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Abstract. In the CT-track of the 2006 RSA conference, a new multi-
variate public key cryptosystem, which is called the Medium Field Equa-
tion (MFE) multivariate public key cryptosystem, is proposed by Wang,
Yang, Hu and Lai. We use the second order linearization equation attack
method by Patarin to break MFE. Given a ciphertext, we can derive the
plaintext within 22® Fy16-operations, after performing once for any public
key a computation of complexity less than 2°2. We also propose a high
order linearization equation (HOLE) attack on multivariate public key
cryptosystems, which is a further generalization of the (first and second
order) linearization equation (LE). This method can be used to attack
extensions of the current MFE.
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1 Introduction

For the last three decades, public key cryptosystems, as a revolutionary break-
through in cryptography, have developed into an indispensable element of our
modern communication system. For RSA and other number theory based cryp-
tosystems, their security depends on the assumption about the difficulty of cer-
tain number theory problems, such as the Integer Prime Factorization Problem
or the Discrete Logarithm Problem. However, due to the quantum computer at-
tack by Shor [Sho99] and the demand for more efficient cryptosystems for small
devices, there is a great challenge to build new public key cryptosystems, in
particular ones that could survive future attacks utilizing quantum computers
PQ).

One such research direction utilizes a set of multivariate polynomials over a
finite field, in particular, quadratic polynomials, as the public key of the cipher,
which are called multivariate public key cryptosystems (MPKC). This method
is based on the proven theorem that solving a set of multivariate quadratic poly-
nomial equations over a finite field generally is an NP-complete problem. Note,



however, this does not guarantee that these new cryptosystems are secure. In the
last decade, there has been tremendous amount of work devoted to this area. In
2004, one such cryptosystem, Sflash [ACDGO03] [PCGO01la], was accepted as one
of the final selections in the New European Schemes for Signatures, Integrity,
and Encryption: IST-1999-12324. A more efficient family of Rainbow signature
schemes was also proposed last year [DS05] [YCO05] [WHLCYO05].

In the development of MPKC, one particular interesting and important new
area is the development of the so-called algebraic attack. This new attack method
started from the linearization equation (LE) attack by Patarin [Pat95], which
is used to break Matsumoto-Imai cryptosystems. A linearization equation is an
equation in the form )" a;ju;v; + > bju; + > ¢jv; +d = 0, where the u; are
components of the plaintext and the v; are components of the ciphertext.

Later, Patarin, Courtois, Shamir, and Kipnis generalized this method by
multiplying high order terms wui---u%" of the plaintext variables but using
only linear terms of ciphertext variables (v;), which is called the XL method
[CKPS00]. The method is closely related to the new Grébuner basis method by
Faugere [Fau99] [AFIKS04]. Furthermore, this new algebraic method was used
to attack symmetric ciphers like AES and others [CPi02]. One can see that
algebraic attacks are becoming increasingly important in cryptography.

Another generalization of LE also by Patarin [Pat96] [PCGO01la] [C00], which
is not as well-known, is the type of equations in the form:

Z QjjkUVVE + Z bijuivj + Z Ciu; + Z djk'Uj'Uk + Z €;5V5 + f =0.

As a further extension, we propose to call the equations that use high order
terms of the ciphertext variables (v;) while using only linear terms of plaintext
variables (u;), high order linearization equations (HOLE). The total degree of the
highest order of the ciphertext variables (v;) is called the order of the HOLE and
the equation above is thus called a second order linearization equation (SOLE).
For any MPKC, if we can derive such equations, then for any given ciphertext,
we can insert it into the HOLESs, producing linear equations satisfied by the
plaintext and these equations can be used to attack the system.

It turns out that the SOLEs can be used efficiently to break the Medium
Field Equation (MFE) multivariate public key cryptosystem proposed by Wang,
Yang, Hu and Lai in the CT-track of the 2006 RSA conference [WYHO06].

MFE is an encryption scheme. Many encryption schemes of MPKC have
been proposed, and many of them have been broken, for example, the TTM
cryptosystem family [Moh99] [GC00] [CMO01] [DS03a] [DS03b] [MCY04]. A very
different direction goes along the idea started by Matsumoto and Imai [MISS],
which can be generally called the ”Big Field” idea.

Given a multivariate public key cryptosystem, the public key is defined as a
map over the vector space K", where K is a small finite field with ¢ elements.
However from the theory of finite fields, K™ can also be identified with a ”big”
finite field E, which is a degree n extension of K. That is, there is a standard
K-linear vector space isomorphism that identifies E with K". The idea of the
”Big Field” is that we can find a map, say ¢9, that is easy to invert on E. Under



the isomorphism we can build a map (52: K" — K" as:

(52(’“15 ,’Lbn) = (gl(ula ---;un); e agn(ula axn))

Then we use ¢; and ¢3, two randomly chosen invertible affine linear maps over
K" which are the key part of the private key to "hide” ¢2. The public key is
given by }
P2(ut, .. un) = P30 2 0 P11, ..., Un)
= (h1(ury .oy un), ho(ur, oo up), -+ 5 hn(u, ..y up)).

The Matsumoto-Imai (MI) cryptosystem was broken by Patarin [Pat95],
and later Patarin developed the HFE cryptosystem [Pat96]. The only differ-
ence between HFE and the MI is that they choose different ¢o. Currently the
more promising cryptosystems are new variants of the MI and the HFE through
Oil-Vinegar constructions and internal perturbations [Din04a] [FGS05] [DGO5]
[DS04a]. The idea to put several ”big fields” together to build a cryptosystem is
also used [MI88] [Pat96]. The new MFE cryptosystem [WYHO06] uses what the
designers call "Medium Field Encryption”. The non-linear critical part of the
public key is a function over an extension of the base field K of degree smaller
than what would be called the ”big field”. Another key difference between MFE
and HFE is that MFE uses functions derived from a matrix structure while the
MI and the HFE use only polynomials of a single variable.

In the attack on MFE, we first use second order linearization equations
(SOLEs), which we derive from the special algebraic structure of the crucial
nonlinear map in MFE. This is the most essential step in our attack. Any given
ciphertext can be inserted into the SOLEs to produce a set of equations linear in
the plaintext variables. Solutions to these equations are finally plugged back into
the original public key polynomial equations, providing a set of new quadratic
equations that could be easily solved. The complexity of our break is less than
252 one-time computations over K for any given public key, and the practical
complexity of recovering a ciphertext is less than 223 K-operations.

The current MFE is based on matrices of size 2 x 2 and one may extend it
to a construction using matrices of bigger size. The HOLEs of higher order can
be extended to attack such an extension of the current MFE and the order of
HOLE corresponds exactly to the size of the matrices.

We organize the paper as follows. We introduce the MFE cryptosystem in
Section 2, and present our attack in Section 3. In Section 4, we discuss the
connection of HOLE with the XL method. In the final section, we present the
conclusion.

2 MFE Public Key Cryptosystem

Let K be a finite field, generally Fois. Let L be its degree r extension field; L is
considered the "Medium Field”. In MFE, we always identify L with K" by a K-
linear isomorphism 7 : L. — K". Namely we take a basis of L over K, {6y, --- , 6.},
and define 7 by 7(a161 + -+ + a.0,) = (a1, ,a,) for any a,---,a, € K. It



is natural to extend 7 to two K-linear isomorphisms m; : L2 — K!2" and
my : L% — K7,

A private key of MFE consists of two invertible affine transformations ¢; and
¢3; and ¢ is defined on K'?", and ¢3 on K'®". Let ¢ : L.'2 — LL!° be the central
nonlinear quadratic map of MFE. Note ¢ is fixed except for the three compo-
nents @1, @2, and @3, which have randomly chosen coefficients. The correspond-
ing public key is 157 quadratic polynomials hq(u1, ..., u12,), ho(u1, ..., u12s), - - -,
and hys.(uq, ..., u12,) given by

(R1(wty ooy ur2e)s -+ 5 Raspr(Ut, ooy ur2,)) = @p30ma0Po0my 0 d1 (Uty -ovy ur2y). (1)

Let ¢o(X7, -, X12) = (Y1, -+, Y15). The expressions of the Y; are given by

Y1 = X1 + X5Xs + X6 X7 + Q1;

Yo = Xo 4+ XoX12 + X10X11 + Q2;

Y3 = X3+ X1 Xy + Xo X3+ Qs;

}/4 :X1X5+X2X7; }/5 :X1X6+X2X8;

Ys = X3X5 + XuX7; Yy = X3X6 + Xy X5; (2)
Y = X1 Xo + XoXi1; Yy = X1 X10 + X2 X195

Yio = X3X9 + X4 X11; Y11 = X3Xq0 + Xy Xi2;

}/12 = X5X9 + X7X11; }/13 = X5X10 + X7X12;

Yia = XeXo + X Xi1; Y15 = XeX10 + XgXi2.

Here @1, Q2, and Q3 form a triple (Q1, Q2, Q3) which is a triangular map from
K37 to itself as follows. Let m(X1) = (21, -, 2y), T(X2) = (Tyg1,-,T2p),
m(X3) = (x2r41, -+, T3r), and let ¢; € Klzq, -+, 2;-1] for 2 < i < 3r. Then

Qi1(X1) = qi(zr, -+ ,xi—1)b;,
i=

2r
Q2(X1,X2) = > qi(wr,- -, 2-1)0s,

i=r+1
3r
Q3(X1, X2, X3) = > qi(wr, -+, xi-1)b;.
i=2r1

The ¢; can be any randomly chosen quadratic polynomials. A specific ”tower”-
structural choice for them is given in §5 of [WYHO6].

The encryption of MFE is the evaluation of public key polynomials, namely
given a plaintext (uy, -+ ,u12,.), its ciphertext is

(1, v15r) = (Ra(ur, - - s wi2r), - - hase(ur, - - - ur2)).

Given a valid ciphertext (v, ---,v15.), the decryption of MFE is to calcu-
late in turn (;5;1 om0 (;551 o wgl o ¢>§1(vl, -+ ,v15-). Here the point is how to
invert ¢o, its basic idea is to use the triangular structure of ¢,. Relating to our
cryptanalysis, the method of computing ¢5 Lis listed as follows, see §4.2 and
Appendix B of [WYHO06].



Write Xy, -+, X12,Y4, -+, Y15 as six 2 X 2 matrices:

(Y4 Y5 Ys Yy
Zs = MiMs = Y6Y7>’Z2_M1M3_ Yio Vi1 (3)
Y, Y;
zo= v = (1240

Then
det (M) - det(My) = det(Zs),
det (M) - det(M3) = det(Zy),
det(Mg) . det(Mg) = det(Zl)

When M, Ms, and M3 are all invertible, we can get values of det(M7), det(Ma),
and det(Ms) from det(Z1), det(Zz), and det(Z3), for instance, det(M;) = (det(Z2)-

det(Z3)/ det(Zl))l/ ?. The square root operation is easy to handle over a field of
characteristic 2.

With values of det(My), det(Mz), and det(Ms), we solve the following trian-
gular map over K37

Y1 = X1 4+ Q1 + det(My)
Yo =Xo+ Q2+ det(Mg) (4)
Y3 = X3 + Q3 + det(M;)

to get in turn =1, , Ty, Tpi1, -, Top, Topp1, -+, and xz,. Thus, we recover
X1, X, and X3. From X7 X4+ X5 X35 = det(M;) we then get X, provided X; # 0.
The X5, -, X12 are consequently solved from the 4th to 11th equations of (2).
Appendix B of [WYHO06] presents the method of computing the X; in the case
when X; = 0. It is slightly easier than the case of X7 # 0.

If there is a non-invertible matrix among M;, Ms, and Ms, then the de-
cryption mentioned above will not work. This decryption failure exists in MFE
[WYHO06]. We call a plaintext singular if its corresponding M;, My, and Ms
are not all invertible, otherwise it is called nonsingular. The ciphertext of a
nonsingular plaintext is called a nonsingular ciphertext.

It is easy to prove that the ratio of singular plaintexts to all possible plaintexts
is at most 4|L|!; when L = Fye4, the ratio is at most 2792, which is quite small.
In the next section we only consider how to recover nonsingular ciphertext.

There are two typical instances of MFE proposed by the designers of MFE.

1) MFE-1, where K = Fa1s and r = 4. The public key has 60 polynomials
with 48 variables.

2) MFE-1’, where K = Fa16 and 7 = 5. The public key has 75 polynomials
and 60 variables.

There is also a mini-version of MFE (MFE-0) using K = Fgs and r = 4,
which has the same number of polynomials and variables as MFE-1.



3 Cryptanalysis on MFE

The designers of MFE noted they should avoid the linearization attack of Patarin
(86.2 of [WYHO6]), and this is indeed the case. In the design of MFE, the last
equations of (3) in MFE are defined such that Z; = MJ M;s (see (3)), not
Zl = M2M3. Otherwise we would have ZgMg = M1Z1 (: MlMQMg); this
would have produced linearization equations for the cryptosystem. However we
can use the HOLE, in particular the SOLE, to attack this cryptosystem.

3.1 Second Order Linearization Equations

First, we will show algebraically why the MFE has second order linearization
equations. Denote by M* the associated matrix of a square matrix; for M =

(CCL 2), its associated matrix is M* = ( d _b>. From (3), we have

—c a
Zs = My Ms,  Zy = M;Ms. (5)
From these, we can derive
Ms M3 M7 My My = M3(MyMs)* (M M) = M3Z3 Zs,

MgMng*MlMQ = (MgM;)(MlMl*)MQ = det(Mg)det(Ml)Mg = det(ZQ)MQ,
and hence,
MgZSZg = det(ZQ)MQ, (6)
that is,

X9 X0 Yin Yo\ (YaY5 X5 Xe
= (YsY11 — YoY] . 7
(Xll X12> (—Ylo Ys ) (Yﬁ Y7> (¥s¥11 — ¥o¥1o) (X7X8> @

From this matrix equation, we get four equations on its entries, which are of the
form

> di XYY =0 (8)

and hold for any corresponding pair (X1, -+, X192, Y1, -, Y15). For any nonsin-
gular plaintext, if we substitute all the Y; by its corresponding value in the four
equations of the form (8) derived from (7), we would get four linear equations
with X; as its unknowns. These four equations are linearly independent, since

the matrices ( Yu _Y9> and (Y4 Y5> are invertible.

—Yio Y3 Ye Y7
Substituting (Xl,"' ,X12) = 7T171 @) ¢1(u1,--~ ,’UJ12T) and (}/1, ,}/15) =
7y o gy (v1, -, v1s,) into (8), we get 4r equations of the form

Zui Z Q;5kV;Vk + Z bij’Uj +ci | + Z djk’Uj’Uk + Z e;v; + f =0, (9)

J<k J J<k J



where the coefficients a;;x, bij, ¢, djk, €5, f € K, and the summations are respec-

tively over 1 < ¢ < 12r, 1 < j <k < 157, and 1 < j < 15r. These equations,

which are linear in plaintext components u; and quadratic in ciphertext compo-

nents v;, are second order linearization equations (SOLEs). It is easy to

show that when all the v; are substituted by any nonsingular ciphertext, the 4r

SOLEs derived from (9) become linearly independent linear equations in u;.
Similarly to (6), we can deduce from (5) another equation

MQZ§ZQ = det(Zg)Mg, (10)

or in its matrix form,

X5 X¢ Y7 =Y Ys Yy X9 Xio
(X7X8> (_YG Y, ) (Ylo Yn) = (Yal7 — ¥5¥5) (Xll X12>' (11)
The 4r SOLEs resulted from (11) are clearly different from the ones correspond-
ing to (9). Furthermore, we can show that the 8 SOLEs obtained from (9) and
(11) are all linearly independent. However, we note that when the v; in these
8r SOLEs derived from (7) and (11) are assigned any nonsingular ciphertext,
we will get only 4r linearly independent linear equations in u;. In other words,
once the values of v; are given, as linear equations in X;, (10) is completely
equivalent to (6), and one can deduce (10) directly from (6) and vice versa. One
can see this by the fact that multiplying from the right the both sides of (6)
by Z5Zs/det(Z3) (this is a constant invertible matrix if the y; values are given)
gives (10).
Now, it is obvious that there are more SOLEs. We apply the above trick that
results (6) and (10) from (5) to obtain

My(27)* 28 = det(Z0) MY, (12)

M{ (Z3)*Z{ = det(Z2) Mz, (13)
from Zy = M1 M3 and Z; = M2TM3. We can also obtain

M (Z3)*Zy = det(Zs) Ms, (14)

Ms(Z1)* Z5 = det(Z1) MY, (15)

from Z3 = MMy and Z; = M2TM3. It is not hard to check that the polynomial
equations derived from (6), (10), and (12)-(15) in terms of X; and Y; are all
linearly independent. Thus, we get at least 24r linearly independent SOLEs in
u; and v; over K.

To find all SOLEs, we need to evaluate sufficiently many plain/cipher-texts

in (9) to get a system of linear equations on the a;j, b;j,-- -, f. Let s be the
dimension of its solution space and (al(-j-)k,bl(-?, o fO), 1 <1< s, beits s

linearly independent solutions. As mentioned above, we know s > 24r. For attack
purposes, we only need to do the computation to get all the SOLEs once for any
given public key.



Similarly to the relation between (6) and (10), as linear equations in X;, (12)
is equivalent to (13), and (14) is equivalent to (15) provided that the Y; are
assigned a nonsingular ciphertext value.

In addition, we can show that if we are given the values of v; of a nonsingular
ciphertext, from the 24r linearly independent SOLEs we derived above, we will
produce only 87 linearly independent linear equations in u;. Write (12) in its
matrix form:

X5 Xe Yis —Yia\ [ Ys Yio X1 X3
— (YiaVis — Vi3Y . (16
(X7X8> (—Ylg vie ) \Yory, ) =Y~ (k). (10
which results in 4r SOLEs. Given the values of Y; of a nonsingular ciphertext,
the eight linear equations in X; derived from (16) and (7) are linearly inde-

pendent, because the coefficient matrix corresponding to the set of eight linear
equations, with the four equations from (16) as the first four ones, is in the form

(é ; 2) , where each row is scaled by a factor YgY1; — YgYig or Y12Y15 — Yi3Y14

correspondingly, and I and 0 are respectively the identity matrix and the zero
matrix of order 4. This matrix is clearly of rank 8. This shows that the s’ in-
troduced in the next subsection is at least 8r. The reason that the other SOLEs
will not produce any new linear equations on u; for any given values of v; of a
nonsingular ciphertext is that when the Y; are assigned a nonsingular value, (14)
can be easily deduced from (6) and (12).

3.2 Ciphertext-only Attack

Now assume we have found a basis of the linear space of all SOLEs. Given a
ciphertext (v, -, v]5,), our aim is to recover its plaintext (u],- -, u}qg,).
We plug the values of ciphertext (v{,---,v}s,) into the basis SOLEs:

S u; (Z al(-j-)kv;-v; +> bl(-j-)v;- + cl(-l)> + > d;lzv;v; +> eg-l)v;- +fW =0

i i<k j i<k j

1<i<s

(17)

giving us a linear system on w1, - - - , 12, Assume it has s’ linearly independent
solutions. From the previous subsection, we know 8r < s’ < 12r. We can repre-
sent s’ of the variables u, - - - , uj2, by linear affine expressions of the remaining
t:=12r — s'. Let wy, -+, w; be these t variables.

Substitute these s’ linear expressions into the original public key polynomi-
als to get 157 new quadratic polynomials E(wl, ey W), B;(wl, ey W), -+, and
h15r(w1, ceey wt).

Let S be the solution space of (17). Let Y; and Z] be components and matrices
corresponding to the given (v}, -, v}5,), namely

(}/I/a T a}/I/5) = ng O¢§1(U/1a T av/15r)a



Y, Y! Y! YS Y/, Y/

;o 4 15 ;o g Y9 ’_ 12 Y13

7= (vivi) 2= (v ) 7= (V)

We have found a basis of all SOLEs and each SOLE is a linear combination of

this basis. This fact holds when the variables v; in the equations are substituted
by v}. Applying this fact to (7), we know the four resulting equations in u; from

M;(2Z)" - 2 = det(Z3) My (18)

are all linear combinations of the equations in (17). In other words, (18) holds
on S. Let Pos = det(Z5) ((Z5)* - Zé)fl; then Mz = MyPs3. Psg is a constant
matrix dependent only on the ciphertext.

Now we have that MJ Mz = Z; always holds on K'2"; therefore, we have
that Mg,,TMg = MgMQPQB = le23 holds on S. That iS,

X2+ X4 XogXio+ X11X12) [ Y12 Vi3 p (19)

XoXi0+ X11X12 X+ X% T \YuuYis)
holds on S. Comparing the diagonal entries of the matrices in both sides of (19),
we find X2 + X7 and X%, + X, are linear combinations of the Y;. Applying
¢1 and ¢3 to these combinations and utilizing the fact that squaring is a lin-
ear operation on a field of characteristic 2, we have, on S, the 2r expressions
corresponding to XZ + X3 and X3, + X%, are of the form  afu? 4+ b and K-
linear combinations of h,l (ul, ceey ’UJ12T), hg(ul, ceey ’UJ12T), ey h15r(u1, ceny ’UJ12T) and
1 (constant).

Thus, of linear combinations of E(wl, s W)yt @(wl, ...;wy) and 1, there
must exist 2r which contain only squaring terms and a constant term and cor-
respond to X& + X7, and X7, + X%.

It is easy to solve the following linear system on the a; and bNJ

150 t -
Z c@hi(wl, ...,wt) + Z bJ’LUJ2 +E: 0
i=1 Jj=1 (20)

Ywy, ..., w; € K

Essentially, this is to solve a linear equation system whose coefficients are the
coefficients of the cross-terms and linear terms of the h;(ws, ..., wy).

~ (1 ~(
Let (EL](Z), e ,a15r(l),b1( ), e ,bt( )), 1 <1 < p, be a basis of the solutions
of (20). Set

t )\ 2 1 1/2
JZ(J’ ) wr (Bature) <o (21)
[<p

=1
1<

(=)

<

For each (uy,...,u12,) € S, its corresponding (ws, ..., w;) satisfies (21). From
(21) we can represent p of the variables wq, ..., w; by the remaining ¢ — p linearly.
Totally, 8" + p components of the plaintext vector (uf,...,u),,.) are represented
linearly by the remaining 12r — s’ — p.



Note that we surely have s’ +p > 10r, since the matrix of the coefficients on
X1, Xa,- -+, X1 of ten expansions in (16), (7), (X2 +X#)'/?, and (X7,+X3)"/?
Ix0
is | 07 %= |, where A= ((1)(1)(1)(1)
004
other words, solving two systems (17) and (21) eliminates at least 107 variables
of the plaintext components. If p = 0, i.e., there is no nonzero linear combination
of the hi(wy, ..., w;) being of the form Y a‘w? + b’, then we must have s’ > 10r
and after the first elimination (i.e., via (17)), the expressions corresponding to
X2+ X% and X7, + X3, are constants.

), and the matrix is obviously of rank 10. In

3.3 Finding the Plaintext

We substitute these linear expressions that result from solving (21), into E(wl, ey W)y e

@(wl, ..., w¢) to get 157 new quadratic polynomials on 127 —s’ —p (< 2r) vari-
ables. Denote them by E, cee 51—5: Since 12r —s’' —p is very small (at most 8 and
10 for MFE-1 and MFE-1’, respectively), in principle, we can use the Grobner
basis method to solve the system

hi=v,, Vi=1,---,15r (22)
very easily to find the plaintext finally.

However, we know here that we start from 157 equations; therefore we expect
to get many more than 2r (the number of variables) equations. This means we can
solve it easily, for example, using the XL method [CKPS00]. In our experiments,
this set of equations does turn out to be very easy to solve.

3.4 A Practical Attack Procedure, Its Complexity and Experimental
Verification

Our attack can be divided into the following four steps:

Step 1 of the attack: Find a basis of the linear space of the coefficient
vectors (aijk, bij, -+ -, f) of all SOLEs.

As mentioned in §3.1, this is solving a system of linear equations obtained by
evaluating sufficiently many plain/cipher-texts in (9). There are (**77) (**7%?)

1 2
monomials of the form uf‘vaz on u; and v; (a, 8,7 = 0 or 1). This number is

92659 and 178486 for » = 4 and 5, respectively, and is somewhat large. Choosing
a number of plain/cipher-text pairs slightly more than the number of unknowns,
say 1000, we can completely find the solution space in general. The complexity is

respectively 926593 < 259 and 178486 < 252 using a naive Gaussian elimination.
This step is an one-time computation for any given public key. Let (al(.j.)k, bl(-j-),
e ,f(l)), 1 <1 < s, be a basis of the equation system.
Step 2 of the attack: Given a valid ciphertext (vi,-- -, vs,), we plug it into
(17) and solve the system of linear equations to obtain linear expressions of the

remaining 12r — s’ in terms of the other s’ variables of the plaintext components.

10



The complexity of this step is 15rs? < (157)3, and is less than 219.

Substitute these linear expressions into the original public key polynomials
to get new quadratic polynomials E(wl, vy W), -+, and @(wl, ey W)

Step 3 of the attack: Solve the system (20) and obtain its solution basis

~ (1 ~(
(dvl(l), e ,a15T(l),b1( ), e ,bt( )), 1 <1 < p. Then solve the system (21) to find

expression of the p components of the plaintext by the remaining 12r — s’ — p
linearly.

The complexity of solving (20) is (157 +¢)3 < (30r)3 < 222, and that for (21)
is pt? < (157)% < 219,

Step 4 of the attack: Derive new public key polynomials (a, e ,h:;)
from the solutions of (21), solve the system (22) and finally obtain the value of p
components of the plaintext by using a Grobner base or a linearization method.
Then we use the linear expressions on the remaining plaintext components de-
rived in in steps 2 and 3 to find the eliminated components.

Therefore the total attack complexity is less than 2°2. The complexity of the
attack recovering the plaintext (steps 2, 3 and 4) is less than 223,

3.5 Experimental Results

We chose 10 different pairs of ¢; and ¢3 and, for each of them, we chose 1000
different valid ciphertext for experiments. For all these ciphertexts, the attack
successively found their corresponding plaintexts.

The time-consuming step of our attack is the first step. In our experiments
for MFE-1, we randomly selected 92800 plain/cipher-text pairs and substituted
them into the public key. Then the main task is a Gaussian elimination on a
93800 x 92659 matrix on Fyis. For MFE-1/, we have to perform a Gaussian
elimination on a 179600 x 178486 matrix. The time to do this Gaussian elim-
ination will be rather long on a normal PC (more than one year according
to our estimate). Instead, we performed our experiment on a DELL PowerEdge
7250, a minicomputer equipped with 4 Itanium2 CPU, 32GB ECC fully buffered
DIMM memory, and a 64-bit Windows Server2003 operating system. We coded
the attack using VC++, and used a multiple thread technique and a trick on
multiplication on Fs16 to speed up the Gaussian elimination.

It turns out that, in our experiments, 257 hours and 6 minutes (10 days and
17 hours and 6 minutes) was needed for the first step, which is an one-time
computation, for any given public key of MFE-1. Only about 2 seconds were
needed to execute the remaining steps. For MFE-1’, the time is 77 days and 3
seconds for the first step of the attack correspondingly.

Our computer experiments confirm that the dimension of SOLE is exactly
24r (step 1) and ¢’ is indeed 8r and p is 2r (step 3) for both MFE-1 and MFE-
1. Moreover, given a public key, in 1000 experimental samples of ciphertexts
we have chosen, we find that after step 3, the number of linearly independent
quadratic equations are actually 20 for MFE-1 and 25 for MFE-1'. We solve
them by finding a set of 2r linearly independent linear equations inside the
space spanned by these equations. It took almost no time.
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3.6 Extension of MFE and High Order Linearization Attack

The construction of MFE relies on the multiplicative structure of 2 x 2 matrices
and it is not difficult to see that one can extend this construction in a straight-
forward way by using matrices of larger sizes m x m, for example, 3 x 3 or 4 x 4,
to build new MFE cryptosystems. For any such an construction using matrix of
m X m, it is not difficult to see that the m-th order LE can be applied to attack
the cryptosystem. The fundamental reason behind is the formula that for any
matrix @ of size m x m, we know that

- 1
~ det(Q)

where Q* is the associated matrix of Q). In terms of algebraic formulas for det(Q)
and Q*, we know that det(Q) can be expressed as a degree m polynomial of the
components @;; of @ and each component of Q* can be expressed in terms
of a degree (m — 1) polynomial of the components Q;; of Q. With this and the
formulas (6) and (10) and other similar formulas, we can see that, for such a case,
the order m linearization equations exists and they can be used to attack such a
system. Therefore the current design of MFE needs to increase m substantially
to avoid such an attack.

Q™! Q"

4  The Connection of HOLE with XL

One important point we want to make is that the HOLE method is closely
related to the XL method [CKPS00]. In particular one may also explore the pos-
sibility of combining these two algebraic methods together to develop additional
techniques.

Assume we are given a system of equations f;(uy, -, u,) =0}, 1 <i<m.
Let U = (uy,- -+ ,un) and g;(U) = f;(U)—wv,. For any nonnegative integral vector
a = (a1, ,ay), denote uyt -+ u2» by U®. Similarly, for 8 = (81, , Bm),
denote fI* ... ffm by FP and g7 - .. gBm by GP.

A variant of the XL method first translates the equation system above into
another system of equations of the form 3 a,;U%g;(U) = 0, where 1 < 4 <
m and « are nonnegative integral vectors with small component sum (upper-
bounded by some small integer D). Then define all terms U*U? as new unknowns
and solve the resulting linear equation system.

On the other hand, the HOLE method attempts to solve a system of equations
of the form ) aiﬁuiGﬁ =0, where 1 < i < n and § are chosen small vectors.

.0
Since the f;(U) are equivalent to the g;(U) under affine transformations, the
above system is equivalent to the form Y b; gu; F? = 0. Our attack presented
.0
in the previous section actually finds identical equations with the form above,

and hence we can substitute F¥ by v/lﬁ L.y and get a linear system that the

plaintext satisfies.
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As a comparison, we find that if a HOLE with order D could be used to
successfully attack a system by finding linear equations, then one should expect
that the XL method should work as well. But the order of XL should be of degree
2D — 1 (the total degree is 2D + 1), because the v; in general are of degree 2.
From this consideration, we conclude that though HOLE definitely cannot be a
replacement for the XL method. Yet there could be cases that the HOLE method
would be much more efficient than XL. In one case we consider polynomials of
degree D+1 (HOLE), while in the other case, we consider polynomials of degree
2D +1 (XL). Another critical point is that when we use the HOLE method, the
computation of HOLEs is performed only once for a given public key, then the
HOLES are used for any ciphertext; while the general XL algorithm needs to run
its main part each time for different values of ciphertext. Thus one should think
HOLE as a possibly more efficient alternative to XL, if it can work; and there
would be cases that HOLE can work practically while the XL cannot.

More importantly, one may consider unifying the XL and HOLE methods.
We may expect to efficiently solve the system of equations of the form:

%aa’ﬁUQGﬁ = O (23)

From the point view of algebraic geometry, this definitely makes sense. But
at this moment, we have not yet found any example where such a method could
indeed be more efficient in an attack. Furthermore, one can expect that this
method may be useful to attack other cryptosystems, such as symmetric ciphers.

5 Conclusion

In this paper, we use an extension of the linearization equation attack method of
Patarin, which we call the high order linearization equation method, to break the
MFE multivariate public key cryptosystem in CT-RSA 2006. This shows that
the high order linearization equation method is indeed an important algebraic
attack method. For any multivariate public key cryptosystem, one should take
into account this new method.
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