
Extended Double-Base Number System with

appli
ations to Ellipti
 Curve Cryptography

Christophe Do
he

1
and Laurent Imbert

2

1
Department of Computing

Ma
quarie University, Australia

do
he�i
s.mq.edu.au

2
Laboratoire d'Informatique, de Robotique

et de Mi
roéle
tronique de Montpellier

CNRS UMR 5506, Montpellier, Fran
e

Laurent.Imbert�lirmm.fr

Abstra
t. We investigate the impa
t of larger digit sets on the length

of Double-Base Number system (DBNS) expansions. We present a new

representation system
alled extended DBNS whose expansions
an be

extremely sparse. When
ompared with double-base
hains, the average

length of extended DBNS expansions of integers of size in the range 200�

500 bits is approximately redu
ed by 20% using one pre
omputed point,

30% using two, and 38% using four. We also dis
uss a new approa
h

to approximate an integer n by d2a3b
where d belongs to a given digit

set. This method, whi
h requires some pre
omputations as well, leads to

realisti
 DBNS implementations. Finally, a left-to-right s
alar multipli-

ation relying on extended DBNS is given. On an ellipti

urve where

operations are performed in Ja
obian
oordinates, improvements of up

to 13% overall
an be expe
ted with this approa
h when
ompared to

window NAF methods using the same number of pre
omputed points. In

this
ontext, it is therefore the fastest method known to date to
ompute

a s
alar multipli
ation on a generi
 ellipti

urve.

Keywords. Double-Base Number System, Ellipti
 Curve Cryptography.

1 Introdu
tion

Curve-based Cryptography, espe
ially Ellipti
 Curve Cryptography, has

attra
ted more and more attention sin
e its introdu
tion about twenty

years ago [Mil86,Kob87,Kob89℄, as re�e
ted by the abundant literature

on the subje
t,
f. [BSS99,HMV03,ACD

+
05,BSS05℄. In
urve based
ryp-

tosystems, the
ore operation that needs to be optimized as mu
h as pos-

sible is a s
alar multipli
ation. The standard method, based on ideas well

known already more than two thousand years ago, to e�
iently
ompute

su
h a multipli
ation is the double and add method, whose
omplexity is

linear in terms of the size of the input. Several ideas have been introdu
ed

to improve this method,
f. [Do
05℄ for an overview. In the remainder, we

will mainly fo
us on two approa
hes:

•
Use a representation su
h that the expansion of the s
alar multiple is

sparse. For instan
e, the Non-Adja
ent Form (NAF),
f. [MO90℄, has

a density of 1/3 whereas the average density of a binary expansion

is 1/2. This improvement is mainly obtained by adding −1 to the set

{0, 1} of possible
oe�
ients used in binary notation. Another example

is the Double-Base Number System (DBNS),
f. [DJM99℄, in whi
h an

integer is represented as a sum of produ
ts of powers of 2 and 3. Su
h
expansions
an be extremely sparse,
f. Se
tion 2.

•
Introdu
e pre
omputations to enlarge the set of possible
oe�
ients

in the expansion and redu
e its density. The k-ary and sliding window

methods as well as window NAF methods [MOC97,TYW04℄ fall under

this
ategory.

In the present work, we mix these two ideas. Namely, we investigate

how pre
omputations
an be used with the DBNS and we evaluate their

impa
t on the overall
omplexity of a s
alar multipli
ation.

Also,
omputing a sparse DBNS expansion
an be very time-
onsuming

although it is often negle
ted when
ompared with other representations.

We introdu
e several improvements that
onsiderably speed up the
om-

putation of a DBNS expansion,
f. Se
tion 4 and Appendix A.

The plan of the paper is as follows. In Se
tion 2, we re
all the de�nition

and basi
 properties of the DBNS. In Se
tion 3, we des
ribe how pre
om-

putations
an be e�
iently used with the DBNS. Se
tion 4 is devoted to

implementation aspe
ts and explains how to qui
kly
ompute DBNS ex-

pansions. In Se
tion 5, we present a series of tests and
omparisons with

existing methods before
on
luding in Se
tion 6.

2 Overview of the DBNS

InDouble-Base Number System �rst
onsidered by Dimitrov et al. [DJM98℄

in a
ryptographi

ontext, any positive integer n is represented as

n =
ℓ

∑

i=1

di2
ai3bi , with di ∈ {−1, 1}. (1)

2

This representation is obviously not unique and is in fa
t highly redun-

dant. Given an integer n, it is straightforward to �nd a DBNS expansion

using a greedy-type approa
h. Indeed, starting with t = n, the main task

at ea
h step is to �nd the {2, 3}-integer z that is the
losest to t (i.e.

the integer z of the form 2a3b
su
h that |t − z| is minimal) and then set

t = t − z. This is repeated until t be
omes 0. See Example 2, for an

illustration.

Remark 1. Finding the best {2, 3}-approximation of an integer t in the

most e�
ient way is an interesting problem on its own. One option is to

s
an all the points with integer
oordinates near the line y = −x log3 2 +
log3 t and keep only the best approximation. A mu
h more sophisti
ated

method involves
ontinued fra
tions and Ostrowski's number system,
f.

[BI04℄. It is to be noted that these methods are quite time-
onsuming. See

Se
tion 4, for a more e�
ient approa
h.

Example 2. Take the integer n = 841232. We have the sequen
e of ap-

proximations

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 2232 − 2.

As a
onsequen
e, 841232 = 2738 + 2136 − 2232 + 21.

It has been shown that every positive integer n
an be represented

as the sum of at most O
(log n

log log n

)

signed {2, 3}-integers. For instan
e, see
[DJM98℄ for a proof. Note that a greedy algorithm is suitable to �nd su
h

short expansions.

This initial
lass of DBNS is therefore very sparse. When one endomor-

phism is virtually free, like for instan
e triplings on supersingular
urves

de�ned over F3, the DBNS
an be used to e�
iently
ompute [n]P with

max ai doublings, a very low number of additions, and the ne
essary num-

ber of triplings [CS05℄. Note that this idea has re
ently been extended to

Koblitz
urves [AS06℄. Nevertheless, it is not really suitable to
ompute

s
alar multipli
ations in general. For generi

urves where both doublings

and triplings are expensive, it is essential to minimize the number of ap-

pli
ations of these two endomorphisms. Now, one needs at least max ai

doublings and max bi triplings to
ompute [n]P using (1). However, given
the DBNS expansion of n returned by a greedy approa
h, it seems to

3

be highly non-trivial, if not impossible, to attain these two lower bounds

simultaneously.

So, for generi

urves the DBNS needs to be adapted to
ompete with

other methods. The
on
ept of double-base
hain, introdu
ed in [DIM05℄,

is a spe
ial type of DBNS. The idea is still to represent n as in (1) but

with the extra requirements a1 > a2 > · · · > aℓ and b1 > b2 > · · · > bℓ.

These properties allow to
ompute [n]P from right-to-left very easily. It is

also possible to use a Horner-like s
heme that operates from left-to-right.

These two methods are illustrated after Example 3.

Note that, it is easy to a

ommodate these requirements by restraining

the sear
h of the best exponents (aj+1, bj+1) to the interval [0, aj]×[0, bj].

Example 3. A double-base
hain of n
an be derived from the following

sequen
e of equalities:

841232 = 2738 + 1424,

1424 = 2136 − 34,

34 = 33 + 7,

7 = 32 − 2,

2 = 31 − 1.

As a
onsequen
e, 841232 = 2738 + 2136 − 33 − 32 + 31 − 1.

In that parti
ular
ase, the length of this double-base
hain is stri
tly

bigger than the one of the DBNS expansion in Example 2. This is true

in general as well and the di�eren
e
an be quite large. It is not known

whether the bound O
(log n

log log n

)

on the number of terms is still valid for

double-base
hains.

However,
omputing [841232]P is now a trivial task. From right-to-

left, we need two variables. The �rst one, T being initialized with P and

the other one, S set to point at in�nity. The su

essive values of T are

then P , [3]P , [32]P , [33]P , [2136]P , and [2738]P , and at ea
h step T is

added to S. Doing that, we obtain [n]P with 7 doublings, 8 triplings, and

5 additions. To pro
eed from left-to-right, we noti
e that the expansion

that we found
an be rewritten as

841232 = 3
(

3
(

3
(

2133(2632 + 1)− 1
)

− 1
)

+ 1
)

− 1,

whi
h implies that

[841232]P = [3]
(

[3]
(

[3]
(

[2133]([2632]P + P)− P
)

− P
)

+ P
)

− P.

4

Again, 7 doublings, 8 triplings, and 5 additions are ne
essary to obtain

[n]P .

More generally, one needs exa
tly a1 doublings and b1 triplings to
om-

pute [n]P using double-base
hains. The value of these two parameters
an

be optimized depending on the size of n and the respe
tive
omplexities

of a doubling and a tripling, see Figures 2 and 4.

To further redu
e the
omplexity of a s
alar multipli
ation, one option

is to redu
e the number of additions, that is minimize the density of DBNS

expansions. A standard approa
h to a
hieve this goal is to enlarge the set

of possible
oe�
ients, whi
h ultimately means using pre
omputations.

3 Pre
omputations for DBNS s
alar multipli
ation

We suggest to use pre
omputations in two ways. The �rst idea, whi
h

applies only to double-base
hains,
an be viewed as a two-dimensional

window method.

3.1 Window method

Given integers w1 and w2, we represent n as in (1) but with
oe�
ients di

in the set {±1,±21,±22, . . . ,±2w1 ,±31,±32, . . . ,±3w2}. This is an indi-

re
t way to relax the
onditions a1 > a2 > · · · > aℓ and b1 > b2 > · · · > bℓ

in order to �nd better approximations and hopefully sparser expansions.

This method,
alled (w1, w2)-double-base
hain, lies somewhere between

normal DBNS and double-base
hain methods.

Example 4. The DBNS expansion of 841232 = 2738 + 2136 − 2232 +
21,
an be rewritten as 841232 = 2738 + 2136 − 2 × 2132 + 21, whi
h is

a (1, 0)-window-base
hain. The exponent a3 that was bigger than a2 in

Example 2 has been repla
ed by a2 and the
oe�
ient d3 has been multiplied

by 2 a

ordingly. As a result, we now have two de
reasing sequen
es of

exponents and the expansion is only four terms long.

It remains to see how to
ompute [841232]P from this expansion. The

right-to-left s
alar multipli
ation does not provide any improvement, but

this is not the
ase for the left-to-right approa
h. Namely, writing

841232 = 2
(

32
(

34(2632 + 1)− 2
)

+ 1
)

,

we see that

[841232]P = [2]
(

[32]
(

[34]([2632]P + P)− [2]P
)

+ P
)

.

5

If [2]P is stored along the
omputation of [2632]P then 7 doublings, 8
triplings and only 3 additions are ne
essary to obtain [841232]P .

It is straightforward to design an algorithm to produ
e (w1, w2)-double-
base
hains. We present a more general version in the following,
f. Algo-

rithm 1. See Remark 6 (v) for spe
i�
 improvements to (w1, w2)-double-
base
hains. Also a left-to-right s
alar multipli
ation algorithm
an easily

be derived from this method,
f. Algorithm 2.

The se
ond idea to obtain sparser DBNS expansions is to generalize

the window method su
h that any set of
oe�
ients is allowed.

3.2 Extended DBNS

In a (w1, w2)-double-base
hain expansion, the
oe�
ients are signed pow-

ers of 2 or 3. Considering other sets S of
oe�
ients, for instan
e odd in-

tegers
oprime with 3, should further redu
e the average length of DBNS

expansions. We
all this approa
h extended DBNS and denote it by S-
DBNS.

Example 5. We have 841232 = 2738 + 5 × 2532 − 24. The exponents

form two de
reasing sequen
es, but the expansion has only three terms.

Assuming that [5]P is pre
omputed, it is possible to obtain [841232]P as

[24]
(

[2132]([2436]P + [5]P) − P
)

with 7 doublings, 8 triplings, and only 2 additions

This strategy applies to any kind of DBNS expansion. In the follow-

ing, we present a greedy-type algorithm to
ompute extended double-base

hains.

Algorithm 1. Extended double-base
hain greedy algorithm

Input: A positive integer n, a parameter a0 su
h that a0 6 ⌈log2 n⌉, and
a set S
ontaining 1.

Output: Three sequen
es (di, ai, bi)16i6ℓ su
h that n =
∑ℓ

i=1 di2
ai3bi

with |di| ∈ S , a1 > a2 > · · · > aℓ, and b1 > b2 > · · · > bℓ.

1. b0 ← ⌈(log2 n− a0) log2 3⌉ [See Remark 6 (ii)℄

2. i← 1 and t← n

3. s← 1 [to keep tra
k of the sign℄

4. while t > 0 do

5. �nd the best approximation z = di2
ai3bi

of t

with di ∈ S , 0 6 ai 6 ai−1, and 0 6 bi 6 bi−1

6. di ← s× di

6

7. if t < z then s← −s

8. t← |t− z|

9. i← i + 1

10. return (di, ai, bi)

Remarks 6.

(i) Algorithm 1 pro
esses the bits of n from left-to-right. It terminates

sin
e the su

essive values of t form a stri
tly de
reasing sequen
e.

(ii) The parameters a0 and b0 are respe
tively the biggest power of 2 and

3 allowed in the expansion. Their values have a great in�uen
e on the

density of the expansion,
f. Se
tion 5 for details.

(iii) To
ompute normal DBNS sequen
es instead of double-base
hains,

repla
e the two
onditions 0 6 ai 6 ai−1, 0 6 bi 6 bi−1 in Step 5 by

0 6 ai 6 a0 and 0 6 bi 6 b0.

(iv) In the following, we explain how to �nd the best approximation di2
ai3bi

of t in a very e�
ient way. In addition, the proposed method has a

time-
omplexity that is mainly independent of the size of S and not

dire
tly proportional to it as with a naïve sear
h. See Se
tion 4 for

details.

(v) To obtain (w1, w2)-double-base
hains, simply ensure that S
ontains

only powers 2 and 3. However, there is a more e�
ient way. First,

introdu
e two extra variables a
max

and b
max

, initially set to a0 and

b0 respe
tively. Then in Step 5, sear
h for the best approximation

z of t of the form 2ai3bi
with (ai, bi) ∈ [0, a

max

+ w1] × [0, b
max

+
w2] \ [a

max

+ 1, a
max

+ w1] × [b
max

+ 1, b
max

+ w2]. In other words,

we allow one exponent to be slightly bigger than its
urrent maximal

bound, but the (ex
eptional) situation where ai > a
max

and bi >
b
max

simultaneously is forbidden. Otherwise, we should be obliged to

in
lude in S produ
ts of powers of 2 and 3 and in
rease dramati
ally

the number of pre
omputations. On
e the best approximation has been

found, if ai is bigger than a
max

, then ai is
hanged to a
max

while di is set

to 2ai−a
max

. If bi is bigger than b
max

, then bi is
hanged to b
max

while

di is set to 3bi−b
max

. Finally, do a
max

← min(ai, amax) and b
max

←
min(bi, bmax) and the rest of the Algorithm remains un
hanged.

(vi) Examples of sets S used in Se
tion 5 are all subset of {1, 5, 7, 11, 13,
17, 19, 23, 25}.

We now give an algorithm to
ompute a s
alar multipli
ation from the

expansion returned by Algorithm 1.

7

Algorithm 2. Extended double-base
hain s
alar multipli
ation

Input: A point P on an ellipti

urve E, a positive integer n represented

by the sequen
e (di, ai, bi)16i6ℓ as returned by Algorithm 1, and the

points [k]P for ea
h k ∈ S .

Output: The point [n]P on E.

1. T ← OE [OE is the point at in�nity on E℄

2. set aℓ+1 ← 0 and bℓ+1 ← 0

3. for i = 1 to ℓ do

4. T ← T ⊕ [di]P

5. T ← [2ai−ai+13bi−bi+1]T

6. return T

Example 7. For n = 841232, the sequen
e returned by Algorithm 2 with

a0 = 8, b0 = 8, and S = {1, 5} is (1, 7, 8), (5, 5, 2), (−1, 4, 0). Next Table
shows the intermediate values of T in Algorithm 2 when it is applied to

the sequen
e above. The
omputation is the same as in Example 5.

i di ai − ai+1 bi − bi+1 T

1 1 2 6 [2236]P

2 5 1 2 [2132]([2236]P + [5]P)

3 −1 4 0 [24]
(

[2132]([2236]P + [5]P)− P
)

Remark 8. The length of the
hain returned by Algorithm 1 greatly

determines the performan
e of Algorithm 2. However, no pre
ise bound is

known so far, even in the
ase of simple double-base
hains. So, at this

stage our knowledge is only empiri
al,
f. Figures 2 and 4. More work is

therefore ne
essary to establish the
omplexity of Algorithm 2.

4 Implementation aspe
ts

This part des
ribes how to e�
iently
ompute the best approximation

of any integer n in terms of d12
a13b1

for some d1 ∈ S, a1 6 a0, and

b1 6 b0. The method works on the binary representation of n denoted by

(n)2. It operates on the most signi�
ant bits of n and uses the fa
t that a

multipli
ation by 2 is a simple shift.

To make things
lear, let us explain the algorithm when S = {1}.
First, take a suitable bound B and form a two-dimensional array of size

8

(B + 1) × 2. For ea
h b ∈ [0, B], the
orresponding row ve
tor
ontains

[(3b)2, b]. Then sort this array with respe
t to the �rst
omponent using

lexi
ographi
 order denoted by 4 and store the result.

To
ompute an approximation of n in terms of 2a13b1
with a1 6 a0

and b1 6 b0, �nd the two ve
tors v1 and v2 su
h that v1[1] 4 (n)2 4 v2[1].
This
an be done with a binary sear
h in O(log B) operations.

The next step is to �nd the �rst ve
tor v′1 that is before v1 in the

sorted array and that is suitable for the approximation. More pre
isely,

we require that:

•
the di�eren
e δ1 between the binary length of n and the length of v′1[1]
satis�es 0 6 δ1 6 a0,

•
the
orresponding power of 3, i.e. v′1[2], is less than b0.

This operation is repeated to �nd the �rst ve
tor v′2 that is after v2 and

ful�lls the same
onditions as above. The last step is to de
ide whi
h

approximation, 2δ13v′1[2]
or 2δ23v′2[2]

, is
loser to n.
In
ase |S| > 1, the only di�eren
e is that the array is of size

(

|S|(B +
1)

)

× 3. Ea
h row ve
tor is of the form [(d3b)2, b, d] for d ∈ S and b ∈
[0, B]. Again the array is sorted with respe
t to the �rst
omponent using

lexi
ographi
 order. Note that multiplying the size of the table by |S|
has only a negligible impa
t on the time
omplexity of the binary sear
h.

See Appendix A, for a
on
rete example and some improvements to this

approa
h.

This approximation method ultimately relies on the fa
ts that lexi-

ographi
 and natural orders are the same for binary sequen
es of the

same length and also that it is easy to adjust the length of a sequen
e by

multiplying it by some power of 2. The e�
ien
y
omes from the sorting

operation (done on
e at the beginning) that allows to retrieve whi
h pre-

omputed binary expansions are
lose to n, by looking only at the most

signi�
ant bits.

For environments with
onstrained memory, it may be di�
ult or even

impossible to store the full table. In this
ase, we suggest to pre
ompute

only the �rst byte or the �rst two bytes of the binary expansions of d3b

together with their binary length. This information is su�
ient to �nd

two approximations A1, A2 in the table su
h that A1 6 n 6 A2, sin
e

the algorithm operates only on the most signi�
ant bits. However, this

te
hnique is more time-
onsuming sin
e it is ne
essary to a
tually
ompute

at least one approximation and sometimes more, if the �rst bits are not

enough to de
ide whi
h approximation is the
losest to n.
In Table 1, we give the pre
ise amount of memory (in bytes) that

is required to store the ve
tors used for the approximation for di�erent

9

values of B. Three situations are investigated, i.e. when the �rst byte, the

�rst two bytes, and the full binary expansions d3b
, for d ∈ S and b 6 B

are pre
omputed and stored.

Bound B 25 50 75 100 125 150 175 200

S = {1}

First byte 33 65 96 127 158 190 221 251

First two bytes 54 111 167 223 279 336 392 446

Full expansion 85 293 626 1,084 1,663 2,367 3,195 4,108

S = {1, 5, 7}

First byte 111 214 317 420 523 627 730 829

First two bytes 178 356 534 712 890 1,069 1,247 1,418

Full expansion 286 939 1,962 3,357 5,122 7,261 9,769 12,527

S = {1, 5, 7, 11, 13}

First byte 185 357 529 701 873 1,045 1,216 1,381

First two bytes 300 597 894 1,191 1,488 1,785 2,081 2,366

Full expansion 491 1,589 3,305 5,642 8,598 12,173 16,364 20,972

S = {1, 5, 7, 11, 13, 17, 19, 23, 25}

First byte 334 643 952 1,262 1,571 1,881 2,190 2,487

First two bytes 545 1,079 1,613 2,148 2,682 3,217 3,751 4,264

Full expansion 906 2,909 6,026 10,255 15,596 22,056 29,630 37,947

Table 1. Pre
omputations size (in bytes) for various bounds B and sets S

See [Do
GP℄ for an implementation in GP-PARI of Algorithm 1 using

the te
hniques des
ribed in this se
tion.

5 Tests and results

In this part, we present some tests that we run to evaluate the relevan
e

of extended double-base
hains for s
alar multipli
ations on generi
 and

spe
ial ellipti

urves de�ned over Fp, for p of size between 200 and 500
bits. Comparisons with the best systems known so far, in
luding ℓ-NAFw

and normal double-base
hains are given.

In the following, we assume that we have three basi
 operations on a

urve E to perform s
alar multipli
ations, namely addition/subtra
tion,

doubling, and tripling. In turn, ea
h one of these ellipti

urve operations

10

an be seen as a sequen
e of inversions I, multipli
ations M, and squarings

S in the underlying �eld Fp.

There exist di�erent systems of
oordinates with di�erent
omplex-

ities. For many platforms, proje
tive-like
oordinates are quite e�
ient

sin
e they do not require any �eld inversion for addition and doubling,
f.

[DL05℄ for a
omparison. Thus, our tests will not involve any inversion.

Also, to ease
omparisons between di�erent s
alar multipli
ation meth-

ods, we will make the standard assumption that S is equivalent to 0.8M.

Thus, the
omplexity of a s
alar multipli
ation will be expressed in terms

of a number of �eld multipli
ations only and will be denoted by NM.

We start with generi

urves before
onsidering spe
ial families of

urves admitting a fast tripling.

5.1 Generi

urves

Given any
urve E/Fp in Weierstraÿ form, it is possible to dire
tly obtain

[3]P more e�
iently than
omputing a doubling followed by an addition.

Until now, all these dire
t formulas involved at least one inversion,
f.

[CJLM06℄, but re
ently, an inversion-free tripling formula has been de-

vised for Ja
obian proje
tive
oordinates [DIM05℄. Our
omparisons will

be made using this system. Within Ja
obian
oordinates, a point repre-

sented by (X1 : Y1 : Z1)
orresponds to the a�ne point (X1/Z
2
1 , Y1/Z

3
1),

if Z1 6= 0, and to the point at in�nity OE otherwise. A doubling
an be

done with 4M + 6S, a tripling with 10M + 6S and a mixed addition, i.e.

an addition between a point in Ja
obian
oordinates and an a�ne point,

using 8M + 3S.
With these settings, we display in Figure 1, the number of multipli
a-

tions NM ne
essary to
ompute a s
alar multipli
ation on a 200bit
urve
with Algorithm 2, for di�erent
hoi
es of a0 and various DBNS meth-

ods. Namely, we investigate double-base
hains as in [DIM05℄, window

double-base
hains with 2 and 8 pre
omputations, and extended double-

base
hains with S2 = {1, 5, 7} and S8 = {1, 5, 7, 11, 13, 17, 19, 23, 25}, as
explained in Se
tion 3.2. Comparisons are done on 1, 000 random 200bit
s
alar multiples. Note that the
osts of the pre
omputations are not in-

luded in the results.

Figure 1 indi
ates that a0 = 120 is
lose to the optimal
hoi
e for every

method. This implies that the value of b0 should be set to 51. Similar

omputations have been done for sizes between 250 and 500. It appears
that a simple and good heuristi
 to minimize NM is to set a0 = ⌈120 ×
size/200⌉ and b0 a

ordingly. These values of a0 and b0 are used in the

remainder for sizes in [200, 500].

11

In Figure 2, we display the average length of di�erent extended DBNS

expansions in fun
tion of the size of the s
alar multiple n. Results show
that the length of a
lassi
 double-base
hain is redu
ed by more than

25% with only 2 pre
omputations and by 43% with 8 pre
omputations.

In Table 5, we give the average expansion length ℓ, as well as the

maximal power a1 (resp. b1) of 2 (resp. 3) in the expansion for di�er-

ent methods and di�erent sizes. The symbol #P is equal to the number

of pre
omputed points for a given method and the set Sm
ontains the

�rst m+1 elements of {1, 5, 7, 11, 13, 17, 19, 23, 25}. Again, 1, 000 random

integers have been
onsidered in ea
h
ase.

In Table 6, we give the
orresponding
omplexities in terms of the

number of multipli
ations and the gain that we
an expe
t with respe
t

to a window NAF method involving the same number of pre
omputations.

5.2 Spe
ial
urves

Similar
omputations have been performed for the family of spe
ial
urves

des
ribed in [DIK06℄ where a tripling
an be
omputed with 6M+6S. The

omplexities of a doubling and an addition are respe
tively 4M + 5S and

8M + 3S. Figure 3 suggests that a good value for a0 for 200bit exponents
is around 100. Again, a good heuristi
 to minimize NM is to set a0 =
⌈100× size/200⌉. These values are used in the
omputations displayed in

Figure 4. Also, Tables 7 and 8 are similar to Tables 5 and 6 with these

settings.

The results
on
erning the average expansion length are
onsistent

with the generi

ase with improvements ranging from 25% to more than

40% depending on the size of S. The s
alar multipli
ation speed-ups are

also in line with the generi

ase.

6 Con
lusion

In this work, we introdu
e a new family of DBNS,
alled extended DBNS,

where the
oe�
ients in the expansion belong to a given set S. A s
alar

multipli
ation algorithm relying on this representation and involving pre-

omputations is presented. Also, we desribe a new method to qui
kly �nd

the best approximation of an integer by d2a3b
with d ∈ S. This approa
h

greatly improves the pra
ti
ality of the DBNS. Extended DBNS sequen
es

give rise to the fastest s
alar multipli
ations known to date for generi
 el-

lipti

urves. In parti
ular, given a �xed number of pre
omputations, the

extended DBNS is more e�
ient than any
orresponding window NAF

12

method. Gains are espe
ially important for a small number of pre
ompu-

tations, typi
ally up to three points. Improvements larger than 10% over

already extremely optimized methods
an be expe
ted. Also, this system

is more �exible, sin
e it
an be used with any given set of
oe�
ients,

unlike window NAF methods.

Further resear
h will in
lude an extension of these ideas to Koblitz

urves, for whi
h DBNS-based s
alar multipli
ation te
hniques without

pre
omputations exist already, see [AS06,DJJ

+
06,ADD

+
06℄. This will most

likely lead to appre
iable performan
e improvements.

Referen
es

[ACD

+
05℄ R. M. Avanzi, H. Cohen, C. Do
he, G. Frey, K. Nguyen, T. Lange, and

F. Ver
auteren,Handbook of Ellipti
 and Hyperellipti
 Curve Cryptography,

Dis
rete Mathemati
s and its Appli
ations (Bo
a Raton), CRC Press, In
.,

2005.

[ADD

+
06℄ R. M. Avanzi, V. S. Dimitrov, C. Do
he, and F. Si
a. Extending S
alar

Multipli
ation using Double Bases, to appear in Pro
eedings of Asia
rypt

2006, Le
ture Notes in Comput. S
i., Springer, 2006.

[AS06℄ R. M. Avanzi and F. Si
a, S
alar Multipli
ation on Koblitz Curves using

Double Bases, to appear in Pro
eedings of Viet
rypt 2006, Le
ture Notes in

Comput. S
i., Springer, 2006. See also Cryptology ePrint Ar
hive, Report

2006/067, http://eprint.ia
r.org/.

[BI04℄ V. Berthé and L. Imbert, On
onverting numbers to the double-base number

system, In F. T. Luk, editor, Advan
ed Signal Pro
essing Algorithms, Ar-

hite
ture and Implementations XIV, volume 5559 of Pro
eedings of SPIE,

2004, pp. 70�78.

[BSS99℄ I. F. Blake, G. Seroussi, and N. P. Smart, Ellipti

urves in
ryptography,

London Mathemati
al So
iety Le
ture Note Series, vol. 265, Cambridge

University Press, Cambridge, 1999.

[BSS05℄ , Advan
es in ellipti

urve
ryptography, London Mathemati
al

So
iety Le
ture Note Series, vol. 317, Cambridge University Press, Cam-

bridge, 2005.

[CJLM06℄ M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery, Trading inversions

for multipli
ations in ellipti

urve
ryptography, Des. Codes Cryptogr. 39

(2006), no. 2, 189�206.

[CS05℄ M. Ciet and F. Si
a, An Analysis of Double Base Number Systems and

a Sublinear S
alar Multipli
ation Algorithm, Progress in Cryptology �

Pro
eedings of My
rypt 2005, Le
ture Notes in Comput. S
i., vol. 3715,

Springer, 2005, pp. 171�182.

[DIK06℄ C. Do
he, T. I
art, and D. R. Kohel, E�
ient s
alar multipli
ation by

isogeny de
ompositions, Publi
 Key Cryptography � PKC 2006, Le
ture

Notes in Comput. S
i., vol. 3958, Springer, 2006, pp. 191�206.

[DIM05℄ V. S. Dimitrov, L. Imbert, and P. K. Mishra, E�
ient and se
ure ellipti

urve point multipli
ation using double-base
hains, Advan
es in Cryptol-

ogy � Asia
rypt 2005, Le
ture Notes in Comput. S
i., vol. 3788, Springer,

2005, pp. 59�78.

13

[DJJ

+
06℄ V. S. Dimitrov, K. Jarvinen, M. J. Ja
obson Jr, W. F. Chan, and Z. Huang,

FPGA Implementation of Point Multipli
ation on Koblitz Curves Using

Kleinian Integers, to appear in Pro
eedings of Cryptographi
 Hardware

and Embedded Systems � CHES 2006, Le
ture Notes in Comput. S
i.,

Springer, 2006.

[DJM98℄ V. S. Dimitrov, G. A. Jullien, and W. C. Miller, An algorithm for modular

exponentiation, Information Pro
essing Letters 66 (1998), no. 3, 155�159.

[DJM99℄ V. S. Dimitrov, G. A. Jullien, and W. C. Miller, Theory and appli
ations

of the double-base number system, IEEE Trans. on Computers 48 (1999),

no. 10, 1098�1106.

[DL05℄ C. Do
he and T. Lange, Arithmeti
 of Ellipti
 Curves, in [ACD

+
05℄,

pp. 267�302.

[Do
05℄ C. Do
he, Exponentiation, in [ACD

+
05℄, pp. 145�168.

[Do
GP℄ C. Do
he, A set of GP-PARI fun
tions to
ompute DBNS expansions.

See http://www.i
s.mq.edu.au/

�

do
he/dbns_basis.gp.

[HMV03℄ D. Hankerson, A. J. Menezes, and S. A. Vanstone, Guide to ellipti

urve

ryptography, Springer-Verlag, Berlin, 2003.

[Kob87℄ N. Koblitz, Ellipti

urve
ryptosystems, Math. Comp. 48 (1987), no. 177,

203�209.

[Kob89℄ , Hyperellipti

ryptosystems, J. Cryptology 1 (1989), 139�150.

[Mil86℄ V. S. Miller, Use of ellipti

urves in
ryptography, Advan
es in Cryptology

� Crypto 1985, Le
ture Notes in Comput. S
i., vol. 218, Springer-Verlag,

Berlin, 1986, pp. 417�426.

[MO90℄ F. Morain and J. Olivos, Speeding up the Computations on an Ellipti

Curve using Addition-Subtra
tion Chains, Inform. Theor. Appl. 24 (1990),

531�543.

[MOC97℄ A. Miyaji, T. Ono, and H. Cohen, E�
ient Ellipti
 Curve Exponentiation,

Information and Communi
ation � ICICS'97, Le
ture Notes in Comput.

S
i., vol. 1334, Springer, 1997, pp. 282�291.

[TYW04℄ T. Takagi, S.-M. Yen, and B.-C. Wu, Radix-r non-adja
ent form, Informa-

tion Se
urity Conferen
e � ISC 2004, Le
ture Notes in Comput. S
i., vol.

3225, Springer-Verlag, Berlin, 2004, pp. 99�110.

14

Appendix A: Approximation examples

In the following, we display
omplete examples of the approximation

method des
ribed in Se
tion 4.

Let n = 841232, S = {1, 5}, a0 = 8, b0 = 8, and B = 10. The array

ontains 22 di�erent ve
tors of the form [(d3b)2, b, d]. On
e sorted with

respe
t to the �rst
oordinate using lexi
ographi
 order 4, it is equal to:

[(1)2, 0, 1]

[(1000000000100101)2 , 8, 5]

[(10000111)2 , 3, 5]

[(100010001011)2 , 7, 1]

[(1001)2, 2, 1]

[(1001000000101001101)2 , 10, 5]

[(10010111111)2 , 5, 5]

[(100110011100011)2 , 9, 1]

[(101)2, 0, 5]

[(1010001)2 , 4, 1]

[(10101010110111)2 , 7, 5]

[(101101)2 , 2, 5]

[(1011011001)2 , 6, 1]

[(11)2, 1, 1]

[(11000000001101111)2 , 9, 5]

[(110010101)2 , 4, 5]

[(1100110100001)2 , 8, 1]

[(11011)2 , 3, 1]

[(111000111101)2 , 6, 5]

[(1110011010101001)2 , 10, 1]

[(1111)2, 1, 5]

[(11110011)2 , 5, 1]

The binary expansion of n is (11001101011000010000)2 and a binary

sear
h in the array above reveals that

v1[1] 4 (11001101011000010000)2 4 v2[1]

with v1 = [(1100110100001)2 , 8, 1] and v2 = [(11011)2 , 3, 1]. Now, the

binary length of n is 20, whereas 38
is 13bit long. So the di�eren
e δ1 = 7

15

is in [0, a0]. At the same time, v1[2] = 8 6 b0. Consequently, we set v′1 = v1

and the �rst approximation of n is 2738
. In the same way, v′2 = v2 and

the se
ond approximation of n is 21533
. So, we have

2738 = (11001101000010000000)2
841232 = (11001101011000010000)2

21533 = (11011000000000000000)2 .

The approximation that is the
loser to n is 2738
, sin
e the �rst nine bits

mat
h.

Next, we need to approximate n − 2738 = 1424 = (10110010000)2 by an

integer of the form d22
a23b2

with a2 6 a1 = 7 and b2 6 b1 = 8. Again, a
binary sear
h shows that

v1[1] 4 (10110010000)2 4 v2[1]

with v1 = [(10101010110111)2 , 7, 5] and v2 = [(101101)2 , 2, 5]. In that

ase, v1 is not approriate sin
e the binary length of 5× 37
is too big. The

�rst suitable ve
tor that is less than v1 is v′1 = [(1010001)2 , 4, 1], whi
h
gives rise to the approximation 2434

. On the other side, one
an
he
k

that v′2 = v2 and that the
orresponding approximation is 5 × 2532
. So,

we have

2434 = (10100010000)2
1424 = (10110010000)2

5× 2532 = (10110100000)2 .

The best approximation is 5× 2532
and the di�eren
e is simply 16 = 24.

Finally, we obtain a {1, 5}-double-base
hain expansion of n = 841232,
namely n = 2738 + 5× 2532 − 24

, with minimal e�orts.

Remarks 9.

(i) In some
ases, the algorithm above does not return the
losest ap-

proximation to n. For instan
e, if n = 2045 the best approximation

for S = {1, 5}, a0 = 10, b0 = 4, and B = 10 is 2160 whereas the algo-

rithm outlined above returns 1920. A brief look at the
orresponding

binary expansions provides the explanation. Indeed,

1920 = (11110000000)2
2045 = (11111111101)2
2160 = (100001110000)2 .

16

The last ve
tor in the array is [(11110011)2 , 5, 1] but it should not

be the last one to be investigated if it is not suitable. In this
ase,

the sear
h should
ontinue with the �rst ve
tor of the array. The only

di�eren
e is that the
orresponding power of 2 should not be δ2 any-

more but δ2 + 1, sin
e the approximation is one bit longer. If we do

that, the suitable ve
tors v′1 and v′2 are respe
tively [(1111)2, 1, 5] and
[(10000111)2 , 3, 5]. We have δ1 = 11− 4 = 7, δ2 = 11− 8 = 3, and the

orresponding approximations are 1920 = 5×273 and 2160 = 5×2433
,

from whi
h 2160 is
hosen.

(ii) The symmetri
 situation needs to be addressed as well. Take n = 2104,
with S = {1, 5}, a0 = 10, b0 = 2, and B = 10. With these parameters,

the best approximation of n is 1920 whereas the algorithm returns

2304. Indeed,

1920 = (11110000000)2
2104 = (100000111000)2
2304 = (100100000000)2 .

Here the sear
h should
ontinue with the last ve
tor sin
e the �rst one

is ruled out (a0 should be at least 11 to allow using [(1)2, 0, 1]). The
smallest approximation will be one bit shorter and so the
orrespond-

ing power of 2 should not be δ1 but δ1 − 1. Doing that, we see that

v′1 = [(1111)2, 1, 5], v′2 = [(1001)2, 2, 1], δ1 = δ2 = 12 − 4 = 8, and the

orresponding approximations are 1920 = 5× 273 and 2304 = 2832
.

17

Appendix B: Graphs and tables

× double-base
hain

◦ (1, 1)-double-base
hain

♦ (4, 4)-double-base
hain

• S2-double-base
hain

� S8-double-base
hain

2000

3000

0 50 100 150 200

N
M

a0

×
×

×
×

×
×

×
×

×
×

× × × × × × × × × ×

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

• • • • • • • • • • • • • • • • • •
• •� � � � � � � � � � � � � � � � � � � �

Fig. 1. Average number of multipli
ations to perform a random s
alar multipli
ation

on a generi
 200bit
urve with various DBNS methods parameterized by a0

20

40

60

80

100

120

0 100 200 300 400 500

Expansion length ℓ

Bitsize of n

×
double-base
hain

◦ (1, 1)-double-base
hain

♦ (4, 4)-double-base
hain

• S2-double-base
hain

� S8-double-base
hain

×

×

×

×

×

×

×

×

×

◦

◦

◦

◦

◦

◦

◦

◦

◦

♦

♦

♦

♦

♦

♦

♦

♦

♦

•

•
•

•

•
•

•
•

•

�

�

�

�

�

�

�

�

�

Fig. 2. Average expansion length ℓ of random s
alar integers n with various DBNS

18

2000

3000

0 50 100 150 200

N
M

a0

× double-base
hain

◦ (1, 1)-double-base
hain

♦ (4, 4)-double-base
hain

• S2-double-base
hain

� S8-double-base
hain

×
×

×
×

×
× ×

×
×

× × × ×
×

×
×

×
×

×
×

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦

◦ ◦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

• • • • • • • • • • • • • •
• • •

• • •

� � � � � � � � � � � � � � � � � � � �

Fig. 3. Average number of multipli
ations to perform a random s
alar multipli
ation

on a spe
ial 200bit
urve with various DBNS methods parameterized by a0

20

40

60

80

100

120

0 100 200 300 400 500

Expansion length ℓ

Bitsize of n

×

×

×

×

×

×

×

×

×

◦

◦

◦

◦

◦

◦

◦

◦

◦

♦

♦

♦

♦

♦

♦

♦

♦

♦

•
•

•
•

•
•

•
•

•

�

�

�

�

�

�

�

�

�

×
double-base
hain

◦ (1, 1)-double-base
hain

♦ (4, 4)-double-base
hain

• S2-double-base
hain

� S8-double-base
hain

Fig. 4. Average expansion length ℓ of random s
alar integers n with various DBNS

19

Size 200 bits 300 bits 400 bits 500 bits

#P ℓ a1 b1 ℓ a1 b1 ℓ a1 b1 ℓ a1 b1

2NAF2 0 66.7 200 0 100 300 0 133.3 400 0 166.7 500 0

Binary/ternary 0 46.1 90.7 68.1 69.2 136.4 102.2 91.9 182.6 136.3 114.4 228.0 170.7

DB-
hain 0 45.6 118.7 50.4 68.2 178.7 75.5 91.3 239.0 100.6 113.7 298.6 126.2

3NAF2 1 50 200 0 75 300 0 100 400 0 125 500 0

(1, 0)-DB-
hain 1 46.8 118.9 50.2 70.5 179.1 75.1 94.5 239.3 100.3 117.7 298.8 125.9

(0, 1)-DB-
hain 1 42.9 118.7 50.4 63.8 178.7 75.5 85.4 239.0 100.6 106.4 298.6 126.2

S1-DB
hain 1 36.8 118.1 49.9 55.0 178.0 75.0 72.9 238.2 100.1 91.0 297.8 125.7

2NAF3 2 50.4 0 126 75.6 0 189 100.8 0 252 126 0 315

(1, 1)-DB-
hain 2 39.4 118.9 50.2 58.5 179.1 75.1 77.9 239.3 100.3 96.6 298.8 125.9

S2-DB
hain 2 32.9 117.8 49.8 49.2 177.8 74.9 65.3 238 100.0 81.5 297.7 125.6

4NAF2 3 40 200 0 60 300 0 80 400 0 100 500 0

S3-DB
hain 3 30.7 117.5 49.7 45.7 177.5 74.8 60.6 237.8 99.8 75.6 297.3 125.4

(2, 2)-DB-
hain 4 36.8 119.2 49.8 54.7 179.3 74.8 72.6 239.4 100.1 90.5 299.0 125.7

S4-DB
hain 4 28.9 117.3 49.6 43.2 177.3 74.7 57.6 237.6 99.8 71.5 297.1 125.4

(3, 3)-DB-
hain 6 35.3 119.3 49.5 52.2 179.4 74.6 69.2 239.5 99.6 86.1 299.2 125.2

S6-DB
hain 6 27.3 117.4 49.4 40.6 177.3 74.5 54.0 237.6 99.6 67.1 297 125.3

3NAF3 8 36 0 126 54 0 189 72 0 252 90 0 315

(4, 4)-DB-
hain 8 34.2 119.3 49.3 50.5 179.5 74.2 67.0 239.6 99.3 83.5 299.3 125

S8-DB
hain 8 25.9 117.2 49.3 38.5 177.1 74.4 51.2 237.4 99.5 63.6 296.9 125.2

Table 5. Parameters for various s
alar multipli
ation methods on generi

urves

Size 200 bits 300 bits 400 bits 500 bits

#P NM Gain NM Gain NM Gain NM Gain

2NAF2 0 2442.9 � 3669.6 � 4896.3 � 6122.9 �

Binary/ternary 0 2275.0 6.87% 3422.4 6.74% 4569.0 6.68% 5712.5 6.70%

DB-
hain 0 2253.8 7.74% 3388.5 7.66% 4531.8 7.44% 5666.5 7.45%

3NAF2 1 2269.6 � 3409.6 � 4549.6 � 5689.6 �

(1, 0)-DB-
hain 1 2265.8 0.17% 3410.3 −1.98% 4562.3 −1.72% 5707.4 −1.69%

(0, 1)-D B-
hain 1 2226.5 1.90% 3343.2 1.95% 4471.0 1.73% 5590.4 1.74%

S1-DB
hain 1 2150.4 5.25% 3238.1 5.03% 4326.3 4.91% 5418.1 4.77%

2NAF3 2 2384.8 � 3579.3 � 4773.8 � 5968.2 �

(1, 1)-DB-
hain 2 2188.6 8.23% 3285.5 8.21% 4390.0 8.04% 5487.7 8.05%

S2-DB
hain 2 2106.5 11.67% 3174.1 11.32% 4243.6 11.11% 5314.8 10.95%

4NAF2 3 2165.6 � 3253.6 � 4341.6 � 5429.6 �

S3- DB
hain 3 2078.1 4.04% 3132.8 3.71% 4189.8 3.50% 5248.5 3.34%

(2, 2)-DB-
hain 4 2158.2 � 3242.6 � 4333.1 � 5421.6 �

S4-DB
hain 4 2056.7 � 3105.0 � 4156.1 � 5204.0 �

(3, 3)-DB-
hain 6 2139.4 � 3215.0 � 4291.7 � 5371.9 �

S6-DB
hain 6 2036.3 � 3074.3 � 4115.4 � 5155.1 �

3NAF3 8 2236.2 � 3355.8 � 4475.4 � 5595.0 �

(4, 4)-DB-
hain 8 2125.4 4.95% 3192.2 4.88% 4264.1 4.72% 5340.5 4.55%

S8-DB
hain 8 2019.3 9.70% 3049.8 9.12% 4084.3 8.74% 5116.8 8.55%

Table 6. Complexity of various extended DBNS methods for generi

urves and gain

with respe
t to window NAF methods having the same number of pre
omputations

20

Size 200 bits 300 bits 400 bits 500 bits

#P ℓ a1 b1 ℓ a1 b1 ℓ a1 b1 ℓ a1 b1

2NAF2 0 66.7 200 0 100 300 0 133.3 400 0 166.7 500 0

Binary/ternary 0 46.1 90.7 68.1 69.2 136.4 102.2 91.9 182.6 136.3 114.4 228.0 170.7

DB-
hain 0 45.0 98.5 63.2 67.1 148.7 94.4 89.4 198.5 126.2 110.5 248.9 157.5

3NAF2 1 50 200 0 75 300 0 100 400 0 125 500 0

(1, 0)-DB-
hain 1 42.8 98.8 62.9 63.8 149.0 94.1 84.7 198.8 125.9 106.1 249.2 157.1

(0, 1)-DB-
hain 1 49.0 98.5 63.2 73.4 148.7 94.4 98.8 198.5 126.2 123.3 248.9 157.5

S1-DB
hain 1 36.6 97.7 62.8 54.4 148 93.9 72.2 197.8 125.8 89.8 248.1 157.0

2NAF3 2 50.4 0 126 75.6 0 189 100.8 0 252 126 0 315

(1, 1)-DB-
 hain 2 40.6 98.8 62.9 60.4 149 94.1 80.8 198.8 125.9 100.9 249.2 157.1

S2-DB
hain 2 32.5 97.6 62.6 48.1 147.7 93.9 64.0 197.6 125.6 79.6 247.9 156.9

4NAF2 3 40 200 0 60 300 0 80 400 0 100 500 0

S3-DB
hain 3 30.3 97.1 62.5 44.8 147.6 93.7 59.5 197.2 125.4 74.2 247.5 156.9

(2, 2)-DB-
hain 4 37.3 99.0 62.6 55.5 149.2 93.8 74 199 125.7 92.3 249.3 156.9

S4-DB
hain 4 28.7 97.1 62.4 42.5 147.5 93.6 56.4 197.1 125.4 70.2 247.4 156.7

(3, 3)-DB-
hain 6 36.2 99.1 62.2 53.8 149.3 93.6 71.8 199.2 125.2 89.6 249.4 156.7

S6-DB
hain 6 27.0 97.1 62.2 39.9 147.4 93.4 52.7 197.1 125.2 65.6 247.4 156.5

5NAF2 7 33.3 200 0 50 300 0 66.7 400 0 83.3 500 0

3NAF3 8 36 0 126 54 0 189 72 0 252 90 0 315

(4, 4)-DB-
hain 8 34.9 99.2 62 52.1 149.4 93.1 69.5 199.3 125.0 86.8 249.5 156.3

S8-DB
hain 8 25.6 96.8 62.2 37.8 147.3 93.3 50.0 196.9 125.1 62.1 247.2 156.5

Table 7. Parameters for various s
alar multipli
ation methods on spe
ial
urves

Size 200 bits 300 bits 400 bits 500 bits

#P NM Gain NM Gain NM Gain NM Gain

2NAF2 0 2282.9 � 3429.6 � 4576.3 � 5722.9 �

Binary/ternary 0 1930.2 15.45% 2904.3 15.32% 3877.8 15.26% 4847.2 15.30%

DB-
hain 0 1927.8 15.55% 2897.1 15.53% 3870.4 15.43% 4830.3 15.60%

3NAF2 1 2109.6 � 3169.6 � 4229.6 � 5289.6 �

(1, 0)-DB-
hain 1 1904.0 9.75% 2861.9 9.71% 3821.6 9.65% 4783.6 9.57%

(0, 1)-DB-
hain 1 1968.7 6.68% 2962.2 6.54% 3968.9 6.16% 4963.1 6.17%

S1-DB
hain 1 1829.8 13.26% 2754.1 13.11% 3681.6 12.96% 4604.3 12.96%

2NAF3 2 1880.8 � 2823.3 � 3765.8 � 4708.2 �

(1, 1)-DB-
hain 2 1881.5 −1.96% 2826.6 −1.88% 3781.0 −1.60% 4729.2 −1.55%

S2-DB
hain 2 1784.1 5.14% 2685.9 4.87% 3592.8 4.59% 4494.9 4.53%

4NAF2 3 2005.6 � 3013.6 � 4021.6 � 5029.6 �

S3- DB
hain 3 1757.1 12.39% 2647.9 12.13% 3541.0 11.95% 4434.8 11.83%

(2, 2)-DB-
hain 4 1845.4 � 2773.8 � 3708.4 � 4638.5 �

S4-DB
hain 4 1738.3 � 2621.5 � 3506.8 � 4391.0 �

(3, 3)-DB-
hain 6 1830.8 � 2753.9 � 3682.0 � 4608.4 �

S6-DB
hain 6 1718.3 � 2592.1 � 3467.1 � 4341.5 �

3NAF3 8 1732.2 � 2599.8 � 3467.4 � 4335.0 �

(4, 4)-DB-
hain 8 1815.0 −5.22% 2731.9 −6.92% 3656.5 −6.55% 4575.9 −6.44%

S8-DB
hain 8 1701.9 1.75% 2568.6 1.20% 3436.1 0.90% 4302.7 0.75%

Table 8. Complexity of various extended DBNS methods for spe
ial
urves and gain

with respe
t to window NAF methods having the same number of pre
omputations

21

