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Abstract

HB and HB+ are two shared-key, unidirectional authentication protocols whose extremely
low computational cost makes them potentially well-suited for severely resource-constrained
devices. Security of these protocols is based on the conjectured hardness of learning parity
with noise; that is, learning a secret s given “noisy” dot products of s that are incorrect with
probability ε.

Although the problem of learning parity with noise is meaningful for any constant ε < 1/2,
existing proofs of security for HB and HB+ only imply security when ε < 1/4. In this note, we
show how to extend these proofs to the case of arbitrary ε < 1/2.

1 Background1

The HB and HB+ protocols, introduced by Hopper and Blum [7, 8] and Juels and Weis [11]
respectively, are shared-key, unidirectional authentication protocols whose efficiency makes them
potentially suitable for resource-constrained devices such as RFID tags. The HB protocol is in-
tended to be secure against a passive (eavesdropping) adversary, while the HB+ protocol is intended
to be secure against an active adversary.

Security of these protocols is based on the problem of learning parity with noise (the LPN
problem) [1, 2, 3, 4, 6, 13, 7, 8, 14]. Roughly speaking (see Section 2.1 for a formal definition),
this problem is to determine a secret value s given “noisy” dot products of s with a sequence of
randomly-chosen vectors. These dot products are “noisy” in that they are each incorrect with
(independent) probability ε, where ε is a fixed constant. The LPN problem is meaningful for any
constant ε ∈ (0, 1

2).
Juels and Weis [11] gave the first proofs of security for the HB and HB+ protocols based on the

hardness of the LPN problem. Although their proofs tolerate any value of ε, their results have some
limitations: (1) they do not handle multiple iterations of the protocol, but instead only analyze
a “basic authentication step” which does not by itself provide adequate security; and (2) they do
not handle parallel or concurrent executions of the HB+ protocol. (We refer the reader to [12] for
a detailed discussion.) Katz and Shin [12] gave proofs that overcame these limitations, but their
proofs only imply meaningful security (in either an asymptotic or a concrete sense) for ε < 1

4 .
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1While we provide some minimal background, our assumption is that the reader is already familiar with [12].
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Our contribution. In this note, we show how to adapt the work of Katz and Shin so as to obtain
proofs of security for the full HB and HB+ protocols for arbitrary ε < 1

2 . We stress that in doing
so we retain all the advantages of their proofs relative to those of Juels and Weis.

Our focus in this manuscript is on proving asymptotic security only, without attempting to
optimize the quality of the reduction at all. Nevertheless, our proofs readily yield expressions that
can be used to calculate the concrete security of the protocols (relative to the LPN problem) for
particular settings of the parameters.

2 A Brief Review

We formally define the LPN problem, and state a key technical lemma used by [12] in their analysis
that we will also use here. We also quickly review the HB protocol and the security models under
consideration. The HB+ protocol is described in a later section.

2.1 The LPN Problem

Our formulation of the LPN problem follows [12] except that we focus on asymptotic rather than
concrete security. Let k be a security parameter. If s,a1, . . . ,a` are binary vectors of length k, let
zi = 〈s,ai〉 denote the dot product of s and ai (modulo 2). Given the values a1, z1, . . . ,a`, z` for
randomly-chosen {ai} and ` = Θ(k), it is possible to efficiently solve for s using standard linear-
algebraic techniques. However, in the presence of noise where each zi is flipped (independently)
with probability ε, finding s becomes more difficult and no polynomial-time algorithm for finding
s in this case is currently known. In fact, the problem is NP -hard in the worst case [1].

Formally, let Berε be the Bernoulli distribution with parameter ε ∈ (0, 1
2) (so if ν ← Berε then

Pr[ν = 1] = ε and Pr[ν = 0] = 1 − ε), and let As,ε denote an oracle which outputs (independent)
samples according to the following distribution:{

a← {0, 1}k; ν ← Berε : (a, 〈s,a〉 ⊕ ν)
}

.

We say the LPNε problem is hard if for all ppt algorithms M the following is negligible:

Pr
[
s← {0, 1}k : MAs,ε(1k) = s

]
.

Note that ε is taken to be a fixed constant independent of k.

A technical lemma. The following lemma, implicit in [14] and reproved in [12], states that
hardness of the LPNε problem implies the pseudorandomness of As,ε (for randomly-chosen s). In
the following, Uk+1 denotes an oracle that returns uniformly-distributed strings of length k + 1.

Lemma 1 Assuming the hardness of the LPNε problem, the following is negligible for all ppt
algorithms D: ∣∣∣Pr

[
s← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣∣ .

2.2 Overview of the HB/HB+ Protocols, and Security Definitions

Recall that we let k denote our security parameter. The HB and HB+ protocols as analyzed here
consist of n = n(k) parallel iterations of a “basic authentication step.” We describe the basic
authentication step for the HB protocol, and defer a discussion of the HB+ protocol to Section 3.2.
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In the HB protocol, a tag T and a reader R share a random secret key s ∈ {0, 1}k; a basic
authentication step consists of the reader sending a random challenge a ∈ {0, 1}k to the tag, which
replies with z = 〈s,a〉 ⊕ ν for ν ∼ Berε. The reader can then verify whether the response z of the
tag satisfies z

?= 〈s,a〉; we say the iteration is successful if this is the case. See Figure 1.

T (s, ε) R(s)

� a a← {0, 1}k
ν ← Berε

z := 〈s,a〉 ⊕ ν z -

verify: z
?= 〈s,a〉

Figure 1: The basic authentication step of the HB protocol.

Even for an honest tag a basic iteration is unsuccessful with probability ε. For this reason, a
reader accepts upon completion of all n iterations of the basic authentication step as long as at
most ≈ ε ·n of these iterations were unsuccessful. More precisely, let u = u(k) be such that ε ·n ≤ u;
then the reader accepts as long as the number of unsuccessful iterations is at most2 u. (Overall,
then, the entire HB protocol is parameterized by ε, u, and n.) Since εn is the expected number of
unsuccessful iterations for an honest tag, the completeness error εc (i.e., the probability that an
honest tag is rejected) can be calculated via a Chernoff bound. In particular, we have that for any
positive constant δ, setting u = (1 + δ)εn suffices to achieve εc negligible in n.

Observe that by sending random answers in each of the n iterations, an adversary trying to
impersonate a valid tag succeeds with probability

δ∗ε,u,n
def= 2−n ·

u∑
i=0

(
n

i

)
;

that is, δ∗ε,u,n is the best possible soundness error we can hope to achieve for the given setting of
the parameters. Asymptotically, as long as u ≤ (1− δ) · n/2 for positive constant δ, the success of
this trivial attack will be negligible in n. (This can again be analyzed using a Chernoff bound.)

Let T HB
s,ε,n denote the tag algorithm in the HB protocol when the tag holds secret key s (note

that the tag algorithm is independent of u), and let RHB
s,ε,u,n similarly denote the algorithm run by

the tag reader. We denote a complete execution of the HB protocol between a party T̂ and the
reader R by

〈
T̂ ,RHB

s,ε,u,n

〉
and say this equals 1 iff the reader accepts.

For the case of a passive attack on the HB protocol, we imagine a polynomial-time adversary
A running in two stages: in the first stage the adversary obtains polynomially-many transcripts3

of (honest) executions of the protocol by interacting with an oracle transHB
s,ε,n (this models eaves-

dropping); in the second stage, the adversary interacts with the reader and tries to impersonate
2As suggested in [12], a slight improvement in practice is to also fix a lower bound l and accept iff the number of

unsuccessful iterations is in the range [l, u]. Setting l = 0 (as we do here) makes no difference in an asymptotic sense.
3Note in particular that the adversary is assumed not to learn whether or not the reader accepts. Since, as discussed

earlier, the parameters can be set such that the reader accepts an honest tag with all but negligible probability, this
makes no difference as far as asymptotic security is concerned.
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the tag. We define the adversary’s advantage as

Advpassive
A,HB (ε, u, n) def= Pr

[
s← {0, 1}k;AtransHB

s,ε,n(1k) :
〈
A,RHB

s,ε,u,n

〉
= 1

]
.

We say the HB protocol is secure against passive attacks (for a particular setting of ε and u = u(k),
n = n(k)) if for all ppt adversaries A we have that Advpassive

A,HB (ε, u, n) is negligible in k.

As we will describe in Section 3.2, the HB+ protocol uses two keys s1, s2. We let T HB+

s1,s2,ε,n denote
the tag algorithm in this case, and let RHB+

s1,s2,ε,u,n denote the algorithm run by the tag reader. For
the case of an active attack on the HB+ protocol, we again imagine an adversary running in two
stages: in the first stage the adversary interacts polynomially-many times with the honest tag
algorithm (with concurrent executions allowed), while in the second stage the adversary interacts
only with the reader. The adversary’s advantage in this case is

Advactive
A,HB+(ε, u, n) def= Pr

[
s1, s2 ← {0, 1}k;AT HB+

s1,s2,ε,n(1k) :
〈
A,RHB+

s1,s2,ε,u,n

〉
= 1

]
.

We say the HB+ protocol is secure against active attacks (for a particular setting of ε and u = u(k),
n = n(k)) if for all ppt adversaries A we have that Advactive

A,HB+(ε, u, n) is negligible in k.
We remark that allowing the adversary to interact with the reader multiple times (even con-

currently) does not give the adversary any additional advantage other than the fact that, as usual,
the probability that the adversary succeeds in at least one impersonation attempt scales linearly
with the number of attempts.

3 Proofs of Security for the HB and HB+ Protocols

In this section, we show how to modify the proofs of security given in [12] so as to obtain a
meaningful security reduction for arbitrary ε < 1

2 .

3.1 Security of the HB Protocol against Passive Attacks

Recall from the previous section that the HB protocols is parameterized by ε (a measure of the
noise introduced by the tag), u (which determines the completeness error εc as well as the best
achievable soundness), and n (the number of iterations of the basic authentication step given in
Figure 1). We stress that these n iterations are run in parallel, so the entire protocol requires only
two rounds.

Theorem 2 Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let n = Θ(k) and u = ε+ · n,

where ε+ is a non-negative constant satisfying

ε < ε+ <
1
2
.

Then the HB protocol with these settings of the parameters has negligible completeness error, and
for all ppt adversaries A the quantity δ

def= Advpassive
A,HB (ε, u, n) is negligible.

Proof A standard Chernoff bound shows that the completeness error is negligible for the given
setting of the parameters. To prove security of the protocol, we use the reduction given in [12];
only the analysis is different. For any ppt adversary A attacking the HB protocol, we construct a
ppt adversary D attempting to distinguish whether it is given oracle access to As,ε or to Uk+1 (as
in Lemma 1). Relating the advantage of D to the advantage of A gives the stated result.

D, given access to an oracle returning (k + 1)-bit strings (a, z), proceeds as follows:
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1. D runs the first phase of A. Each time A requests to view a transcript of the protocol, D
obtains n samples {(ai, zi)}ni=1 from its oracle and returns these to A.

2. When A is ready for the second phase, D again obtains n samples {(āi, z̄i)}ni=1 from its
oracle. D then sends the challenge (ā1, . . . , ān) to A and receives in return a response Z ′ =
(z′1, . . . , z

′
n).

3. D outputs 1 iff Z̄ = (z̄1, . . . , z̄n) and Z ′ differ in at most u′
def= ε++ · n entries, where ε++ is a

constant satisfying ε+ − 2ε+ε + ε < ε++ < 1
2 .

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability 2−n ·
∑u′

i=0

(
n
i

)
since Z̄ is

in this case uniformly distributed and independent of everything else. Since u′ < n/2, this quantity
is negligible in k for the given setting of the other parameters.

When D’s oracle is As,ε then the transcripts D provides to A during the first phase of A’s
execution are distributed identically to real transcripts in an execution of the HB protocol. Letting
Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector of correct answers to the challenge (ā1, . . . , ān) sent by D
in the second phase, it follows that with probability δ (i.e., the impersonation probability of A)
the vector of responses Z ′ given by A differs from Z∗ in at most u entries. We show below that
conditioned on this event, Z ′ and Z̄ differ in at most u′ entries with all but negligible probability.
Thus, D outputs 1 in this case with probability negligibly close to δ. We conclude from Lemma 1
that δ must be negligible.

Let wt(Z) denote the weight of a vector Z; i.e., the number of entries of Z equal to 1. Note
that the distance between two binary vectors Z1, Z2 is equal to wt(Z1 ⊕ Z2). It remains to show
that, conditioned on wt(Z ′⊕Z∗) ≤ u, we have wt(Z ′⊕ Z̄) ≤ u′ with all but negligible probability.

Write Z ′ = Z∗ ⊕w for some vector w of weight at most u = ε+n. The vector Z̄ is selected by
the following process: choose an error vector e by setting each position of e (independently) to 1
with probability ε, and then set Z̄ = Z∗ ⊕ e. We see that the probability that Z̄ differs from Z ′ in
at most u′ entries is equal to the probability that

wt(Z ′ ⊕ Z̄) = wt(w ⊕ e) ≤ u′.

It is easy to see that this probability is minimized when wt(w) = u, and so we assume this to be
the case. The random variable wt(w⊕e) can be written as a sum of n indicator random variables,
one for each position of the vector w ⊕ e. The expectation of wt(w ⊕ e) is

u · (1− ε) + (n− u) · ε = (ε+ − 2ε+ε + ε) · n.

Since ε++ is a constant strictly larger than (ε+ − 2ε+ε + ε), a Chernoff bound then implies that
wt(w ⊕ e) ≤ ε++n with all but negligible probability.

3.2 Security of the HB+ Protocol against Active Attacks

It is easy to see that the HB protocol is insecure against an active adversary. To achieve security
against active attacks, Juels and Weis propose to modify the HB protocol by having the tag and
reader share two (independent) keys s1, s2 ∈ {0, 1}k. A basic authentication step now consists of
three rounds: first the tag sends a random “blinding factor” b ∈ {0, 1}k; the reader replies with
a random challenge a ∈ {0, 1}k as before; and finally the tag replies with z = 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν
for ν ← Berε. As in the HB protocol, the tag reader can verify whether the response z satisfies
z

?= 〈s1,b〉 ⊕ 〈s2,a〉, and we again say the iteration is successful if this is the case. See Figure 2.
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T (s1, s2, ε) R(s1, s2)

b← {0, 1}k b -

� a a← {0, 1}k
ν ← Berε

z := 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν z -

verify: z
?= 〈s1,b〉 ⊕ 〈s2,a〉

Figure 2: The basic authentication step of the HB+ protocol.

The actual HB+ protocol consists of n parallel iterations of the basic authentication step (and
so the entire protocol requires only three rounds). The protocol also depends upon a parameter u
as in the case of the HB protocol, and this will again affect the completeness error as well as the
best achievable soundness.

Theorem 3 Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let n = Θ(k) and u = ε+ · n

where ε+ is a constant satisfying

ε < ε+ <
1
2
.

Then the HB+ protocol with these settings of the parameters has negligible completeness error, and
for all ppt adversaries A the quantity δA = Advactive

A,HB+(ε, u, n) is negligible.

Proof A standard Chernoff bound shows that the completeness error is negligible for the given
setting of the parameters. To prove security of the protocol, we use the reduction given in [12];
only the analysis is different. For any ppt adversary A attacking the HB+ protocol, we construct
a ppt adversary D attempting to distinguish whether it is given oracle access to As,ε or to Uk+1

(as in Lemma 1). Relating the advantage of D to the advantage of A gives the stated result.
D, given access to an oracle returning (k + 1)-bit strings (b, z̄), proceeds as follows:
1. D chooses s2 ∈ {0, 1}k uniformly at random. Then, it runs the first phase of A. To simulate

a basic authentication step, D does the following: it obtains a sample (b, z̄) from its oracle
and sends b as the initial message. A replies with a challenge a, and then D responds with
z = z̄ ⊕ 〈s2,a〉. Note that D does not rewind A here, so there is no difficulty simulating
parallel or concurrent executions.

2. When A is ready for the second phase of its attack, A sends an initial message b1, . . . ,bn.
In response, D chooses random a1

1, . . . ,a
1
n ∈ {0, 1}k, sends these challenges to A, and records

A’s response z1
1 , . . . , z

1
n. Then D rewinds A, chooses random a2

1, . . . ,a
2
n ∈ {0, 1}k, sends these

to A, and records A’s response z2
1 , . . . , z

2
n.

3. Let z⊕i := z1
i ⊕ z2

i and set Z⊕ def=
(
z⊕1 , . . . , z⊕n

)
. Let âi = a1

i ⊕ a2
i and ẑi = 〈s2, âi〉, and set

Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in fewer than u′ = ε++n entries. We will

fix the constant ε++ later, but it will satisfy ε++ < 1
2 .

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. In step 1, above, since z̄ is uniformly distributed and independent
of everything else, the answers z that D returns to A are uniformly distributed and independent
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of everything else. It follows that A’s view throughout the entire experiment is independent of the
secret s2 chosen by D.

The {âi}ni=1 are uniformly and independently distributed, and so except with probability 2n

2k

they are linearly independent and non-zero (see [12]). Assuming this to be the case, Ẑ is uniformly
distributed over {0, 1}n from the point of view of A. But then the probability that Z⊕ and Ẑ differ
in fewer than u′ entries is at most 2−n ·

∑bu′c
i=0

(
n
i

)
. Since u′ < n/2, we conclude that D outputs 1 in

this case with negligible probability 2n

2k + 2−n ·
∑bu′c

i=0

(
n
i

)
.

Case 2: Say D’s oracle is As1,ε for randomly-chosen s1. In this case, D provides a perfect simulation
for the first phase of A. Let ω denote all the randomness used to simulate the first phase of A,
which includes the keys s1, s2, the randomness of A, and the randomness used in responding to A’s
queries. For a fixed ω, let δω denote the probability (over random challenges a1, . . . ,an sent by the
tag reader) that A successfully impersonates the tag in the second phase. Note that the probability
that A successfully responds to both sets of queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n sent by D is δ2

ω. The
overall probability that A successfully responds to both sets of queries is thus

Expω

(
δ2
ω

)
≥

(
Expω(δω)

)2
= δ2

A,

using Jensen’s inequality.4

We show below that conditioned on both challenges being answered successfully (and for appro-
priate choice of ε++), Z⊕ differs from Ẑ in fewer than u′ entries with constant probability. Putting
everything together, we conclude that D outputs 1 in this case with probability Ω(δ2

A). It follows
from Lemma 1 that δA must be negligible.

We now prove the above claim regarding the probability that Z⊕ differs from Ẑ in fewer than
u′ entries. Set 1

2 > ε++ > 1
2 · (1 − (1 − 2ε+)2). Fixing all randomness used in the first phase (as

above) induces a function fA from queries a1, . . . ,an (with each ai ∈ {0, 1}k) to vectors (z1, . . . , zn)
(with each zi ∈ {0, 1}) given by the response function of A in the second phase. Define the function
fcorrect that returns the “correct” answers for a particular query; i.e.,

fcorrect(a1, . . . ,an) def= (〈s1,b1〉 ⊕ 〈s2,a1〉 , . . . , 〈s1,bn〉 ⊕ 〈s2,an〉)

(recall that b1, . . . ,bn are the vectors sent by A in the first round). Define

∆(a1, . . . ,an) def= fA(a1, . . . ,an)⊕ fcorrect(a1, . . . ,an),

and say a query a1, . . . ,an is good if5 wt(∆(a1, . . . ,an)) ≤ u. That is, a query a1, . . . ,an is good
if A’s response is within distance u of the “correct” response; i.e., A successfully impersonates the
tag in response to such a query.

Let D denote the distribution over ∆(a1, . . . ,an) induced by a uniform choice of a good query
a1, . . . ,an (we assume at least one good query exists since we are only interested in analyzing this
case). Note that, by definition of a good query, each vector in the support of D has weight at
most u. Our goal is to show that with constant probability over ∆1,∆2 generated according to D,
we have wt(∆1⊕∆2) < u′. We remark that this claim does not involve any assumptions regarding
the probability that a randomly-chosen query is good.

To see how this maps on to the reduction being analyzed above, note that conditioning on the
event that A successfully responds to queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n is equivalent to choosing

4Note that this analysis improves on what is claimed in [12].
5As in the proof of the previous theorem, the weight wt(Z) of a vector Z is the number of its entries equal to 1.
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these two queries uniformly from the set of good queries. Setting ∆1 def= ∆(a1
1, . . . ,a

1
n) and ∆2

analogously, we have

∆1 ⊕∆2 = fA(a1
1, . . . ,a

1
n)⊕ fcorrect(a1

1, . . . ,a
1
n)⊕ fA(a2

1, . . . ,a
2
n)⊕ fcorrect(a2

1, . . . ,a
2
n)

= Z⊕ ⊕ fcorrect(a1
1, . . . ,a

1
n)⊕ fcorrect(a2

1, . . . ,a
2
n).

D cannot compute fcorrect(a1
1, . . . ,a

1
n) or fcorrect(a2

1, . . . ,a
2
n) since it does not know s1. However, it

can compute

fcorrect(a1
1, . . . ,a

1
n)⊕ fcorrect(a2

1, . . . ,a
2
n) =

(
〈s1,b1〉 ⊕

〈
s2,a1

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a1

n

〉)
+

(
〈s1,b1〉 ⊕

〈
s2,a2

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a2

n

〉)
=

(〈
s2,a1

1

〉
⊕

〈
s2,a2

1

〉
, . . . ,

〈
s2,a1

n

〉
⊕

〈
s2,a2

n

〉)
=

(〈
s2, (a1

1 ⊕ a2
1)

〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)

〉)
= Ẑ.

We thus see that Z⊕ and Ẑ differ in fewer than u′ entries exactly when ∆1 and ∆2 differ in fewer
than u′ = ε++n entries. It is the latter probability that we now analyze.

Let δ be a (positive) constant such that ε++ = 1
2 · (1− δ). Let γ

def= 1− 2ε+, and note that by
our choice of ε++ we have δ < γ2. Set

c
def=

1− δ

γ2 − δ
+ 1.

We show that for two vectors ∆1,∆2 chosen independently according to distribution D, we have
wt(∆1 ⊕∆2) < ε++n with (constant) probability at least 1

c2
. Assume not. So

Pr[∆1,∆2 ← D : wt(∆1 ⊕∆2) < ε++n] <
1
c2

.

But then, by a union bound,

Pr[∆1, . . . ,∆c ← D : ∃i 6= j s.t. wt(∆1 ⊕∆2) < ε++n] <
1
2
.

In particular, there exist c vectors ∆1, . . . ,∆c in the support of D whose pairwise distances are all
at least ε++n = 1

2 · (1− δ)n. Furthermore, each ∆i has weight at most u = 1
2 · (1− γ)n since it lies

in the support of D. However, the Johnson bound [9, 10] (our notation was chosen to be consistent
with the formulation in [5, Theorem 1]), which gives bounds on the size of constant-weight codes
of certain minimum distance, shows that no such set {∆i}ci=1 exists.

References

[1] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inherent Intractability of
Certain Coding Problems. IEEE Trans. Info. Theory 24: 384–386, 1978.

[2] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based on Hard Learn-
ing Problems. Adv. in Cryptology — Crypto ’93, LNCS vol. 773, Springer-Verlag, pp. 278–291,
1994.

[3] A. Blum, A. Kalai, and H. Wasserman. Noise-Tolerant Learning, the Parity Problem, and the
Statistical Query Model. J. ACM 50(4): 506–519, 2003.

8



[4] F. Chabaud. On the Security of Some Cryptosystems Based on Error-Correcting Codes. Adv.
in Cryptology — Eurocrypt ’94, LNCS vol. 950, Springer-Verlag, pp. 131–139, 1995.

[5] V. Guruswami and M. Sudan. Extensions to the Johnson Bound. Unpublished manuscript,
2001. Available at http://citeseer.ist.psu.edu/guruswami01extensions.html.

[6] J. H̊astad. Some Optimal Inapproximability Results. J. ACM 48(4): 798–859, 2001.

[7] N. Hopper and M. Blum. A Secure Human-Computer Authentication Scheme. Technical Re-
port CMU-CS-00-139, Carnegie Mellon University, 2000.

[8] N. Hopper and M. Blum. Secure Human Identification Protocols. Adv. in Cryptology — Asia-
crypt 2001, LNCS vol. 2248, pp. 52–66, 2001.

[9] S.M. Johnson. A New Upper Bound for Error-Correcting Codes. IEEE Trans. Info. Theory 8:
203–207, 1962.

[10] S.M. Johnson. Improved Asympototic Bounds for Error-Correcting Codes. IEEE Trans. Info.
Theory 9: 198–205, 1963.

[11] A. Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols. Adv. in Cryp-
tology — Crypto 2005, LNCS vol. 3621, Springer-Verlag, pp. 293–308, 2005. Updated version
available at: http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/pdfs/lpn.pdf

[12] J. Katz and J.-S. Shin. Parallel and Concurrent Security of the HB and HB+ Protocols. Adv.
in Cryptology — Eurocrypt 2006.

[13] M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM 45(6): 983–
1006, 1998.

[14] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. 37th
ACM Symposium on Theory of Computing, ACM, pp. 84–93, 2005.

9


