
Invisible Designated Confirmer Signatures

without Random Oracles

Victor K. Wei

Dept. of Information Engineering, The Chinese Univ. of Hong Kong, Hong Kong
kwwei@ie.cuhk.edu.hk

October 11, 2006

Abstract. We construct the first O(1)-size designated confirmer signa-
tures (DCS) with security in the state-of-the-art model of Camenisch
and Michels, Eurocrypt 2000, without random oracles. In particular, we
achieve the security notion called the ”invisibility of signature” therein.

1 Introduction

Chaum [9] introduced the DCS (Designated Confirmer Signature). The
signature verification requires the interaction with a confirmer who was
designated by the signer when the signature was created. The motivation
was to split the power to sign and the power to confirm in order to
mitigate the overpower of the signer. Several applications benefit from
such a power splitting [9, 3].

T. Okamoto [20] gave a formal security model for DCS, and a poly-
nomial equivalence reduction between DCS and public-key encryption.
Camenisch and Michels [8] presented an upgraded DCS security model
which included, among other things, the adaptive chosen confirmation
attacker who can query a confirmation oracle about the validity of adap-
tively chosen DCS candidates. [8] also gave concrete instantiations, using
the RSA signature and the Cramer-Shoup encryption. The confirmation
and disavowal were not very efficient as they involved double discrete
logarithms or range proof [7].

Goldwasser and Waisbard [16] and Gentry, et al. [15] presented DCS
without random oracles. [15]’s DCS has O(1)-size. However, [16, 15] did
not achieve the security notion of the invisibility of signature [8]. In a nut-
shell, the invisibility of the signature means that two DCS’s corresponding
to two messages are indistinguishable before confirmation. It essentially
also means that distinguishing the validity/invalidity of a putative DCS
is hard. This is a security notion motivated by zero-knowledge protocols.



2 Victor K. Wei

[16, 15] argued such a requirement is unnecessarily strong and costly to
attain.

We think it is still better to have such a requirement to defend against
adaptive chosen confirmation attackers such as the well-known signature
transformation attackers introduced in [8]. Furthermore, we show in this
paper how to attain the invisibility efficiently without trading off other
security notions. In signature transformation attacks the attackers trans-
form the triple (putative DCS, message, signer public key) into another
triple in such a way that their respective validity/invalidity are related. By
querying the transformed triple to the confimration oracle, the attacker
learns the validity of the transformed triple, and consequently learns that
of the putative DCS. See [8] for the definition and several examples of
signature transform attacks. In Section 5 we apply this attack on some
DCS’s in [16, 15]. Since [16, 15] did not claim the invisibility of the signa-
ture, our attacks are ”beyond their model” attacks. Their DCS’s remain
secure in their own models.

Our Contributions are

1. We construct the first O(1)-size designated confirmer signatures (DCS)
secure without random oracles in the strong security model of Ca-
menisch and Michels [8], which includes the invisibility of signatures
is achieved.

2. We apply [8]’s signature transformation attacks on [16, 15] to show
they do not have the invisibility of signatures. However, [16, 15] did
not claim the invisibility of signatures. Their DCS’s remain secure in
their own models.

3. We construct an O(1)-size undeniable signature secure without ran-
dom oracles. Among the state-of-the-art security notions it attains is
the invisibility of the signature. It is also interesting that this unde-
niable signature is cast in the bilinear subgroup (gap Diffie-Hellman
group with non-trivial subgroups) which received invigorated resarch
interests recently [6, 18, 2].

Related results. Camenisch and Michels ’00 [8] presented a generic
construction of DCS, which roughly proceeds as follows: The DCS is σ =
Enc(pkC , σ′ = Sign(skS , M)), where Enc is a secure cipher, Sign a secure
signature, skS is signer’s private key, and pkC is confirmer’s public key. To
confirm, the confirmer decrypts to obtain σ′, and then conduct a (concur-
rent) zero-knowledge proof that σ = Enc(pkC , σ′) and σ′ = Sign(skS ,M).
To disavow, the confirmer conduct (concurrent) zero-knowledge proof that



Invisible Designated Confirmer Signatures without Random Oracles 3

σ is not a valid ciphertext, or that it decrypts to σ′ but σ′ is not a valid
signature. [8] gave the following theorem:

Theorem 1. [8] If Sign is existentially unforgeable under an adaptive
chosen-message (ACM) attack and Enc is chosen ciphertext attacker (CCA)
secure, then the above construction constitutes a secure DCS.

Our intuitions. Recently, Gentry, et al. [15] presented an efficient
DCS without random oracles. Their generic construction uses, as build-
ing blocks, an arbitrary signature secure without random oracles, a suit-
able commitment, and an arbitrary public-key encryption secure without
random oracles. When the Pedersen commitment and the Cramer-Shoup
encryption is used with an arbitrary signature, the resulting DCS has
O(1)-size and also has efficient coefficients. [15] did not achieve the in-
visibility of signatures. It is the main result of this paper to modify and
upgrade [15]’s DCS to attain this security notion. The resulting DCS
remains efficient, O(1) in size with similarly efficient coefficients.

Our modification is a small one. [15] used the Cramer-Shoup encryp-
tion as a black box. We open the black box slightly to add more inputs
to the hashing used inside. This modification is sufficient to ward off the
signature transformation attacks and other adaptive chosen confirmation
attacks on the invisibility. Details are in the remains of the paper.

2 Security model

We follow the security model of DCS in Camenisch and Michels [8]. Brief
summaries below. Consult [8] for further details.

Syntax. A designated confirmer signature (DCS) is a tuple (CKGS,
CKGC, CSig, Eviden=(CV erC, CV erV ), CConv, COV er) where

1. (Key Generation) CKGS (resp. CKGC) accepts input the security
parameter 1λs to output signer key pair (skS , pkS) (resp. confirmer
key pair (skC , pkC)).

2. (Signing Protocol) CSig accepts inputs message m, signer key pair
(skS , pkS), confirmer public key pkC , to output a signature σ.

3. (Evidentiation Protocol) Eviden = (CV erC(skC), CV erV )(m, σ, pkS ,
pkC) is a pair of interactive protocols corresponding to (Confirmer
CV erC, Verifier CV erV ) with common inputs m, σ, pkS , pkC , and
private input to Confirmer is skC . At the conclusion of interactions,
Verifier outputs 1/0, for confirmed/disavowed.



4 Victor K. Wei

4. (Selective Convertibility Protocol) Algorithm CConv accepts inputs
m, σ, pkS , skC , pkC , to output an ordinary signature s or NULL.

5. (Verification of Ordinary Signature Protocol) denoted COV er.

Correctness, validity, and security notions.

1. Correctness of Evidentiation. The Evidentiation Protocol is complete
and correct.

2. Validity of evidentiation. With an honestly generated DCS in common
inputs of the Evidentiation Protocol, no PPT protocol CV erC∗ can
cause an honest CV erV to output 0 with non-negligible probability;
and with a string not corresponding to an honestly generated DCS is
in the common inputs of the Evidentiation Protocol, no PPT protocol
CV erC∗ can cause an honest CV erV to output 1 with non-negligible
probability.

3. Security for the signer. The DCS is unforgeable if no PPT attacker
can deliver a valid DCS in the standard unforgeability game after
making queries to the CSig oracle. The attacker has skC . Naturally,
the delivered DCS cannot be the output of a CSig oracle query.

4. Invisibility of signature (security for confirmers). The DCS is invisible
if no PPT adversary A can win the following game with probability
non-negligibly over half: The simulator B sets up, gives all public
keys and skS to A. In arbitrary interleaf, A queries CV erC, CConv,
generates signer public keys for these queries even not by invoking
CKGS. At a certain point, A selects a message m1. B selects a random
message m0, flips a fair coin b and sends the gauntlet DCS: σga =

CSig(mb, skS , pkS , pkC). At the end, A returns b̂. A wins the game
if b̂ = b and σga has never been queried to CV erC.

5. Non-Transferability (of Evidentiation). After the conclusion of Evi-
dentiation, the verifier cannot convince a third party of the valid-
ity/invalidity of the signature.

Giving skS to the attacker in the invisibility definition models forward
security: If the signer’s long-term secret skS is stolen some time in the
future, the validity/invalidity of the DCS should remain indistinguishable.
Another, also standard, way to specify the invisibility experiment is to
have A generates both m0 and m1.

Remark on non-transferability and un-impesonation: In [8], the non-
transferability is defined in terms of the simulatability of the evidentia-
tion transcript by the adversary without skC . It can usually be achieved
by using concurrent zero-knowledge proofs in Protocol Eviden. We do



Invisible Designated Confirmer Signatures without Random Oracles 5

not consider weakened notions such as un-impersonation from the lit-
erature which means A cannot convince a third party using Protocol
Eviden. Note non-transferability essentially means A cannot convince a
third party using any correct and sound interactive protocol.

Definition 1. The DCS is secure if it has correctness of evidentiation,
correctness of conversion, validity of evidentiation, and is unforgeable,
non-transferable, invisible.

We re-iterate Okamoto [20]’s equivalence reduction between DCS and
pubic-key encryption below:

Theorem 2. (Okamoto [20]’s Theorem 3) There exists an M-secure DCS
if and only if there exists a secure public-key encryption.

We briefly summarize [20]’s proof: Given a secure public key encryp-
tion encryption Enc(pk,m), construct an M-secure signature Sign(sk,m)
using one-way functions. Then construct a DCS σ = Enc(pkC ,Sign(skS ,m)).
Note the security of the encryption, i.e. the indistinguishability of the en-
cryptions of two plaintexts, implies the invisibility of the DCS. Given
an M-secure DCS, encrypt the one-bit plaintext b ∈ {0, 1} to the public
key pkC as CSig(skS , pkC , constb). The invisibility of the DCS implies
indistinguishability of the ciphertexts.

3 Preliminaries

3.1 Intractability assumptions

The strong RSA problem is, given n = pq, p and q are unknown primes,
z ∈ Zn, compute (A, e), e ≥ 3, satisfying Ae = z (mod n). The strong
RSA assumption is that no PPT algorithm can solve a random instance
of the strong RSA problem with non-negligible probability.

The decision composite residuosity (DCR) assumption [21] is that
given n it is hard to distinguish random elements of Z

∗

n2 from random
elements of all n-th powers of elements in Z

∗

n2.

The decisional Diffie-Hellman (DDH) problem is, given g, ga, gb, gc,
distinguish c = ab from random. The DDH assumption is that no PPT
algorithm can solve a random instance of the DDH problem with proba-
bility non-negligibly over half.



6 Victor K. Wei

3.2 Survey

We briefly summarize relevant literatures. Consult original references for
details.

Cramer-Shoup encryption [11]:

1. Setup: sk = (x,x2, y1, y2, z), pk = (d1 = gx1

1 gx2

2 , d2 = gy1

1 gy2

2 , d3 = gz
1).

2. Encrypt: ctxt = (u1 = gr
1, u2 = gr

2, u3 = ptxt ·dr
3, u4 = (d1d

α
2 )r) where

r is randomly selected and α = Hash(u1, u2, u3).

3. Decrypt: Verify u4 = gx1+αy1

1 gx2+αy2

2 before outputting ptxt = u3u
−1
1 .

4. Security: The encryption is secure against adaptive chosen cipher-
text attackers (without random oracles) provided the decisional Diffie-
Hellman (DDH) assumption holds.

Paillier system and partial discrete logarithm: Given n = pq, p
and q are all primes, and g0 = n+1, it is computationally easy to compute
the partial discrete logarithm (PDL): That is, given m ∈ Zn2, compute x
and y satisfying gx

0yn = m. Here is the PDL algorithm: Compute m′ =

m(p−1)(q−1) = g
x(p−1)(q−1)
0 yn(p−1)(q−1) = (n +1)x(p−1)(q−1) = x(p− 1)(q −

1)n + 1 ∈ Zn2. Then compute x = ((m′ − 1)/n)((p − 1)(q − 1))−1 ∈ Zn.

Four-move concurrent zero-knowledge protocols: We very briefly
summarize this advanced topic. Consult original papers [14, 22] for details.
In a nutshell, concurrent zero-knowledge protocols are zero-knowledge
protocols that can be concurrently compositioned while retaining zero-
knowledge. This property requires that the protocol transcript (without
timeline) can be simulated by the Verifier in an indistinguishing way.

While the general topic of concurrent zero-knowledge protocols, espe-
cially three-move ones, remain highly advanced, there is a well-known
method [22] to convert a typical three-move zero knowledge protocol
into a four-move concurrent zero-knowledge protocol as follows: Denote
a typical three-move zero-knowledge protocol as (D, c, z) for (commit,
challenge, response). The four moves of the converted concurrent zero-
knowledge protocol consists of (c′ = H(c), D, c, z). In the first move,
Verifier selects challenge c, sends its hashed value c′. In the second move,
Prover sends the commitment D. In the third move, Verifier sends c. In
the fourth move, Prover checks c′ = H(c) before sending the response z.
Finally, Verifier checks before outputting 0 or 1. The protocol transcript
(when there is no timeline ordering of the four moves) can be simulated
by the Verifier as follows: Compute Move-3, Move-4, Move-2, Move-1, in
that order.



Invisible Designated Confirmer Signatures without Random Oracles 7

3.3 Gentry, et al. [15]’s DCS

The main DCS in [15] on message m is σ′ = (σ∗, φ, c), where

φ = Commit(m,R)
c = Enc(pkC , R)
σ∗ = Sign(skS , (φ, c, pkS))

(1)

Theorem 3. [15] The above DCS is secure provided the signature scheme
Sign is existentially unforgeable against adaptive chosen message attack-
ers, the commitment scheme Commit is secure (computationally binding
and statistically hiding with zero-knowledge proof of knowledge for com-
mitted value secure against cheating verifier), and the public-key encryp-
tion scheme Enc is IND-CCA2 secure.

[15] presented a particularly efficient instantiation where Pedersen’s com-
mitment, the Cramer-Shoup encryption, and an arbitrary secure signature
is used:

φ = gmhR ∈ QRn2

c = (u1, u2, u3, u4) = (gr
1, g

r
2, d

r
3g

R
0 , (d1d

α
2 )r) ∈ QR4

n2

where α = Hash(u1, u2, u3), order(h) = n, g0 = n + 1. The confirmer
public key pkC consists of d1 = gx1

1 gx2

2 , d2 = gy1

1 gy2

2 , d3 = gz
1 . Its private

key is skC = (x1, x2, y1, y2, z). Note the confirmer can compute the
partial discrete logarithm with base g0, and therefore can decrypt R.

4 Constructing DCS

We modify Gentry, et al. [15]’s DCS, reviewed in Section 3.3, to upgrade it
with invisibility. The modification is simple: merely add more parameters
to the input of the public-key encryption.

Invisible DCS: DCSGMR+:

Key Generation: CKGS(1λs) 7→ (skS , pkS) and CKGC(1λs) 7→
(skC , pkC). (skS , pkS) corresponds to an arbitrary signature scheme which
is existentially unforgeable against adaptive chose message attackers with-
out random oracles. For example, the Cramer-Shoup signature [12], Boneh,
et al. [5], Wei, et al. [23].

skC = (x1, x2, y1, y2, z1, z2),

pkC = (d1 = gx1

1 gx2

2 , d2 = gy1

1 gy2

2 , d3 = gz1

1 gz2

2 , n, g1, g2, g, h, g0)



8 Victor K. Wei

where g1, g2, g, h, g0 ∈ QRn2 are fairly generated, order(g1) = order(g2)
= order(g) = np′q′, order(h) = order(g0) = n, n = pq, (2p′ + 1)(2q′ + 1)
with p, q, p′, q′ being primes. For example, g0 = n + 1.

Signing: CSig(m, skS , pkS, pkC) 7→ σ. Select random R ∈ Zn, r̄ ∈
[1, n2/4], output σ = (σ1, σ2, σ3) where

σ1 = gmhR, σ2 = Enc(pkC , R) = (u1, u2, u3, u4), (2)

σ3 = Sign(pkS , (σ1, σ2)), u1 = gr̄
1, (3)

u2 = gr̄
2, u3 = dr̄

3g
R̄
0 , v = (d1d

α
2 )r̄ where (4)

α = H̄(u1, u2, u3, pkS , pkC , σ1,m) (5)

Confirmation and disavowal: (CV erC(skC), CV erV )(m, σ, pkS ,
pkC , param): Note σ = (σ1, σ2 = (u1, u2, u3, v), σ3). CverC checks
σ3 is a valid signature by signer on (σ1, σ2), checks v = ux1+y1α

1 ux2+y2α
2 ,

then computes R equals the partial discrete logarithm of u3u
−z1

1 u−z2

2 with
base g0, checks u3u

−z1

1 u−z2

2 = gR
0 and gmhR = φ. If all pass, send signal

to confirm. Else, send signal to disavow.
To confirm, CV erC proves to CV erC of the following in concurrent

zero-knowledge:

ConZKP{(x1, x2, y1, y2, z1, z2, R) : v = ux1+y1α
1 ux2+y2α

2

∧ u3 = uz1

1 uz2

2 gR
0 ∧ d1 = gx1

1 gx2

2 ∧ d2 = gy1

1 gy2

2 ∧ d3 = gz1

1 gz2

2 }
(6)

where α is computed according to Eq. (5). We instantiate (6) using a
typical four-move concurrent zero-knowledge protocol in Appendix A.

To disavow: The DCS is automatically disavowed if σ3 is not a sig-
nature by skS on (σ1, σ2). Else conduct the following concurrent zero-
knowledge proof:

ConZKP{(x1, x2, y1, y2, z1, z2, R, p′, q′) :
d1 = gx1

1 gx2

2 ∧ d2 = gy1

1 gy2

2 ∧ d3 = gz1

1 gz2

2

∧ (2p′ + 1)(2q′ + 1) = n ∧ (u−1
3 uz1

1 uz2

2 gR
0 )p

′q′ = 1

∧ [v 6= ux1+y1α
1 ux2+y2α

2 ∨ gmhR 6= φ ∨ u−1
3 uz1

1 uz2

2 gR
0 6= 1]

(7)

A detailed instantiation of (7) is given in Appendix A.
This ends the specification of Protocol DCSSDH. Below is the security

reduction theorem, whose proof is sketched in Appendix B.

Theorem 4. The designated confirmer signature DCSGMR+ is secure
provided the signature scheme Sign is existentially unforgeable against
adaptive chosen message attackers, the DDH (decision Diffie-Hellman)
assumption holds in QRn2 , and H̄ is a collision-resistant hash function.



Invisible Designated Confirmer Signatures without Random Oracles 9

The theorem implies that DCSGMR+ is secure without random oracles
provided the latter two conditions also hold without random oracles. By
choosing a signature secure without random oracles, DCSGMR+ is secure
without random oracles.

5 Signature transformation attacks

We apply [8]’s signature transformation attacks on [15, 16]’s DCS’s. The
attack consequence is to cryptanalyze the invisibility of the signatures.
However, [15, 16] did not claim this security notion, our attacks in this
Section are ”beyond their model” attacks, meant to establish their DCS’s
indeed do not have the invisibility in our model. Their results remain
secure in their own model.

5.1 Signature transformation attack on Gentry, et al. [15]

The DCS scheme was reviewed in Section 3.3 and Eq. (1). The attacker
needs the following attack hypotheses:

1. Knowing the private key skS′ of a signer S′ 6= S.

2. Query access to a confirmation oracle which, upon common inputs
including a message m̄, a signer public key pkS, and a putative DCS
σ̄′, will confirm or disavow the DCS σ̄′. Except when the queried tuple
(m̄, pkS′ , σ̄′), σ̄′ = (σ̄∗, φ̄, c̄), shares the same m, or the same pkS , or
the same σ∗, or the same φ as the attacker’s target tuple. Note queries
with the same c̄ = c are allowed.

Attack consequence and procedure: Given a (message, signer private
key, putative DCS) tuple, denoted (m, pkS , σ′), our attacker computes
the validity of the putative DCS (i.e. distinguishes a valid DCS from a
non-valid simulation DCS) and consequently cracks the security of the
DCS scheme by cracking its transcript simulatability [15]. It does so by
interacting once with the confirmation oracle with the following trans-
formed tuple: (m̄, pkS′ , σ̄′), σ̄′ = (σ̄∗, φ̄, c̄), where m̄ = m + 1, pkS′

is from the attack hypotheses, and c̄ = c, φ̄ = φg (which corresponds
to r̄ = r), and σ̄∗ = Sign(skS′ , (φ̄, c̄, pkS′)). The transformed DCS has
the same validity/invalidity as the pre-transformation DCS. Interacting
with the confirmation oracle yields the validity/invalidity of the trans-
formed DCS, and consequently the validity/invalidity of the original pre-
transformation DCS.



10 Victor K. Wei

Attack generalization. Replacing Equation (1) by φ = gH(m,pkS ,pkC ,c)hr

is not a sufficient defense as we can achieve the same attack using

φ̄ = φgH(m̄,pkS ,pkC ,c)−H(m,pkS ,pkC ,c)

Other DCS schemes that use public-key encryption as a black-box build-
ing block, such as those in [16, 15] and elsewhere, may also risk signature
transformation attacks. In fact, we demonstrate a signature transforma-
tion attack on [16] subsequently.

Attack mitigation: Follow Section 4 by adding more input parameters
to the hash α such as in Eq. (5). Another mitigation is to encrypt more
parameters, e.g. by changing c in Eq. (5) to c = Enc(pkC , (R, φ, m, pkS ,
pkC). This is a more bandwidth-expensive remedy than that in Section
4). The tradeoff is that its reductionist security proof is somewhat easier.

Our results suggest that other schemes that use public-key encryption
as a black-box building block, such as those in [16, 15] and elsewhere,
should also use our easy mitigation technique: Open the black box slightly
and add more parameters to the hash input or to the input of other kinds
of tag generating mechanisms [1].

5.2 Signature transformation attack on Goldwasser, et al. [16]

. Review. We focus on the first concrete DCS in [16] which is based on
the Cramer-Shoup signature [12] and the Cramer-Shoup encryption [11].
The Cramer-Shoup signature on message m is σ′ = (e, y′, y),

ye = xhH(x′)

x′ = (y′)e
′

h−H(m)

where the signer’s public key is pkS = (n, h, x, e′), n is a product of two
primes, e′ and e′ are distinct primes, h and x are random. The Goldwasser,
et al.’s DCS is σ = (σ1 = e, σ2 = y′, σ3 = Enc(pkC , y) ).

Attack Hypotheses. The attacker needs the following hypotheses:

1. Knowing the private key skS of the signer.

2. Query access to a confirmation oracle which, upon common inputs
including a message m̄, a signer public key pkS′ , and a putative DCS
σ̄, will confirm or disavow the DCS σ̄. Except when the queried tuple
(m̄, pkS′ , σ̄), σ̄ = (ē, ȳ′, σ̄3), shares the same m, or the same pkS , or
the same σ1, or the same σ2 as the attacker’s target tuple. Queries
with the same σ3 are allowed.



Invisible Designated Confirmer Signatures without Random Oracles 11

3. The signature verification protocol does not check e is a prime. It only
checks that it is within a certain range. This is a common practice in
using the Cramer-Shoup encryption, e.g. [12, 16], to keep computa-
tional complexities low.

Attack consequence and procedure. The attacker can compute the va-
lidity/invalidity of a given putative DCS by interacting once with the con-
firmation oracle with the following transformed putative DCS: σ̄ = (ē, ȳ′,
σ3) on a new arbitrary message m̄ for a new signer public key p̄kS = (n, h̄,
x̄, e′) where x̄ = ye, h̄ = y, x̄′ = (y′)e

′

h̄−H(m̄), ē = e+H(x̄′). It is mechan-
ical to verify that the transformed DCS has the same validity/invalidity
as the pre-transformation DCS. Interacting with the confirmation oracle
yields the validity/invalidity of the transformed DCS, and consequently
the validity/invalidity of the original pre-transformation DCS.

Therefore, an adversary A can distinguish a valid signature from an
invalid one by interacting with the confirmation oracle. However, [16] does
not claim the indistinguishability between valid and invalid signatures,
called the invisibility of the signature in [20, 8]. Our attack is beyond
their security model. Their DCS remains secure in their own model.

Mitigation. Nevertheless, we suggest to include more parameters in the
has inputs wherever possible to defend against signature transformation
and potentially other attacks. For example, letting x′ = (y′)e

′

h−H(m,pkS ,e,y′)

or having even more parameters included in the hash inputs can con-
tribute to enhanced security.

6 Invisible undeniable signature from bilinear subgroups

Generic undeniable signatures from DCS
Undeniable signatures [10] are DCS’s where signer and confirmer are

the same entity. Using techniques developed above, we can modify Laguil-
laumie, et al. [19]’s undeniable signature without random oracles to up-
graded security model with signature invisibility and defense against sig-
nature transformation attackers. Consult original references for details of
the security model.

1. Setup. The signer public key pk = (n, y1, y2, 1, d2, d3), sk = (x1,
x2, x̄1, x̄2, ȳ1, ȳ2, z), where y1 = gx1 , y2 = gx2 , d1 = gx̄1

1 gx̄2

2 , d2 =
gȳ1

1 gȳ2

2 , d3 = gz
1 , n is a product of two safe primes p and q, pairings

ê : G1 × G1 → GT , order(G1) = n, g ∈ G1, g1, g2 ∈ Zn2, g0 = n + 1.
2. Sign. Select random R ∈ Zn, compute σ = (σ1, σ2), where σ1 =

g1/(x1+R+mx2), σ2 = Enc(R) = (u1, · · · , u4) with u1 = gr
1, u2 = gr

2, u3

= dr
3g

R
0 , u4 = (d1d

α
2 )r, where α = Hash(u1, u2, u3,m, pk, σ1).



12 Victor K. Wei

3. Confirm/disavow. To confirm, prove the following concurrent zero-
knowledge protocols:

CZK{R : ê(σ1, y1y
m
2 )ê(σ1, g)R = ê(g, g) ∧ u3 = uz

1g
R
0 ∧ d3 = gz

1}

To disavow, prove the following concurrent zero-knowledge protocol

CZK{(x̄1, x̄2, ȳ1, ȳ2, z,R′) : d1 = gx̄1

1 gx̄2

2

∧ d2 = gȳ1

1 gȳ2

2 ∧ d3 = gz
1 ∧ u3 = uz

1g
R′

0

∧ [u4 6= ux̄1+αȳ1

1 ux̄2+αȳ2

2 ∨ ê(σ1, y1y
m
2 )ê(σ1, g)R

′

6= ê(g, g)}

Note order(g0) = n in Zn2. There is no need to prove for the proof of
range that R (and R′) lie in the interval [0, n). Th invisibility of signa-
ture mainly follows the use of concurrent zero-knowledge protocols. The
unforgeability of the undeniable signature can be proved similarly to [19].
Methods to instantiate a pairings group (or gap Diffie-Hellman group) G1

with a composite order n were described in Boneh, et al. [6] and Groth,
et al. [17].

Generalization. The undeniable signature above combines Boneh, et
al. [5]’s signature without random oracles and the famous Cramer-Shoup
encryption [11] without random oracles. It can be modified into a DCS by
separating the signing key (given to the signer) and the encryption key
(given to the confirmer). But then the confirmer key, pkC = (d1, d2, d3),
is dependent of the signer public key n, as the three entries lie in Zn2.
Although security is not compromised because the security of the Cramer-
Shoup encryption reduces to the decisional Diffie-Hellman assumption in
Zn2 which continues to hold, this dependence is not desirable. If entries
of pkC are in Zn̄2 with n̄ 6= n, then inefficient range proofs may have to
be used in the confirmation/disavowal protocol.

7 Conclusion

We have presented new constructions of DCS with invisibility. It remains
to construct efficient and secure DCS where the confirmer is identity-
based. Acknowledgementsto Hong Kong Earmarked Grants 4232-03E
and 4328-02E for sponsorship.

References

1. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-
KEM/DEM: A new framework for hybrid encryption and a new analysis of
Kurosawa-Desmedt KEM. In EUROCRYPT 2005, pages 128–146, 2005.



Invisible Designated Confirmer Signatures without Random Oracles 13

2. Ben Adida and Douglas Wikström. How to shuffle in public. Cryptology ePrint
Archive, Report 2005/394, 2005. http://eprint.iacr.org/.

3. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. In EUROCRYPT 1998, pages 591–606, 1998.

4. Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes:
Proofs of security against impersonation under active and concurrent attacks. In
CRYPTO 2002, pages 162–177, 2002.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Proc. CRYPTO

2004, pages 41–55. Springer-Verlag, 2004. Lecture Notes in Computer Science No.
3152.

6. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. In TCC 2005, pages 325–341, 2005.

7. F. Boudot. Efficient proofs that a committed number lies in an interval. In Euro-

crypt’00, pages 431–444, 2000.
8. J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive

adversaries. In Eurocrypt 2000, pages 243–258. Springer-Verlag, 2000. LNCS No.
2729.

9. D. Chaum. Designated confirmer signatures. In Eurocrypt’94, pages 86–91.
Springer-Verlag, 1994. LNCS No. 435.

10. D. Chaum and H. van Antwerpen. Undeniable signatures. In Crypto’89, pages
286–299, 1989.

11. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT 2002, volume
2332 of LNCS, pages 45–64. Springer-Verlag, 2002.

12. Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa
assumption. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

13. Ivan Damgard, Kasper Dupont, and Michael Ostergaard Pedersen. Unclonable
group identification. In EUROCRYPT 2006, pages 555–572, 2006.

14. C. Dwork, M. Naor, , and A. Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004. Also in STOC’98, p.409-418.

15. Craig Gentry, David Molnar, and Zulfikar Ramzan. Efficient designated con-
firmer signatures without random oracles or general zero-knowledge proofs. In
ASIACRYPT 2005, volume 3788 of LNCS, pages 662–681. Springer-Verlag, 2005.

16. Shafi Goldwasser and Erez Waisbard. Transformation of digital signature schemes
into designated confirmer signature schemes. In TCC 2004, volume 2951 of LNCS,
pages 77–100. Springer-Verlag, 2004.

17. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. Cryptology ePrint Archive, Report 2005/290.

18. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for NP. In EUROCRYPT 2006, pages 339–358, 2006.

19. Fabien Laguillaumie and Damien Vergnaud. Short undeniable signatures without
random oracles: The missing link. In INDOCRYPT 2005, volume 3797 of LNCS,
pages 283–296. Springer-Verlag, 2005.

20. T. Okamoto. Designated confirmer signatures and public-key encryption are equiv-
alen. In Proc. CRYPTO ’94, pages 61–74, 1994.

21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT ’99, pages 223–238. Springer-Verlag, 1999. Lecture Notes in
Computer Science No. 1592.

22. Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authen-
tication. In ACM Conference on Computer and Communications Security, pages
112–121, 2005. Also Eprint 2003/056.



14 Victor K. Wei

23. Victor K. Wei and T. H. Yuen. More short signatures without random oracles,
2007. ePrint 2005/463.

A Elaborating (CV erC, CV erV ) of DCSGMR+

The confirmation (6) is composed of only multi-exponentiations. Instan-
tiating it using a standard four-move concurrent zero-knowledge protocol
is straightforward: (The common inputs are pkS, pkC , σ = (σ1, σ2, σ3,
σ4 = (u1, u2, u3, v)). The private inputs of CV erC are x1, x2, y1, y2,
z1, z2, R) where R is computed from the partial discrete logarithm as in
CV erC.

1. CV erV selects random c′, compute c′′ = Hash(c′), sends c′′.
2. CV erC selects random rx,1, rx,2, ry,1, ry,2, rz,1, rz,2, compute and

sends the following commitments:

Dv = u
rx,1+ry,1α
1 u

rx,2+ry,2α
2 , Du = u

rz,1

1 u
rz,2

2 grR

0 ,

D1 = g
rx,1

1 g
rx,2

2 , D2 = g
ry,1

1 g
ry,2

2 , D3 = g
rz,1

1 g
rz,2

2 ,

3. CV erV sends c′.
4. CV erC checks c′′ = Hash(c′), compute and sends the responses:

zx,1 = rx,1 − c′x1, zx,2 = rx,2 − c′x2, zy,1 = ry,1 − c′y1,

zy,2 = ry,2 − c′y2, zz,1 = rz,1 − c′z1, zz,2 = rz,2 − c′z2, zR = rR − c′R

5. CV erV verifies the following before outputting 1: (If not all verified,
output 0)

Dv = u
zx,1+zy,1α
1 u

zx,2+zy,2α
2 vc′ , Du = u

zz,1

1 u
zz,2

2 gzR

0 uc′
3 ,

D1 = g
zx,1

1 g
zx,2

2 dc′
1 , D2 = g

zy,1

1 g
zy,2

2 dc′
2 , D3 = g

zz,1

1 g
zz,2

2 dc′
3 ,

To instantiate the disavowal (7), CV erC sends β ∈ {1,2,3} indicating
its wish to prove (Case 1) v 6= ux1+y1α

1 ux2+y2α
2 ; (Case 2) gmhR 6= φ; or

(Case 3) u−1
3 uz1

1 uz2

2 gR
0 6= 1. Further elaborations: Case 1)

ConZKP{(x1, x2, y1, y2) : d1 = gx1

1 gx2

2

∧ d2 = gy1

1 gy2

2 ∧ v 6= ux1+y1α
1 ux2+y2α

2 }
⇔ ConZKP{(x1, x2, y1, y2, s0, s1, s2, s3, s4) : d1 = gx1

1 gx2

2

∧ d2 = gy1

1 gy2

2 ∧ T0 = v−s0us1+s2α
1 us3+s4α

2

∧ T1 = gx1

1 ∧ T2 = gy1

1 ∧ T3 = gx2

1 ∧ T4 = gy2

1

∧ 1 = T x1

1 g−s1

1 ∧ 1 = T y1

2 g−s2

1 ∧ 1 = T x2

3 g−s3

1 ∧ 1 = T y2

4 g−s4

1 }

The four-move concurrent zero-knowledge protocol is



Invisible Designated Confirmer Signatures without Random Oracles 15

1. CV erV sends c′′ = Hash(c′).

2. CV erC sends T0, · · · , T4, and

D′

1 = g
rx,1

1 g
rx,2

2 , D′

2 = g
ry,1

1 g
ry,2

2 , D0 = v−r0ur1+r2α
1 ur3+r4α

2 ,
D1 = g

rx,1

1 , D2 = g
ry,1

2 , D3 = g
rx,2

3 , D4 = g
ry,2

4 ,
D5 = T

rx,1

1 gr1

1 , D6 = T
ry,1

2 gr2

1 , D7 = T
rx,2

3 gr3

1 , D8 = T
rx,2

4 gr4

1

where s1 = s0x1, s2 = s0y1, s3 = s0x2, s4 = s0y2.

3. CV erV checks T0 6= 1, sends c′.

The remaining moves are straightforward and omitted. Cases 2):

ConZKP{(z1, z2, R, p′, q′) : d3 = gz1

1 gz2

2 ∧ (u−1
3 uz1

1 uz2

2 gR
0 )p

′q′ = 1
∧ (2p′ + 1)(2q′ + 1) = n ∧ gmhR 6= φ}

⇔ ConZKP{(z1, z2, R, p′, q′) : d3 = gz1

1 gz2

2 ∧ T1 = gs0

1

∧ T2 = uz1

1 uz2

2 gR
0 gs2

2 ∧ T3 = (u−1
3 T2)

p′g−s2gs0

3 ∧ 1 = TR
1 g−s1

1

∧ 1 = T q′

3 g−s3

3 ∧ 1 = T p′

1 g−s2

1 ∧ 1 = T q′

1 g−s3

1 ∧ T4 = T p′

1 gs0

4

∧ T n
1 = T 4q′+2

4 T 2q′+1
1 g−4s3−2s0

4 ∧ T5 = (gmφ−1)s0hs1}

where CV erC uses s1 = Rs0, s2 = s0p
′, s3 = s0q

′, and CV erV checks
T5 6= 1. The four-move concurrent zero-knowledge protocol is straightfor-
ward and omitted. The case 3):

ConZKP{(z1, z2, R, p′, q′) : d3 = gz1

1 gz2

2 ∧ (u−1
3 uz1

1 uz2

2 gR
0 )p

′q′ = 1

∧ (2p′ + 1)(2q′ + 1) = n ∧ u−1
3 uz1

1 uz2

2 gR
0 6= 1}

⇔ ConZKP{(z,R, p′, q′) : d3 = gz1

1 gz2

2 ∧ T1 = gs0

1

∧ T2 = uz1

1 uz2

2 gR
0 gs2

2 ∧ T3 = (u−1
3 T2)

p′g−s2gs0

3 ∧ 1 = TR
1 g−s1

1

∧ 1 = T q′

3 g−s3

3 ∧ 1 = T p′

1 g−s2

1 ∧ 1 = T q′

1 g−s3

1 ∧ T4 = T p′

1 gs0

4

∧ T n
1 = T 4q′+2

4 T 2q′+1
1 g−4s3−2s0

4 ∧ T5 = u−s0

3 us4

1 us5

2 gs1

0

∧ 1 = T z1

1 g−s4

1 ∧ 1 = T z2

1 g−s5

1 }

where CV erC uses s1 = Rs0, s2 = s0p
′, s3 = s0q

′, s4 = s0z1, s5 = s0z2,
and CV erV checks T5 6= 1. The four-move concurrent zero-knowledge
protocol is straightforward and omitted.

The soundness of our instantiation can be proved in the standard two-
stage model [4, 13] for authentications. The zero-knowledge comes from
using the standard four-move concurrent zero-knowledge protocol [14, 22].
Random oracles are not used in these proofs. The security reduction is to
the DDH assumption in QRn2 for our protocols. Note this assumption is
included in Theorem 4’s assumptions.



16 Victor K. Wei

B Proof Sketch of Theorem 4

The DCS scheme DCSGMR+ is modified from [15]’s by only one step:
Including more parameters to the input of H̄. Therefore, the proofs of
corectnesses, validity, unforgeability, and non-transferability are all simi-
lar to that of the proofs in [15]. We omit them here. It remains to prove
the invisibility. Note [15] did not even claim the invisibility. There is noth-
ing in their proof to base our proof on. We have to prove our invisibility
of the DCS from scratch.

Setup: Let (g̃, g̃a, g̃b, g̃c) be the DDH problem instance, where a, b,
c are unknown. The simulator B invokes CKGS and CKGC to set up.
B sets g1=g̃, g2 = g̃b. g̃a and g̃c will be used in the gauntlet below.

Simulating oracles: CSig is computed using skS . B uses the modi-
fied skC to compute CV erC as follows: checks σ3 is a valid signature on
(σ − 1, σ2) by pkS ; checks v = ux1+αy1

1 gx2+αy2

2 where α is computed via
Eq. (5), computes R equalling the partial discrete logarithm of u3u

−z1

1 u−z2

2

with base g0; checks u3u
−z1

1 u−z2

2 = gR
0 ; checks gmhR = φ. If all pass indi-

cate to confirm. Else indicate to disavow. Using skC , B can complete the
computations of CV erC in conirmation or disavow.

Simulation deviation: It is obviously negligible.

Gauntlet: A selects a message mga,1. B selects a random message
mga,0, flips a fair coin b, computes the gauntlet DCS σga = (σga,1, σga,2,
σga, 3), σga,1 = gmga,bhRga , σga,3 = Sign(skS, (σga,1, σga,2) ), σga,2 =
(û1, û2, û3, û4) where û1 = g̃a, û2 = g̃c, û4 = ûx1+αy1

1 ûx2+αy2

2 , û3 =
uz1

1 uz2

2 g
mga,b

0 , α is computed via Eq. (5). The gauntlet DCS is σga = (φga

= gmga,bhRga , σga,2, Sign(pkS , (φga, σga,2) ), where σga,2 = (û1, û2, û3,
û4).

Extraction: Eventually A returns b̂. B answers yes to the DDH prob-
lem instance if b̂ = 1. Else, the DDH answer is no.

We need to prove that when (g1, u1, g2, u2) is not a DDH-yes tuple
or (g1, u1, d3, u3g

−R
0 ), R is the partial discrete logarithm of u3u

−z1

1 u−z2

2

w.r.t. base g0, is not a DDH-yes tuple, it is hard for A to compute in
the real world a putative DCS containing these parameters to pass the

checkings u4
?
= ux1+αy1

1 ux2+αy2

2 . This can be done by extending Cramer
and Shoup [11]’s proof technique of the smooth projective family adapted
to our new definition of α in Eq. (5). This part of our proof is quite
complicated. We leave it to the full version of our paper.

It remains to consider CV erC queries (m′, σ′, pkS′ , pkC) that can
be transformed from the gauntlet tuple (mga,b, σga, pkS , pkC) that can
help A distinguish b: There are two cases: (Case 1): Inputs to α in Eq.



Invisible Designated Confirmer Signatures without Random Oracles 17

(5) in the transformed DCS and the gauntlet DCS are identical. Thn a
contradiction can be shown that the same method can be used to compute
a query to the Cramer-Shoup encryption’s decryption oracle and break
the Cramer-Shoup encryption. (Case 2): α’s inputs are different from the
gauntlet DCS to the transformed DCS. Then σ2 must remain intact in
order to be relavant to b. These putative tuples (m′, σ′, pkS′ , pkC) will
result in disavowal by B. ⊓⊔


