Improved Efficiency for Private Stable Matching *

Matthew Franklin, Mark Gondree, and Payman Mohassel

Department of Computer Science
University of California, Davis
{franklin, gondree, mohassel}@cs.ucdavis.edu

Abstract. At Financial Crypto 2006, Golle presented a novel framework for
the privacy preserving computation of a stable matching (stable marriage). We
show that the communication complexity of Golle’s main protocol is substantially
greater than what was claimed in that paper, in part due to surprising patholog-
ical behavior of Golle’s variant of the Gale-Shapley stable matching algorithm.
We also develop new protocols in Golle’s basic framework with greatly reduced
communication complexity.

Keywords: stable matching, stable marriage, Gale-Shapley, privacy-preserving
protocols, secure multiparty computation, passive adversaries.

1 Introduction

Efficient stable matching (stable marriage) algorithms are used in a wide variety
of practical settings, including the well-known example of matching U. S. med-
ical school graduates to hospitals, for their residencies. Gusfield and Irving [14]
have written a good overview of stable matching algorithms.

Golle [12] argues persuasively that efficient privacy-preserving protocols
for stable matching could have great practical benefit. In fact, Golle goes on
to develop just such a protocol. We find the basic framework of his approach
to be quite appealing, and worthy of further examination. In his framework,
some number of honest-but-curious “matching authorities” (MAs) receive en-
crypted preference lists from the participants, and then execute a variant of the
classic Gale-Shapley algorithm that has been specially tuned for concealment.
The main cryptographic tools in Golle’s protocol are threshold homomorphic
encryption and re-encryption mixnets.

Our first contribution is to show that Golle’s protocol has substantially greater
communication complexity than what was reported in the original paper. For
example, the total communication is O(tn®) ciphertexts instead of O(n?) ci-
phertexts as reported (where the number of matching authorities is ¢, and the

* This is the full version of an article [8] to appear in CT-RSA 2007.

number of participants is O(n)). This is due in part to a surprising anomaly
in Golle’s variant of the Gale-Shapley algorithm that requires it to run for more
rounds than Golle’s analysis suggests (quadratic rather than linear in the number
of participants).

Our second contribution is to design new privacy preserving protocols in
Golle’s basic framework with reduced communication complexity (under simi-
lar cryptographic assumptions). Our protocol in Section 4.2 has improved com-
munication complexity when there are an arbitrary number ¢ of matching au-
thorities. Our protocol in Section 5 reduces the communication complexity even
further when there are exactly two matching authorities. One way we achieve
our improved efficiency is by designing our own variant of Gale-Shapley that
is “tuned for concealment” but with better convergence properties than Golle’s
variant. The following table summarizes the efficiency of these new protocols
and our new analysis of Golle’s protocol.

Section|Protocol| MAs Total Total Round
Work Communication|Complexity

41 |Golle’s | ¢ O(nd) O(tn®) O(n?)

4.2 Ours t |O(n*/logn) O(tn?) O(n?)

5 Ours 2 O(n%) O(n?) O(n?)

The organization of the rest of the paper is as follows. Preliminary notions
(models, definitions, primitives) are given in Section 2. In Section 3, we discuss
the Gale-Shapley stable matching algorithm, with a careful analysis of Golle’s
variant and our new variant. In Section 4, we present and analyze Golle’s pro-
tocol and our protocol for the case with multiple matching authorities. In Sec-
tion 5, we describe a protocol for the case of just two matching authorities.
Conclusions are presented in Section 6.

2 Preliminaries

2.1 The Stable Marriage Problem

We consider the formulation of the stable matching problem with complete pref-
erence lists (every man ranks every woman, and vice-versa) and one-to-one
matchings. Due to its simplicity, and the fact that other variants of the stable
matching problem can be reduced to this formulation, it is a particularly attrac-
tive version with which to work. The problem is as follows. Consider two sets,
one of n men and one of n women. Every man ranks the n women, and every
woman ranks the n men. A matching, or marriage, is a bijection between the
sets. A matching is stable if there is no unmatched man and woman who rank

each other higher than their own spouses. The stable marriage problem is, given
the preference lists of » men and n women, to find a stable marriage (there is
always one, and there may be several). In Section 3, we discuss algorithms for
the stable marriage problem.

2.2 Models and Definitions

We adopt the same network model as Golle [12]. At the start of the protocol,
each player sends a single encrypted message (derived from his or her prefer-
ences) to two or more matching authorities (MA’s). These matching authorities
execute a synchronous protocol among themselves to compute the stable match-
ing.

For simplicity (and fairness of comparison), our security model is the same
as that considered by Golle [12]. Specifically, we consider a passive adversary,
meaning an adversary with passive control over any of the players (men and
women) and passive control over all but one of the matching authorities. More
precisely, our security guarantees hold for any adversary in the intersection of
the adversarial models of the primitives we use. Our guarantees are in relation
to the following security notion, due to Golle [12]: a protocol is a private stable
matching protocol if it outputs a stable match and reveals no other information
to a passive adversary than what she can learn from the matching and from the
preferences of the participants she controls.

In all our constructions, we compose protocols that are private with respect
to passive adversaries, and make use of composition theorems that guarantee
security under composition. These theorems enable us to claim our protocols
private against a passive adversary as long as our subprotocols are private. Please
see [3, 10] for more details.

Encryption. Unless otherwise stated, we let £ denote the encryption function
for a threshold public-key encryption scheme that is additively homomorphic,
such as a threshold version [7, 6] of the Paillier encryption scheme [23]. The
matching authorities are the joint holders of the decryption key, such that only a
quorum of all parties can decrypt.

Notation. We use the following asymptotic notation: o(f) denotes that the
asymptotic upper bound f is not tight; £2(f) denotes that the asymptotic lower
bound f is tight; and 5(f) denotes the asymptotic upper bound O(f), ignoring
polylog(f) factors. We denote the XOR operation between two equal-length bit
strings a, b by a @ b. In Section 2.3 below, unless otherwise noted, “poly-log
complexity” is in reference to the security parameter for each primitive.

2.3 Primitives

Re-encryption Mix Network. In our application, when we say the authorities
mix some (Paillier) ciphertexts, we mean the authorities run a re-encryption mix
network [22, 15], permuting the ciphertexts according to a secret permutation
known to none of the individual authorities. Since we consider a passive ad-
versary, n ciphertexts can be mixed by ¢ mixing authorities in constant round
and O(n) time, taking advantage of parallel mixing techniques [13]. The total
communication complexity of the parallel mixnet is, like a serial mixnet, O(tn)
ciphertexts.

Private Oblivious Equality Test. Let F(m1), E(mg) be two Paillier cipher-
texts. Define EQTEST(E(m1), E(m2)) = b where b = 1 if m; = my and
b = 0 otherwise. EQTEST is a (chooser private) oblivious test of plaintext
equality [16,20] if it reveals the output to the joint holders of the decryption
keys, without revealing any other information to any other parties.

MPC Private Equality Test. Let E(m1), E(ms2) be two Paillier ciphertexts.
Define EEQTEST(E(m1), E(m2)) = E(b) where b = 1 if m; = mg and
b = 0 otherwise. EEQTEST is the secure multiparty computation of the equal-
ity test if our parties learn the output £(b), but no additional information about
the plaintexts mi,mo. [4,17] both give constant-round protocols with poly-
log communication complexity for computing this function, either of which are
adaptable to our setting (i.e., threshold, additively homomorphic ciphertexts).

Private Oblivious Value Comparison. Let E(m;), E(m2) be two Paillier ci-
phertexts. Define COMPARE(E(m1), E(mg)) = b where b = 1 if m; < ma
and b = 0 otherwise. For our purposes, we have 0 < mq, mo < n. Golle in-
stantiates this primitive by preparing n — 1 ciphertexts, Dy, ..., D,_1 where
D; = E(mj — mg — 1); mixing these n ciphertexts; and finally running n par-
allel instances of EQTEST(E;, E(0)). If m; < mg then, for some 0 < i < n,
one of these instances returns 1. Otherwise, all instances return 0.

MPC Private Value Comparison. Let F(m1), E(ms) be two Paillier cipher-
texts. Define ECOMPARE(E(m;), E(m2)) = E(b) where b = 1 if m; < ma
and b = 0 otherwise. ECOMPARE is the secure multiparty computation of the
less-than function if our parties learn the output E(b), but no additional infor-
mation about the plaintexts my, ma. [17,5] both give constant-round protocols
with poly-log communication complexity for computing this function, either of
which are adaptable to our setting.

Private Reduction of a Secret Modulo a Public Integer. Let E(a) be a Paillier
ciphertext, and ¢ be an integer. Define MOD(E(a), q) = E(a mod ¢). MOD is
the secure multiparty computation of the modular function if our parties learn
the output, but no additional information about the plaintext integer a. [1,17]
both give protocols with poly-log communication complexity for computing this
function, either of which are adaptable to our setting. The former has a poly-log
round complexity, the latter is constant-round.

SPIR with sublinear communication complexity. Let § be a database with
N elements, indexed {0, ..., N —1}. Let SPIR? (by,...,by) represent Stern’s
symmetric private information retrieval protocol [24]. As in any PIR protocol, a
chooser holds a secret index ¢ and, at the end of the protocol, the chooser learns
the element of the database at index ¢, while the database learns nothing about
which index was accessed. Additionally, the chooser learns nothing about any
of the other database elements (thus, symmetry). In SPIan, the index 7 is en-
coded following a standard trick, due to Kushilevitz and Ostrovsky [18]. The
database is imagined as a series of m sized buckets (the first m entries in the
first bucket, and so on). If element ¢ is the jth element in one of these buckets,
then by ; = E(1) and b; , = E(0) for all k # j. Define by = (b1.1,...,b1m).
We recurse, imagining the collection of former buckets as, themselves, a series
of m sized buckets. The output of the protocol must be decrypted by the chooser
¢ times, to recover the element at index 7. With m = N'/¢ and ¢ = O(y/Tog N),
the protocol has total computational complexity O(N+/log N) and total com-

munication complexity 20(V10eN) " Since we consider passive adversaries, we
do not include Stern’s interactive zero-knowledge proofs showing the indices
are well-formed as a part of SPI an .

Private table read/write protocols. Initially, party A holds i4 and L 4[1...n],
and party B holds ip and Lp[l...n]. In other words, parties share the index
i =14 @ ip, and the array L such that L[j] = La[j] ® Lp[j] for1 < j < n.
For our applications, we assume that the indices and elements of the array are k-
bit integers, for some k. Naor and Nissim [21] design protocols for both reading
and writing to the table in this setting, requiring O (polylog(n)) communication.
Their protocols use an oblivious transfer protocol as their main building block.
The read protocol returns R & L[i] to A and R to B, where R is a random k-bit
integer. In the oblivious write protocol (writing a shared value v), each party
will obtain new shares of L such that L[i] = v.

Yao’s garbled circuit protocol. Yao’s garbled circuit protocol [25] is the first
general purpose secure two-party protocol. In this protocol, parties compute a

functionality using the circuit for that functionality. Please see [19] for a detailed
description of Yao’s protocol. The protocol runs in a constant number of rounds,
and has a communication and computation complexity that is linear in the size
of the circuit. We use Yao’s garbled circuit to design portions of our protocols.
Therefore, we sometimes need to switch from a different setting to Yao’s garbled
circuit setting, and back to the original one. Specifically, in Section 5, we need
to switch to Yao’s garbled setting from a setting where inputs are shared using
XOR sharing, and have the parties share the final output of the circuit using
an XOR sharing. This can be done by adding small additional circuitry to the
original circuit. This additional circuitry will not affect the complexity of the
circuit size or the protocol.

3 Stable Marriage Algorithms

In this section, we will first briefly describe the Gale-Shapley algorithm, and
then take a closer look at Golle’s variant of Gale-Shapley. We explain why the
complexity of this variant is a factor of n more than what was claimed in [12].
Finally, we design our own variant of the Gale-Shapley algorithm, in which
we avoid the factor of n increase in the complexity while preserving the useful
properties we need for a secure implementation. This new variant is what we use
in Sections 4 and 5 to design more efficient private stable matching protocols.

3.1 The Gale-Shapley algorithm

We review the well-known algorithm of Gale and Shapley [9], not only because
of its general importance but because the private stable matching protocols pre-
sented later are, in fact, simulations of variants of the Gale-Shapley algorithm.

The Gale-Shapley algorithm considers a series of proposals made by men,
round-by-round. Whenever a proposal is accepted, the couple is considered en-
gaged. If a man is not engaged, he is considered free. The algorithm proceeds as
follows. If there are any free men, select one at random (call him A). A proposes
to the woman he ranks highest among those to whom he has not yet proposed
(call her B). If B is free, she accepts and the pair are considered engaged. If
B is engaged to some A’ and she ranks A’ ahead of A, then B and A’ remain
engaged and A remains free. If B is engaged to A’ and she ranks A’ below A,
then B and A become engaged and A’ becomes free.

After O(n?) proposals, all participants will be engaged and we will have
found a stable marriage. In fact, the marriage we find is men-optimal. Due
to symmetry, it is clear we could run the algorithm to find a marriage that is
women-optimal. For more on the Gale-Shapley algorithm, the interested reader

is referred to the treatment of the subject by Gusfield and Irving [14]. One im-
portant note, however, is that by observing the proposals, acceptances, and re-
jections round-by-round, one can (for some problem instances) reconstruct the
entire preference lists of all participants.

3.2 Golle’s variant of Gale-Shapley

In this section we describe Golle’s variant of the classic Gale-Shapley algo-
rithm, explain its suitability for implementation as a private stable matching
protocol, and present our new complexity analysis. Consider Gale-Shapley’s al-
gorithm where there are n real women By, ..., B,, and nreal men Ay, ..., A,.
In Golle’s variant, n “fake” men, A,,+1, . .., Ag, are introduced (no fake women
are defined). The preferences of fake men are not important, and can be chosen
arbitrarily. The preferences of women need to be augmented to account for the
fake men introduced. It is only important that each woman ranks the fake men
lower than any real ones.

In what follows, let F; and & denote the sets of free and engaged men in
round k of the algorithm, respectively. Initially, all the real men are free and
all the fake men are engaged (in an arbitrary way). The algorithm proceeds as
follows:

For k = 1to R:

While Fy, is non-empty:
- Randomly select a man A from Fy.
- A proposes to woman B, the woman he ranks highest among
the women to whom he has never proposed before.
- Note that woman B is always already engaged to some man, A’.
This is resolved in the following manner.
* If B ranks A higher than A’, she breaks her engagement to
A’ and becomes engaged to A. Man A is removed from set
F. and added to &, whereas man A’ is removed from &,
and added to F1.
* If B ranks A behind A’, she stays engaged to A’. Man A is
removed from set 7, and added to set Fy 1.
- When Fy, is empty, let E1 = &k.

Note that the above algorithm has some nice properties for designing a se-
cure stable matching protocol. For instance, all n women are always engaged
to some man. During round k, the number of engaged men is always |E;| = n.
Every time a new proposal is made, the cardinality of F} decreases by one, the
cardinality of F; increases by one and the cardinality of & is unchanged.

The algorithm, ends after R iterations. In [12], it is claimed that R = n is
enough to reach a stable matching. We observe that this is not the case, and for
some inputs, £2(n?) iterations are necessary to achieve a stable matching. This
implies that proposition 1, as stated in [12], is incorrect. A problem instance
explored in Gusfield and Irving [14, pgl5] is one such counterexample, and is
presented in Appendix A.

The intuition behind this inefficiency is that, for some inputs, there may be
many rounds where most of the proposals are made by fake men. Such propos-
als do not help the real men move forward in their preference lists, and hence
do not help them reach a stable matching. This observation implies a factor of
n increase in Golle’s algorithm, and the same increase in the communication
complexity of his privacy preserving stable matching protocol.

Claim. The algorithm of Section 3.2 (with R = n?) produces a stable matching
among the n men and n women. That is, the algorithm is correct. This claim
replaces Proposition 1 of [12].

Proof. After n? —n 1 proposals from real men, we will have a stable marriage
(from the same counting argument used to show the correctness of the Gale-
Shapley algorithm). Until a stable marriage is reached, some real man will be
free. So, after n2 rounds, real men will have made at least n2 proposals and,
thus, the algorithm outputs a stable marriage. The minimal number of rounds
required for correctness is less, but is £2(n?) (see Appendix A).

3.3 Our new variant of Gale-Shapley

Here, we describe our variant of Gale-Shapley which improves on the complex-
ity of Golle’s variant by a factor of n and which also has nice properties for
designing a private matching protocol.

Once again, as with Gale-Shapley’s algorithm, there are n real men and n
real women with their corresponding preference lists. We add n fake men and
n fake women to this setting (note that Golle’s variant did not include fake
women). Thus, we have: real men {A1, ..., A,}, fake men {4,,41,..., A2},
real women { By, ..., B,}, and fake women {B,, 11, ..., Ba,}. Preference lists
are adjusted in the following way.

Preference lists

Real men |([actual preference list], [By, 42, . . ., B2y, in any order])

Fake men |([Byy2,. .., Boy, in any order], By, 11, [Bi,. .., By, in any order])
Real women |([actual preference list], [Ay+1, ..., A2y, in any order])

Fake women|([A;41, . .., A2y, in any order], [A1, ..., A,, in any order])

As before, set F, contains the free men in round k. The algorithm works as
follows.

Initialization:

- F1 = {A;} (man A; is free).
- {Ag, ..., A} are engaged to { By, 12, . . ., Bay }, respectively.
- {Ant1,. .., Ao, } are engaged to { By, ..., By, }, respectively.

For k = 1to R:

- The free man A in Fj, proposes to B, the next woman in his prefer-
ence list to whom he has not yet proposed.
- Let A’ denote the man to whom B is already engaged.
* If B ranks A higher than A’, she breaks her engagement to A’
and becomes engaged to A. Let Fj1 = {A'}.
* If Branks A lower than A’, she stays engaged to A’. Let Fy1 =

{A}.

Note that in each iteration, exactly one proposal is made. The number of
free men in each round is |Fj| = 1. As we will show next, the above algorithm
reaches a stable matching in at most 2n? iterations. In the matching reached, all
the real men are engaged to real women and all the fake men to fake women.

Claim. Once a fake man proposes to fake woman B, ;, we have reached a
stable matching. In this stable matching, real men are engaged to real women
and fake men are engaged to fake women.

Proof. Note that woman B, 1 is the n'" preference of all the fake men. There-
fore, when a fake man proposes to B, 1, he has already proposed to the other
n — 1 fake women in his list and has been rejected by them at some point during
the execution of the protocol. This implies that all the other n — 1 fake women
were or became engaged to other fake men (fake women rank fake men higher
than real men). This, in turn, implies that all the real women are engaged to real
men.

The argument for having reached a stable matching is similar to the one for
the original Gale-Shapley algorithm. Particularly, lets assume that real man A
prefers woman B to woman B’, to whom he is engaged. Then, B must have
rejected A at some point during the execution. But, this implies that B was or
became engaged to a man she prefers to A. So B cannot prefer A to her current
match. This further implies that there are no unstable matches.

It is easy to verify that before 2n? proposals, at least one fake man will
have proposed to By, 1. Therefore, based on the above claim, we reach a stable
matching in at most R = 2n? steps.

For the secure implementation of the above algorithm, it is useful to run the
algorithm for the same number of rounds for all inputs (e.g. R = 2n?). This
will help us avoid leaking the number of proposals necessary to reach a stable
matching for a specific input. But, note that in the above algorithm, once a fake
man proposes to woman B,,;1, no free man will remain and the algorithm has
to end. A simple fix is to add an extra fake man Ao, 1, and initially let him
be engaged to woman B, 1. The algorithm runs exactly as before and once a
fake man proposes to woman B,, 1, the same claims as above are true. The only
advantage is that we will always have a free man who will propose next. This is
a useful invariant for the secure implementation we give in Section 4.2.

4 Privacy preserving Stable Marriage Protocols

In this section, we present the privacy preserving implementation of the two
Gale-Shapley variants presented earlier: one for Golle’s (modified) variant in
Section 4.1, and one for our new variant in Section 4.2.

4.1 Privacy preserving protocol for Golle’s variant of Gale-Shapley

In this section, we briefly present the implementation of Golle’s (modified) vari-
ant of Gale-Shapley as a private stable matching protocol. This section will also
provide a basis for comparison with the secure variant in Section 4.2.

Protocols for the implementation. The following are used in the secure im-
plementation of Golle’s variant given at the end of this section. Many will be of
use later, in Section 4.2. Slight modifications to some protocols were necessary
due to the observations from Section 3.2.

Notation. Letr; ; € {0,...,n—1} be the rank given to real woman B; by man
A;. Let sj; € {0,...,n — 1} be the rank given to real man A; by woman B;.
Our convention is that the highest possible rank is 0, and the lowest is n — 1.

Bids. Define the (free) bid for man A; as W; = (E(i), a;, vi, qi, E(p)), where
a; = (E(ri1),...,E(rin)). 9 = (E(s1,4), .-, E(sns)),and v; = (E(1),..., E(n)).
Initially, p = 0.

Engaged Bids. The engaged bid (W;, E(j), E(s;,;)) denotes that man A; is
engaged to woman B;. Let F, and &}, denote the sets of free and engaged bids
in round k of the algorithm, respectively. When we mix the bids, the ¢t matching
authorities mix each of these sets separately.

Input submission and Initialization. Each man A; initially sends his prefer-

ence list (E/(71), ..., E(rp;)) and each woman B; sends her list (E(s;1), ..., E(Sjn))
to the matching authorities. The matching authorities jointly create the pref-
erences for the fake men A, 1,..., As, and augment the women’s prefer-

ence lists with the fake men. The matching authorities generate the 2n bids

for A1, ..., Az, and the n engaged bids to denote the engagement of A,,; to

woman B;. We add the n engaged bids to &1, and the n free bids to F;.

Breaking an engagement. Let (IW;, E(j), E(s;;)) be an engaged bid. We
break this engagement by discarding E(j), E(s;;) and keeping ;. We also
“safely” update F(p) by incrementing it by the value 1 — b, where E(b) =
EEQTEST(E(p), E(n — 1)), using Paillier’s additive homomorphism (ie, we
multiply E(p) by E(1)/E(b)). That is, we obliviously increment the next de-
sired rank p when it is less than n — 1 and, otherwise, we do not. This is a
modification from the presentation in [12]. If we did not increment safely, the
new n? loop bound generates the possibility that we may increment some man’s
p more than n times which would lead, in a sense, to a pointer error.

Find a conflicting bid. Given a newly created engaged bid (W, E(j), E(s;;))
there will be exactly one existing engaged bid that conflicts. That is, there is
some engaged bid (Wy/, E(j'), E(sj 1)) € & where j = j'. We can find this
by preparing the set { E(j) | (Wi, E(j"), E(sj 7)) € &}, mixing the n cipher-
texts in this set, and then performing n parallel instances of EQTEST(E(j5), E(5))
for each E(j') in the mixed set.

Resolve a conflict. Given two random conflicting engaged bids, (W;, E(j), E(s;,))
and (Wy, E(j), E(s;,)), we determine the “winner” and “loser” of the conflict

by doing the following. Jointly compute b = COMPARE(E(s;;), E(sj)). If

b = 1 then woman j prefers man ¢’ over man 4 and, thus, we call the first en-
gaged bid the “loser.” Otherwise, we call the second engaged bid the “loser.” We
call the remaining bid the “winner.”

Summary of the privacy preserving implementation The following algo-
rithm, with R = n2, summarizes the secure implementation of Golle’s variant

of Gale-Shapley. How to process the submitted inputs, initialize the data struc-
tures, find a conflicting bid, resolve the conflict, and break an engagement are
explained in Section 4.1. We have, however, omitted the details of some steps,
such as internal bid mixing, opening a bid , and some others. We refer the reader
to Golle’s paper [12] for those details we have omitted.

Briefly, when a bid W; is “opened,” the matching authorities jointly deter-
mine F'(j) (the woman at rank p on man A;’s preference list) and her preference
E(s;,) for A;, without learning anything about p, j or .

Input submission and Initialization
Fork =1to R:

While F}, is non-empty:

Randomly select a bid W; from Fy.

Open W; to recover E(j), E(s;;)

Form the engaged bid (W;, E(j), E(s;,))

Find the conflicting engaged bid, (Wi, Ej, E(s;))
Mix these two engaged bids

Resolve the conflict to find the “winner” and “loser”
Break the engagement for the loser and add this free bid to Fj, 1
Add the winner to &y,

Mix all the bids, and perform internal bid mixing

If Fy, is empty, let £ 1 = &k

AN SR

—_—

Announce stable marriage

At step k = n?, all data is discarded, save the ciphertext pairs (E(i), £(j))
from each engaged bid in &,2. These are (publicly or privately) announced to
each participant.

Complexity analysis. The work and communication complexity is dominated
by running the 3 re-encryption mix networks in steps 4, 5, and 9 — specifi-
cally, the mixnet in step 9. This re-encryption mix network is run on 2n bids,
n times each round (since |Fj| = n at the start of each round). Furthermore,
each bid contains O(n) ciphertexts. Thus, each of the t authorities does O(n?)
total work. The total communication complexity is O(¢tn°) ciphertexts. This
differs from Golle’s O(n?3) analysis in [12], which claims the bid size to be con-
stant, claims R = n instead of R = n?, and omits ¢ as a factor impacting the
number of messages passed. For similar reasons, the round complexity is now
O(n3polylog(n)), instead of O(n?polylog(n)) as claimed in [12].

Claim. The protocol of Section 4.1 is a private stable matching protocol, assum-
ing Paillier encryption is semantically secure and the underlying re-encryption
mix network is private. When ¢ matching authorities participate, the protocol’s
total communication complexity is O(tn°) ciphertexts. This claim replaces Propo-
sitions 2 and 3 of [12].

Proof (sketch). The correctness of the algorithm from Claim 3.2 shows the pro-
tocol outputs a stable matching. To show the protocol is private, we direct the
reader to the proof sketch of Proposition 3 in [12]; our modifications to the
protocol do not impact the proof that a passive adversary learns no additional
information during the protocol’s execution. The complexity analysis is shown
above.

4.2 Privacy preserving protocol for our new variant of Gale-Shapley

To implement our new variant of Gale-Shapley securely, we must modify the
initialization procedure of Golle’s secure protocol to accommodate the addi-
tion of fake women. Furthermore, we present a new procedure to open a bid
with the aid of a database that holds the participants’ encrypted preference lists.
By removing the preference lists from the bids themselves, we make our bids
constant-sized. Now, we define a bid W; for man A; as (E(i), E(p)). We assume
one of the ¢ matching authorities plays the role of the database.

Protocols for the implementation. From Section 4.1, the definition for an en-
gaged bid and the procedures for finding a conflict, breaking an engagement,
and resolving a conflict remain the same for the secure implementation of the
new variant of Gale-Shapley given at the end of this section. The following pro-
cedures are also used.

Input submission. As before, each woman sends her preference list q;. Sim-
ilarly, each man submits a vector a;, but the vector encodes his preference
list in a new way. Now, man A; defines a; = (E(ai1), ..., E(aiyn)), where
a;j € {1,...,n} is the index of the woman to whom he has given rank j — 1.

Initialization. The matching authorities generate the free bid for man A; and
the engaged bids for man A;, for i # 1. The preference lists for the n + 1
fake men and n fake women are generated, and the preference lists for the real
men and women are augmented, according to the rules above. Let one matching
authority collect and organize these lists, and call this authority the database .
Letd = [(a1,q1), -, (a2n, d2n)]. Thus §[4n(i — 1) + (j — 1)] = E(a; ;) and
0dn(i— 1)+ (j — 1) + 2n] = E(s;;), ford,j < 2n.

Open a bid. Given a free bid (E(i), E(p)), we must recover E(j) (the en-
crypted index of the woman at rank p on man A;’s preference list) and E(s; ;).
It happens that £(j) is located at §[4n(i — 1) + (p — 1)] and E(s;;) is located
atd[4dn(i— 1)+ (j — 1) + 2n). We can calculate E(4n(i — 1) + p — 1) using the
Paillier additive homomorphism, given E(z) and E(p). We can recover E(j) by
accessing the database at this secret index, using the protocols below. Similarly,
given E(j) we can calculate E(4n(i — 1) 4+ (j — 1) 4+ 2n) and, again, recover
E(s;,;) by accessing the database at this secret index.

Access the database at a secret index. Given E(z), we can generate a series
of indices by, ..., b, which singulate the element at index x using the index
conversion procedure below, without learning anything about index x. Then let
y = SPIR® (by, ..., by). We jointly decrypt y, £ times, to recover d[z]. For the
values of m and ¢ indicated in Section 2.3, this joint decryption takes O(+/logn)

rounds, passing a 90(v/logn) /2¢ size message between ¢ authorities on round
i, yielding a total communication complexity of o(tn). After this procedure,
the entire database should re-encrypt all of its entries. The total computational
complexity of this database access is O(n?/Iogn).

Secure index conversion. Given F(z), we can securely calculate the indices
bi,...,by that are used as input to the protocol SPIan. Recall that by =
(bk1,- -, brm) is the encryption of an m-length bit-string of Hamming weight
1, selecting the appropriate item from each m sized bucket at step k. If we con-
sider the buckets to be arranged consecutively (the first m elements in the first
bucket, and so on) then by, ; = E(cy ;) where

k—1 m

¢x,; = (x mod mk £ (j— 1)mk_1 + Z Z (1 — 1)ch7imh_1)
h=1i=1

Thus, by, can be calculated using MOD, EEQTEST, and the vectors b; for
J < k calculated in earlier rounds. Each round, this procedure takes polylog
work with polylog communication complexity. The procedure ends after £ =

O(y/logn) rounds.

Full privacy preserving implementation The secure implementation of our
new variant of Gale-Shapley is assembled using the protocols indicated above,
according to the algorithm below.

Input submission and Initialization
For k = 1 to 2n?:

Select the single free bid W; from Fy.

Open W; to recover E(j), E(sj;)

Form the engaged bid (W;, E(j), E(s;,))

Find the conflicting engaged bid, (W, Ej, E(s;))

Mix these two engaged bids

Resolve the conflict to find the “winner” and “loser”

Break the engagement for the loser and add this free bid to Fj, 1
Add the winner to &y,

Mix the engaged bids

Let 5k+1 =&

SO XN R W=

—

Announce stable marriage

Complexity analysis. As in Golle’s, the communication complexity here is
dominated by the re-encryption mix networks run in steps 4, 5, and 9 — specif-
ically, the mixnets run in steps 4 and 9. These mixnets runs on O(n) cipher-
texts each round. The total communication complexity is O(tn?). Accessing
the database, however, dominates the computational cost, when ¢ < n. Each
step k, the database access takes O(n?y/logn) work. The total computational
complexity is O(n*y/Iog n). The round complexity is O(n?polylog(n)).

Claim. The algorithm of Section 4.2 is a private stable matching protocol, as-
suming Paillier encryption is semantically secure and the underlying re-encryption
mix network is private.

We note the above claim can be proven by a hybrid argument similar to
that of the proof of Proposition 3 in [12], or using the composition theorems
mentioned in Section 2.2. Due to length constraints (and the lack of novelty in
applying either of these proof techniques), we omit a full proof.

5 An efficient private stable matching protocol for t = 2 MAs

In this section, we take a closer look at the case where there are only two
Matching Authorities (MAs). We design a secure protocol for this case with
O(n?*polylog(n)) communication complexity. This is a factor of n more effi-
cient than our protocols for the general case. We generalize this protocol for the
setting with multiple pairs of MAs in Appendix B.

We base our secure implementation on our variant of Gale-Shapley from
Section 3.3. To do so, we use rather different techniques from those we used in

the general case. As before, each participant sends shares of his/her input to the
two MAs. The rest of the protocol is performed by the two MAs without help
from the participants. The final matching is then revealed to the participants.
Before we proceed with the details of the protocol, let us define the data struc-
tures that are shared by the MAs. For simplicity, in what follows we label men
and women using only their index.

Ali][j] = a4 j, the identity of the woman ranked j — 1 by man A4,.
Blj][i] = sji + 1, where s;; € [0,n — 1] is the rank given to man A; by woman B;.
Pli] = p;i + 1, where p; € [0,n — 1] is the rank of the woman

to whom man A; will propose next.
E[j] € {1,...,n}, the identity of the man engaged to woman B;.

Using the above data structures, we can rewrite our variant of the Gale-
Shapley algorithm (from Section 3.3), after the initialization stage, as follows.

For k = 1 to 2n?
1. Remove ¢ from Fj,
2. Letp = PJi]

3. Let j = A[i][p] (the index of the woman to whom A; proposes)
4. Leti’ = E[j] (the index of the man currently engaged to her)
5. Lets;; = B[j][t] and s;+ = BJ[j][¢'] (her rankings for A; and A;/)
6. If s;» > sj, then swap the labels 7, i’

7. E[j] < i’ (store the “winner” as her husband)

8. p' = PJi]

9. P[i] — p'+1 (increment the “loser”)

10. Fr+1 = {i} (free the “loser”)

At the end of the protocol, E[j] stores the index of the man to whom woman
Bj is married. The MAs can privately (or publicly) announce to each participant
shares of his/her partner. Now, we explain how to implement the above algo-
rithm securely. Note that all the data structures and intermediate values in the
algorithm are shared between the two MAs. To be compatible with the private
table access primitives we use, we employ a simple XOR sharing scheme: to
share a k-bit integer a between the MAs, a participant sends a random k-bit r to
one MA and sends a @ r to the other MA.

In steps 2-5 and 7-9, MAs need to privately read and write to a table. We
can use the techniques of Naor and Nissim [21] to implement these steps se-
curely (see Section 2.3 for more detail), with O(polylog(n)) communication.
We can do step 6 (compare two integers and potentially swapping them) and

step 9 (computing shares of p + 1 from shares of p) by switching to Yao’s
garbled circuit protocol and then switching back to the initial setting (see Sec-
tion 2.3 for more detail). The circuit for performing such computations is of size
O(polylog(n)). This leads to a protocol with O(n?polylog(n)) communication
between the MAs.

According to the composition theorems with respect to passive adversaries
(see Section 2.2), the above protocol is privacy-preserving as long as the under-
lying subprotocols (private table read/write protocols and Yao’s garbled circuit
protocol) are secure against passive adversaries.

6 Conclusion

In conclusion, we have given new protocols (and new analyses) for stable match-
ing with security against a passive adversary. Our protocols can be adapted to
provide security against an active adversary using standard compilation tech-
niques [11, 10]. An interesting open question is to gain some protection against
malicious faults without a huge increase in communication complexity. One in-
triguing possibility along these lines would be to exploit a kind of “double entry
bookkeeping” in our variant of Gale-Shapley. If all women rank the fake man
Agp+1 last, then the protocol outputs a stable marriage among the n real men
and n real women, and among the n fake men and n fake women. By examin-
ing the fake marriages and the preference lists of the fake players, evidence of
misbehavior might be suggested (e.g., if the fake marriages are not stable).

References

1. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In Advances in Cryp-
tology — Proceedings of CRYPTO’02, number 2442 in Lecture Notes in Computer Science,
pages 417-432, 2002.

2. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols. In Proceedings of the 22nd ACM Symposium on Theory of Computing, pages 503-513,
1990.

3. Ran Canetti. Security and composition of multiparty cryptographic protocols. In Journal of
Cryptology, volume 13, pages 143-202, 2000.

4. Ronald Cramer and Ivan Damgérd. Secure distributed linear algebra in a constant number of
rounds. In Advances in Cryptology — Proceedings of CRYPTO’01, number 2139 in Lecture
Notes in Computer Science, pages 119-136, 2001.

5. Ivan Damgard, Matthias Fitzi, Jesper Buus Nielsen, and Tomas Toft. How to split a shared
secret into shared bits in constant-round. Cryptology ePrint Archive, Report 2005/140, 2005.
http://eprint.iacr.org/.

6. Ivan Damgard and Mads Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Public Key Cryptography, pages 119-136,
2001.

10.
11.

12.
13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

A

. Pierre-Alain Fouque, G Poupard, and Jacques Stern. Sharing decryption in the context of

voting or lotteries. In Financial Crypto (FC ’00), 2000.

. Matthew Franklin, Mark Gondree, and Payman Mohassel. Improved efficiency for private

stable matching. In The Cryptographer’s Track at RSA Conference (CT-RSA), 2007.

. David Gale and Lloyd Stowell Shapley. College admissions and the stability of marriage.

American Mathematical Monthly, 69:9-15, 1962.

Oded Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the 19th ACM Symposium on Theory of Computing, pages 218-229, 1987.
Philippe Golle. A private stable matching algorithm. In Financial Crypto (FC ’06), 2006.
Philippe Golle and Ari Juels. Parallel mixing. In ACM Conference on Computer and Com-
munications Security’ 04, pages 220-226, 2004.

. Dan Gusfield and Robert Irving. The Stable Marriage Problem: Structure and Algorithms.

MIT Press, 1989.

Markus Jakobsson, Ari Juels, and Ron Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In Proceedings of USENIX02, pages 339-353, 2002.
Markus Jakobsson and Claus Peter Schnorr. Efficient oblivious proofs of correct exponenti-
ation. In Communications and Multimedia Security, pages 71-86, 1999.

Eike Kiltz. Unconditionally secure constant round multi-party computation for equality,
comparison, bits and exponentiation. Cryptology ePrint Archive, Report 2005/066, 2005.
http://eprint.iacr.org/.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proceedings of the 38th Symposium on
Foundations of Computer Science, pages 364-373, 1997.

. Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party computa-

tion. Cryptology ePrint Archive, Report 2004/175,2004. http://eprint.iacr.org/.
Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
Advances in Cryptology — ASIACRYPT 2003, number 2894 in Lecture Notes in Computer
Science, pages 416-433, 2003.

Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In Proceedings of the 33rd ACM Symposium on Theory of Computing, pages
590-599, 2001.

C. Andrew Neff. A verifiable secret shuffe and its application to e-voting. In ACM Confer-
ence on Computer and Communications Security’01, pages 116-125, 2001.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology — Proceedings of Eurocrypt’99, number 1592 in Lecture Notes in
Computer Science, pages 223-238, 1999.

Julien P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In Advances
in Cryptology — ASIACRYPT 98, number 1514 in Lecture Notes in Computer Science, pages
357-371, 1998.

Andrew C. Yao. How to generate and exchange secrets. In Proceedings of the 27th Sympo-
sium on Foundations of Computer Science, pages 162—-167, 1986.

A case where [12] requires more than n iterations

Here we give an example input for which Golle’s variant of Gale-Shapley re-
quires §2(n?) iterations of the main loop to reach a stable matching. Consider
the following preference lists for the real men and women (the preference lists
of the n fake men are as indicated in [12]):

A |[1,2,...,n—1,n] B |[2,3,...,n,1]
A [12,3,....1,n] By |[3,4,...,1,9]

Ap—i|ln—1,1,...,n =2, n]||Bp-1|[n,1,...,n—2,n — 1]
Ay, |[1,2,...,n—1,n] B, |[1,2,...,n—1,n]

After the first iteration of the main loop, n — 1 real men are engaged and 1 real
man remains free. This implies that F» will include n — 1 fake men. In the next
n? — 2n + 2 iterations, one real man will get engaged and another will become
free. In other words, for 2 < k < n? — 2n + 2, only one real man will propose
in each iteration and all the other proposals are made by fake men. Thus, §2(n?)
iterations of the main loop is necessary to reach a stable matching.

B A generalization of Section 5 to multiple pairs of MAs

We briefly describe a simple way of generalizing the protocol for the case of
two matching authorities to a communication network with an arbitrary number
of pairs of authorities.

Setting. We will have ¢ = 2t/ MAs. The MAs are paired up such that there
are t’ pairs. Each participant (man or woman) is assigned to exactly one pair of
MAs. This assignment can be chosen by the participants, by the MAs, or can
be a predetermined assignment. A participant sends shares of his/her preference
list to the pair to whom he/she is assigned, and no others. We assume that the
assignments are publicly revealed, or are at least known to all the MAs.

The data structures A[][|, B[][], E[], P[] are split between the pairs such
that each pair only holds shares of the portion of each data structure correspond-
ing to the participants assigned to him. The exception is the free man in F. The
index of this free man is shared between the ¢t MAs, so that each MA has a share.
Hence, we have two different types of sharing: one between a pair of MAs, and
one between all £ MAs. We can use XOR sharing for both cases. We also add
special dummy locations to each data structure. For instance, we add the dummy
row A[2n + 2|[| to matrix A. Similarly, we add B[2n + 2][|, E[2n + 2], and
P[2n + 2] as dummy locations. The value stored in these dummy locations is 0,
and will stay O throughout the protocol.

Secure Implementation. Consider the algorithm described in Section 5. We
will show how to perform the steps of this algorithm securely, using a commu-
nication network made of ¢’ pairs of MAs:

In Step 1, each MAs removes her share of the element ¢ in Fj,. MAs securely
compute a multiparty circuit that takes the ¢ shares of ¢ as input and computes

the ¢ shares as the output. The circuit returns shares of the value (2n + 2) for
t' — 1 pairs of MAs, and returns shares of the adjusted index! of i for the two
MAs who were assigned the man A;. A similar circuit protocol is run at the end
of steps 2—4 and 8, to return shares of the adjusted index for the following step.

In steps 2-5 and 8, each pair of MAs will try to read from their portion of
the data structure using the shares of the adjusted index they received as part of a
multiparty circuit protocol. Only one pair will return shares of the actual value,
while all the other pairs will return shares of 0 (which they obliviously read from
a dummy location). This requires O(polylog(n)) communication between each
pair of MAs using the private table read protocol, leading to a communication
complexity of O(tpolylog(n)).

In steps 7 and 9, each pair will try to write to their local data structure. Only
one pair will write a correct value to its actual location. All other pairs will
write 0, to a dummy location. Similar to the read operation, this also requires
O(tpolylog(n)) communication.

In step 6 and 9, the ¢ MAs need to jointly compute a circuit on their inputs.

All the circuits computed throughout the protocol have size O(tpolylog(n))
gates. We can use the techniques of [2] (a generalization of Yao’s garbled circuit
to the multiparty setting) to implement these circuits securely. This requires
O(t*polylog(n)) communication for each circuit implemented, and leads to a
total communication complexity of O(t?n?polylog(n)) among the MAs for the
whole protocol.

We do not study the adversarial structure for this communication network,
but would like mention that this generalization has the following advantages
over the 2-MA case. (1) The computation is now distributed among the t MAs
instead of only 2 MAs and (2) even if a pair of MAs collude, they only learn a
portion of private data as opposed to all of it.

We claim that there may be many practical situations where a participant
trusts at least 1 MA. Consider the application of matching medical residents
and hospitals. Many universities have non-disclosure policies for their students’
private records. Medical students might, then, be able to absolutely trust their
campus matching authority with secrets, but have no reason to trust the matching
authority representing the hospitals, the other medical schools, or some outside
party. Thus, a model where a participant is able to consistently pairwise-share
her inputs with an MA she trusts is very useful, especially when it means work
and communication savings.

! The reason for adjusting the index is that each pair only holds portions of the data structure.
Note that it is publicly known which portion each pair is holding.

