if and
only if (Mϕ)ϕ2 =E (Nϕ)ϕ2. Therefore, M(ϕϕ1) =E N(ϕϕ1) if and only if
M(ϕϕ2) =E N(ϕϕ2), and that is exactly what we had to prove to see that
ϕϕ1

∼= ϕϕ2.
To see (iv), we first construct another renaming τ ′ the following way: On

names(ϕ), let τ ′ be equal τ , and on N \ (names(ϕ) ∪ τ(names(ϕ)), let τ ′ be the
identity map. We still have to define τ ′ on τ(names(ϕ)) \ names(ϕ). Since τ is a
sort-preserving bijection, the number of elements in [τ(names(ϕ))\names(ϕ)]s is
the same as the number of elements in [names(ϕ)\τ(names(ϕ))]s for each sort s;
both are |[names(ϕ)]s|−|[names(ϕ)∩τ(names(ϕ))]s|, which equals |[τ(names(ϕ))]s|−
|[names(ϕ) ∩ τ(names(ϕ))]s|. So on [τ(names(ϕ)) \ names(ϕ)]s choose τ ′ to be
any bijection to [names(ϕ)\τ(names(ϕ))]s. It is then easy to see that τ ′ is a sort-
preserving bijection onN , and that τ ′(ϕ) = τ(ϕ) for the ϕ in question. Moreover,
for any M expression that shares no names with ϕ and τ(ϕ), τ ′(M) = M , and
therefore Mτ(ϕ) = Mτ ′(ϕ) = τ ′(Mϕ) holds. Hence, for any two such expres-
sions M and N , Mτ(ϕ) =E Nτ(ϕ) if and only if τ ′(Mϕ) =E τ ′(Nϕ) which
happens – since τ ′ is a bijection – if and only if Mϕ =E Nϕ, and τ(ϕ) ∼= ϕ
follows.

A.2 Proof of Proposition 2

Proof. Let (∼=i)i∈I , where I is some indexing set, be a sequence of formal indis-
tinguishability relations with respect to the same equational theory E, and let
∼= be their intersection. Clearly, ∼= is an equivalence relation. Items (i) and (iii)
are trivially satisfied by ∼= . Let ϕ,ϕ1, ϕ2 be as in (ii). Then ϕ1ϕ ∼=i ϕ2ϕ for all
i ∈ I, hence ϕ1ϕ ∼= ϕ2ϕ. Likewise, since every ∼=i is preserved by the renaming
of variables, ∼= is preserved as well. Therefore (iii), (iv) are also satisfied by ∼= .

A.3 Proof of Proposition 3

Proof. The existence of such a smallest set is clear. In order to prove the state-
ment about how to generate 〈S〉, consider the transitive closure Ŝ of S′. It is
clear from the definition of S′ that Ŝ is symmetric, reflexive and transitive,
hence an equivalence relation. It is also clear from the definition of a formal
indistinguishability relation and from Remark 1 that in the construction of S′

and Ŝ we stay within 〈S〉. Therefore, we only have to show that Ŝ is a formal
indistinguishability relation.

By the construction of Ŝ, it is clear that Ŝ satisfies properties (i), (iii) and
(iv) of a formal indistinguishability relation, so that only (ii) remains. Suppose
(ϕ1, ϕ2) ∈ Ŝ, and let ϕ be as in (ii); we have to show that (ϕϕ1, ϕϕ2) ∈ Ŝ.
Since (ϕ1, ϕ2) ∈ Ŝ, there are frames ψ1, . . . , ψn such that ϕ1 = ψ1, ϕ2 = ψn,
and the pairs (ψi, ψi+1), where i = 1, . . . , n − 1, are all in S′. Without loss of
generality, we can assume that names(ϕ) ∩ names(ψi) = ∅, because otherwise
the names of the ψi’s (i = 2, . . . , n − 1) can be moved away via renaming, the
resulting pairs of frames will still be in S′. If we can show that (ϕψi, ϕψi+1) ∈ S′,
then transitivity ensures that (ϕϕ1, ϕϕ2) ∈ Ŝ. Let us now fix i. Then, by the
assumption (ψi, ψi+1) ∈ S′, these frames have the form ψi = ψ{ψ′

1| . . . |ψ
′
m}

and ψi+1 = ψ{ψ′′
1 | . . . |ψ

′′
m} such that for all j = 1, . . . ,m, (ψ′

j , ψ
′′
j) ∈ S, or

(ψ′′
j , ψ

′
j) ∈ S, or ψ′′

j = τj(ψ
′
j) for some renaming τj , and names(ψ) = ∅. If

[names({ψ′
1| . . . |ψ

′
m}) \ names(ψi)] ∩ names(ϕ) 6= ∅, then replace those names

with fresh ones in {ψ′
1| . . . |ψ

′
m}; this can be done, because they don’t show

up in ψi. Similarly for ψi+1. Let a1, . . . , al be the names occurring in ϕ, and
let y1, . . . , yl be fresh variables. For 1 ≤ k ≤ l, replace every occurrence of
ak in ϕ by the variable yk, obtaining a frame ξ such that names(ξ) = ∅, and
ϕψi = (ξψ){ψ′

1| . . . |ψ
′
m|y1 = a1| . . . |yl = al} and ϕψi+1 = (ξψ){ψ′′

1 | . . . |ψ
′′
m|y1 =

a1| . . . |yl = al}. By assumption, names(ψ) = ∅, so names(ξψ) = ∅, and therefore
(ϕψi, ϕψi+1) ∈ S′.

A.4 Proof of Proposition 4

Proof. As a consequence of Proposition 3, it is sufficient to verify that those
production rules preserve the computational indistinguishability of the interpre-
tations of frames. For reflexivity, transitivity, and symmetry, this is implied by
the fact that computational indistinguishability is an equivalence relation. By
the definition of the interpretation of a frame, it is also clear that if ψ is any
frame and τ is a renaming, then JψKA = Jτ(ψ)KA.

It is therefore enough to show that if ϕ1, ϕ2, ϕ are as in ii of Definition 3,
then Jϕ1KA

∼= Jϕ2KA implies Jϕϕ1KA
∼= Jϕϕ2KA . Suppose there is a prob-

abilistic polynomial-time adversary A whose advantage |Pr[A(η, Jϕϕ1KAη
) =

1] − Pr[A(η, Jϕϕ2KAη
) = 1]| is non-negligible in η. This gives an adversary B

that distinguishes ϕ1 and ϕ2 with non-negligible advantage: Given η and a con-
crete frame ψ̂ (namely a sample element from either Jϕ1KA or Jϕ2KA), B simply

interprets the frame ϕ using the values specified by ψ̂ for the variables occur-
ring in ϕ. All these variables are assigned a unique value if ψ̂ is sampled from
JϕiKA since var(ϕ) ⊆ dom(ϕi). The adversary B thus constructs a concrete

frame σ̂i, runs A(η, σ̂) and outputs the output of A. Since ψ̂ is sampled from
JϕiKAη

, the distribution of σ̂i is exactly JϕϕiKAη
. Therefore the advantage of

B, |Pr[B(η, Jϕ1KAη
) = 1] − Pr[B(η, Jϕ2KAη

) = 1]|, equals the advantage of A,
which is non-negligible. Furthermore, B runs in probabilistic polynomial-time
since the size of the encoding of ϕ is constant in η, so each σ̂i can be computed
in probabilistic polynomial time. This proves the claim by contraposition.

