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Abstract. Generalized Jacobians are natural candidates to use in discrete
logarithm (DL) based cryptography since they include the multiplicative group
of �nite �elds, algebraic tori, elliptic curves as well as all Jacobians of curves.
This thus led to the study of the simplest nontrivial generalized Jacobians of an
elliptic curve, for which an e¢ cient group law algorithm was recently obtained.
With these explicit equations at hand, it is now possible to concretely study the
corresponding discrete logarithm problem (DLP); this is what we undertake in
this paper. In short, our results highlight the close links between the DLP in
these generalized Jacobians and the ones in the underlying elliptic curve and
�nite �eld.

1. Introduction

Throughout this past year, cryptographers proudly celebrated three decades of
public-key cryptography. In a word, concrete public-key cryptosystems exist because
we know computational problems which, despite our greatest joint e¤orts, remain
very hard to solve. We could thus say that Di¢ e and Hellman [4] taught us how to
be optimistic by turning our incapacity of solving these problems into an amazingly
elegant and powerful technique.
In addition of being the �rst such problem to be used in public-key cryptography,

the discrete logarithm problem (DLP) remains without a doubt one of the most
popular choices used nowadays to design cryptographic protocols.

De�nition 1. Let G be a �nite group and g be an element of G. Given h 2 hgi,
the smallest non-negative integer k such that gk = h is called the discrete logarithm
of h (to the base g) and is denoted logg h.

Generalized Jacobians are a good source of groups where this problem seems in-
tractable. Indeed, recall that the ElGamal, Elliptic and Hyperelliptic Curve Cryp-
tosystems as well as XTR, LUC and CEILIDH can all be understood in terms of
generalized Jacobians [11, 3]. So from a cryptographic point of view, two remarkable
subfamilies of generalized Jacobians are algebraic tori and usual Jacobians.
In order to explicitly study the cryptographic properties of a family of generalized

Jacobians that are neither Jacobians nor tori, the simplest nontrivial generalized Ja-
cobians of an elliptic curve was recently put forward [3]. In particular, it was shown

Date : First submitted on September 29, 2006 and revised on March 24, 2007.
2000 Mathematics Subject Classi�cation. Primary 14L35, 94A60; Secondary 68Q17.
Key words and phrases. Public-key cryptography, discrete logarithm problem, generalized Ja-

cobians, semi-abelian varieties, elliptic curves, �nite �elds, pairing-friendly curves.
The research for this paper was done while the author was a Ph.D. student at McGill University

under the supervision of Henri Darmon and Claude Crépeau and was supported by the Bell
University Laboratories (BUL).

1



2 ISABELLE DÉCHÈNE

in this article how to obtain a compact representation of the elements, e¢ ciently
compute the group law and readily determine the cardinality of these groups.
The present article is the natural continuation of this work. Indeed, using com-

pletely elementary techniques, we here investigate the corresponding discrete loga-
rithm problem. From the point of view of algebraic geometry, these speci�c gener-
alized Jacobians are extensions of an elliptic curve by the multiplicative group Gm .
We thus expect that this study will involve discrete logarithms in three di¤erent
groups, namely, the generalized Jacobian, an elliptic curve and the multiplicative
group of a �nite �eld.
Thus the overall goal of this paper is to gain further insight on the precise

relationships between these three problems. We emphasize that the objective of
this work is not to claim nor demonstrate any practical advantages over previously
proposed groups.
This article is based on Section 5.5 of our doctoral dissertation [2]. We �rst

show that extracting a DL in these generalized Jacobians can always be performed
by sequentially solving an instance of the DLP in the underlying elliptic curve E
followed by one in the chosen �nite �eld F . On the other hand, we demonstrate
that the DLP in such cyclic generalized Jacobians is at least as hard as the DLP
in E and at least as hard as the DLP in F . As a result, extracting a DL in those
generalized Jacobians is polynomial-time equivalent to solving a DL in E and a DL
in F .
Galbraith and Smith [6] recently made similar observations by working with ex-

tensions of algebraic groups �presented by a cocycle�. Although this more general
setting extends some of the results of this paper, we believe that our explicit ap-
proach has the advantage of being more insightful. For instance, these techniques
enabled us to highlight an apparent distinct behaviour of generalized Jacobians of
pairing-friendly curves (see Section 6 for more details).
This paper is organized as follows. In the next section, we review the construction

of generalized Jacobians and recall the group law for the explicit family we consider.
In Section 3, we obtain a closed expression involving three di¤erent DLPs, from
which follows a natural solution to the DLP in these generalized Jacobians. Two
reductions among discrete logarithm problems are then obtained in Section 4. In
the following two sections, we apply the ideas of Pohlig and Hellman, both to curves
used in classical ECC as well as to pairing-friendly curves. Lastly, an outlook is
presented in Section 7.

2. Generalized Jacobians of an Elliptic Curve

The goal of this section is to present a minimalist aide-mémoire of the construc-
tion of generalized Jacobians as well as of the explicit group law for the family
we are studying. For a complete treatment, please refer to the classical texts by
Maxwell Rosenlicht [9, 10] and Jean-Pierre Serre [12, 13]. Although the underlying
theory truly sheds some light on the intrinsic structure of these groups, the utterly
simple equations for the group operation is all that will be needed for the sequel.
Let C be a smooth algebraic curve de�ned over an algebraically closed �eld

K and m =
P

P2C mP (P ) 2 Div(C) be an e¤ective divisor1, thereafter called a
modulus. Two divisors D and D0 of disjoint support with m are said to be m-
equivalent, and we write D �m D0, if there exists an f in the function �eld of

1That is, each mP is a non-negative integer and only �nitely many of them are nonzero.
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C such that div(f) = D � D0 and ordP (1 � f) � mP for each P in the support
of m. Let Pic0m(C) be the group of m-equivalence classes of degree zero divisors
having disjoint support with m. Then, there exists a commutative algebraic group
Jm, called the generalized Jacobian of C with respect to m, which is isomorphic to
Pic0m(C).
The explicit family of generalized Jacobians we consider can now be described

as follows. Let E be a smooth elliptic curve de�ned over the �nite �eld Fq with q
elements and let B 2 E(Fq) be a point of prime order l. Let also m = (M) + (N)
be a B-unrelated modulus with M and N distinct points of E(Fqr ), where r � 1 is
a chosen integer (to �x ideas, r can be picked to be relatively small, say r � 50).
Recall that a modulus m = (M) + (N) is said to be B-unrelated if M , N =2 hBi [3,
De�nition 3].
For the purpose of constructing the corresponding generalized Jacobian Jm, we

view E as being de�ned over Fq. This algebraic group Jm is then a semi-abelian
variety, which is an extension of algebraic groups of E by the multiplicative group
Gm . Background material on extensions of algebraic groups can be found in [13,
Chapter VII].

Remark 1. Recall that a commutative algebraic group S is called a semi-abelian
variety if there exists a short exact sequence of algebraic groups

1! T ! S ! A! 1,

where T is an algebraic torus and A is an abelian variety.

In order to obtain a compact and convenient representation for the elements of
Jm and a group law algorithm using this representation, the �rst step followed in [3]
was to obtain an explicit bijection  of sets between Pic0m(E) and Gm �E. Thus in
this particular case, an element of Jm can be viewed as a pair (k; P ), where k 2 Gm
and P 2 E. The known addition on Pic0m(E) could then be used to endow, via  ,
the set Gm � E with the desired group structure.
More explicitly, let (k1; P1) and (k2; P2) be elements of Jm such that P1, P2,

� (P1 + P2) =2 fM;Ng. Then,
(2.1) (k1; P1) + (k2; P2) = (k1k2 � cm(P1; P2); P1 + P2) ,
where cm : E � E ! Gm is the 2-cocycle given by

cm(P1; P2) =
`P1;P2(M)

`P1+P2;O(M)
� `P1+P2;O(N)
`P1;P2(N)

,

and `P;Q denotes the equation of the straight line passing through P and Q (tangent
at the curve if P = Q) [3, Theorem 5].

Several basic properties can be easily derived from these explicit equations [3,
Section 5]. In particular, the set

F�qr � hBi =
�
(k; P )

��k 2 F�qr ; P 2 hBi	 ,
together with the group law (2.1), is a subgroup of Jm with identity (1;O). Also,
for all (k1;O); (k2; P ) 2 F�qr � hBi, we have that

(2.2) (k1;O) + (k2; P ) = (k1k2; P ) .
This last property will turn out to play a central role in our study of the DLP.



4 ISABELLE DÉCHÈNE

Figure 1. Group law in the generalized Jacobian

Next we make some useful remarks on the order of the elements in F�qr � hBi.
So let (k; P ) 2 F�qr � hBi be given such that P 6= O. We are then looking for the
smallest positive integer m such that m(k; P ) = (1;O). Since m(k; P ) = (�;mP ),
we must have mP = O, from which we get that m is a multiple of l = ord (P ).
There is then a positive integer n such that m = n � l. Hence,

(1;O) = m(k; P ) = n � l(k; P ) = n(�;O) = (�n;O),
where � 2 F�qr satis�es l(k; P ) = (�;O). It thus follows that �n = 1, for which the
least solution is n = ord(�). As a result,

(2.3) The order of (k; P ) equals ord(�) � l.
So in particular,

(2.4) (k; P ) generates F�qr � hBi if and only if � generates F�qr .
This last property can also be used to show, using an elementary counting ar-

gument, that F�qr � hBi is a cyclic group as soon as l - (qr � 1) [2, Section 5.4.4].
Moreover, Balasubramanian and Koblitz showed that for a random prime q and a
random E de�ned over Fq such that #E(Fq) = l, the case l j (qr � 1) was very un-
likely to arise [1, Theorem 2]. Thus in practice, it is easy to generate a generalized
Jacobian F�qr � hBi which is a cyclic group.
To sum up, F�qr � hBi together with the induced group law (2.1) is a �nite

subgroup of Jm of order (qr � 1)�l for which the elements are compactly represented
and the group law is e¢ ciently computable. That being said, we are now ready to
study the discrete logarithm problem in F�qr � hBi.

3. A Natural Solution

The purpose of this section is to present a natural method to extract discrete
logarithms in F�qr � hBi. To do so, the �rst step will be to take a closer look at the
scalar multiplication in this group.
So given (k; P ) 2 F�qr �hBi and a non-negative integer n, we are here looking for

an e¢ cient way to compute the scalar multiple n(k; P ). First remark that a repeated
application of the group law yields n(k; P ) = (�; nP ). Thus if we set n0 = nmod l,
we get n(k; P ) = (�; n0P ). So instead of computing n(k; P ) directly, we could make
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use of the value of n0(k; P ). Indeed, if we let n1 = bn=lc, then n = n1l + n0
and so n(k; P ) = n1l(k; P ) + n0(k; P ). Therefore, if we let l(k; P ) = (�;O) and
n0(k; P ) = (�n0 ; n0P ), we obtain

n(k; P ) = n1l(k; P ) + n0(k; P )(3.1)

= n1(�;O) + (�n0 ; n0P )
= (�n1 ;O) + (�n0 ; n0P )
= (�n0 � �n1 ; n0P )

by repeated applications of (2.2). Hence, evaluating n(k; P ) using this method
essentially requires to compute �, �n1 and n0(k; P ). Of course, if several scalar
multiples of the same element (k; P ) need to be performed, then the value of � may
be precomputed in order to speed up the computations. We have therefore shown:

Lemma 2. Let E be a smooth elliptic curve de�ned over Fq, B 2 E(Fq) be a point
of prime order l and m = (M) + (N) be a B-unrelated modulus, where M and N
are distinct points of E (Fqr ). For (k; P ) 2 F�qr �hBi and a non-negative integer n,
let n0 = nmod l, n1 = bn=lc, l(k; P ) = (�;O) and n0(k; P ) = (�n0 ; n0P ). Then,

n(k; P ) = (�n0 � �n1 ; n0P ).

Notice that this simple equality in fact relates three instances of the discrete
logarithm problem in three di¤erent groups, namely a generalized Jacobian, an
elliptic curve and a �nite �eld. Next we see how this observation provides a natural
solution to compute discrete logarithms in F�qr � hBi. The goal of this exercise is
to give an upper bound on the overall complexity of this problem.
So given (k; P ) 2 F�qr � hBi and an element (j;Q) in the subgroup generated by

(k; P ), we need to determine the least non-negative integer n such that n(k; P ) =
(j;Q). Using the above notations, �rst notice that knowing n is equivalent to
knowing both n0 and n1 (since l is public and n = n1l+n0), where 0 � n < ord(�)�l,
0 � n0 < l and 0 � n1 < ord(�). Lemma 2 then yields

(j;Q) = n(k; P ) = (�n0 � �n1 ; n0P ).
Thus, given the values of

j = �n0 � �n1 and Q = n0P ,

our task is to recover n. Observe that Q is independent of n1 while j depends on
both n0 and n1.
The obvious strategy is then to start by solving an instance of the discrete

logarithm problem in E in order to recover n0 from Q = n0P . Once n0 is known,
the value of �n0 can be easily computed, as n0(k; P ) = (�n0 ; n0P ). Next derive
the value of �n1 by computing2 ��1n0 � j. Then recover n1 by extracting the discrete
logarithm of �n1 to the base �. At last, set n = n1l + n0. Figure 2 illustrates this
sequence of computations while the following proposition summarizes the result
just obtained.

Proposition 1. Let E be a smooth elliptic curve de�ned over Fq, B 2 E(Fq) be a
point of prime order l and m = (M)+(N) be a B-unrelated modulus, where M and
N are distinct points of E (Fqr ). Then, the discrete logarithm problem in any cyclic

2Notice that �n0 6= 0 since by construction, �n0 2 F�qr .
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subgroup of F�qr � hBi is no harder than sequentially solving a discrete logarithm
in E followed by one in F�qr .

F�qr E

n0P
#
n0
#

�n0 � �n1 �n0
#
�n1

#
n1

Figure 2. Natural solution to a DLP in the generalized Jacobian

Informally speaking, the next step is to ask whether it is possible to �nd a quicker
way to solve this DLP. In particular,

� If we know how to solve the DLP in F�qr �hBi, do we necessarily know how
to solve it in E?

� If we know how to solve the DLP in F�qr �hBi, do we necessarily know how
to solve it in F�qr?

� Is it possible to solve a DLP in F�qr � hBi by solving one in E and one in
F�qr in parallel?

� Can some precomputations be made in order to speed up the extraction of
a DL in F�qr � hBi?

The remainder of this paper focuses on the �rst three questions, while a discus-
sion around the last question can be found in [2, Section 5.5.3].

4. Reductions among Discrete Logarithm Problems

To ease the exposition, we will assume throughout this section that F�qr � hBi is
a cyclic subgroup of Jm generated by (k; P ). In short, the goal is now to show that
any given algorithm that solves DLPs in F�qr � hBi may be used as a subroutine
to solve DLPs in E as well as in F�qr . In other words, if anyone ever discovers an
e¢ cient way to solve DLPs in F�qr � hBi, he or she could use it to e¢ ciently solve
instances of the DLP in E and in F�qr .
Since we are concerned in this section with lower bounds on the di¢ culty of

solving the DLP in F�qr � hBi, the proofs we provide here are written formally in
order to be as rigorous as possible. For completeness, a review of fundamental
properties of discrete logarithms needed to prove these results is included in the
appendix.

Proposition 2. Let E be a smooth elliptic curve over Fq, B 2 E (Fq) be a point
of prime order l, m = (M) + (N) be a B-unrelated modulus, where M and N are
distinct points of E (Fqr ) such that F�qr �hBi is a cyclic subgroup of Jm. Then, the
discrete logarithm problem in F�qr �hBi is at least as hard as the discrete logarithm
problem in hBi � E (Fq).
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Proof. Let AJm be an algorithm having a non-negligible probability of solving dis-
crete logarithms in F�qr � hBi to the base (k; P ), where (k; P ) is a generator of
F�qr � hBi. We wish to show that there is an algorithm AE having a non-negligible
probability of solving discrete logarithms in hBi to the base P . So let Q = n0P be
an instance of the discrete logarithm problem in hBi, where 0 � n0 < l. By the
random self-reducible property of discrete logarithms3, we can assume without loss
of generality that given any element of F�qr�hBi, its discrete logarithm (to the base
(k; P )) has a non-negligible probability of being obtained with AJm . Now, for a
randomly chosen element j 2 F�qr , invoke AJm on input (j;Q). With non-negligible
probability, a non-negative integer n such that n(k; P ) = (j;Q) will be obtained,
yielding n0 = nmod l. �

j2RF�qr AE
Q�! (j;Q)�! AJm

n�! n0=nmod l�!

Figure 3. Converting an instance of the DLP in hBi into one in
F�qr � hBi

Next we show a similar reduction from the discrete logarithm problem in F�qr to
the one in F�qr � hBi.
Proposition 3. Let E be a smooth elliptic curve over Fq, B 2 E (Fq) be a point
of prime order l, m = (M) + (N) be a B-unrelated modulus, where M and N are
distinct points of E (Fqr ) such that F�qr �hBi is a cyclic subgroup of Jm. Then, the
discrete logarithm problem in F�qr �hBi is at least as hard as the discrete logarithm
problem in F�qr .

Proof. Let AJm be an algorithm having a non-negligible probability of solving dis-
crete logarithms in F�qr � hBi to the base (k; P ), where (k; P ) is a generator of
F�qr � hBi. We want to show the existence of an algorithm AF�

qr
having a non-

negligible probability of solving discrete logarithms in F�qr to the base �, where
l(k; P ) = (�;O). Recall that by (2.4), �must generate all of F�qr since (k; P ) is a gen-
erator of F�qr�hBi. Thus let h = �n be an instance of the discrete logarithm problem
in F�qr , with 0 � n < qr � 1. As usual, thanks to the random self-reducible prop-
erty, we can assume without loss of generality that given any element of F�qr �hBi,
its discrete logarithm (to the base (k; P )) has a non-negligible probability of being
obtained with AJm . Invoking AJm on input (h;O) will yield with non-negligible
probability an integer a satisfying (h;O) = a (k; P ) and 0 � a < (qr � 1) l. We
have in particular that aP = O, which implies that a must be divisible by l. There
is thus an integer b such that a = b � l and 0 � b < (qr � 1). As a result,

(�n;O) = (h;O) = a (k; P ) = bl (k; P ) = b(�;O) = (�b;O),
which yields n = b. �
As a result, the two propositions of this section imply that even though general-

ized Jacobians are newcomers in cryptography, we already know that solving their

3This property is described in the appendix.
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AF�
qr

h�! (h;O)�! AJm
a�! n=a=l�!

Figure 4. Converting an instance of the DLP in F�qr into one in
F�qr � hBi

DLP cannot be easier than solving discrete logarithms in two of the most studied
groups used in DL-based cryptography today.

5. A Parallel Solution à la Pohlig-Hellman

Now that we have strong evidences that the discrete logarithm problem in the
generalized Jacobians we consider is a computationally di¢ cult problem, we further
investigate the natural solution proposed in Section 3. Recall that Proposition 1
showed that an instance of the DLP in F�qr � hBi can be solved by sequentially ex-
tracting a discrete logarithm in E followed by one in F�qr . We next try to determine
under which circumstances the DLP in F�qr � hBi could be performed any faster.
For simplicity, we will also assume here that F�qr � hBi is a cyclic subgroup of

Jm generated by (k; P ). As usual, let (j;Q) = n(k; P ) be an instance of the DLP
in F�qr � hBi to be solved, where 0 � n < (qr � 1) l. By Lemma 2, we know that
(5.1) (j;Q) = n(k; P ) = (�n0 � �n1 ; n0P ),
where we keep the notation n = n1l + n0, 0 � n0 < l, 0 � n1 < qr � 1 as well as
l(k; P ) = (�;O) and n0(k; P ) = (�n0 ; n0P ). Notice that the sequential solution of
Section 3 performs computations involving j = �n0 ��n1 only once �n0 is known, as
depicted in Figure 2.
We could instead attempt to extract a discrete logarithm in F�qr in parallel with

the one in the elliptic curve. On one hand, using (5.1), one can start to solve
Q = n0P for n0 by extracting a discrete logarithm in E. In the meantime, we could
also start to extract a discrete logarithm in the �nite �eld as follows. This time, let

n2 = nmod (qr � 1) .
Then compute l (j;Q) which will equal, say, (j0;O). We now have:
(j0;O) = l (j;Q) = l � n (k; P ) = n � l (k; P ) = n (�;O) = (�n;O) = (�n2 ;O) .

Since j0 and � are known, we can then solve the following DLP in F�qr in order to
get n2:

j0 = �n2 .
Remark that this can be done in parallel with the computation of n0.
Finally, try to combine n0 and n2 using the Chinese remainder theorem in order

to recover n. However, we must have gcd (l; qr � 1) = 1 to fully recover n with this
method. We summarize this observation below.

Proposition 4. Let E be a smooth elliptic curve over Fq, B 2 E(Fq) be a point
of prime order l and m = (M) + (N) be a B-unrelated modulus, where M and N
are distinct points of E (Fqr ). If l - (qr � 1), then the discrete logarithm problem
in F�qr � hBi is no harder than solving a discrete logarithm in E and one in F�qr in
parallel.



GENERALIZED JACOBIAN CRYPTOSYSTEMS 9

Remark 2. Notice that in this proposition, there is no need to add the hypothesis
that F�qr � hBi must be a cyclic group. Indeed, as mentioned in Section 2, the
condition l - (qr � 1) already ensures that F�qr � hBi will be cyclic.

6. Generalized Jacobians of Pairing-friendly Curves

We now turn our attention to the case l j (qr � 1), and thus to pairing-friendly
curves. Recall that we now know several techniques allowing to e¢ ciently gener-
ate suitable curves for various values of r of cryptographic interest. A thorough
classi�cation of these methods was recently made by Freeman, Scott and Teske [5].
An interesting case arises when we work in a cyclic subgroup h(k; P )i � F�qr �

hBi of order d � l�, where � � 2 and l - d. Indeed, we will see here that the
natural solution of Section 3 is then still faster than a straightforward application
of the ideas of Pohlig and Hellman. It therefore seems that the DLP in generalized
Jacobians of pairing-friendly curves can behave distinctly.

Remark 3. Recall that the MOV attack [7] allows in this case to reduce the DLP
in hBi � E(Fq) to the DLP in F�qr , thanks to the Weil pairing. Thus for pairing-
based applications, the embedding degree r is usually chosen such that these two
DLPs are (roughly) of equal di¢ culty. We shall assume that this also holds here,
so that there is no practical advantage of transforming an instance of the DLP in
the elliptic curve into one in the �nite �eld.

Just as before, let (j;Q) = n (k; P ) be the instance of the DLP we wish to solve.
In order to use the Chinese remainder theorem to recover n, we now compute�

n� := nmod l�

nd := nmod d
.

This can be achieved as follows.

(1) We here want to compute nd. To do so, �rst evaluate l� (j;Q), which will
equal, say, (j0;O). Now,
(j0;O) = l� (j;Q) = l�n (k; P ) = nl��1 � l (k; P )

= nl��1 (�;O) =
��
�l

��1
�n

;O
�
=
��
�l

��1
�nd

;O
�
,

which means that
j0 =

�
�l

��1
�nd

,

where j0 and �l
��1

are known. It thus su¢ ces to solve a DLP in F�qr in
order to recover nd.

(2) While performing Step 1, we can also start to determine n� in parallel.
(a) First let n0 = nmod l (= n�mod l). Since (j;Q) = n (k; P ) = (�; nP ) =

(�; n0P ), we have Q = n0P . The value of n0 can thus be obtained by
solving a DLP in the elliptic curve4.

(b) Next we compute

n1 =
n� n0
l

mod l.

4Notice that we have now retrieved all the information about n that Q contained. That is, we
should expect that all other discrete logs that we have to solve from this point on will be in the
�nite �eld F�qr .
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To do so, write n as n0+n1l+ml2 for some (unknown) integer m and
compute dl��2 (j;Q) to get, say,

�
j00; dl��2Q

�
. Then,�

j00; dl��2Q
�
= dl��2 (j;Q) = dl��2 � n (k; P )
= dl��2

�
n0 + n1l +ml

2
�
(k; P )

= dl��2n0 (k; P ) + n1dl
��2 � l (k; P ) +m � dl� (k; P )

= dl��2 (�n0 ; n0P ) + n1dl
��2 (�;O) +m (1;O)

=
�
(�n0)

dl��2 � �; dl��2Q
�
+
��
�dl

��2
�n1

;O
�

=
�
(�n0)

dl��2 � � �
�
�dl

��2
�n1

; dl��2Q
�
,

where � is simply the product of the 2-cocycles from repeated applica-
tions of the group law. Notice that � can be computed directly from
Q and dl��2. It therefore follows that

j00

� � (�n0)
dl��2

=
�
�dl

��2
�n1

,

where the only unknown is n1. Thus, n1 can be obtained by solving a
DLP in F�qr .

(c) If � = 2, then we are done since n� = n0+n1l. Otherwise, proceed to
compute n2 such that

n2 =
n� n0 � n1l

l2
mod l,

and repeat this process for n3, n4, ..., n��1. Finally, get n� = n0 +
n1l + n2l

2 + :::+ n��1l
��1.

(3) Combine nd and n� using the Chinese remainder theorem to get n.

The remarkable property of this method5 is that the value of �n0 is used to
compute n1. This thus suggests that the value of n0, obtained by solving a DLP in
E, should be known prior to the computation of n1. In other words, to compute
n�, the discrete logarithm in the elliptic curve should be performed �rst, and be
followed by discrete logarithm(s) in F�qr .
Therefore, the natural solution of Section 3 is still preferable to the above method

à la Pohlig-Hellman in the case of pairing-friendly curves. In particular, we are left
with the following open question.

Question. Let E be a smooth elliptic curve de�ned over Fq, B 2 E(Fq) be a point
of prime order l and m = (M) + (N) be a B-unrelated modulus, where M and N
are distinct points of E (Fqr ) such that F�qr � hBi is a cyclic subgroup of Jm. If
l j qr � 1, is it possible to solve a DLP in F�qr � hBi signi�cantly faster than with
the sequential solution of Section 3?

7. Outlook

This paper was devoted to the study of the DLP in the simplest nontrivial
generalized Jacobians of an elliptic curve. Thanks to the explicit equations for this
group law from [3], it was not only possible to give an upper bound on the di¢ culty

5To the best of our knowledge, there is no version of the above process that allows to retrieve
n1 without computing n0 �rst.
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of this problem, but most importantly, to show that when F�qr � hBi is cyclic, it is
at least as hard as two well-studied computational problems, namely the DLP in
elliptic curves and in �nite �elds.
As a result, the abelian group F�qr � hBi in principle ful�lls the four basic re-

quirements for a group to be suitable for DL-based cryptography, as its elements
are easily represented in a compact form, its group law is e¢ ciently computable,
its order is readily determined and its DLP is believed to be intractable.
This therefore shows that the family of generalized Jacobians that are suitable for

cryptographic applications strictly contains algebraic tori and Jacobians of curves.
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12 ISABELLE DÉCHÈNE

Appendix: Properties of Discrete Logarithms

We here review fundamental properties of discrete logarithms in an arbitrary
(multiplicatively written) cyclic group G of order n generated by an element g.
We begin with the random self-reducible property of discrete logarithms, which

is based on the equality

(7.1) ga � gr = ga+r.

We say that an algorithm A has a non-negligible probability of solving the DLP in
G (to the base g) if for an input h uniformly chosen at random in G, there is a non-
negligible probability6 that A outputs logg h. But in practice, it is often desirable
to learn the discrete logarithm of a speci�c element s of the group. It is however
possible that the probability that A yields a = logg s on input s equals zero

7. The
strategy is then to disguise s using (7.1). Indeed, if we uniformly pick an integer r
in f0; 1; : : : ; n� 1g, then

s � gr = ga � gr = ga+r.

Then notice that if r is uniformly selected, then so is a + r. So on input s � gr,
there is now a non-negligible probability that A yields the value of (a + r)modn.
If so, then a can be recovered since r is known. Thus, A implies the existence of a
randomized algorithm A0 such that for any input s 2 G, there is a non-negligible
probability that A0 outputs logg s.

r2Rf0;1;:::;n�1g A0
s�! s�gr�! A (a+r)modn�! a�!

Figure 5. Constructing A0 from A

The second property concerns the choice of the generator of the group. Namely,
if g1 and g2 are distinct generators of G, then any algorithm A1 that has a non-
negligible probability of solving discrete logarithms in G to the base g1 can readily
be turned into an algorithm A2 having non-negligible probability of solving discrete
logarithms in G to the base g2.
Indeed, let h = ga2 be an instance of the DLP in G to be solved. By the random

self-reducible property of discrete logarithms, we can assume without loss of gen-
erality that for any s 2 G, A1 has a non-negligible probability of producing logg1 s.
So �rst invoke A1 on input g2 in order to get, with non-negligible probability, an
integer b such that g2 = gb1 and 0 < b < n. Since g1 and g2 are both generators,
it follows that gcd (n; b) = 1, and so b is an invertible element of Z /nZ . Then
compute an integer c such that bc � 1 (modn) and 0 < c < n using, for instance,
the extended Euclidean algorithm [8, Algorithm 2.107]. Then,

gc2 =
�
gb1
�c
= gbc1 = g1.

6That is, there is a polynomial p such that this probability is greater than 1=p(logn).
7For instance, the algorithm could solve all instances for which the discrete logarithm is even,

but fail otherwise.
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Next, we can obtain with non-negligible probability an integer d such that h = gd1
and 0 � d < n by invoking A1 on input h. Finally,

h = gd1 = (g
c
2)
d
= gcd2 ,

and so a = cdmodn, which completes the argument.

A2
g2�! A1

b�!
h�! a=b�1dmodn�!

h�! A1
d�!

Figure 6. Constructing A2 from A1
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