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Abstract
Since early 1990s, chaos has been widely investigated to construct multime-

dia encryption scheme for its good cryptography-like characteristics, such as the
ergodicity, mixing and exactness property and the sensitivity to initial conditions.
This thesis is concerned with the cryptanalyses of some recently-proposed chaos
related multimedia encryption schemes. The security of the schemes against some
familiar attack methods, such as brute-force attack, known/chosen-plaintext at-
tack, is investigated in detail with theoretical analyses and experimental results.
The main achievements are as follows:

1. Based on a normalized encryption/decryption model, from a general per-
spective this thesis analyzes the security of permutation-only multimedia ci-
phers. It is pointed out that all permutation-only image ciphers are insecure
against known/chosen-plaintext attacks in the sense that only O (logL(MN))
known/chosen plain-images are enough to break the ciphers, where MN is
the size of the image and L is the number of all possible different pixel val-
ues. Also, it is found that the attack complexity is only O(n ·(MN)2), where
n is the number of known/chosen plain-images used. A recently proposed
permutation-only image cipher called hierarchical chaotic image encryption
(HCIE) is served as a concretized example to show how the attack work. Ex-
periments are shown to verify the feasibility of the known/chosen-plaintext
attacks.

2. The security of a recently proposed chaos-based image encryption scheme
called RCES (also called RSES) was analyzed and we found that it can
be broken with only one or two known/chosen-plaintexts. In addition, the
security of RCES against the brute-force attack was overestimated. Both
theoretical and experimental analyses are given to show the performance of
the suggested known/chosen-plaintext attacks.

3. This thesis analyzes the security of a new multistage encryption system
(MES) recently proposed in ISCAS’2004. It is found that MES is inse-
cure against a differential chosen-plaintext/ciphertext attack. Experiments
are given to support the proposed attack. It is also pointed out that the
security of MES against brute-force attacks is not sufficiently high.

4. This thesis analyzes the security of a new domino signal encryption algorithm
(DSEA), and points out the following weaknesses: 1) its security against the
brute-force attack was overestimated; 2) it is not sufficiently secure against
ciphertext-only attacks, and only one ciphertext is enough to get some in-
formation about the plaintext and to break the value of a sub-key; 3) it is

I



Abstract

insecure against known/chosen-plaintext attacks, in the sense that the se-
cret key can be recovered from a number of continuous bytes of only one
known/chosen plaintext and the corresponding ciphertext. Experimental
results are given to show the performance of the proposed attacks.

5. A comprehensive analysis on the security of two-dimensional circulation en-
cryption algorithm (TDCEA) is presented. The following security problems
are found: 1) there exist some essential security defects in TDCEA; 2) two
known-plaintext attacks can break TDCEA; 3) the chosen-plaintext versions
of the aforementioned two known-plaintext attacks can break TDCEA even
with a smaller complexity and a better performance. Some experiments
are given to show the security defects of TDCEA and the feasibility of the
proposed known-plaintext attacks.

6. The security of two neural-network-based encryption schemes, which are pro-
posed by Yen et al. and Zhou et al. respectively, are analyzed in detail. It
is found that the former can be easily broken by known/chosen-plaintext
attacks and the latter can be broken by a chosen-plaintext attack. Experi-
mental analyses are given to support the feasibility of the proposed attacks.

7. Some insecure properties of a VoIP encryption scheme named hierarchical
data security protection (HDSP) are pointed out, which are then used to
develop known/chosen-plaintext attacks. The following facts are found: 1)
given n known plaintexts, only about (50/2n)% of secret chaotic bits cannot
be uniquely determined; 2) given only one specially-chosen plaintext, all
secret chaotic bits can be uniquely derived; 3) the secret key can be derived
with a practically small complexity even when only one plaintext is known
(or chosen). Experiments are given to show the feasibility of the proposed
attacks. In addition, it is found that the security of HDSP against the brute-
force attack is not practically strong.

Keywords: chaos, cryptanalysis, multimedia encryption, brute-force attack,
known-plaintext attack, chosen-plaintext attack
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Chapter 1

Introduction

§1.1 Motivation

With the rapid development of multimedia and network technologies, the security
of multimedia becomes more and more important, since multimedia data are trans-
mitted over open networks more and more frequently. Typically, reliable security
in storage and transmission of digital speech data, images and videos is needed in
many real applications, such as pay-TV, medical imaging systems, military image
databases as well as confidential video conferences. In recent years, some consumer
electronic devices, such as mobile phones, have also started to provide the func-
tion of saving and exchanging digital speech/music data, images and video clips
under the support of multimedia messaging services over wireless networks, which
is urgently demand for multimedia security.

To meet the above needs in practice, some encryption algorithms are required
to offer a sufficient level of security for different multimedia applications. Appar-
ently, the simplest way to encrypt multimedia data is to consider the 1-D, 2-D
or 3-D) multimedia bit-stream as a 1-D signal, and then to encrypt it with any
available cipher [1, 2]. In some multimedia applications, such a simple way may be
enough. However, in many applications, especially when digital images and videos
are involved, encryption schemes considering special features of the multimedia
data, such as bulky size and large redundancy in uncompressed images/videos,
are still required to achieve a better overall performance and to make the integra-
tion of the encryption scheme into the whole processing procedure easier. Since
the 1990s, many different algorithms have been proposed to provide solutions to
image encryption [3–44], video encryption [45–62] and speech encryption [63–67].
Meanwhile, some cryptanalysis work has also been published and a number of
multimedia encryption schemes have been found to be insecure from the crypto-
graphical point of view [3, 13, 23, 66–81]. On the whole, the cryptanalytic work is
still not enough now compared with cryptographic one, which is the main reason
for publication of so much insecure encryption schemes.

Due to the tight relationship between chaos theory and cryptography, a great
number of multimedia encryption schemes use chaos as a mechanism to realize
secret permutations of digital images/frames [7, 11, 16–18, 21], or as a source
to generate pseudo-random bits to control secret encryption operations [24, 27–
44, 54]. As we well-known, cryptanalysis and cryptography are the two sides of
cryptology which promote each other mutually. To accelerate the development

1
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of designing secure multimedia ciphers, we choose choose the security analysis
(i.e., cryptanalysis) of some chaos related multimedia encryption schemes as the
research topic of this thesis.

§1.2 Preliminaries of Cryptography and Crypt-

analysis

To facilitate the following discussions, this section gives a brief introduction to the
basic theory of the modern cryptography and cryptanalysis, which compose the
technology of encryption — cryptology [1]. Simply speaking, cryptography studies
how to design good (secure and fast) encryption algorithms, and cryptanalysis
tries to find security weaknesses of existing algorithms and studies whether or not
they are vulnerable to some attacks.

An encryption/decryption system is also called a cipher, or a cryptosystem.
Accordingly, the encryption machine is called an encipher, and the decryption
machine is called a decipher. The message for encryption is called the plaintext,
and the encrypted message is called the ciphertext. Assuming that the plaintext
and the ciphertext are denoted by P and C, respectively, the encryption procedure
in a cipher can be described as C = EKe(P ), where Ke is the encryption key
and E(·) is the encryption function. Similarly, the decryption procedure is P =
DKd

(C), where Kd is the decryption key and D(·) is the decryption function.
When Ke = Kd, the cipher is called a private-key cipher or a symmetric cipher.
For private-key ciphers, the encryption-decryption key must be transmitted from
the sender to the receiver via a separate secret channel. When Ke 6= Kd, the cipher
is called a public-key cipher or an asymmetric cipher. For public-key ciphers, the
encryption key Ke is published, and the decryption key Kd is kept private, for
which no additional secret channel is needed for key transfer.
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Figure 1.1: The encryption and decryption procedures of a
cipher.

Following the widely-acknowledged Kerckhoffs’ principle in the cryptology
community [1], it is assumed that all details of the encryption/decryption algo-
rithms are known to attackers. This means that the security of a cipher relies on
the decryption key Kd only. Thus, the main task of cryptanalysis is to reconstruct

2



Master Thesis of Zhejiang University

the key, or its equivalent form that can successfully decrypt all or partial contents
of any plaintext encrypted by the cipher.

From the cryptographical point of view, a cryptographically strong cipher
should be secure enough against all kinds of attacks. For most ciphers, the follow-
ing four attacks corresponding to different scenarios should be checked (from the
hardest to the easiest):

• the ciphertext-only attack - attackers can only observe part of the ciphertexts;

• the known-plaintext attack - attackers can get some plaintexts and the cor-
responding ciphertexts;

• the chosen-plaintext attack - attackers can choose some plaintexts and get
the corresponding ciphertexts;

• the chosen-ciphertext attack - attackers can choose some ciphertexts and get
the corresponding plaintexts.

In the four kinds of attacks, ciphertext-only attack is the easiest and the
most common attack, due to the fact that the communication channel is generally
accessible for attackers. Known/chosen-plaintext attacks are possible when an
attacker can temporarily access the encryption machine, or he can successfully
guess the plaintexts or some segments. Chosen-ciphertext attack is possible when
an attacker can have a temporary access to the decryption machine. The last three
kinds of attacks, which seem to seldom occur in practice, are feasible in some real
applications [1, Sec. 1.1] and have become more and more common in the digital
world today. This thesis mainly focuses on known-plaintext and chosen-plaintext
attacks.

§1.3 Organization of This Thesis

The main contents of this thesis is divided into 6 chapters. Chapter 2 is about
cryptanalysis of permutation-only encryption algorithms. Chapter 3 discusses
cryptanalysis of four chaos-based schemes. Chapter 4 is about cryptanalysis of
two neural-network-based encryption schemes. Chapter 5 is about cryptanalysis
of a data security protection scheme for VoIP. Chapter 6 gives the conclusion and
future works. A relative detailed introduction of all chapters are as follows.

Chapter 2 focuses a general cryptanalysis of permutation-only multimedia
encryption algorithms with two typical examples. Based on a normalized encryp-
tion/decryption model, from a general perspective this chapter first provides a
quantitative security analysis of permutation-only image ciphers working in the

3
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spatial domain. Then two typical encryption algorithms, HCIE and TDCEA, are
presented to show how the attacks work. Finally, the cryptanalysis result is gen-
eralized to permutation-only image ciphers working in the frequency domain, as
well as video ciphers and speech ciphers.

Chapter 3 discusses how to break four chaos-based encryption schemes with
a similar method. Three schemes, RCES, MES and DSEA, are introduced first.
Then the special security properties of the three schemes are analyzed respectively.
The fourth scheme, TDCEA is also cryptanalyzed with a point of view different
from that used in Chap. 2. Both theoretical and experimental analyses are given
to show the performance of the proposed attacks.

Chapter 4 analyzes the security properties of two neural-network-based en-
cryption schemes in detail. At first, the two schemes, proposed by Yen et al. and
Zhou et al. respectively, are introduced briefly. Then the analysis shows that
the two schemes can be successfully broken with one known/chosen-plaintext at-
tack and two chosen-plaintexts attacks respectively. The theoretical analyses are
supported by the experimental results.

Chapter 5 shows a new hierarchical data security protection (HDSP) scheme
for VoIP technique is very weak against brute-force attack and known/chosen-
plaintext attacks. After the HDSP scheme is introduced, the detailed cryptanalysis
is given. It is found that the security against the brute-force attack is not prac-
tically strong, and that it can be broken with some known-plaintexts and/or one
chosen-plaintext, due to some insecure properties of HDSP. Experiments are given
to show the feasibility of the proposed attacks. Finally, some countermeasures are
suggested for enhancing the security of HDSP.

Chapter 6 draws some lessons for designing securer multimedia encryption
scheme, summaries our works in this thesis and gives some remarks on future
research.
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Chapter 2

Cryptanalyses of Permutation-Only

Encryption Algorithms

§2.1 Introduction

In image encryption, secret permutations are widely used to shuffle the positions of
pixels (and/or pixel bits) [4, 7, 15], which is an effective and easy way to make the
cipher-image look “chaotic”. Similarly, in video encryption, secret permutations
are widely used to shuffle the DCT/wavelet coefficients, blocks or macroblocks
[13, 25, 47, 51, 53, 60, 61]. The same idea has also been used in speech data
encryption, by permuting the samples within each frame[65–67]. There are many
image/video/speech encryption algorithms that are based only on secret permuta-
tions [4, 5, 7, 8, 10, 12, 13, 13, 15, 27, 28, 30, 33, 38, 43, 47, 50, 51, 53, 65–67], which
are called permutation-only (image/video/speech) ciphers in this thesis. Note that
some ciphers can be formalized as permutation-only ciphers, even though some
other encryption techniques are used together with secret permutations. As typi-
cal examples, the video ciphers proposed in [25, 60, 61] become permutation-only
ciphers, if the sign bits of all encrypted data elements are neglected. The main ad-
vantages of using only secret permutations in a cipher include easy implementation
and the universality for most multimedia data formats.

In most permutation-only ciphers, the security is analyzed only for ciphertext-
only attacks, i.e., brute-force attacks of exhaustively searching the secret key.
However, from the cryptographical point of view, such a security analysis is not
enough, since there exist other more powerful attacks, such as known/chosen-
plaintext attacks and chosen-ciphertext attacks. In fact, it has been pointed out
that permutation-only multimedia ciphers are not secure against known/chosen-
plaintext attacks [3, 13, 23, 66, 67, 70–77], but most previous cryptanalysis results
are proposed for some specific permutation-only image/video ciphers and the es-
sential security defects of these encryption algorithms have not been quantitatively
clarified in a general way. The lack of a general cryptanalysis makes it ambigu-
ous in understanding whether or not the security of permutation-only multimedia
encryption algorithms can be effectively enhanced by designing new methods to
generate better secret permutations.

This chapter gives a general cryptanalysis of most (if not all) permutation-only
multimedia encryption algorithms, mainly focusing on the quantitative relation be-
tween the breaking performance and the number of required known/chosen plain-
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texts, as well as the estimation of the attack complexity. It will be pointed out that
secret permutations alone cannot provide sufficient security against known/chosen-
plaintext attacks, from both theoretical and experimental points of view. The
cryptanalysis is performed on a general model of permutation-only image ciphers
working in spatial domain, which then is generalized to permutation-only image
working in frequency domain and also to permutation-only video/speech ciphers.
As a typical example of permutation-only image ciphers, a recently-proposed image
encryption scheme called HCIE [27, 30, 33]∗ is investigated in detail, to show how
the known/chosen-plaintext attacks work. It is shown that all permutation-only
image ciphers are not secure against known/chosen-plaintext attacks, in the sense
that only O (logL(MN)) known/chosen plain-images are enough to break the ci-
phers, where MN is the size of the image (i.e., the number of pixels) and L is the
number of different pixel values. An upper bound of the attack complexity is also
derived to be O(n · (MN)2), where n is the number of known/chosen plain-images.
What’s more, it is found that the hierarchical encryption structure suggested in
HCIE cannot provide any higher security against known/chosen-plaintext attacks,
but actually make the security weaker. As a conclusion, secure permutations must
be used together with other encryption mechanisms to design a secure multimedia
encryption scheme, as in some compound image/video ciphers [9, 16–18, 21, 48].

Recently, a new signal security system called TDCEA was proposed for real-
time multimedia data transmission in [38, 43]. In fact, TDCEA is an enhanced
version of a previous image encryption scheme proposed by the same authors
in [29, 32], named BRIE (bit recirculation image encryption), which is the one-
dimensional counterpart of TDCEA. The original BRIE scheme has been success-
fully cryptanalyzed in [81], showing its insecurity against known/chosen-plaintext
attacks. Essentially, TDCEA is secret permutations of all 64 bits of each 8-pixel
block, so TDCEA can be easily broken by a general method proposed in this chap-
ter (In §3.6, we will proposed another method to break it). In addition, some
special security flaws are also discussed in detail.

This chapter is organized as follows. §2.2 gives cryptanalysis on common
permutation-only image ciphers working in spatial domain. §2.3 presents two typ-
ical permutation-only encryption algorithm, HCIE and TDCEA. §2.4 and §2.5
discuss cryptanalyses of HCIE and TDCEA, respectively. §2.6 discusses the gen-
eralization of the cryptanalysis results to permutation-only image ciphers working
in frequency domain and permutation-only video/speech ciphers. The last section
concludes the chapter.

∗The chaotic image encryption (CIE) scheme proposed in [28] is an initial version of HCIE.

6



Master Thesis of Zhejiang University

§2.2 Cryptanalysis of Permutation-Only Encryp-

tion Algorithms Working in Spatial Domain

§2.2.1 A Normalized Model for Encryption and Decryption

When working in spatial domain, just as its name implies, permutation-only im-
age ciphers encrypt images by permuting the positions of all pixels in a secret way.
The secret permutations have to be invertible to make the decryption possible.
This means that all permutation-only ciphers belong to symmetry ciphers, i.e.,
Ke = Kd = K, which is used to generate the secret permutations. Although many
different methods have been proposed to realize secret key-dependent pixel permu-
tations, for a given plain-image of size M ×N (“height×width”), a permutation-
only image cipher can be normalized with an invertible key-dependent permutation
matrix of size M ×N , denoted by

W = [w(i, j) = (i′, j′) ∈M× N]M×N , (2.1)

where M = {0, · · · ,M−1} and N = {0, · · · , N−1}. With the permutation matrix
W and its inverse W−1 = [w−1(i, j)]M×N , for a plain-image f = [f(i, j)]M×N and
its corresponding cipher-image f ′ = [f ′(i, j)]M×N , the encryption and decryption
procedures of a permutation-only image cipher can always be described as follows:

• the encryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1),
f ′(w(i, j)) = f(i, j);

• the decryption procedure: for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1),
f(w−1(i, j)) = f ′(i, j).

In a short form, one can express the encryption procedure as f ′(W (I)) = f(I)
and the decryption procedure as f(W−1(I)) = f ′(I), where

I =

 (0, 0) · · · (0, N − 1)
...

. . .
...

(M − 1, 0) · · · (M − 1, N − 1)


M×N

.

To ensure the invertibility of the permutation matrix, i.e., to make the decryption
possible, the following point should be satisfied: ∀(i1, j1) 6= (i2, j2), w(i1, j1) 6=
w(i2, j2). This means that W determines a bijective (i.e., one-to-one) permutation
mapping, FW : M× N→M× N.

From the above description, one can see that the design of a permutation-
only image cipher focuses on two points: 1) what the secret key K is; 2) how the
permutation matrix W and W−1 are derived from the secret key K. Generally
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speaking, each key defines a permutation matrix, and each permutation-only image
cipher defines a finite set containing a number of permutation matrices selected
from (MN)! possible permutation matrices. In literature, many different methods
have been proposed to derive a permutation matrix from a key, some of which are
listed as follows:

• SCAN language based methods [4, 5, 7–9, 48]: define some different scan
patterns of the 2-D image and combine these patterns to define a permutation
matrix by scanning the whole image pixel by pixel;

• quadtree based methods [5, 8]: divide the image into multi-level quadtree
and shuffle the order of four nodes in each level to realize a permutation
matrix;

• 2-D chaotic maps based methods [16–18, 21]: iterate a discretized 2-D
chaotic map over the M ×N image lattice for many times to realize a per-
mutation matrix;

• Fractal curves based methods [15, 50]: use a fractal(-like) curve to replace
the normal scan order to realize a permutation matrix;

• pseudo-random rotations based methods [27, 28, 30, 33]: pseudo-randomly
rotate pixels along some straight lines for many times to realize a permuta-
tion matrix;

• matrix transformation based methods [10]: use (integer) transformations
of matrix, such as n-dimensional Arnold transformation and Fabonacci-Q
transformation, to define permutation matrices;

• composite methods [12]: combine different methods to realize more compli-
cated permutation matrices.

Although different types of secret keys are used in different permutation-only
image ciphers to generate the permutation matrix, it is reasonable to consider the
permutation matrix W itself as the equivalent encryption key and W−1 as the
equivalent decryption key. From such a point of view, all permutation-only image
ciphers can be considered the same. This is the base for the security analysis to
be carried out below in this chapter.

§2.2.2 The Known-Plaintext Attack

As shown above, when a permutation-only image cipher is used to encrypt images
in spatial domain, a pixel at the position (i, j) will be secretly permuted to another
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fixed position (i′, j′) while the pixel value is unchanged. Therefore, by comparing a
number of known plain-images and the corresponding cipher-images, it is possible
for an attacker to (partially or even totally) reconstruct the secret permutations of
all pixels, i.e., to derive the encryption/decryption keys – the permutation matrix
W and its inverse W−1.

Given n known plain-images f1 ∼ fn and their cipher-images f ′1 ∼ f ′n,
the deduction procedure of W and W−1 can be shown in the following
Get Permutation Matrix function. With the input parameters (f1 ∼ fn, f ′1 ∼
f ′n,M, N), this function returns an estimation of the permutation matrix W and
its inverse W−1. Assuming the value of each pixel ranges in {0, · · · , L − 1}, the
Get Permutation Matrix function is described as follows.

• Step 1: compare pixel values within the n cipher-images f ′1 ∼ f ′n to get (n ·L)
sets of pixel positions:

Λ′
1(0) ∼ Λ′

1(L− 1), · · · ,Λ′
n(0) ∼ Λ′

n(L− 1),

where Λ′
m(l) ⊆ M × N denotes a set containing positions of all pixels in

f ′m (m = 1 ∼ n) whose values are equal to l ∈ {0, · · · , L − 1}, i.e.,
∀(i′, j′) ∈ Λ′

m(l), f ′m(i′, j′) = l. Note that Λ′
m(0) ∼ Λ′

m(L − 1) actually
compose a partition of the set of all pixel positions:

⋃L−1
l=0 Λ′

m(l) = M×N =
{(0, 0), · · · , (M − 1, N − 1)}, and ∀l1 6= l2, Λ′

m(l1) ∩ Λ′
m(l2) = ∅;

• Step 2: get a multi-valued permutation matrix, Ŵ = [ŵ(i, j)]M×N , where
ŵ(i, j) =

⋂n
m=1 Λ′

m(fm(i, j)). Here, note that ŵ(0, 0) ∼ ŵ(M − 1, N − 1)
actually composes a new partition of the position set M× N;

• Step 3: determine a single-valued permutation matrix, W̃ = [w̃(i, j)]M×N

from Ŵ , where w̃(i, j) ∈ ŵ(i, j) and ∀(i1, j1) 6= (i2, j2), w̃(i1, j1) 6= w̃(i2, j2);

• Step 4: output W̃ and its inverse W̃−1 = [w̃−1(i, j)]M×N as the estimations
of W and W−1.

Apparently, if and only if # (ŵ(0, 0)) = · · · = # (ŵ(SM − 1, SN − 1)) = 1, i.e.,
each element of Ŵ contains only one pixel position, it is true that W̃ = W and
the cipher is totally broken. However, because some elements of Ŵ contain more
than one pixel position, generally W̃ is not an exact estimation of W . Assume
that there are (N̂ ≤ MN) different elements in Ŵ , and that the N̂ different ele-

ments are ŵ1 ∼ ŵ bN . Then, it can be easily verified that there are
∏ bN

k=1 #(ŵk)!
possibilities of W̃ . To make the estimation of W̃ as accurate as possible, some spe-
cific optimization algorithms can be used to choose a better position from ŵ(i, j)
as the value of w̃(i, j), such as genetic and simulated annealing algorithms. Our
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experiments show that even a simple algorithm can achieve a rather good estima-
tion when n ≥ 3 for 256 × 256 gray-scale images. The simple algorithm is called
“taking-the-first” algorithm, which sets w̃(i, j) to be the first available element in
ŵ(i, j), where the term “available” refers to the constraint that ∀(i1, j1) 6= (i2, j2),
w̃(i1, j1) 6= w̃(i2, j2).

Now, let us consider the decryption performance of the estimated permutation
matrix W̃ when W̃ 6= W . Generally speaking, due to the large information
redundancy existing in a digital image, only partially-recovered pixels are enough
to reveal most visual information. Therefore, if there are enough correct elements
in W̃ , the decryption performance may be acceptable from a practical point of
view. From the above discussions, one can see that correctly-recovered elements
in W̃ belong to two different classes:

• the absolutely correct elements: derived from the single-valued elements of
Ŵ ;

• the probabilistically correct elements: derived from the multi-valued elements
of Ŵ , and are correctly guessed by an optimization algorithm of selecting a
proper position from each ŵ(i, j).

Assuming that the number of single-valued elements of Ŵ is nc and the successful
probability of the optimization algorithm is ps, the average number of correct
elements in W̃ will be nc+ps ·(MN−nc). Because ps is generally not fixed (tightly
dependent on the employed optimization algorithm), only the absolutely correct
elements are considered here (i.e., ps = 0 is assumed) to perform a qualitative
analysis. Now the problem of correct elements in W̃ is simplified to be the problem
of singe-value elements in Ŵ . Observing the Get Permutation Matrix function,
one can see that the cardinality of ŵ(i, j) is uniquely determined by Λ′

1(f1(i, j)) ∼
Λ′

n(fn(i, j)). To further simplify the analysis, assume that the value of each pixel
distributes uniformly in {0, · · · , L−1}, and that the values of any two pixels (within
the same image or in two different cipher-images∗) are independent of each other.
Then, one can consider the following two types of positions in ŵ(i, j):

• the only one real position w(i, j), which absolutely occurs in ŵ(i, j);

• other fake positions, each of which occurs in each Λ′
m(fm(i, j)) with a prob-

ability of 1
L , i.e., each of which occurs in all the n sets, Λ′

1(f1(i, j)) ∼
Λ′

n(fn(i, j)), with a probability of 1
Ln .

∗Note that a plain-image and its cipher-image are totally related via the secret permutation
matrix.
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Based on the above results, one can qualitatively deduce that the average cardi-
nality of ŵ(i, j) is # (ŵ(i, j)) =

(
1 + MN−1

Ln

)
, which approaches 1 exponentially as

n increases. Generally speaking, when 1 + MN−1
Ln < 1.5, i.e., about half elements

in W̃ are correct, the decryption performance will be acceptable. Solving this
inequality, one has

n ≥ dlogL(2(MN − 1))e. (2.2)

As an example, for 256× 256 gray-scale images, M = N = L = 256, one has
n ≥ dlogL(2(MN − 1))e = d2.125e = 3. The average cardinality is about 1.0039
when n = 3, so it is expected that the decryption performance for n ≥ 3 will be
rather good, which is verified by the experiments given in §2.4.4. Here, note that
the actual decryption performance is generally better than the above theoretical
expectation for the following two reasons:

• human eyes have a powerful capability of suppressing image noises and ex-
tracting significant features: 10% noisy pixels cannot make much influence
on the visual quality of a digital image, and it only needs 50% of pixels to
reveal most visual information of the original image;

• due to the short-distance and long-distance correlations in natural images,
two pixel values are close to each other with a non-negligible probability
larger than the average probability; as a result, the wrongly-decrypted pixel
are close to the right value with a probability larger than the average prob-
ability.

The second point implies that the decryption performance of natural images will
be better than the performance of noise-like images, from the point of view of
decryption error ratio. For experimental verification and more explanations, see
§2.4.4, Figs. 2.3 and 2.4.

Next, let us consider the time complexity of the above-discussed known-
plaintext attack, i.e., the time complexity of the Get Permutation Matrix func-
tion. Note that the time complexity depends on the implementation details of this
function. This chapter only gives a conservative estimation, i.e., an upper bound,
of the time complexity. The time complexity of each step is as follows:

• Step 1 : The L sets of each cipher-image f ′l are obtained by scanning f ′l once:
for i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), add (i, j) into the set Λ′

m(f ′l (i, j)).
Thus, the time complexity of this step is O(n ·MN).

• Step 2 : Specially, assume all cipher-pixels satisfy uniform distributions.
Then, the average cardinality of Λm(l) is MN

L and an upper bound of the time
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complexity of this step is MN ·
(

MN
L ·

(
1
2 ·

MN
L

)n−1
)

= 2MN ·
(

MN
2L

)n
, which

exponentially increase as n increases if MN > 2L. However, in practice, the
real complexity is much smaller due to the optimization of the calculation
process. Here, we consider the so-called halving algorithm, which calculates
the intersection of n sets A1 ∼ An by dividing them into multi-level groups
of (2, 4, · · · , 2i, · · · ) sets. For example, when n = 11, the calculation process
is described by

((A1

1
∩A2)

3
∩ (A3

2
∩A4))

7
∩ ((A5

4
∩A6)

6
∩ (A7

5
∩A8))

10
∩((A9

8
∩A10)

9
∩A11), (2.3)

where
i
∩ denotes the i-th intersection operation. The goal of this halving

algorithm is to minimize the cardinalities of the two sets involved in each
intersection operation so as to reduce the global complexity. To make the
estimation of the complexity easier, let us consider the case of n = 2d, where
d is an integer. In this case, the overall complexity is shown in Eq. (2.4). As
two typical examples, when M = N = 256 and L = 2 (monotonic images),
the complexity is about

(
229.2 · n

)
; when M = N = 256 and L = 256

(gray-scale images), the complexity is only
(
215 · n

)
. One can see that now

the complexity is always much smaller than 2MN ·
(

MN
L

)n
. When n is

not a power of 2, the complexity will be smaller than 2dlog2 ne

2L2−1 · (MN)2 ≤
2n

2L2−1 · (MN)2.

0X
k=d−1

2
k ·
�

MN

Ld−k

�2

=
dX

k′=1

2
d−k′ ·

�
MN

Lk′

�2

= 2
d · (MN)

2 ·
 

dX
k′=0

1

(2 · L2)k′
− 1

!

= n · (MN)
2 ·
 

1− ((2L2)−1)d+1

1− (2L2)−1
− 1

!

< n · (MN)
2 ·
�

1

1− (2L2)−1
− 1

�
=

n

2L2 − 1
· (MN)

2
. (2.4)

• Step 3 : The time complexity of this step is determined by the details of the
involved optimization algorithm. For the “taking-the-first” algorithm, the
complexity is MN ·

(
1 + MN−1

Ln

)
≈MN + (MN)2

Ln .

• Step 4 : The time complexity of this step is MN .

Combining the above discussions, the final time complexity of the
Get Permutation Matrix function is always of order n · (MN)2, which is
practically small even for a PC.

From the above analysis, one can see that the time complexity is mainly
determined by Step 2. When the “taking-the-first” algorithm is adopted in the
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Get Permutation Matrix function, Step 2 can be skipped so that the total com-
plexity will still be of order O

(
n · (MN)2

)
, even without using the halving al-

gorithm to calculate the intersections. In this case, Step 3 can be described as
follows:

• Step 3’ : For i = 0 ∼ (M − 1) and j = 0 ∼ (N − 1), do the following
operations:

– Step 3’a: find the first element satisfying f1(i, j) =
f ′1(i

′, j′), · · · , fn(i, j) = f ′n(i′, j′) by searching each element in
Λ′

1(f1(i, j)) and checking whether it occurs in Λ′
2(f2(i, j)) ∼

Λ′
n(fn(i, j));

– Step 3’b: set w̃(i, j) = (i′, j′) and then delete (i′, j′) from Λ′
1(f1(i, j)) ∼

Λ′
n(fm(i, j)).

It is obvious that the time complexity of Step 3’a is always less than n · (MN)
and averagely is O

(
n · MN

L

)
, so the time complexity of Step 3’ is always less than

n · (MN)2 and averagely is O
(
n · (MN)2

L

)
.

§2.2.3 The Chosen-Plaintext Attack

The chosen-plaintext attack works in the same way as the known-plaintext attack,
but the plain-images can be deliberately chosen to optimize the estimation of W̃

(i.e., to maximize the decryption performance). The following two rules are useful
in the creation of the n chosen plain-images f1 ∼ fn:

• the histogram of each chosen plain-image should be as uniform as possible;

• the i-dimensional (2 ≤ i ≤ n) histogram of any i chosen plain-images should
be as uniform as possible, which is a generalization of the above rule.

The goal of the above two rules is to minimize the average cardinality of the
elements in Ŵ , and then to maximize the number of correct elements in the
estimated permutation matrix W̃ .

As an example of the two rules, consider the condition when M = N = L =
256 (256-valued gray-scale images of size 256×256). In this case, the following two
chosen plain-images are enough to ensure a perfect estimation of the permutation
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matrix W : f1 = [f1(i, j) = i]256×256 and f2 = [f2(i, j) = j]256×256, i.e.,

f1 = fT
2 =



0 · · · 0
...

. . .
...

i · · · i
...

. . .
...

255 · · · 255


256×256

(2.6)

and

f2 = fT
1 =

0 · · · j · · · 255
...

. . .
...

. . .
...

0 · · · j · · · 255


256×256

. (2.7)

For the above two chosen plain-images, it is true that ∀(i1, j1) 6= (i2, j2),
(f1(i1, j1), f1(i2, j2)) 6= (f2(i1, j1), f2(i2, j2)). This can ensure that ∀l1, l2 ∈
{0, · · · , L − 1}, # (Λ′

1(l1) ∩ Λ′
2(l2)) = 1. For n images satisfying this constraint,

we say that they compose an orthogonal image set. This concept is introduced to
facilitate the following discussion on the chosen-plaintext attack to HCIE.

In general cases, it can be easily deduced that n = dlogL(MN)e orthogonal
images∗ have to be created to carry out a successful chosen-plaintext attack. Ap-
parently, it will never be larger than dlogL(2(MN − 1))e – the number of required
plain-images in the known-plaintext attack with a good breaking performance (re-
call the above subsection). This means the chosen-plaintext attack is a little (but
not so much) stronger than the chosen-plaintext attack in the present case of dis-
cussion.

§2.3 Two Permutation-Only Encryption Algo-

rithms

§2.3.1 Hierarchical Chaotic Image Encryption (HCIE)

HCIE is a two-level hierarchical permutation-only image cipher, and all involved
permutation matrices are defined by pseudo-random combinations of four rotation
mappings with pseudo-random parameters. For an image, f = [f(i, j)]M×N , the
four mapping operations are described as follows, where p < min(M,N) holds for
each mapping.

∗When MN ≤ L, only one chosen plain-image is enough, if each pixel value is different
from the others.
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Definition 2.1: The mapping f ′ = ROLRi,p
b (f) (0 ≤ i ≤ M − 1) is defined to

rotate the i-th row of f , in the left (when b = 0) or right (when b = 1) direction
by p pixels.

Definition 2.2: The mapping f ′ = ROUDj,p
b (f) (0 ≤ j ≤ N − 1) is defined to

rotate the j-th column of f , in the up (when b = 0) or down (when b = 1) direction
by p pixels.

Definition 2.3: The mapping f ′ = ROURk,p
b (f) (0 ≤ k ≤M + N − 2) is defined

to rotate all pixels satisfying i+j = k, in the lower-left (when b = 0) or upper-right
(when b = 1) direction by p pixels.

Definition 2.4: The mapping f ′ = ROULl,p
b (f) (1 −N ≤ l ≤ M − 1) is defined

to rotate all pixels satisfying i−j = l, in the upper-left (when b = 0) or lower-right
(when b = 1) direction by p pixels.

Given a pseudo-random bit sequence {b(i)} starting from i0, the following
Sub HCIE function is used to permute an SM × SN image fsub to be another
SM × SN image f ′sub, where (α, β, γ, no) are control parameters. Note that all
codes in this chapter is described in C-language style.

for (ite = 0; ite < no; ite + +) {
q = i0 + (3SM + 3SN − 2) · ite;
p = α + β · b(q + 0) + γ · b(q + 1);
for (i = 0; i ≤ (SM − 1); i + +)

f ′sub = ROLRi,p
b(i+q)(fsub);

for (j = 0; j ≤ (SN − 1); j + +)
f ′sub = ROUDj,p

b(j+q+SM )(f
′
sub);

for (k = 0; k ≤ (SM + SN − 2); k + +)
f ′sub = ROURk,p

b(k+q+SM+SN )(f
′
sub);

for (l = (1− SN ); l ≤ (SM − 1); l + +)
f ′sub = ROULl,p

b(l+q+2·SM+3·SN−2)(f
′
sub);

}
i0 = i0 + (3SM + 3SN − 2) · no;

One can see that the above Sub HCIE function actually defines an SM × SN per-
mutation matrix pseudo-randomly controlled by (3SM + 3SN − 2) · no bits in
the bit sequence {b(i)} from i0. Based on this function, for an M × N image
f = [f(i, j)]M×N , the encryption procedure of HCIE can be briefly described in
two levels.
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• The secret key is the initial condition x(0) and the control parameter µ of
the following chaotic Logistic map[82]:

x(k + 1) = µ · x(k) · (1− x(k)), (2.8)

which is realized in L-bit finite precision.

• Some public parameters: SM , SN , α, β, γ and no, where
√

M ≤ SM ≤ M ,
M mod SM = 0,

√
N ≤ SN ≤ N , and N mod SN = 0.

Note: Although (SM , SN , α, β, γ, no) can be all included in the secret key,
they are not suitable for such a use due to the following reasons: 1) SM , SN

are related to M,N ; 2) α, β, γ are related to SM , SN (and then related to
M,N , too); 3) SM , SN can be easily guessed from the mosaic effect of the
cipher-image; 4) no cannot be too large to achieve an acceptable encryption
speed.

• The initialization procedure of generating the bit sequence used in the
Sub HCIE function: run the Logistic map from x(0) to generate a chaotic
sequence {x(i)}dLb/8e−1

i=0 , and then extract the 8 bits following the decimal
point of each chaotic state x(i) to yield a pseudo-random binary sequence

(PRBS) {b(i)}Lb−1
i=0 , where Lb =

(
1 + M

SM
· N

SN

)
·(3SM +3SN−2) ·no; finally,

set i0 = 0 to let the Sub HCIE function run from b(0).

• The two-level hierarchical encryption (permutation) procedure:

1. The high-level encryption – permuting image blocks: divide the plain-
image f into SM ×SN blocks, which compose an M

SM
× N

SN
block-image

Pf as follows

Pf = [Pf (i, j)] M
SM

× N
SN

=

2
6664

Pf (0, 0) · · · Pf

�
0, N

SN
− 1

�
...

. . .
...

Pf

�
M
SM

− 1, 0
�

· · · Pf

�
M
SM

− 1, N
SN

− 1
�

3
7775

M
SM

× N
SN

,

(2.9)

where

Pf (i, j) =
2
6664

f(i · SM , j · SN ) · · · f(i · SM , j · SN + (SN − 1))

.

.

.
. . .

.

.

.

f((i + 1) · SM − 1, j · SN ) · · · f((i + 1) · SM − 1, j · SN + (SN − 1))

3
7775

SM×SN

,

(2.10)

and then permute the positions of all blocks with the Sub HCIE function
in the following way:
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(a) create a pseudo-image fp = [fp(i, j)]SM×SN
as follows:

fp = [fp(i, j)]SM×SN
=

1 · · · N
SN

N
SN

+ 1 · · · 2 · N
SN

...
. . .

...(
M
SM
− 1
)
· N

SN
+ 1 · · · M

SM
· N

SN

0

0 0


SM×SN

, (2.11)

where the M
SM
· N

SN
non-zero elements of fp means the 1-based

indices of all image blocks, and permute fp with the Sub HCIE

function to get a shuffled pseudo-image f∗p ;

(b) generate a permuted block-image Pf∗ from Pf (i.e., permute f

blockwise) using the shuffled indices contained in f∗p :

order = 0;
for (i = 0; i ≤ (SM − 1); i + +)

for (j = 0; j ≤ (SN − 1); j + +)
if (f∗p (i, j) 6= 0) {

f∗p (i, j)−−; // 1-based index⇒ 0-based one

i∗ =
⌊

order

N/SN

⌋
, j∗ = order mod (N/SN );

ii =
⌊

f∗p (i, j)
N/SN

⌋
, jj = f∗p (i, j) mod (N/SN );

Pf∗(i∗, j∗) = Pf (ii, jj);
order + +;

}

The above high-level encryption procedure can be considered as the

permutation of the block-image: Pf

f∗p =Sub HCIE(fp)
−−−−−−−−−−→ Pf∗ , where f∗p ac-

tually is an M
SM
× N

SN
permutation matrix.

2. The low-level encryption – permuting pixels in each image block : for
i = 0 ∼

(
M
SM
− 1
)

and j = 0 ∼
(

N
SN
− 1
)
, call the Sub HCIE function

to permute each block Pf∗(i, j) to get the corresponding block of the
cipher-image f ′: Pf ′(i, j) = Sub HCIE (Pf∗(i, j)).

As described in §2.2.1, for permutation-only encryption algorithm, decryption
procedure is just like encryption one beside replacing permutation matrix with its
inverse. For HCIE, the inverse of permutation matrix can be easily generated by
reversing orders of some parameters and procedures of function Sub HCIE.
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In HCIE, a total of
(
1 + M

SM
· N

SN

)
permutation matrices are involved: 1) one

high-level permutation matrix of size M
SM
× N

SN
; 2)

(
M
SM
· N

SN

)
low-level permu-

tation matrices of size SM × SN . With the above-mentioned representation of
permutation-only image ciphers, the secret key (µ, x(0)) of HCIE is equivalent to

the
(
1 + M

SM
· N

SN

)
permutation matrices. To facilitate the following discussions,

we use W0 = [w0(i, j)] M
SM

× N
SN

to denote the high-level permutation matrix, and

use
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0
to denote the

(
M
SM
× N

SN

)
low-level permutation matrices,

where W(i,j) =
[
w(i,j)(i′, j′)

]
SM×SN

. Apparently, the
(
1 + M

SM
· N

SN

)
permutation

matrices can be easily transformed to an equivalent permutation matrix of size
M ×N : W = [w(i, j)]M×N .

When SM = M and SN = N (or SM = SN = 1), the two hierarchical

encryption levels merge a single layer; the
(
1 + M

SM
· N

SN

)
permutation matrices

become one permutation matrix of size M × N ; and HCIE is simplified to be
CIE [28] – a typical permutation-only image cipher in which each pixel can be
freely permuted to be any other positions in the whole image by a single M ×N

permutation matrix W .

§2.3.2 Two-Dimensional Circulation Encryption Algorithm

(TDCEA)

The basic idea used in TDCEA is to rotate secret bits of every 64 consecutive
bits (of 8 consecutive pixels), which are controlled by a chaotic PRBS. First, some
definitions and notations are given in order to introduce TDCEA. Assuming two
matrices M and M ′ of size m× n, where m is the height and n is the width, two
mapping operations are defined as follows.

Definition 2.5: The horizontal rotation mapping, RotateXp,r
i : M → M ′ (0 ≤

i ≤ m − 1), is defined to circularly rotate the i-th row of M , in the left (when
p = 1) or right (when p = 0) direction, by r elements.

Definition 2.6: The vertical rotation mapping, RotateY q,s
j : M →M ′ (0 ≤ j ≤

n−1), is defined to circularly rotate the j-th column of M , in the up (when q = 1)
or down (when q = 0) direction, by s elements.

Definition 2.7: The cyclical shift operation, ROLRq
p : M1 → M ′

1, is defined to
circularly rotate the elements of M1, in the left (when p = 1) or right (when p = 0)
direction, by q elements, where M1 is a matrix of size 1× n. If M1 is a number,
we replace it with its binary representation (from LSB to MSB).
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Note that actually mapping RotateXp,r
i and RotateY q,s

j are the same with
ROLRi,p

b (Def. 2.1) and ROUDj,p
b (Def. 2.2) respectively, we keep the difference to

make them consistent with corresponding original literature.
TDCEA encrypts a plain-image block by block, where each block contains 8

consecutive pixels. To simplify the following description, without loss of generality,
assume that the plain-image is of size M ×N and MN can be exactly divided by
8, where M is the height and N is the width of the image. Consider the 2-D
plain-image {f(x, y)}M−1,N−1

x=0,y=0 as a 1-D signal {f(l)}MN−1
l=0 by scanning it in raster

order∗. Then, the plain-image can be divided into MN/8 blocks:

{f (8)(0), · · · , f (8)(k), · · · , f (8)(MN/8− 1)},

where
f (8)(k) = {f(8k + 0), · · · , f(8k + i), · · · , f(8k + 7)} .

Rewrite each block f (8)(k) as an 8 × 8 bit matrix Mk = [Mk(i, j)]7,7
i=0,j=0, by

assigning the 64 bits in the current block in the raster order: f(8k + i) =∑7
j=0 Mk(i, j) · 2j . In the same way, 8 pixels of each block of the cipher-image

can be obtained from the transformation of Mk, M ′
k = [M ′

k(i, j)]7,7
i=0,j=0, by

f ′(8k + i) =
∑7

j=0 M ′
k(i, j) · 2j . Based on the matrix-representations of the

plain/cipher-images, the working mechanism of TDCEA can be described as fol-
lows.

• The secret key : two integers α, β, the initial condition x(0), and the control
parameter µ of the Logistic map Eq. (2.8), where 0 < α < 8, 0 ≤ β < 8 and
0 < α + β < 8.

• The initialization procedure: run the Logistic map starting from x(0) to
generate a chaotic sequence, {x(k)}MN/8−1

k=0 , and then extract the 17-bit
representation of x(k) to yield a PRBS, {b(i)}17MN/8−1

i=0 . In the hardware
implementation given in [38, 43], the Logistic map is realized in 17-bit fixed-
point arithmetic.

• The encryption procedure:

– Step 1 – horizontal rotations: for i = 0 ∼ 7 do M∗
k = RotateXp,r

i (Mk),
where p = b(17k + i) and r = α + β · b(17k + i + 1);

– Step 2 – vertical rotations: for j = 0 ∼ 7 do M ′
k = RotateY q,s

j (M∗
k ),

where q = b(17k + 8 + j) and s = α + β · b(17k + 9 + j).

∗Note that in [38, 43] TDCEA is described directly for 1-D signals. In this chapter, we
prefer to explicitly mention the transform from 2-D images to 1-D signals, so as to emphasize
the relation between BRIE and TDCEA (which is not mentioned in [38, 43]).
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• The decryption procedure is a simple reversion of the above encryption pro-
cedure, as follows:

– Step 1 – vertical rotations: for j = 0 ∼ 7 do M∗
k = RotateY q,s

j (M ′
k),

where q = b(17k + 8 + j) and s = α + β · b(17k + 9 + j);

– Step 2 – horizontal rotations: for i = 0 ∼ 7 do Mk = RotateXp,r
i (M∗

k ),
where p = b(17k + i) and r = α + β · b(17k + i + 1).

§2.4 Cryptanalysis of HCIE

In this section, we discuss how to utilize the general known/chosen-plaintext at-
tacks to the normalized permutation-only image ciphers in §2.2 to break HCIE.
Also, we will point out in passing that the security of HCIE against brute-force
attacks was much over-estimated in [27, 30, 33]. Note that HCIE has not been
cryptanalyzed by others yet till now.

§2.4.1 The Known-Plaintext Attack

Since HCIE is a permutation-only image cipher, given n known plain-images f1 ∼
fn of size M×N and the corresponding cipher-images f ′1 ∼ f ′n, one can simply call
the Get Permutation Matrix function with the input parameter (f1 ∼ fn, f ′1 ∼
f ′n,M,N) to estimate an M × N permutation matrix W , which is equivalent to

the
(
1 + M

SM
· N

SN

)
smaller permutation matrices. However, if the hierarchical

structure of HCIE is considered, the known-plaintext attack may be quicker and
the estimation will be more effective, as demonstrated later in §2.4.4. Thus, the
following hierarchical procedure of known-plaintext attacks to HCIE is suggested∗:

• Reconstruct the high-level permutation matrix W0:

– for i = 0 ∼
(

M
SM
− 1
)

and j = 0 ∼
(

N
SN
− 1
)
, calculate the mean

values of the 2n blocks Pf1(i, j) ∼ Pfn(i, j), Pf ′1
(i, j) ∼ Pf ′n

(i, j) and
denote them by Pf1(i, j) ∼ Pfn(i, j) and Pf ′1

(i, j) ∼ Pf ′n(i, j);

– generate 2n images P f1 ∼ P fn and P f ′1
∼ P f ′n

of size M
SM
× N

SN
as

follows: ∀m = 1 ∼ n,

P fm =
[
Pfm(i, j)

]
M

SM
× N

SN

(2.12)

∗For HCIE, the permutation matrices also depend on the values of the public parameters.
To simplify the following description, specifically, it is assumed that all public parameters are
fixed for all known plain-images.
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and

P f ′m =
[
Pf ′m(i, j)

]
M

SM
× N

SN

, (2.13)

and call the Get Permutation Matrix function with the input param-
eters (

P f1 ∼ P fn , P f ′1
∼ P f ′n ,

M

SM
,

N

SN

)
to get an estimated permutation matrix W̃0 = [w̃0(i, j)] M

SM
× N

SN

and its

inverse W̃−1
0 =

[
w̃−1

0 (i, j)
]

M
SM

× N
SN

.

• Reconstruct the
(

M
SM
· N

SN

)
low-level permutation matrices{

W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0
:

– for i = 0 ∼
(

M
SM
− 1
)

and j = 0 ∼
(

N
SN
− 1
)
, call

the Get Permutation Matrix function with the input parameters
(Pf1(i, j) ∼ Pfn(i, j), Pf ′1

(i′, j′) ∼ Pf ′n(i′, j′), SM , SN ), where (i′, j′) =
W0(i, j), to determine an estimated permutation matrix W̃(i,j) and its
inverse W̃−1

(i,j).

With the
(
1 + M

SM
· N

SN

)
inverse matrices W−1

0 and
{
W(i,j)

} M
SM

−1, N
SN

−1

i=0,j=0
, one

can decrypt a new cipher-image f ′n+1 as follows to get an estimated plain-image
f∗n+1:
for (i = 0; i ≤ (M/SM )− 1; i + +)

for (j = 0; j ≤ (N/SN )− 1; j + +) {
ftemp = Pf ′n+1

(w−1
0 (i, j));

for (ii = 0; ii ≤ SM − 1; ii + +)
for (jj = 0; jj ≤ SN − 1; jj + +)

f∗temp(ii, jj) = ftemp

(
w−1

(i,j)(ii, jj)
)
;

Pf∗n+1
(i, j) = f∗temp;

}
In fact, in the above procedure, any measure keeping invariant in the block

permutations can be used instead of the mean value. A typical measure is the
histogram of each SM×SN block. Although the mean value is less precise than the
histogram, it works well in most cases and is useful to reduce the time complexity.
When L and SM × SN are both too small, the efficiency of the mean value will
become low, and the histogram or the array of all pixel values can be used as a
replacement. Apparently, in most cases it is easier to get the high-level permutation
matrix W0 than the low-level permutation matrices.
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Finally, let us see whether the hierarchical structure used in HCIE is help-
ful to enhance the security against the known-plaintext attack to the common
permutation image ciphers. As discussed above, n ≥ dlogL(2(MN − 1))e known
plain-images are needed to achieve an acceptable breaking performance. Since
the hierarchical structure makes it possible for an attacker to work on permuta-
tion matrices of size SM × SN or M

SM
× N

SN
(both smaller than M × N), it is

obvious that for HCIE the number of required known plain-image will be smaller
than dlogL(2(MN − 1))e. Also, the attack complexity will become less, since it
is proportional to the square of the matrix sizes. In such a sense, hierarchical
permutation-only image ciphers are less secure than non-hierarchical ones, which
discourages the use of HCIE. This result has been confirmed by our experiments
(see §2.4.4).

§2.4.2 The Chosen-Plaintext Attack

Following the same way introduced in the chosen-plaintext attack to common
permutation-only image ciphers, one can choose n = dlogL(MN)e plain-images
to carry out a chosen-plaintext attack to HCIE. Similar to the known-plaintext
attack, the use of a hierarchical structure in HCIE can also make the construction
of chosen plain-images easier. Accordingly, an attacker can also work hierarchically
to construct n chosen plain-images, f1, · · · , fn, as follows:

• high-level : P f1 ∼ P fn , which are defined in Eq. (2.12), compose an orthog-
onal image set;

• low-level : ∀(i, j), Pf1(i, j) ∼ Pfn(i, j) compose an orthogonal image set.

In this case, the minimal number of required chosen plain-image becomes

n = max
(
dlogL(SM · SN )e ,

⌈
logL

(
M

SM
· N

SN

)⌉)
≤ dlogL(MN)e , (2.14)

where the equality holds if and only if the hierarchical encryption structure is
disabled, i.e., when (SM = M,SN = N) or (SM = SN = 1).

§2.4.3 The Brute-Force Attack

The brute-force attack is the attack of exhaustively searching the secret key from
the set of all possible keys [1]. Apparently, the attack complexity is determined by
the size of the key space and the complexity of verifying each key. In [27, 30, 33],
it was claimed that the complexity of brute-force attacks to HCIE is O

(
2Lb
)
,
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since there are Lb =
(
1 + M

SM
· N

SN

)
· (3SM + 3SN − 2) · no secret chaotic bits in

{b(i)}Lb−1
i=0 that are unknown to attackers. However, this statement is not true due

to the following fact: the Lb bits are uniquely determined by the secret key, i.e.,
the initial condition x(0) and the control parameter µ, which have only 2L secret
bits. This means that there are only 22L different chaotic bit sequences. Now, let
us study the real complexity of brute-force attacks. For each pair of guessed values
of x(0) and µ, the following operations are needed:

• generating the chaotic bit sequence: Lb/8 chaotic iterations;

• creating the pseudo-image fp: the complexity is SM · SN ;

• shuffling the pseudo-image fp: running the Sub HCIE function once;

• generating Pf∗ : the complexity is M ·N ;

• shuffling the partition image Pf∗ : running the Sub HCIE function for(
M
SM
· N

SN

)
times.

Assume that the computing complexity of the Sub HCIE function is (4SM +4SN ) ·
no. Then, the total complexity of brute-force attacks to HCIE will be

O

�
2
2L ·

�
Lb

8
+ SM · SN + MN +

�
M

SM

·
N

SN

+ 1

�
· (3SM + 3SN ) · no

��
≈ O

�
2
2L · (Lb + MN)

�
,

(2.15)

which is much smaller than O
(
2Lb/8

)
when Lb is not too small. Additionally,

considering the fact that the Logistic map can exhibit a sufficiently strong chaotic
behavior only when µ is close to 4 [82], the complexity should be even smaller.
The above analysis shows that the security of HCIE was much over-estimated by
the authors in [27, 30, 33], even under brute-force attacks.

§2.4.4 Experiments

To verify the decryption performance of the above-discussed known-plaintext at-
tack to general permutation-only image ciphers working in spatial domain and
particularly to HCIE, some experiments are performed using the six 256×256 test
images with 256 gray scales shown in Fig. 2.1. Assume that the first n = 1 ∼ 5
test images are known to an attacker, the cipher-image of the last test image is
decrypted with the estimated permutation matrices to see the breaking perfor-
mance. In the experiments, the “taking-the-first” algorithm is used to generate
W̃ from Ŵ in the Get Permutation Matrix function. It turns out that such a
simple algorithm is enough to achieve a considerable performance in real attacks.
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Image #1 Image #2 Image #3

Image #4 Image #5 Image #6

Figure 2.1: The six 256× 256 test images used in the
experiments.

In the experiments, three different configurations of HCIE are used: SM =
SN = 256, SM = SN = 32, SM = SN = 16. As mentioned above, the configu-
ration of SM = SN = 256 corresponds to general permutation-only image ciphers
working in spatial domain (without using hierarchical structures). It is shown that
three known plain-images are always enough to achieve a good breaking perfor-
mance, and that an almost perfect breaking performance can be achieved with
four plain-images. Thus, the theoretical analysis given in the last section is ver-
ified. Also, it has been confirmed that the security of the two-level hierarchical
encryption structure is weaker than the security of the non-hierarchical structure.
As a result, the security of HCIE against known-plaintext attack is even weaker
than the security of other common permutation-only image ciphers.

The chosen-plaintext attack is omitted in this sub-section, since one can ab-
solutely break the permutation matrix by choosing two plain-images f1 and f2 as
shown in Eqs. (2.6) and (2.7). Of course, some experiments have been completed
to verify the theoretical result and the correctness of the uniquely-determined per-
mutation matrix.
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§2.4.4.1 The experimental results with SM = SN = 256 (non-
hierarchical)

The public parameters are α = 6, β = 3, γ = 3 and no = 9. The cipher-images of
the six test images are shown in Fig. 2.2. When the first n = 1 ∼ 5 test images
and their cipher-images are known to the attacker, the five decrypted images of
the sixth cipher-image are shown in Fig. 2.3. As can seen, one known plain-image
cannot reveal any visual information, but two is capable to recover a rough view
of the sixth test image, and three are enough to obtain a good recovery.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 2.2: The cipher-images of the six test images, when
SM = SN = 256.

To verify the fact that the breaking performance is better than the theoretical
prediction based on the correctly-recovered elements in W̃ , let us see the decryption
performance with n = 2 as an example. For this case, the number of the absolutely
correct elements in W̃ are only 10,600, and the number of all correct elements in
W̃ is 26,631. In comparison, the number of correctly-recovered pixels are 27,210.
Although only about 27210

65536 ≈ 41.52% of the pixels are recovered, most visual
information in the plain-image #6 has been revealed successfully. Now, let us
consider the correct pixels that are not recovered from the correct elements in W̃ ,
i.e, the (27210 − 26631 = 579) more correct pixels. These pixels are correctly
decrypted with a frequency 579

65536−26631 ≈ 0.0149, which is much larger than the
average probability L−1 ≈ 0.0039. If we also count those pixels whose values close
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n = 1 n = 2 n = 3

n = 4 n = 5

Figure 2.3: The decrypted images of Cipher-Image #6 when
the first n test images are known to the attacker, when

SM = SN = 256.

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

100

200

300
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600

Image #6

A noise image

Figure 2.4: The histogram of the difference image between the
recovered image and the original plain-image, when the

plain-image is Image #6 (the blue line) or a randomly-generated
noise image (the red line).

to the right ones, this frequency will be even larger. In fact, excluding the pixels
correctly determined by the 26,631 correct elements in W̃ , the histogram of the
other (65536−26631 = 38905) pixels of the difference image between the recovered
image and the original plain-image #6 is a Gaussian-like function as shown in Fig.
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2.4. In comparison, the histogram of the difference image corresponding to a
randomly-generated noise image of the same size 256 × 256 is also shown. It is
clear that the Gaussian-like histogram corresponding to Image #6 is caused by
the correlation information existing in natural images. Note that the triangular
histogram of the noise image can be easily deduced under the assumption that
the pixels of the two involved images (i.e., the noise image and the corresponding
cipher-image) are independent of each other and have a uniform histogram: ∀i =
−255 ∼ 255, the occurrence probability of the difference value i in the histogram
is: 256−|i|

65536 = 1
256 −

|i|
65536 .

§2.4.4.2 The experimental results with SM = SN = 32

The public parameters are α = 4, β = 2, γ = 1 and no = 2. The cipher-images of
the six test images are all shown in Fig. 2.5. When the first n = 1 ∼ 5 test images
are known to the attacker, the five decrypted images of the sixth cipher-image are
shown in Fig. 2.6. As can be seen, one known plain-image cannot reveal much
useful visual information, but two is enough to obtain a good performance.

Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 2.5: The cipher-images of the six 256× 256 test images,
when SM = SN = 32.
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n = 1 n = 2 n = 3

n = 4 n = 5

Figure 2.6: The decrypted image of Cipher-Image #6 when the
first n test images are known to the attacker, when

SM = SN = 32.

§2.4.4.3 The experimental results with SM = SN = 16

The public parameters are α = 4, β = 2, γ = 1 and no = 2. The cipher-images of
the six test images are all shown in Fig. 2.7. When the first n = 1 ∼ 5 test images
are known to the attacker, the five decrypt images of the sixth cipher-image are
shown in Fig. 2.8. As can be seen, even one known plain-image can reveal a rough
view of the plain-image, and two is enough to obtain a nearly-perfect recovery.

§2.4.4.4 A comparison of the performances

This sub-subsection gives a performance comparison of the known-plaintext at-
tack to HCIE with the above three different configurations. Figure 2.9a shows the
quantitative relation between the number of known plain-images and the decryp-
tion quality (represented by the decryption error ratio). It can be seen that three
known plain-images are enough for all three configurations to achieve an accept-
able breaking performance, and two can reveal quite a lot of pixels (which means
that most significant visual information is revealed). Also, it is shown that the
breaking performance is dependent on the configuration: when SM = SN = 16,
the best performance is achieved, which coincides with the expectation from Eq.
(2.2): n is minimized when SM = SN =

√
256 = 16.
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Cipher-image #1 Cipher-image #2 Cipher-image #3

Cipher-image #4 Cipher-image #5 Cipher-image #6

Figure 2.7: The cipher-images of the six 256× 256 test images,
when SM = SN = 16.

n = 1 n = 2 n = 3

n = 4 n = 5

Figure 2.8: The decrypted images of Cipher-Image #6 when
the first n test images are known to an attacker, when

SM = SN = 16.
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Figure 2.9b shows the average cardinality of the elements in Ŵ , which is an
indicator of the probability of getting correct permutation elements in W̃ and an
indicator of the time complexity as analyzed above. Comparing Figures 2.9a and
2.9b, one can see that the occurrence probability of decryption errors has a good
correspondence with the average cardinality.

From the above comparison, it is true that the security of HCIE with a
hierarchical structure is even weaker than the security of general permutation-
only image ciphers without hierarchical structures: when SM = SN = 32 and
SM = SN = 16, two known plain-images are enough to achieve an acceptable
breaking performance; while when SM = SN = 256, the breaking performance
with two known plain-images is not satisfactory, and three plain-images are needed
to achieve an acceptable performance. Therefore, from the viewpoint of security
against known/chosen-plaintext attacks, the hierarchical idea proposed in HCIE
has no technical merits. This verifies the theoretical analyses given in §2.4.1.

1 2 3 4 5
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0.2

0.4

0.6

0.8

1

n

a) decryption error ratio

1 2 3 4 5
10

0

10
1

10
2

10
3

n

b) the average cardinality #(ŵ(i, j))
(Legend: 4 – SM = SN = 256, � – SM = SN = 32, © – SM = SN = 16)

Figure 2.9: A performance comparison of the known-plaintext
attack to HCIE

§2.5 Cryptanalysis of TDCEA

§2.5.1 Essential Defects of Circulations

In [81], some essential defects of the ROLR operation were found: 1) some plain-
pixels may keep unchanged after encryption, so the plain-image will roughly emerge
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if there are too many such pixels; 2) for a sub-region in the plain-image with a fixed
gray value, at most eight gray values∗ will be contained in the corresponding sub-
region of the cipher-image, which will lead the edge of this sub-region to appear
in the cipher-image. The second fact is also true for sub-regions with close pixel
values.

Although TDCEA extends the shift operation to two dimensions, the above
defects of ROLR cannot be completely removed. As an extreme example, when
all elements in Mk are 0-bits or 1-bits, it is obvious that M ′

k ≡Mk, which means
TDCEA cannot encrypt blocks with fixed pixel value 0 (black) or 255 (white)
at all. To test the performance of TDCEA compared with scheme BRIE[32], we
have encrypted the same test image used in [81] for BRIE, with the following
parameters: (α, β) = (2, 4), x(0) = 34816/217 ≈ 0.2656, µ = 128317/215 ≈ 3.9159.
The encryption result is shown in Fig. 2.10, from which one can see that the 16
squares in the plain-image remain fixed in the cipher-image, though the fixed gray
values have been changed for most squares. Comparing this result with those given
in [81, Fig. 1], it is obvious that the security defects of BRIE is not enhanced by
TDCEA.

a) the plain-image b) the cipher-image

Figure 2.10: A special test image, “Test pattern”, encrypted
by TDCEA.

As a second example to test the possible enhancement of TDCEA on the
BRIE security, we also tested the encryption performance of TDCEA on some gen-
eral natural images containing many smooth areas. As known, the pixels within a
smooth area generally have close pixel values, which is found similar to the squares
with fixed gray values shown in Fig. 2.10 when TDCEA is applied for encryption.
Two images, “House” and “Cameraman”, are selected for testing. The experi-
mental results are shown in Fig. 2.11, from which one can see many important

∗For some pixel values, the number of different cipher pixel-values is even smaller, which
may be 1, 2, or 4 [81, Sec. 3.1].
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edges of the plain-images emerging in the cipher-images. In this experiment, the
parameters of TDCEA are as follows: (α, β) = (5, 1), x(0) = 33578/217 ≈ 0.2562
and µ = 129518/215 ≈ 3.9526.

a) “House” b) Encrypted “House”

c) “Cameraman” d) Encrypted
“Cameraman”

Figure 2.11: Two natural images, “House” and “Cameraman”,
encrypted by TDCEA, with (α, β) = (5, 1),

x(0) = 33578/217 ≈ 0.2562 and µ = 129518/215 ≈ 3.9526.

§2.5.2 Security Problem of α, β

In [38, 43], the values of α and β are constrained by 0 < α < 8, 0 ≤ β < 8 and 0 <

α+β < 8. Thus, the number of all possible values of (α, β) is 7+6+· · ·+2+1 = 28.
However, similar to the case of BRIE, α and β should also obey the following rule
pointed out in [81]: α 6= 1, 7 or α + β 6= 1, 7. If this rule is not satisfied, then
there only exist 1-bit circular rotation operations, since RotateXp,1

i = RotateXp,7
i

and RotateY q,1
j = RotateY q,7

j . Generally speaking, 1-bit circular rotations are not
good enough to effectively encrypt the plain-image, and some visual information
may leak from the cipher-image. When (α, β) = (1, 6), x(0) = 33578/217 ≈ 0.2562,
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µ = 129518/215 ≈ 3.9526, the encryption results of two plain-images, “House” and
“Cameraman”, are shown in Fig. 2.12. It can be seen that the visual information
containing in the cipher-images is so much (even more than that in Fig. 2.11) that
the plain-images can be obviously guessed. Excluding the three values of (α, β)
that violate the above rule, (1, 0), (1, 6), (7, 0), the number of all “good” values of
(α, β) is only 25 (= 28− 3).

a) Encrypted “House” b) Encrypted
“Cameraman”

Figure 2.12: Two natural images, “House” and “Cameraman”,
encrypted by TDCEA, when (α, β) = (1, 6),

x(0) = 33578/217 ≈ 0.2562 and µ = 129518/215 ≈ 3.9526.

§2.5.3 The Brute-Force Attack

In [38, 43], it was claimed that the complexity of TDCEA against brute-force attack
is O

(
217MN/8

)
since 17MN/8 secret bits are used in the encryption/decryption

procedures. However, this statement is not true due to the following reason: all
17MN/8 bits are uniquely determined by the initial condition x(0) and the control
parameter µ of the Logistic map Eq. (2.8), which have only 34 secret bits. More-
over, not all values of µ can ensure the chaoticity of the Logistic map [82], so we
can assure that the number of possible different chaotic bit sequences is smaller
than 234.

Considering that the computational complexity of TDCEA is proportional to
O(MN), i.e. 49MN operations of all kinds [43, Sec.2.5], and the number of all
possible values of (α, β) is less than 25, the total complexity against the brute-force
attack is O(234 ·25·49MN) ≈ O(244MN). For a typical image of size 256×256, the
complexity is about O(260), which is much smaller than O(217MN/8) = O(2139264),
the complexity claimed in [38, 43]. Obviously, the security of TDCEA against
brute-force attacks was over-estimated too much in [38, 43].
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Although it was claimed that TDCEA can efficiently resist known/chosen-
plaintext attack [43, Sec.2.6], we propose two different attack methods in this
section and §3.6 to effectively break TDCEA. One attack requires a few known
plaintexts, and the other requires only one.

§2.5.4 Known-Plaintext Attack: Getting Permutation Matri-

ces as an Equivalent Key

The insecurity of BRIE against known/chosen-plaintext attacks are caused by
the fact that the ROLR operation is actually composed of secret permutations
of all 8 bits of each pixel value. As shown in §2.2, all permutation-only ciphers
are not secure against known/chosen-plaintext attacks. Apparently, TDCEA falls
into the category of permutation-only ciphers, since the circulation rotations are
actually secret permutations of all 64 bits of each 8-pixel block. As a result, if
an attacker knows (or chooses) a number of plain-blocks and cipher-blocks at the
same position, k, it is possible for him to partially (or even completely) reconstruct
the bit permutation by comparing Mk and M ′

k. This is the basic principle of
known/chosen-plaintext attacks to be discussed below.

Apparently, for the k-th pixel-block f (8)(k) and its cipher-block f ′(8)(k), the
encryption transformation can be represented by an 8 × 8 permutation matrix,
Wk = [Wk(i, j)]7,7

i=0,j=0, where Wk(i, j) = (i′, j′) denotes the secret position of the
plain-bit Mk(i, j) in M ′

k. Since there are MN/8 different blocks, the encryption of
f can be represented by MN/8 permutation matrices: {Wk}MN/8−1

k=0 . Once the at-
tacker gets the MN/8 permutation matrices and their inverses, {W−1

k }
MN/8−1
k=0 , he

can use these matrices as an equivalent key to decrypt any cipher-image encrypted
with the same key.

In §2.2.2, a general algorithm was proposed for deriving the secret permuta-
tions (i.e., the permutation matrices) from a number of known plain-images and
the corresponding cipher-images. This algorithm depends on the fact that the
secret permutations do not change the values of the permuted elements. As a
result, one can compare the values of the elements of the plain-images and the
cipher-images to reveal the secret permutations. Here, we show how to optimally
realize the general algorithm for TDCEA and discuss the breaking performance.

Given n known plain-images f0 ∼ fn−1 and the corresponding cipher-images
f ′0 ∼ f ′n−1, denoting the k-th 8× 8 bit matrix of the l-th plain-image and cipher-
image by Ml,k = [Ml,k(i, j)]7,7

i=0,j=0, M ′
l,k = [M ′

l,k(i, j)]7,7
i=0,j=0, respectively, the

algorithm of deriving the permutation matrix Wk is described as follows.

• Step 1a – calculate a generalized bit matrix M̃k =
[
M̃k(i, j)

]7,7

i=0,j=0
, where
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M̃k(i, j) =
∑n−1

l=0 Ml,k(i, j) · 2l. Apparently, M̃k(i, j) is an n-bit integer.

Note: when n is larger than the word-length of the longest integer (which is
32 or 64 for most computers), it may be impossible to store M̃k(i, j) as a
normal integer in a computer. In this case, one has to divide M̃k(i, j) into
multiple short integers for storage and computation (i.e., to use long-integer
techniques). Since the long-integer technique is easy for implementations
and n is generally smaller than 32 in most attacking scenarios∗, here we do
not pay special attention on this issue.

• Step 1b – calculate a generalized bit matrix M̃ ′
k =

[
M̃ ′

k(i, j)
]7,7

i=0,j=0
, in the

same way as Step 1a.

• Step 2 – get multi-valued permutation matrix, Ŵk =
[
Ŵk(i, j)

]7,7

i=0,j=0
, where

Ŵk(i, j) =
{

(i′, j′) | M̃k(i, j) = M̃ ′
k(i′, j′)

}
.

• Step 3 – derive an estimation of the permutation matrix Wk from Ŵk.

Apparently, if and only if each element of Ŵk contains only one pixel po-
sition, i.e., the measure of every element of Ŵk is 1, one can uniquely get the
permutation matrix Wk; otherwise, only an estimated version, W̃k, can be de-
rived. In other words, W̃k = Wk holds if and only if the cardinality of Ŵk ={

Ŵk(0, 0), · · · , Ŵk(7, 7)
}

is 64, i.e., #
(

Ŵk

)
= 64. When #

(
Ŵk

)
= P < 64,

with ni (i = 1 ∼ P ) denoting the measure of the P different elements in Ŵk, one
can easily deduce that there are

∏P
i=1(ni!) possible estimations of Wk in total.

Thus, the task of Step 3 is to determine one estimated permutation matrix from
all
∏P

i=1(ni!) possible ones. Although many different methods can be used to re-
alize Step 3, the following simple algorithm is enough in most cases to achieve an
acceptable performance:

• Initialize all elements of an 8×8 flag matrix, Fk = [Fk(i, j)]7,7
i=0,j=0, to zeros.

• For i = 0 ∼ 7 and j = 0 ∼ 7, determine the value of W̃k(i, j) as follows:

1. find the first position (i′, j′) satisfying Mk(i, j) = M ′
k(i′, j′) and

Fk(i′, j′) = 0;

2. set W̃k(i, j) = (i′, j′) and Fk(i′, j′) = 1.

∗As discussed below, the breaking performance is rather good when n ≤ 32 (see Fig. 2.14),
so one can simply set n = 32 even when n > 32.
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Note that Step 2 is also incorporated into the above algorithm, which is very useful
in reducing the total complexity.

From Eq. (2.2), we can assure that the attacker can achieve an acceptable
breaking performance when n ≥ 1 + dlog2 63e = 1 + d5.9773e = 7 plain-images are
known. Although this result is deduced under the assumption that {Ml,k} is an
independent and identically distributed sequence, it can be qualitatively general-
ized to other distributions of {Ml,k}. Our experiments show that the theoretical
result essentially holds for most natural images.

For a randomly selected key, (α, β) = (2, 2), x(0) = 33578/217 ≈ 0.2562,
µ = 129518/215 ≈ 3.9526, a set of known plain-images (all natural images) are
randomly selected for testing. When n = 8, the plain-image “Peppers” (Fig. 2.13a)
and its cipher-image (Fig. 2.13b) are used to verify the breaking performance
based on MN/8 estimated permutation matrices, {W̃k}MN/8−1

k=0 . The recovered
plain-image is shown in Fig. 2.13c. It is found that almost all visual information
contained in the original plain-image has been successfully recovered, though only
38012/65536 = 58% of plain-pixels are correct in value. With some noise reduction
algorithms, one can further enhance the recovered plain-image. One enhanced
result with a 3× 3 median filter is shown in Fig. 2.13d.

Figure 2.14 shows the percentage of correctly-recovered plain-pixels with re-
spect to n, the number of known plain-images. One can see that the breaking
performance is good when n ≥ 8. Also, it is found that the breaking performance
of the natural image is better than the noisy image under the same condition, which
is attributed to the correlation existing in the natural image for decryption as dis-
cussed in §2.2.2. It can also be observed that the slope of the two lines in Fig. 2.14
are very flat when n ≥ 16, this is also due to the correlation of the known-images
(e.g., the MSBs of adjacent pixels are the same with a high probability).

The complexity of this attack is rather small. For each block, the time com-
plexity consumed in Step 1a and Step 1b is O(2 · 64 · (n − 1)), and the aver-
age complexity in Step 2 is O(64 · 32), so the total attack complexity is only
O((2 · 64 · (n− 1) + 64 · 32) ·MN/8) = O(16(n + 15)MN).

§2.5.5 Chosen-Plaintext Attack: Getting Permutation Matri-

ces as an Equivalent Key

As discussed in above subsection, if #(W̃k) = 64, the permutation matrix Wk can
be uniquely determined. Apparently, it is easy to ensure #(W̃k) = 64 by choosing
the following six plain-images: ∀ k = 0 ∼MN/8− 1, i = 0 ∼ 7, j = 0 ∼ 7,

f0 : M0,k(i, j) = b(8i + j)/32c mod 2;

f1 : M1,k(i, j) = b(8i + j)/16c mod 2;
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a) “Peppers” b) Encrypted “Peppers”

c) Recovered “Peppers” via
{W̃k}MN/8−1

k=0

d) Enhanced “Peppers” by
a 3× 3 median filter

Figure 2.13: The image “Peppers” recovered by the first
known-plaintext attack
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Figure 2.14: The percentage of correctly-recovered pixels, Pc,
with respect to the number of known plain-images, n0.

f2 : M2,k(i, j) = b(8i + j)/8c mod 2;

f3 : M3,k(i, j) = b(8i + j)/4c mod 2;
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f4 : M4,k(i, j) = b(8i + j)/2c mod 2;

f5 : M5,k(i, j) = (8i + j) mod 2.

With the above six chosen plain-images, #(W̃k) = 64 holds so all MN/8 permu-
tation matrices can be uniquely determined, which can then be used to decrypt
any cipher-image of size not greater than MN .

The time complexity of such an attack is of the same order as the known-
plaintext attack with n = 6 known plain-images, i.e., O(16(6 + 15)MN) =
O(336MN).

In fact, due to a special weakness of TDCEA, even two chosen plain-images
are enough to completely reconstruct each 8×8 permutation matrix. Recalling the
encryption procedure of TDCEA, one can see that 2-D secret rotations are merely
a simple combination of 1-D rotations in two directions: 8 horizontal rotations
followed by 8 vertical rotations. Such a property makes the division of the 2-D
secret rotations possible in chosen-plaintext attacks with only two plain-images. In
cryptanalysis, we call such attacks divide-and-conquer (DAC) attacks. The DAC
chosen-plaintext attack can be described as follows.

• Break the 8 vertical secret rotations: Choose a plain-image f0 as follows:
∀ k = 0 ∼MN/8− 1, f

(8)
0 (k) = {255, 0, 0, 0, 0, 0, 0, 0}, i.e.,

M0,k =



1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

It is obvious that the 8 horizontal secret rotations have no influence on the
above plain-image. That is, the 2-D TDCEA is reduced to the 1-D BRIE
in the vertical direction. Since each column of M0,k has only one 1-bit, by
comparing M0,k and M ′

0,k one can uniquely get 8 values, sk(j) (j = 0 ∼ 7),

which satisfy M ′
0,k = RotateY 0,sk(j)

j (M0,k) and serves as the equivalent
rotation parameter of the j-th column.

• Break the 8 horizontal secret rotations: Choose a plain-image f1 as follows:
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∀ k = 0 ∼MN/8− 1, f
(8)
1 (k) = {1, 1, 1, 1, 1, 1, 1, 1}, i.e.,

M1,k =



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


.

Since the 8 vertical secret rotations have been obtained via f0, one can
remove all the 8 vertical rotations from M ′

1,k to get the intermediate bit
matrix M∗

1,k. Then, by comparing M∗
1,k and M1,k, one can similarly get

another 8 values, rk(i) (i = 0 ∼ 7), where M∗
1,k = RotateX0,rk(i)

i (M1,k).
Here, rk(0) ∼ rk(7) are the equivalent rotation parameter of the i-th line.

Apparently, after revealing the horizontal and vertical secret rotations, the
permutation matrix Wk can be immediately reconstructed by simply combining
the 16 rotations. In this case, the time complexity is only O((4+1+4+8)MN) =
O(17MN).

§2.6 Generalization of The Above Cryptanalyses

In previous sections, it has been shown that permutation-only image cipher work-
ing in spatial domain are not secure against known/chosen-plaintext attacks. In
this section, the above cryptanalysis results are generalized to permutation-only
image ciphers working in frequency domain and also to permutation-only video ci-
phers and permutation-only speech data ciphers. Since the cryptanalysis procedure
is almost identical except for the format of plaintexts and ciphertexts, the follow-
ing discussions only focus on a rough comparison of the breaking performances in
different situations.

§2.6.1 Cryptanalysis of Permutation-Only Image Ciphers

Working in Frequency Domain

Many digital images are stored by lossy compression techniques, which generally
work in frequency domain, especially in DCT or wavelet domain. Accordingly,
when permutation-only image ciphers are used to encrypt such images, the secret
permutations are exerted on the transformation coefficients in frequency domain,
not on the pixels in the spatial domain. In most transformation-based compression
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formats, the image is divided into many blocks of smaller size to reduce the time
complexity of compression. For example, in DCT-based formats, the image is
generally divided into 8 × 8 blocks; and in wavelet-based formats, the image is
generally divided into a quadtree. In this case, the secret permutations can also
be exerted on the blocks or the nodes of the tree, i.e., there may exist a hierarchical
encryption structure.

Generally speaking, it is easy to directly generalize the above known/chosen-
plaintext cryptanalysis, by considering the transformed image T(f) as the plain-
image f , i.e., considering the transform coefficients as the pixels in spatial do-
main. The only difference between the two cases are that there exists energy
concentration in T(f) – generally most significant transform coefficients distribute
within low-frequency band. What does this mean for cryptanalysis? Apparently,
to achieve an acceptable breaking performance, one can only reconstruct the ele-
ments in W and W−1 that correspond to low-frequency coefficients. This implies
that the reduction of the image size, which immediately leads to a smaller number
of required known/chosen plain-images and to the decline of the security against
known/chosen-plaintext attacks. In fact, in [74, Sec. 3.4.2], it has been pointed
out that the non-uniform distribution of DCT coefficients in MPEG videos (also
for JPEG images) can even be used to partially break the secret permutations in
ciphertext-only attacks. For example, one can correctly locate the DC coefficient
of each 8× 8 block with a large probability since the DC coefficient generally has
the largest amplitude among all 64 DCT coefficients.

As shown in previous sections, the existence of hierarchical structures in com-
pression techniques further reduces the security. What’s more, some elements in W

and W−1 that correspond to high-frequency coefficients can also be determined
in the attacks, which can further help refine the visual quality of the recovered
plain-image.

As a result, generally permutation-only image ciphers working in frequency
domain are less secure against known/chosen-plaintext attack than those working
in spatial domain. If it is possible to avoid the energy-concentration property and
the hierarchical structure, the security at best will be equivalent to that in the
spatial-domain case.

§2.6.2 Cryptanalysis of Permutation-Only Video Ciphers

A video stream is composed of a series of 2-D consecutive images, which are called
frames of the video. Essentially, permutation-only video ciphers work in the same
way on each frame as permutation-only image ciphers. Due to the bulky size of
most videos, transform-based lossy compression techniques are widely used for
storage and transmission of videos. Also, the block-based or quadtree-based hier-
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archical structure is widely used in various video formats. So, despite the details of
different video formats, the security of most permutation-only video ciphers against
known/chosen-plaintext attacks is in the same order as that of permutation-only
image ciphers working in frequency domain.

As a result, the security of a video cipher can be evaluated by considering it as
an image cipher encrypting the following two types of plain-images: 1) independent
frames, such as I-frames in MPEG videos; 2) frames dependent on others, such
as B/P-frames in MPEG videos. In such a way, the security analysis of the video
cipher becomes simpler and clearer. The major extra consideration in the design
of a video cipher is how to make the cipher faster and easier for implementation
in the whole video processing system.

Here, note the following fact: if the permutation matrix is fixed for all frames,
then only one partially-known/chosen plain-video is enough to reveal the secret
permutation matrix. From such a point of view, the security of a permutation-
only video cipher may be even weaker than its image counterpart. However, if the
permutation matrix has to be changed from frame to frame, it will be more difficult
to maintain the fast speed of the video cipher. This is another consideration in
the design of a good video cipher.

§2.6.3 Cryptanalysis of Permutation-Only Speech Data Ci-

phers

The general cryptanalysis of permutation-only image and video ciphers given in
this chapter can be easily applied to permutation-only speech data ciphers. In
this case, the permutation matrix is of size 1 × N . Apparently, permutation-
only speech ciphers are just 1-D special cases of permutation-only image/video
ciphers, so the above-discussed cryptanalysis still works with the same breaking
performance. Also, if the encryption is made in the frequency domain, the energy-
concentration effect will expedite the attack in the same way as in the case of
permutation-only image/video ciphers working in the frequency domain. Some
other existing cryptanalysis work on permutation-only speech data ciphers can be
found in, for example, [66, 67].

§2.7 Conclusion

By surveying most permutation-only image ciphers working in the spatial domain
and normalizing the encryption and decryption procedures of them, from a gen-
eral perspective this chapter analyzes the security of such image ciphers against
known/chosen-plaintext attacks. When the plain-images have size M × N with
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L possible pixel values, it is found that only O (logL(MN)) known/chosen plain-
images are enough for an attacker to achieve a rather good breaking performance,
leading to the conclusion that all permutation-only ciphers are not secure enough
against known/chosen-plaintext attacks. Also, it has been found that the attack
complexity is practically small – only O(n·(MN)2), when n plain-images are known
or chosen to use. The generalization of above cryptanalyses results to permutation-
only image ciphers working in the frequency domain, as well as permutation-only
video ciphers and permutation-only speech data ciphers is also discussed.

A recently-proposed permutation-only image cipher, named HCIE, has been
studied as a typical example for illustrating the cryptanalysis. Some experiments
have been shown to support the cryptanalysis of the general permutation-only
multimedia ciphers as well as the specific HCIE. Another multimedia encryption
scheme called TDCEA have also been analyzed carefully. It is found that some de-
fects exist in TDCEA and the scheme belongs in the category of permutation-only
cipher. The above general attacks are deducted to break it. Experimental results
have been given to demonstrate the defects and the feasibility of the proposed
attacks. In addition, the security of the two schemes against brute-force attack
are also found not sufficient strong.

In summary, secret permutations alone are incapable of providing a sufficiently
high level of security against known/chosen-plaintext attacks, so they must be used
together with other encryption techniques in the design of highly secure multimedia
encryption algorithms. To the best of our knowledge, this is the first time in the
literature to quantitatively clarify the security principle on multimedia encryption
algorithms, from both theoretical and experimental points of view.
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Chapter 3

Cryptanalyses of Some Chaos-Based

Encryption Algorithms

§3.1 Introduction

Due to the tight relationship between chaos and cryptography [83, Chap. 2],
chaotic systems have been widely used in image encryption to realize diffusion and
confusion[11, 16, 18, 21, 32, 33, 35, 37, 41]. For a comprehensive survey of the
state-of-the-art of image encryption schemes, see Sec. 4.3 and Sec. 4.4 of [84].

As surveyed in Sec. 4.4.3, J.-C. Yen and J.-I. Guo (et al.) proposed many
chaotic multimedia encryption schemes in recent years∗. Most of them are based
on the following basic idea: using a chaotic map (Logistic map) to generate a secret
chaotic PRBS, and the PRBS is then used to control the running and combination
of simple permutation and substitution operations. From a strict cryptographi-
cal point of view, most Yen-Guo cryptosystems are insecure since known/chosen-
plaintext attack can break them with much less complexity than brute force attack.
Among all Yen-Guo’s schemes, BRIE and CKBA, have been broken successfully in
[80] and [81] respectively. In this chapter, we’ll give cryptanalyses of another four
schemes, RCES(also called RSES), MES, DSEA and TDCEA. Note that TDCEA
have been cryptanalyzed in §2.5 as a permutation-only cipher, here it will be
broken for another time with a different method.

This chapter is organized as follows. §3.2 briefly introduces three chaos-based
encryption schemes, which are all proposed by Yen et al. §3.3, §3.4 and §3.5 give
detailed cryptanalyses of RCES, MES, DSEA respectively. §3.6 present another
kind of cryptanalysis of TDCEA. The last section concludes the chapter.

§3.2 Some Chaos-Based Encryption Algorithms

§3.2.1 Random Control Encryption System (RCES)[41](or

RSES [37])

RCES encrypts plain-images block by block, where each block contains 16 con-
secutive pixels. To simplify the following description, without loss of generality,
assume that the sizes of plain-images are all M × N (M is the width and N is

∗In original literature, the schemes were presented for encrypting image and then recom-
mended for encrypting MPEG video.
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the height), and that MN can be exactly divided by 16. Consider a plain-image
{f(x, y)}x=M−1,y=N−1

x=0,y=0 as a 1-D pixel-sequence {f(l)}MN−1
l=0 by scanning it line by

line from bottom to top. The plain-image can be divided into MN/16 blocks:

{f (16)(0), · · · , f (16)(k), · · · , f (16)(MN/16− 1)},

where

f (16)(k) = {f(16k + 0), · · · , f(16k + i), · · · , f(16k + 15)} .

For the k-th pixel-block f (16)(k), the work mechanism of RCES can be described
as follows.

• The secret key: the control parameter µ and the initial condition x(0) of the
Logistic map Eq. (2.8).

• Initialization: run the Logistic map to generate a chaotic sequence,
{x(i)}MN/16−1

i=0 , and then extract the 24-bit representation of x(i) to yield
a PRBS {b(i)}3MN/2−1

i=0 . Note that the Logistic map is realized in 24-bit
fixed-point arithmetic.

• Encryption: two pseudo-random seeds,

Seed1(k) =
7∑

i=0

b(24k + i) · 27−i, (3.1)

Seed2(k) =
7∑

i=0

b(24k + 8 + i) · 27−i, (3.2)

are calculated to encrypt the current plain-block with the following two steps:

– pseudo-randomly swapping adjacent pixels

for i = 0 ∼ 7, do

Swapb(24k+16+i)(f(16k + 2i), f(16k + 2i + 1)), (3.3)

where Swapw(a, b) =

{
(a, b), w = 0,

(b, a), w = 1;

– masking the current plain-block with the two pseudo-random seeds

for j = 0 ∼ 15, do

f ′(16k + j) = f(16k + j)⊕ Seed(16k + j), (3.4)
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where

Seed(16k + j) =


Seed1(k), B(k, j) = 3,

Seed1(k), B(k, j) = 2,

Seed2(k), B(k, j) = 1,

Seed2(k), B(k, j) = 0,

(3.5)

and B(k, j) = 2 ·b(24k+j)+b(24k+j +1), ⊕ denotes the bitwise XOR
operation (the same hereinafter).

• Decryption: The decryption procedure is similar to the encryption proce-
dure, but the masking operation is exerted before the swapping for each
pixel-block.

§3.2.2 The Multistage Encryption System (MES)

MES encrypts the plaintext block by block, where each block contains 7 plain-
bytes. Each 7-byte plain-block is firstly expanded to an 8-byte block by adding a
secret pseudo-random byte, and then is encrypted by three different operations:
byte permutations, value masking, and bit recirculations, which are all controlled
by a secret PRBS generated from the chaotic Logistic map Eq. (2.8).

To facilitate the description of MES, without loss of generality, assume that
the plaintext is f = {f(i)}N−1

i=0 , where f(i) denotes the i-th plain-byte and
N can be exactly divided by 7. In this case, the plaintext has N/7 blocks:
f = {f (7)(k)}N/7−1

k=0 , where f (7)(k) = {f (7)(k, j)}6j=0 = {f(7k + j)}6j=0. Simi-

larly, assume that the ciphertext is f ′ = {f ′(i)}N−1
i=0 = {f ′(8)(k)}N/7−1

k=0 , where
f ′(8)(k) = {f ′(8)(k, j)}7j=0 = {f ′(8k + j)}7j=0 denotes the expanded cipher-block
with 8 bytes. With the above notations, MES can be described as follows.

• The secret key three integers α, β, Open, the control parameter µ and the
initial condition x(0) of the chaotic Logistic map, where α > 0, β > 0,
α + β < 8 and Open ∈ {0, · · · , 255}.

• The initialization procedure a) in 33-bit fixed-point finite precision, run the
Logistic map from x(0) to generate a chaotic sequence, {x(k)}N/7−1

k=0 , and
then extract the 33 bits of x(k) = 0.b33k+0 · · · b33k+32 to yield a chaotic
PRBS, {b(i)}33N/7−1

i=0 ; b) set temp = Open.

• The encryption procedure of each plain-block f (7)(k) is composed of the fol-
lowing four steps:

– data expansion
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get an 8-byte block, f (8)(k) = {f (8)(k, j)}7j=0 = {temp, f (7)(k, 0),· · · ,

f (7)(k, 6)}, and then set temp = f (8)(k, l(k)), where l(k) =
2∑

i=0

b(33k +

i) · 2i.

– byte permutation

do the random swapping operation, Swapb(33k+l)

(
f (8)(k, i), f (8)(k, j)

)
,

for 12 times with the following parameters in order: (i, j, l) = (0, 4, 3),
(1, 5, 4), (2, 6, 5), (3, 7, 6), (0, 2, 7), (1, 3, 8), (4, 6, 9), (5, 7, 10), (0, 1, 11),
(2, 3, 12), (4, 5, 13), (6, 7, 14). Denote the permuted 8-byte block by
f∗(8)(k).

– random masking

determine two pseudo-random bytes, Seed1(k) =
∑7

i=0 b(33k + i) ·27−i

and Seed2(k) =
∑7

i=0 b(33k + 8 + i) · 27−i, and then do the following
masking operations for j = 0 ∼ 7:

f∗∗(8)(k, j) = f∗(8)(k, j)⊕ Seed(k, j), (3.6)

where

Seed(k, j) =


Seed1(k), B(k, j) = 3,

Seed1(k), B(k, j) = 2,

Seed2(k), B(k, j) = 1,

Seed2(k), B(k, j) = 0,

(3.7)

and B(k, j) = 2 · b(33k + 16 + j) + b(33k + 17 + j).

– bit recirculation

for j = 0 ∼ 7, do

f ′(8k + j) = f ′(8)(k, j) = ROLR
q(k,j)
p(k,j)

(
f∗∗(8)(k, j)

)
, (3.8)

where p(k, j) = b(33k + 24 + j), q(k, j) = α + β · b(33k + 25 + j).

• The decryption procedure is the simple inverse of the above encryption pro-
cedure

for the k-th 8-byte cipher-block f ′(8)(k), Step d) is first performed by re-
placing p(k, j) with its complement p(k, j) = 1 − p(k, j), then Step c) is
performed, and then Step b) is performed in the reversed order, finally the
first byte is discarded to recover the plain-block f (7)(k).
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§3.2.3 Domino Signal Encryption Algorithm (DSEA)

Assume that the plaintext is g = {g(n)}M−1
n=0 and that the ciphertext is g′ =

{g′(n)}M−1
n=0 , where g(n) and g′(n) denote the n-th plain-byte and cipher-byte,

respectively. Then, the encryption procedure of DSEA can be described as follows.

• The secret key : two integers, L ∈ {1, · · · ,M}, initial key ∈ {0, · · · , 255},
the control parameter µ and the initial condition x(0) of the chaotic Logistic
map Eq. (2.8).

• The initialization procedure: under 8-bit finite computing precision, run the
Logistic map from x(0) to generate a chaotic sequence {x(k)}dM/8e−1

k=0 , and
then extract the 8 significant bits of x(k) to yield a PRBS {b(n)}M−1

n=0 , where
x(k) =

∑7
i=0

(
b8k+i · 2−(i+1)

)
= 0.b8k+0 · · · b8k+7.

• The encryption procedure: for n = 0 ∼M − 1, do

g′(n) =

{
g(n)⊕ true key, b(n) = 1,

g(n)⊕ true key, b(n) = 0,

where

true key =

{
initial key, n mod L = 0.

g′(n− 1), n mod L 6= 0.

• The decryption procedure is identical with the above encryption procedure,
since XOR is an invertible operation.

§3.3 Cryptanalysis of RCES

In this section, we analyze the security of RCES in detail and the following results
are obtained: 1) its security against brute-force attack was over-estimated; 2) it
is not secure against known/chosen-plaintext attacks, and the number of required
plain-images is only O(1) and, in fact, only one or two; 3) there are two available
known/chosen-plaintext attacks, and they can be further combined to make a
nearly-perfect attack to RCES; 4) the chosen-plaintext attacks can even achieve
much better breaking performance than their known-plaintext versions.

§3.3.1 The Brute-Force Attack

In [37, 41], Chen and Yen claimed that the complexity of RCES against brute-
force attack is O

(
23MN/2

)
since {b(i)}3MN/2−1

i=0 has 3MN/2 bits. However, such
a statement is not true due to the following reason: all 3MN/2 bits are uniquely
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determined by the control parameter µ and the initial condition x(0) of the Logistic
map Eq. (2.8), which has only 48 secret bits. This means that the key entropy of
RCES is only 48. Considering not all values of µ can produce chaoticity in the
Logistic map, the key entropy should be even smaller than 48. To simplify the
following analysis, assume that the key entropy is Kµ < 48, so the total number
of all possible keys for brute-force search is only 2Kµ .

Considering that the complexity of RCES is O(MN) [41, Sec. 2.4], the com-
plexity against the brute-force attack is O

(
2Kµ ·MN

)
. Assume Kµ = 48, for a

typical image whose size is 256 × 256, the complexity is about O
(
264
)
, which is

much smaller than O
(
23MN/2

)
= O

(
298304

)
, the claimed complexity in [37, 41].

Apparently, the security of RCES against the brute-force attack was over-estimated
by too much.

§3.3.2 Known-Plaintext Attack 1: Breaking RCES with a

Mask Image fm

With only one known plain-image and its corresponding cipher-image, it is very
easy to get a mask image fm, which can be used as an equivalent key of the secret
key (µ, x(0)) to decrypt any cipher-image whose size is not larger than the size
of fm. When two or more plain-images are known, a swapping matrix Q can be
constructed to enhance the breaking performance of the mask image fm.

§3.3.2.1 Get fm from One Known Plain-Image

Assume that an M × N plain-image fK and its corresponding cipher-image f ′K
have been known to an attacker. Then he can get fm by simply XORing the
plain-image and the cipher-image pixel by pixel: fm(l) = fK(l) ⊕ f ′K(l), where
l = 0 ∼MN − 1.

With the mask image fm, the attacker tries to recover the plain-image by
XORing the mask image and the cipher-image pixel by pixel: f(l) = f ′(l)⊕ fm(l).
If a pixel f(l) is not swapped, f(l) = f ′(l)⊕ fm(l) holds; otherwise, f(l) = f ′(l)⊕
fm(l) is generally not true. Assume that the bit b(24k + 16 + i) in Eq. (3.3)
satisfies the balanced distribution∗ over {0, 1}, it is expected that about half of
all plain-pixels are not swapped and can be successfully decrypted with fm ⊕ f ′.
Intuitively, half of plain-pixels should be enough to reveal the main content and
some details of the plain-image.

∗Strictly speaking, the Logistic map cannot guarantee the balance of each generated bit,
since its variant density function is not uniform [85]. In this chapter, without loss of generality,
it is taken for granted so as to simplify the theoretical analyses.
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With the secret key (µ, x(0)) = (3.915264, 0.2526438), which is randomly
chosen with the standard rand() function, some experiments are made to show
the real performance of the mask image fm in this attack. One known plain-
image fLenna and its cipher-image f ′Lenna are shown in Fig. 3.1. The mask image
fm = fLenna ⊕ f ′Lenna is given in Fig. 3.2. For an unknown plain-image fPeppers

(Fig. 3.3a), the mask image fm is used to recover it from its cipher-image f ′Peppers

(Fig. 3.3b). The recovered plain-image f∗Lenna = fm ⊕ f ′Peppers and the difference
image

∣∣f∗Peppers − fPeppers

∣∣ are shown in Fig. 3.4a and 3.4b, respectively. It is
surprisingly seen that the decryption performance is much better than expected:
most (much more than 50%) pixels are successfully recovered, and almost all subtle
details remain.

a) The known plain-image
fLenna

b) The cipher-image f ′Lenna

Figure 3.1: One known plain-image, ‘Lenna’ (256× 256), and
its cipher-image

Figure 3.2: The mask image fm derived from fLenna and f ′Lenna

Although the difference
∣∣f∗Peppers − fPeppers

∣∣ visually shows that most plain-
pixels are exactly recovered, statistical data show that 33,834 pixels in f∗Peppers −
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a) The plain-image fPeppers b) The cipher-image f ′Peppers

Figure 3.3: A plain-image unknown to the attacker, ‘Peppers’
(256× 256), and its cipher-image

a) The recovered plain-image
f∗Peppers with fm

b) The recovery difference��f∗Peppers − fPeppers

��

Figure 3.4: Breaking the plain-image with fm derived from
Lenna.bmp

fPeppers are not zero, i.e., about 51.63% of pixels are not exactly recovered. To
explain why fm is so effective to recover most pixels of the plain-image with only
half exactly-recovered pixels, consider two pixels in the known plain-image, f(2i),
f(2i+1), and their cipher-pixels, f ′(2i), f ′(2i+1), where i = 0 ∼MN/2−1. Then,
the corresponding elements of the two pixels in the mask image fm will be fm(2i) =
f(2i)⊕ f ′(2i) and fm(2i+1) = f(2i+1)⊕ f ′(2i+1). Since all recovery errors are
introduced at the positions where the adjacent plain-pixels are swapped, one can
theoretically study the recovery performance of the mask image fm by considering
the elements corresponding to the swapped pixels only. Assume that f(2i) and
f(2i + 1) are swapped in the encryption procedure, f ′(2i) = f(2i + 1)⊕ Seed(2i)
and f ′(2i + 1) = f(2i)⊕ Seed(2i + 1). Therefore,

fm(2i) = f (⊕)(2i)⊕ Seed(2i), (3.9)
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fm(2i + 1) = f (⊕)(2i)⊕ Seed(2i + 1), (3.10)

where f (⊕)(2i) = f(2i)⊕ f(2i + 1).
Consider a cipher-image f ′1 and its corresponding plain-image f1. Assuming

that the plain-image recovered from fm is f∗1 , the recovered plain-pixels, f∗1 (2i)
and f∗1 (2i + 1), satisfy the following proposition and corollaries.

Proposition 3.1: f∗1 (2i)⊕ f1(2i) = f∗1 (2i + 1)⊕ f1(2i + 1) = f (⊕)(2i)⊕ f
(⊕)
1 (2i).

Proof : From Eq. (3.9) and f ′1(2i) = f1(2i + 1)⊕ Seed(2i),

f∗1 (2i) = fm(2i)⊕ f ′1(2i),

=
(
f (⊕)(2i)⊕ Seed(2i)

)
⊕ (f1(2i + 1)⊕ Seed(2i))

= f (⊕)(2i)⊕ f1(2i + 1)

Then, one has

f∗1 (2i)⊕ f1(2i) = f (⊕)(2i)⊕ f1(2i + 1)⊕ f1(2i)

= f (⊕)(2i)⊕ f
(⊕)
1 (2i).

In a similar way, one can get f∗1 (2i + 1)⊕ f1(2i + 1) = f (⊕)(2i)⊕ f
(⊕)
1 (2i). Thus,

the proof is completed. �

Corollary 3.1: When f(2i) = f(2i + 1), f∗1 (2i) = f1(2i + 1) and f∗1 (2i + 1) =
f1(2i).

Proof : The results of this corollary are special cases of the above two propositions
with f (⊕)(2i) = 0. �

Based on the above proposition, one can get an upper bound of the recovery errors
|f∗1 (2i)−f1(2i)| and |f∗1 (2i+1)−f1(2i+1)|. Firstly, a lemma should be introduced.

Lemma 3.1: If a⊕ b = c, then |a− b| ≤ c.

Proof : Represent c in the following binary form:

c = (0, · · · , 0, cn−1 = 1, · · · , ci, · · · , c1, c0)2.

Similarly, represent a and b as follows:

a = (aN−1, · · · , an−1, · · · , ai, · · · , a1, a0)2,
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b = (bN−1, · · · , bn−1, · · · , bi, · · · , b1, b0)2.

From a⊕ b = c, one have ∀j = n ∼ N − 1, aj = bj . Therefore,

|a− b| = |
N−1∑
i=0

(ai − bi) · 2i| = |
n−1∑
i=0

(ai − bi) · 2i| ≤
n−1∑
i=0

|ai − bi| · 2i.

Since |ai− bi| = ai⊕ bi = ci, one has |a− b| ≤
∑n−1

i=0 ci · 2i = c. The lemma is thus
proved. �

Corollary 3.2: |f∗1 (2i)− f1(2i)| ≤ f (⊕)(2i)⊕ f
(⊕)
1 (2i), and |f∗1 (2i + 1)− f1(2i +

1)| ≤ f (⊕)(2i)⊕ f
(⊕)
1 (2i).

Proof : This corollary is an obvious result of Proposition 3.1 and Lemma 3.1. �

Corollary 3.2 says that the recovery errors of both f∗1 (2i) and f∗1 (2i + 1) will
not be larger than f (⊕)(2i)⊕f

(⊕)
1 (2i) = f(2i)⊕f(2i+1)⊕f1(2i)⊕f1(2i+1). Due

to the strong correlation between adjacent pixels of digital images, the distribution
of the difference between two adjacent pixels is Gaussian-like. As a result, f (⊕)(2i)
will also obeys a (positive) single-side Gaussian-like distribution, which means that
the recovery error of each plain-pixel recovered from fm will also obey a Gaussian-
like distribution. The Gaussian-like distribution of recovery errors actually implies
that most recovered pixels are close to the real values of the original plain-pixels.
Therefore, the surprising recovery performance of fm shown in Fig. 3.4 can be
naturally explained.

For the plain-image fPeppers, the histograms of some differential images are
plotted to verify the above-mentioned theoretical results. Define two (M − 1)×N

differential images f (−) and f (⊕):

f (−)(x, y) = f(x, y)− f(x + 1, y), (3.11)

f (⊕)(x, y) = f(x, y)⊕ f(x + 1, y), (3.12)

where x = 0 ∼ M − 2, y = 0 ∼ N − 1. The histograms of the above two
differential images of fPeppers are shown in Fig. 3.5. When f = fLenna, f1 =
fPeppers, the histograms of f (⊕) ⊕ f

(⊕)
1 and

∣∣f∗Peppers − fPeppers

∣∣ are shown in Fig.
3.6. Apparently, Figure 3.6 agrees with Corollary 3.2 very well. Note that only the
swapped pixels are enumerated for the histogram of

∣∣f∗Peppers − fPeppers

∣∣, since the
above theoretical analysis on the recovery errors is only focused on the swapped
pixels.

Since all recovery errors are introduced by swapped pixels, the recovery perfor-
mance will be better if some swapped pixels can be distinguished. In the following,
it is shown that an attacker can manage to do so by manually detecting visible
noises in cipher-images, and by intersecting multiple mask images generated from
different known plain-images.
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§3.3.2.2 Amending fm with More Cipher-Images

Assume that the corresponding plain-image of a cipher-image does not contain salt-
pepper impulsive noises. Then, one can assert that all such noises in the recovered
plain-image indicates the positions of swapped pixels. Observing the recovered
plain-image f∗Lenna shown in Fig. 3.4a, one can find many distinguishable noises
by naked eyes, which correspond to the strong edges of the known plain-image
fLenna (see Fig. 3.4b). Following Proposition 3.1, strong edges means large values
of f (⊕)(x), and so generates salt-pepper noises.

Once some swapped pixels are distinguished, one can generate a swapping
(0, 1)-matrix Q = [qi,j ]M×N , where qi,j = 1 for swapped pixels and qi,j = 0 for
others. Similarly, Q can be represented in 1-D form: Q = {q(l)}MN−1

i=0 . With the
swapping matrix, the mask image fm is amended as follows: for i = 0 ∼MN/2−1,
if q(2i) = 1 or q(2i+1) = 1, the values of fm(2i) and fm(2i+1) are re-calculated as
follows: fm(2i) = f(2i)⊕ f ′(2i+1) and fm(2i+1) = f(2i+1)⊕ f ′(2i); otherwise,
fm(2i) and fm(2i+1) are left untouched. With the amended fm and the swapping
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matrix Q, one can decrypt the cipher-images in the following two steps:

• use fm to XOR the cipher-image to get an initial recovered plain-image f∗;

• ∀i = 0 ∼ MN/2 − 1, if q(2i) = 1 or q(2i + 1) = 1, swap the two adjacent
pixels f∗(2i) and f∗(2i + 1).

If an attacker can get more cipher-images encrypted with the same key, he can
distinguish more swapped pixels, and gets better recovery performance with fm

and Q. This implies that more and more knowledge on how to purify the attack can
be learned from the cipher-images, which is a very interesting and useful feature
from an attacker’s point of view.

§3.3.2.3 Amending fm with More Known Plain-Images

With two or more known plain-images and their cipher-images encrypted with
the same secret key, it is possible to successfully distinguish most swapped pixels,
achieving nearly perfect recovery performance. Given n ≥ 2 known plain-images,
f1, · · · , fn, and their cipher-images, f ′1, · · · , f ′n, one can get n mask images f

(i)
m =

fi ⊕ f ′i (i = 1 ∼ n). Apparently, if the l-th pixel is not swapped, ∀i 6= j, f
(i)
m (l) =

f
(j)
m (l). That is, if f

(i)
m (l) 6= f

(j)
m (l), it can be asserted that the pixel at this

position is swapped. Therefore, by comparing the elements of n mask images,
some positions corresponding to the swapped pixels can be distinguished. With the
swapping information, following the same way described above, a swapping matrix
Q can be constructed, and then fm is amended with Q with the way mentioned
above. Using the amended fm and the swapping matrix Q, the cipher-image is
decrypted with XOR and swapping operations.

From Eqs. (3.9) and (3.10), the probability of f
(i)
m (l) 6= f

(j)
m (l) is the probabil-

ity of f
(⊕)
i (2i) 6= f

(⊕)
j (2i), where l = 2i or 2i + 1. Assume the n mask images are

independent of each other and the value of each element distributes uniformly over
{0, · · · , 255}. The probability of f

(i)
m (l) 6= f

(j)
m (l) will be 1− 256−1 ≈ 0.996. This

means that only two mask images are enough to distinguish almost all swapped
pixels. However, since the mask images are generally not independent of each
other and fm(l) does not obey uniform distribution, the real probability will be
less than 1− 256−1. Fortunately, for most natural images, this probability is still
sufficiently close to 1 − 256−1, so that two known plain-images are still enough
to distinguish most swapped pixels. Given two known plain-images, ‘Lenna’ (see
Fig. 3.1a) and ‘Babarra’ (see Fig. 3.7a), the recovery performance of the attack to
‘Peppers’ is shown in Fig. 3.7b. It can be seen that the recovered plain-image is
almost perfect, and only 952 (about 1.45% of all) pixels are not exactly recovered.
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a) Another known plain-image
fBabarra

b) The recovered plain-image
f∗∗Peppers

Figure 3.7: The recovery performance on ‘Peppers’ with two
known plain-images: ‘Lenna’ and ‘Babarra’ (both 256× 256)

§3.3.2.4 Enhancing the Recovered Plain-Image with Image Processing
Techniques

To further improve the visual quality of the recovered plain-images, some noise
reducing techniques can be used to further reduce the recovery errors. For the
recovered plain-image f∗Lenna in Fig. 3.4a, the enhanced plain-image f∗Lenna with a
3× 3 median filter and the corresponding difference image

∣∣f∗Peppers − fPeppers

∣∣ are
shown in Fig. 3.8a and 3.8b, respectively. It can be seen that the visual quality
of f∗Lenna is enhanced significantly. Note that more complicated image processing
techniques are still available to further polish the recovered plain-image, one of
which will be introduced below in §3.3.5.

a) The plain-image f∗Peppers

enhanced with a 3× 3 median
filter

b) The difference image��f∗Peppers − fPeppers

��

Figure 3.8: Enhancing the recovered plain-image with a 3× 3
median filter
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§3.3.3 Known-Plaintext Attack 2: Breaking the Chaotic Map

In the above-discussed attack based on mask images, assuming that the size of fm

is M ×N , it is obvious that only MN leading pixels in a larger cipher-image can
be recovered with fm (and perhaps Q). To decrypt more pixels, the secret control
parameter µ and a chaotic state x(k) occurring before x(MN/16 − 1) have to be
known, so that one can calculate more chaotic states after x(MN/16 − 1). That
is, the chaotic map should be found. Actually, it is possible for an attacker to
achieve this goal with a high probability and a sufficiently small complexity, even
when only one plain-image is known. Similarly, the more the number of known
plain-images are, the closer the probability will be to 1, the smaller the value of k

will be, and the lower the attack complexity will be.

§3.3.3.1 Guessing a Chaotic State x(k) from fm

In the k-th pixel-block, for any unswapped pixel f(16k + j),

fm(16k + j) = f(16k + j)⊕ f ′(16k + j) = Seed(16k + j),

which must be one value in the set

S4 =
{

Seed1(k), Seed1(k), Seed2(k), Seed2(k)
}

. (3.13)

Therefore, if there are enough unswapped pixels, the right values of Seed1(k) and
Seed2(k) can be guessed by enumerating all 2-value and 1-value∗ combinations of
fm(16k+0) ∼ fm(16k+15). To eliminate most wrong values of Seed1(k), Seed2(k),
the following requirements are useful:

• both B(k, j) and (Seed1(k), Seed2(k)) are generated with {b(24k + j}15j=0;

• Seed(16k + j) is uniquely determined by B(k, j) and Seed1(k), Seed2(k)
following Eq. (3.5).

For each guessed values passing the above requirements, the corresponding chaotic
state x(k) = 0.b(24k + 0) · · · b(24k + 23) is derived as follows:

• reconstruct {b(24k + i)}15i=0 from Seed1(k), Seed2(k);

• reconstruct {b(24k+16+i)}7i=0 with the following rule: if both fm(16k+2i) ∈
S4 and fm(16k+2i+1) ∈ S4 hold, b(24k+16+i) = 0, else b(24k+16+i) = 1.

∗The 1-value combinations are included since Seed1(k) = Seed2(k) may occur with a small
probability.
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Note that some extra errors will be introduced in the least 8 bits {b(24k+16+
i)}7i=0, which makes the derived chaotic state x(k) incorrect. Apparently, the errors
are induced by the swapped pixels whose corresponding elements of fm belong to
S4. In the following, the probability of such errors, pse = Prob [fm(l) ∈ S4], is
studied. For any swapped pixel f(l) in the k-th pixel-block (l = 16k+0 ∼ 16k+15),
according to Eqs. (3.9) and (3.10), one has

pse = Prob
[
f (⊕)(l) ∈ S

(⊕)
4

]
(3.14)

where f (⊕)(l) = f (2bl/2c)⊕ f (2bl/2c+ 1) and

S
(⊕)
4 =

{
Seed1(k)⊕ Seed(l), Seed1(k)⊕ Seed(l),

Seed2(k)⊕ Seed(l), Seed2(k)⊕ Seed(l)
}

.

Considering the Gaussian-like distribution of f (⊕) (see Fig. 3.5) and the fact
that 0 ∈ S

(⊕)
4 , pse is generally not negligible for natural images. Without loss of

generality, assume that each bit in {b(i)} yields a balanced distribution over {0, 1}
and any two bits are independent of each other. One can deduce

P1 = Prob[x(k) is correct] =
8∑

i=0

pb(8, i) · pi
c, (3.15)

where pb(8, i) =
(
8
i

)
· 2−8, which denotes the probability that there are i pairs of

swapped pixels, and pc = 1− pse. The relation between P1 and pc is given in Fig.
3.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pc

P
r
o
b
[x

(k
)

is
co

rr
ec

t]

Figure 3.9: P1 = Prob[x(k) is correct] vs. pc
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§3.3.3.2 Deriving µ from Two Consecutive Chaotic States

With two consecutive chaotic states, x(k) and x(k +1), the estimated value of the

secret control parameter µ will be µ̃k =
x(k + 1)

x(k) · (1− x(k))
. Due to the negative

influence of quantization errors, generally µ̃k 6= µ. As known, chaotic maps are
sensitive to fluctuation in the initial condition, so an approximate value of µ will
generate completely different chaotic states after several iterations, which implies
that µ̃k can not be directly used instead of µ as the secret key. Fortunately,
following the error analysis of µ̃k given in the Theorem 3.1, one have when x(k +
1) ≥ 2−n (n = 1 ∼ 24), |µ̃k−µ| < 2n+3 ·2−24. Specially, when x(k+1) ≥ 2−1 = 0.5,
one can exhaustively search 21+3 = 16 values in the neighborhood of µ̃k to find the
right value of µ. To verify which guessed value of µ is the right one, one should
iterate the Logistic map from x(k+1) until x(MN/16−1), and then check whether
or not the corresponding elements in fm match the calculated chaotic states. Once
a mismatch occurs, the current guessed value is discarded, and the next guess will
be tried. To minimize the verification complexity, one can check only a number of
chaotic states sufficiently far from x(k + 1) to eliminate most (or even all) wrong
values of µ̃k, and verify the left few ones by checking all chaotic states from x(k+2)
to x(MN/16− 1).

Theorem 3.1: The estimation error of µ̃ =
x(k + 1)

x(k) · (1− x(k))
, ∆µ = µ̃ − µ, sat-

isfies |∆µ| < 1
2L−3·x(k+1)

.

Proof : Obviously, the estimation error of µ̃ is caused by the quantization error
∆x(k+1) generated in the forward chaotic iteration x(k+1) = µ ·x(k) · (1−x(k)).
In L-bit fixed-point finite precision, the quantization error does not exceed 2−L

for the floor or ceiling quantization function, and does not exceed 2−(L+1) for the
round quantization function. Since there are two L-bit digital multiplications in
each forward chaotic iteration, one has

x(k + 1) = (µ · x(k) + ∆1x(k + 1)) · (1− x(k)) + ∆2x(k + 1)

= µ · x(k) · (1− x(k)) + ∆1x(k + 1) · (1− x(k)) + ∆2x(k + 1)

= x(k + 1) + ∆x(k + 1),

where x(k + 1) is the real value of x(k + 1) and ∆x(k + 1) = ∆1x(k + 1) · (1 −
x(k)) + ∆2x(k + 1). Then, one can get |∆x(k + 1)| ≤ |∆1x(k + 1)| + |∆2x(k +
1)| < 2−L + 2−L = 2−(L−1). From this result, the quantization error |∆µ| can be
estimated as follows:

|∆µ| =
∣∣∣∣ ∆x(k + 1)
x(k) · (1− x(k))

∣∣∣∣ =
∣∣∣∣∆x(k + 1)

x(k + 1)
· x(k + 1)
x(k) · (1− x(k))

∣∣∣∣
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=
|∆x(k + 1)|

x(k + 1)
· µ <

2−(L−1)

x(k + 1)
· 4 =

1
2L−3 · x(k + 1)

.

�

Combining the above analyses, the final complexity of finding two correct
consecutive chaotic states, x(k), x(k + 1), and the right value of µ, is

O

(
2 ·
((

16
2

)
+
(
16
1

))
(0.5 · P1)2

· 21+3

)
= O

(
17408
P 2

1

)
, (3.16)

which is generally much smaller than the complexity of exhaustively searching
all possible keys. As a reference value, when pc = 0.7, the complexity is about
O
(
217.8

)
� O

(
248
)
.

§3.3.3.3 A Quick Algorithm to Guess the Two Random Seeds

Following the above-discussed search process, the found correct chaotic states x(k)
and x(k + 1) will be close to x(0). Considering the occurrence of two consecutive
chaotic states larger than 0.5 as a Bernoulli experiment, the mathematical expec-

tation of k will be
1

(0.5 · P1)2
=

4
P 2

1

[86]. This means that only tens of known

plain-pixels∗ are enough for an attacker to break the chaotic map, which is a very
desired feature for attackers. However, as an obvious disadvantage, the search
complexity to guess the two random seeds is somewhat large. In fact, for each
pixel-block, one can only test a few number of possible 2-value (and 1-value) com-
binations, not all. If this pixel-block looks not good for guessing the two random
seeds, simply discard it and go to the next pixel-block. Following such an idea,
a quicker algorithm can be designed to find the two random seeds. In this quick-
search algorithm, the found correct chaotic states x(k) and x(k + 1) may be far

from x(0), so the size of the mask image has to be much larger than
4

P 2
1

.

The quick-search algorithm is based on the following observation: the more
the unswapped pixels there are in the k-th pixel-block, the more the number of
values in {fm(16k + j)}15j=0 will be in S4. Accordingly, define a new sequence{

f̃m(16k + j)
}15

j=0
as follows:

f̃m(16k + j) = min
(
fm(16k + j), fm(16k + j)

)
. (3.17)

Then, the following is also true: the more the unswapped pixels there are in the

k-th pixel-block, the more the number of the values in
{

f̃m(16k + j)
}15

j=0
will be

in S2, where S2 =
{

min
(
Seed1(k), Seed1(k)

)
,min

(
Seed2(k), Seed2(k)

)}
.

∗For example, even a 10× 10 “tiny” image is enough.
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Therefore, assuming that there are nk pairs of unswapped pixels in the k-th
pixel-block, the following fact is true: if nk is sufficiently large, the two most-

occurring elements in
{

f̃m(16k + j)
}15

j=0
are the two values in S2, with a high

probability. Then, when can one say that nk is sufficiently large? In totally 8
pairs of elements, the average number of pairs in S2 is N(S2) = nk +(8−nk) · pse,
and the number of other pairs is N(S2) = 8−N(S2) = (8−nk) · (1− pse). From a

conservative point of view, let N(S2) <
N(S2)

2
, which ensures that the occurring

probability of each element of S2 is larger than the probability of all other values.

Solving this inequality, one can get nk ≥ 6, yielding N(S2) ≤ 2 < 3 ≤ N(S2)
2

.
Based on the above analyses, the quick-search algorithm is described as fol-

lows:

• Step 1 : generate a new sequence,
{

f̃m(16k + j)
}15

j=0
;

• Step 2 : rank all values of
{

f̃m(16k + j)
}15

j=0
to find the top two mostly-

occurring values, value1 and value2, assume their numbers are num1 and
num2 respectively;

• Step 3 : if num1+num2 ≥ 12 and num1, num2 ≥ 3, continue next step, else
k = k + 1, go to Step 1 ;

• Step 4 : exhaustively search Seed1(k) and Seed2(k) in S̃4 ={
value1, value1, value2, value2

}
.

If more than one value corresponds to the same position in the rank of{
f̃m(16k + j)

}15

j=0
, all of them should be enumerated as value1 and value2 in

Step 2 to Step 3. In a real attack, some extra constraints such as secret bit reuse
can be added to further optimize the above algorithm for different mask images.
The attack complexity of this quick-search algorithm is hard to theoretically ana-
lyzed, since the distribution of those values that are not in S4 is generally unknown.
Fortunately, experiments show that the complexity is much smaller than the one
given above. In Fig. 3.10, the performance of the quick-search algorithm is shown
for the recovered plain-image f∗Peppers, where different pixel-blocks are used to ex-
tract the chaotic states. Note that more than forty pixel-blocks are eligible to be
used to extract the correct chaotic states, and the three shown here are randomly
chosen for demonstration.

In the following, it is theoretically studied as how much MN should be to
guarantee the efficiency of the quick-search algorithm, which is determined by the
occurrence probability that two consecutive pixel-blocks satisfy the requirements
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a) The recovered plain-image
f∗Peppers from the 7th

pixel-block

b) The recovered plain-image
f∗Peppers from the 689th

pixel-block

c) The recovered plain-image
f∗Peppers from the 1673rd

pixel-block

d) Recovering a larger
plain-image f∗Peppers2,768×768

from the 1673rd pixel-block

Figure 3.10: Demonstration of the quick-search algorithm,
where ‘Lenna’ is the only known plain-image

given in Step 2 and Step 3. Assume that each bit in {b(i)} yields a balanced
distribution over {0, 1} and any two bits are independent of each other. The
probability that one pixel-block satisfies the requirements, which is denoted by
Po, yields Eq. (3.18). Then, for the occurrence probability that two consecutive
pixel-blocks satisfy the requirements, which is denoted by Po2, one can calculate

that Po2 = P 2
o ≥ Prob

[
S4 = S̃4

]2
=
(

4699
215

)2

≈ 0.02. This means that there will

be two consecutive pixel-blocks satisfy the requirements in
1

Po2
≈ 50 pixel-blocks

(about 800 pixels), from the probabilistic point of view. Therefore, the required
size of the known plain-image should be larger than 800, which is even smaller
than the size of a 30×30 image. Hence, the quick-search algorithm is very efficient
to use for attacks.
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Po ≥ Prob
[
S4 = S̃4

]
= Prob

[
Seed1(k) and Seed2(k) occur at least 3 times in

{
f̃m(16k + j)

}15

j=0

]
· Prob

[
min

(
Seed1(k), Seed1(k)

)
6= min

(
Seed2(k), Seed2(k)

)]
(3.18)

=
∑8

nk=6

((
8

nk

)
· 2−8 ·

(
1−

∑2
m=0

(
2nk

m

)
· 2−2nk

)
·
(
1− 128−1

))

§3.3.3.4 Breaking the Chaotic Map with both fm and Q

All the above-mentioned algorithms are based on only-one known plain-image.
When more than one plain/cipher-image is known, the constructed swapping (0, 1)-
matrix Q will be very useful to increase the efficiency of the attack. As already
known, the mask image fm can be amended using the swapping information stored
in Q. Since all amended elements in fm are also values in S4, it is obvious that the
efficiency of the search algorithm for finding correct random seeds will be increased.
In addition, the swapping matrix Q can be used to uniquely determine some bits in
{b(24k+16+ i)}7i=0 without checking fm(16k+2i) ∈ S4 and fm(16k+2i+1) ∈ S4.
Thus, the total complexity in finding a correct chaotic state will be less, and the
attack will succeed faster.

When two or more plain-images and/or cipher-images are known, most
swapped pixels can be successfully distinguished. In this case, it is much eas-
ier to find a pixel-block of fm whose elements are all in S4, which means that
Seed1(k), Seed2(k) can be quickly guessed by enumerating all values in S4, and
all the 8 bits {b(24k + 16 + i)}7i=0 can be absolutely determined.

§3.3.4 The Combined Known-Plaintext Attack

The above two known-plaintext attacks have their disadvantages: the first attack
cannot decrypt the cipher-images larger than MN (the size of fm), and the second
one cannot decrypt all pixels before the position where the first correct chaotic state
x(k) is found. One can combine them, however, to make a better known-plaintext
attack without these disadvantages: use the first attack to decrypt the pixels before
x(k) and then use the second attack to decrypt the others. Figure 3.11 shows the
performance of this combined attack with only one known plain-image, where the
recovered chaotic state in the second attack is selected as x(1673) (see also Fig.
3.10c, d), which can clearly show the boundary of the two parts decrypted by the
two attacks.
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a) The recovered plain-image
fPeppers

b) The recovered larger
plain-image fPeppers2,768×768

Figure 3.11: The recovery performance of the combined
known-plaintext attack

§3.3.5 The Chosen-Plaintext Attack

Apparently, all the above three known-plaintext attacks can be extended to chosen-
plaintext attacks.

For the first kind of known-plaintext attack, the chosen-plaintext version can
achieve much better recovery performance with a nearly-perfect mask image fm,
by choosing only one plain-image whose pixels are all fixed to be the same gray
value. Given such a plain-image, from Corollary 3.1, any recovered plain-pixel will
be the plain-pixel itself or its adjacent pixel. Thus, although the recovery error
bounded by a1 = f1(16k + 2i)⊕ f1(16k + 2i + 1) may still be large, it is expected
that the visual quality of the recovered plain-image will be much better. It is
also expected that all salt-pepper impulsive noises will disappear and a dithering
effect of edges will occur, which is demonstrated in Fig. 3.12c with the plain-image
f∗Peppers recovered from the chosen plain-image shown in Fig. 3.12a. As a natural
result, the visual quality of the recovered plain-image f∗Peppers becomes much better
as compared with the one shown in Fig. 3.4a.

Similarly to the known-plaintext attack, with some image processing tech-
niques, the recovered plain-image in the chosen-plaintext attack can also be en-
hanced to further provide a better visual quality. Now, the question is: can one
maximize the visual quality with an optimization algorithm? The answer is yes.
In fact, with a subtly-designed algorithm, almost all dithering edges can be per-
fectly polished and a matrix Q containing partial swapping information can be
constructed with only one chosen plain-image. In the following, this efficient algo-
rithm and its real performance are studied in some details.

The proposed algorithm divides the image into 2n-pixel blocks for enhance-
ment, where 2n can exactly divide M . The basic idea is to exhaustively search
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a) The chosen plain-image fGray b) The mask image fGray,m

c) The recovered plain-image
f∗Peppers

d) The difference image��f∗Peppers − fPeppers

��
Figure 3.12: The recovery performance of the chosen-plaintext

attack

the optimal swapping states of all pixels to achieve the minimal differential errors.
For the m-th 2n-pixel block fB(m) = {f(m · 2n + i)}2n−1

i=0 , the algorithm works as
follows:

1. set {bs(i) = 0}n−1
i=0 and ∆min = 256(n− 1);

2. for (b0, · · · , bn−1) = (

n︷ ︸︸ ︷
0, · · · , 0) ∼ (

n︷ ︸︸ ︷
1, · · · , 1), do

(a) assign A = {a0, · · · , a2n−1} = fB(m);

(b) for i = 0 ∼ n− 1, do Swapbi(a2i, a2i+1);

(c) calculate ∆A = |a2−a1|+ |a4−a3|+ · · ·+ |a2i−a2i−1|+ · · ·+ |a2n−2−
a2n−3|;

(d) if ∆A < ∆min, then set ∆min = ∆A and {bs(i) = bi}n−1
i=0 .

3. for i = 0 ∼ n− 1, do Swapbs(i)(f(m · 2n + 2i), f(m · 2n + 2i + 1));
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4. set the corresponding elements of the swapping matrix Q to be 1 for bs(i) = 1.

The complexity of the above algorithm is O(2n ·MN). When M = N = 256 and
n = 8, it is less than 224, which is practical even on PCs.

For the recovered plain-image f∗Peppers shown in Fig. 3.12c, the above algo-
rithm has been tested with parameter n = 8, and the result is given in Figs. 3.13a
and 3.13b. Although the enhanced plain-image have 14378 (about 21.94% of all)
pixels different from the original plain-image, its visual quality is so perfect that
no any visual degradation can be distinguished. In fact, in a sense, the enhanced
plain-image can be considered as a better version of the original one, since each
2n-pixel block of the former reaches the minimum of the accumulated differential
error. From such a point of view, this optimization algorithm can also be used
to enhance the visual quality of the plain-image recovered by a known-plaintext
attack. For the recovered plain-image shown in Fig. 3.4a, the enhancing result is
given in Figs. 3.13c and 3.13d. It can be seen that dithering edges existing in the
plain-image shown in Fig. 3.4a have been polished.

In the above algorithm, most swapped operations can be distinguished by
using the minimum-detecting rule on the accumulated differential error of fB(m),
which means that most elements in Q are correct for showing the real values of the
swapping directive bits {b(24k + 16 + i}7i=0. Once 32 consecutive correct elements
(two 16-pixel blocks) in Q have been found, it is possible to derive µ and a chaotic
state x(k), like in the situation of the second known-plaintext attack.

§3.4 Cryptanalysis of MES

§3.4.1 Three Properties of MES

Define the XOR-differential (“differential” in short) of two signals f0 and f1 as
f0⊕1 = f0 ⊕ f1. Then, it is easy to prove the following three properties of MES,
which will be the basis of the proposed attack.

Property 3.1: The random masking in Step c) cannot change the differential
value, i.e., ∀ k, j, f

∗∗(8)
0⊕1 (k, j) ≡ f

∗(8)
0⊕1 (k, j).

Proof : From Eq. (3.6), f
∗∗(8)
0⊕1 (k, j) = f

∗∗(8)
0 (k, j) ⊕ f

∗∗(8)
1 (k, j) = (f∗(8)0 (k, j) ⊕

Seed(k, j))⊕ (f∗(8)1 (k, j)⊕ Seed(k, j)) = f
∗(8)
0 (k, j)⊕ f

∗(8)
1 (k, j) = f

∗(8)
0⊕1 (k, j). �

Property 3.2: If the plaintext and the chaotic bit sequence are fixed, all differen-
tial bytes in f

(8)
0⊕1(k) are fixed, i.e., f

(8)
0⊕1(k) are independent of the value of Open.

Proof : For the first byte of each 8-byte block, if temp = Open, f
(8)
0⊕1(k, 0) = 0;

otherwise, temp is one plain-byte occurring before f (7)(k), which means f
(8)
0⊕1(k, 0)
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a) Enhancing the plain-image
f∗Peppers shown in Fig. 3.12c

b) The difference image��f∗Peppers − fPeppers

�� of a)

c) Enhancing the plain-image
f∗Peppers shown in Fig. 3.4a

d) The difference image��f∗Peppers − fPeppers

�� of c)

Figure 3.13: The performance of the optimization algorithm
when n = 8

is one of the differential bytes occurring before f
(7)
0⊕1(k). Apparently, the differential

value f
(8)
0⊕1(k, 0) is independent of the value of Open, but uniquely determined by

the plaintext and the secret chaotic sequence. Since the other 7 bytes in f
(8)
0⊕1(k)

are also independent of Open, this property is thus proved. �

Properties 3.1 and 3.2 mean that MES is reduced to be a three-stage cipher with
Open = 0 (thus becomes a modification of TDCEA §2.3.2), from the differential
point of view.

Property 3.3: The byte permutation in Step b) cannot change each differential
value, but its position in the 8-byte block.

Proof : This property is obviously true since the byte permutation only change
the position of each byte. �

A natural result of the above property is: if f
(8)
0⊕1(k, 0) = · · · = f

(8)
0⊕1(k, 7), then

it is true that f
(8)
0⊕1(k) = f

∗∗(8)
0⊕1 (k). This means that MES is further reduced to
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be a two-stage cipher (and be a data-expansion modification of BRIE [32]), for
differential blocks with 8 identical bytes.

§3.4.2 The Differential Attack

Utilizing Property 3.3 and the cryptanalysis on BRIE given in [81], one can easily
break the secret bit recirculations in Step d). Then, the secret byte permutations
in Step b) and the secret data expansion in Step a) can be further broken by
using Properties 3.1 and 3.2. Finally, the secret masking operations in Step c) are
recovered immediately. After all secret operations in the four steps are revealed,
most secret chaotic bits can be broken to derive the secret key with a sufficiently
small complexity, which leads to the complete breaking of MES. Note that the
proposed differential attack can be carried out by choosing either plaintexts or
ciphertexts.

§3.4.2.1 Breaking the secret ROLR operations in Step d)

Choose two plaintexts to obtain the following differential signal f0⊕1: ∀ i = 0 ∼
N − 1, f0⊕1(i) ≡ a. From the generation rule of f (8)(k, 0), there exists a threshold
integer, k0 ≥ 1, such that f

(8)
0⊕1(k, 0) ≡ 0 when k ≤ k0 and f

(8)
0⊕1(k, 0) ≡ a when

k > k0. Assuming that a 6= 0 and each chaotic bit distribute uniformly over
{0, 1}, one can deduce that Prob[k0 = n] = Prob[l(0) = · · · = l(n− 1) = 0, l(n) 6=
0] = 7/8n+1. This means that f

(8)
0⊕1(k, 0) ≡ a is almost true when k is sufficiently

large. In this case, f
(8)
0⊕1(k, 0) = · · · = f

(8)
0⊕1(k, 7) is true, so from Property 3.3

one can see that only Step d) is left for MES, i.e., ∀ j = 0 ∼ 7, f
′(8)
0⊕1(k, j) =

ROLR
q(k,j)
p(k,j)

(
f

(8)
0⊕1(k, j)

)
= ROLR

q(k,j)
p(k,j)(a). Now, MES is reduced to be BRIE,

and the secret ROLR operations can be broken by setting a = 1 as discussed in
[81]:

ROLR
q(k,j)
p(k,j) = ROLR

8−q̂(k,j)
0 = ROLR

q̂(k,j)
1 , (3.19)

where q̂(k, j) = log2

(
f
′(8)
0⊕1(k, j)

)
, which is the new position of the only 1-bit of

a = 1 after the ROLR operation.

§3.4.2.2 Breaking the secret byte permutation in Step b)

Since the secret ROLR operations in Step d) has been recovered, from the dif-
ferential point of view, MES becomes a permutation-only cipher with data ex-
pansion. As we analyzed in §2.2.3, all permutation-only ciphers are not secure
enough against chosen-plaintext attacks. If two plaintexts are chosen to ensure
that any two elements in each 8-byte differential block are different, one can
uniquely determine the secret permutations by comparing f

(8)
0⊕1(k, 1) ∼ f

(8)
0⊕1(k, 7)
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and f
∗(8)
0⊕1 (k, 0) ∼ f

∗(8)
0⊕1 (k, 7). It is easy to do so in chosen-ciphertext attacks, by

choosing 8 different cipher-bytes for each f
∗(8)
0⊕1 (k). In chosen-plaintext attacks,

since f
∗(8)
0⊕1 (k, 0) cannot be freely chosen, the condition is a little more compli-

cated. Let us choose two plaintexts to get the following differential signal f0⊕1:
∀ i = 0 ∼ N , f0⊕1(i) = (i+1) mod 256. In this case, assuming that each chaotic bit
distributes uniformly, one can calculate Pc = Prob[f0⊕1(k, 0) ∈ {f0⊕1(k, j)}7j=1],
as:

• Pc = 0 when 0 ≤ k ≤ b255/7c − 1 = 35;

• Pc ≤ 1/835 = 1/2105 when k ≥ 36.

It is obvious that Pc is negligible in all cases, and it is almost true that ∀ i, j ∈
{0, · · · , 7} and i 6= j, f

∗(8)
0⊕1 (k, i) 6= f

∗(8)
0⊕1 (k, j). As a result, the secret permutation of

the k-th block can be uniquely determined as a bijective index-mapping F (k, i) =
i′, where i, i′ ∈ {0, · · · , 7}. If some bytes in f0⊕1(k) happen to be identical, one
can choose one more pair of plaintexts to try to recover the secret permutations.

§3.4.2.3 Breaking the secret data expansion in Step a)

Once the secret permutations of two consecutive blocks, f
(8)
0⊕1(k) and f

(8)
0⊕1(k + 1),

are broken, one can immediately get the value of l(k) by finding the position of
f

(8)
0⊕1(k + 1, 0) in the 8 bytes of f

(8)
0⊕1(k).

§3.4.2.4 Breaking the secret masking parameters in Step c)

After Steps a), b) and d) are broken, the two intermediate blocks, f
∗(8)
0 (k) and

f
∗∗(8)
0 (k) can be derived from f0 and f ′0, respectively. Then, the masking parame-

ters can be calculated as follows: ∀ k, j, Seed(k, j) = f
∗(8)
0 (k, j)⊕ f

∗∗(8)
0 (k, j).

§3.4.2.5 Breaking the secret chaotic bits and the secret key

Though the recovered secret operations in the above procedure can be used as the
equivalent of the secret key to decrypt the ciphertexts, one can still further derive
the secret chaotic bits, and then try to derive the values of α, β, µ and x(0). Since
the knowledge of Open does not influence the decryption, it is excluded from the
secret key.

In Step a), the three involved chaotic bits, b(33k + 0) ∼ b(33k + 2) can be
directly derived from the value of l(k).

In Step c), 25 chaotic bits are involved: b(33k + 0) ∼ b(33k + 7) and
b(33k + 8) ∼ b(33k + 15) determine Seed1(k) and Seed2(k), respectively, and
b(33k + 16) ∼ b(33k + 24) determine B(k, 0) ∼ B(k, 7). To derive the un-
known bits, one has to search for the values of Seed1(k) and Seed2(k) in the
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set {Seed(k, 0), · · · , Seed(k, 7)} ⊆ {Seed1(k), Seed1(k), Seed2(k), Seed2(k)}. Ap-
parently, the maximal number of possible combinations of Seed1(k) and Seed2(k)
is 8. The three known bits b(33k + 0) ∼ b(33k + 2) can be used to eliminate some
invalid combinations. Also, note that B(k, j) and B(k, j + 1) (j = 0 ∼ 6) have a
common bit, b(33k + 17 + j), which can be used as a second constraint to elimi-
nate invalid combinations of Seed1(k) and Seed2(k). In most cases, the values of
Seed1(k) and Seed2(k) can be uniquely determined, and then all the 25 chaotic
bits can be derived (see the experimental result in the next subsection).

In Step d), 9 chaotic bits, b(33k+24) ∼ b(33k+32), are used to determine the
values of p(k, j) and q(k, j), together with α and β. Observing the bit-recirculation
procedure and Eq. (3.19), one can see that q̂(k, j) ∈ Q = {α, α+β, 8−α, 8−(α+β)}
holds. So, by exhaustively searching for all 1 + · · ·+ 6 = 21 possible combinations
of α and β, one can determine the 9 chaotic bits with the following equations:
∀ j = 0 ∼ 7,

b(33k + 25 + j) =

{
0, q̂(k, j) ∈ {α, 8− α},

1, q̂(k, j) ∈ {α + β, 8− (α + β)},
(3.20)

b(33k + 24 + j) =

{
0, q̂(k, j) ∈ {α, α + β},

1, q̂(k, j) ∈ {8− α, 8− (α + β)}.
(3.21)

Note Eq. (3.20) is invalid when α = 8− (α+β), i.e., 2α+β = 8, and Eq. (3.21) is
invalid when α = 4, α +β = 4 or 2α +β = 8. According to how the two equations
can be used to determine the 9 chaotic bits from {q̂(k, j)}7j=0, all possible values
of (α, β) can be divided into the following three classes.

• C1) α 6= 4, α + β 6= 4 and 2α + β 6= 8: both Eqs. (3.20) and (3.21) are
valid, so all the 9 chaotic bits, b(33k + 24) ∼ b(33k + 32), can be uniquely
determined. There are 12 C1 -values, all of which satisfy #(Q) = 4.

• C2) 4 ∈ {α, α+β} (which ensures 2α+β 6= 8): Eq. (3.20) is valid and the 8
chaotic bits, b(33k + 25) ∼ b(33k + 32), can be uniquely determined. When
α = 4 and b(33k + 25) = 1, or α 6= 4 and b̃(33k + 25) = 0, one can also
determine b(33k + 24) by Eq. (3.21). There are 6 C2 -values, all of which
satisfy #(Q) = 3.

• C3) 2α + β = 8: Eqs. (3.20) and (3.21) are not valid, so all the 9 chaotic
bits have to be exhaustively guessed. There are 3 C3 -values, which satisfy
#(Q) = 2.

* For C2/C3-classes, note that b(33k + 24) can be recovered in Step c) in a
high probability.
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Since the above three classes correspond to different values of #(Q), one need
not search for all 21 values of (α, β), but those corresponding to #(Q), which can
reduce the search complexity to some extent. The value of #(Q) can be estimated
from the cardinality of Q′ = {q̂(k, j)}N/7−1,7

k=0,j=0 , or one of its subset. It is obvious
that #(Q′) = #(Q) almost true when N is sufficiently large.

To verify which guessed value of (α, β) is the real one, the following procedure
is useful by estimating the values of two consecutive chaotic states, x(k) and x(k+
1), and the value of µ. Assuming all the 33 chaotic bits, b(33k + 0) ∼ b(33k + 32)
have been successfully recovered (or guessed) with the above procedure, one can
immediately get the value of x(k) = 0.b(33k + 0) ∼ b(33k + 32). After getting
x(k + 1) in a similar way, one can calculate an estimation of µ like the procedures
in §3.3.3.2.

By iterating the Logistic map from x(k+1) until x(N/7−1) and then checking
the coincidence between these chaotic states and the corresponding bits that can
be uniquely derived, one can detect wrong values of (α, β) and µ and distinguish
the real ones. To minimize the complexity, one can check only a number of chaotic
states, sufficiently far from x(k + 1), to eliminate most wrong values, and verify
the few left ones by checking all chaotic states from x(k + 2) to x(N/7− 1).

§3.4.3 Experiments and the Attack Complexity

As discussed above, to carry out the differential chosen-plaintext attack, only three
plaintexts are enough to construct two plaintext differentials, as follows: 1) ∀ i =
0 ∼ N − 1, f0⊕1(i) ≡ 1; 2) ∀ i = 0 ∼ N − 1, f0⊕1(i) = (i + 1) mod 256. When one
plaintext is chosen as an image “Lenna”, the performance of the proposed attack
has been tested, and the results are shown in Fig. 3.14. The two differentials are
used to break the secret operations and then try to break some chaotic bits. It is
found that for 8084 blocks in total 9363 ones, all the 33 involved chaotic bits can
be uniquely determined. Two chaotic states, x(1) and x(2), are used to estimate
µ, and then to find the secret key for recovering the ciphertext of another image
“Peppers” (see Figs. 3.14c and d).

Finally, we briefly discuss the attack complexity. It can be easily verified
that the complexity of breaking all secret operations is proportional to N . The
complexity of breaking the secret key depends on the value of (α, β). When (α, β)
belongs to C1 and C2 classes, the attack complexity is also proportional to N ;
when (α, β) belongs to C3 class, the attack complexity is 28 · 28 = 216 times of the
complexity of that in C1/C2-cases, which is still practically small.
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a) Original “Lenna” b) Encrypted “Lenna”

c) Encrypted “Peppers” d) Recovered “Peppers”

Figure 3.14: The differential chosen-plaintext attack to MES

§3.4.4 The Brute-Force Attacks

Another obvious problem of MES is that the key space is not cryptographically
large. The secret key for decrypting MES includes (µ, x(0)), which is represented
by 2 · 33 = 66 secret bits, and (α, β), which has 21 possible values. Thus, one can
see that the key space of MES is only 21 · 266, which is not sufficiently large from
the cryptographical point of view [1]. What’s worse, since the Logistic map is not
chaotic for all values of µ far less than 4, the key space is even smaller than 21 ·266.
To make MES practically secure in today’s digital world, the key space should be
not less than O

(
2128

)
. One simple method to enlarge the key space is to realize

the chaotic Logistic map with a higher finite precision, i.e., to increase the number
of secret bits for representing µ and x(0).
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§3.5 Cryptanalysis of DSEA

§3.5.1 The Brute-Force Attack

The secret key of DSEA is (L, initial key, µ, x(0)), which has M · 23·8 = M · 224

possible values. Taking the complexity of verifying each key into consideration,
the total complexity of searching for all possible keys is O

(
224 ·M2

)
. When the

plaintext is selected as a typical image of size 256 × 256, the complexity will
be O(256), which is much smaller than O(2M ·M) = O(265552), the complexity
claimed in [42]. Note that the real complexity is even smaller since not all values
of µ can ensure the chaoticity of the Logistic map [82]. That is, the security of
DSEA against brute-force attacks was over-estimated much in [42]. In today’s
digitized and networked world, the complexity of order O(2128) is required for a
cryptographically-strong cipher [1], which means DSEA is not practically secure.

§3.5.2 The Ciphertext-Only Attacks

Since the transmission channel is generally insecure, the security against
ciphertext-only attacks are required for any ciphers. However, it is found that
DSEA is not sufficiently secure against ciphertext-only attacks, since much in-
formation about the plaintext and the secret key can be found from even one
ciphertext.

Given an observed ciphertext g′, generate two mask texts, g∗0 and g∗1 , as
follows: g∗0(0) = 0, g∗1(0) = 0,∀ n = 1 ∼ M − 1, g∗0(n) = g′(n) ⊕ g′(n− 1),
g∗1(n) = g′(n) ⊕ g′(n − 1). From the encryption procedure of DSEA, it can be
easily verified that the following result is true when n mod L 6= 0:

g(n) =

{
g∗0(n), b(n) = 0,

g∗1(n), b(n) = 1,
(3.22)

which means that g(n) is equal to either g∗0(n) or g∗1(n). Assuming that each
chaotic bit distributes uniformly over {0, 1}, one can deduce that the percentage
of right plain-pixels in g∗0 and g∗1 is not less than L−1

L · 1
2 = 1

2 −
1

2L . When L is
large, about half pixels in g∗0 and g∗1 are plain-pixels in g, and it is expected that
some visual information of the plain-image can be distinguished from g∗0 and g∗1 .

To verify the above idea, one 256× 256 image, “Lenna”, has been encrypted
to get g∗0 and g∗1 , with the following secret parameters: L = 15, initial key = 170,
µ = 251/26 ≈ 3.9219, x(0) = 69/28 ≈ 0.2695. The experimental results are shown
in Fig. 3.15. In g∗0 there are 27726 pixels that are identical with those in g, and in
g∗1 there are 33461 such pixels. Observing Figs. 3.15 c and d, one can see that the
plain-image roughly emerges from both g∗0 and g∗1 .
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a) The plain-image g b) The cipher-image g′

c) The mask image g∗0 d) The mask image g∗1

Figure 3.15: A ciphertext-only attack to DSEA.

In addition, from either g∗0 or g∗1 , it is possible to directly get the value of L,
if there exists strong correlation between adjacent bytes of the plaintext (speeches
and natural images are good examples). This is due to the probability difference
existing between the following two kinds of plain-bytes:

• when n mod L 6= 0, g∗0(n) = g(n) and g∗1(n) = g(n) with a probability of 1
2 ;

• when n mod L = 0, g∗0(n) = g(n) and g∗1(n) = g(n) with a probability∗ of
1

256 : g∗0(n) = g(n) if and only if g′(n− 1) = initial key; g∗1(n) = g(n) if and
only if g′(n− 1) = initial key.

When there exists strong correlation between adjacent bytes, the above probabil-
ity difference implies that there exists strong discontinuity around each position
satisfying n mod L = 0 (with a high probability). The fixed occurrence period of
such discontinuous bytes will generate periodically-occurring straight lines in the
mask text when it is an image or displayed in 2-D mode, as shown in Figs. 3.15c

∗Without loss of generality, it is assumed that each cipher-byte distributes uniformly in
{0, · · · , 255}.
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and d. Then, it is easy to determine the occurrence period, i.e., the value of L,
by checking the horizontal distance between any two adjacent lines. To make the
straight line clearer, one can calculate the differential images of g∗0 and g∗1 , as shown
in Fig. 3.16, where the differential image of an image g = {g(n)}M−1

n=0 is defined as
follows: gd(0) = g(0) and ∀ n = 1 ∼ M − 1, gd(n) = |g(n)− g(n− 1)|. Note that
the two differential images of g∗0 and g∗1 are identical according to the following
theorem, from which one can get that |g∗0(n) − g∗0(n − 1)| = |g′(n) ⊕ g′(n− 1) −
g′(n−1)⊕g′(n− 2)| = |g′(n)⊕g′(n−1)−g′(n−1)⊕g′(n−2)| = |g∗1(n)−g∗1(n−1)|.

a) g∗d,0 b) g∗d,1

Figure 3.16: The differential images of g∗0 and g∗1 .

Theorem 3.2: For any three s-bit integers, a, b, c, it is true that |(a⊕b)−(b⊕c)| =
|(a⊕ b̄)− (b⊕ c̄)|.

Proof : Introduce four new variables, A = a⊕ b, B = b⊕ c, A′ = a⊕ b̄, B′ = b⊕ c̄.
It can be easily verified that A′ = A and B′ = B, since a⊕ b̄ = a⊕b⊕b⊕ b̄ = a⊕b⊕
(2s − 1) = a⊕ b, where s is the binary precision of a, b. That is, (a⊕ b)− (b⊕ c) =
A − B and (a ⊕ b̄) − (b ⊕ c̄) = A − B. Let A = (A0 · · ·As−1)2 =

∑s−1
i=0 Ai · 2i,

B = (B0 · · ·Bs−1)2 =
∑s−1

i=0 Bi · 2i. Since ∀ Ai, Bi ∈ {0, 1}, Ai − Bi = B̄i − Āi, it
is obvious that A − B =

∑s−1
i=0 (Ai − Bi) · 2i =

∑s−1
i=0 (B̄i − Āi) · 2i = B − A. As

a result, |(a ⊕ b) − (b ⊕ c)| = |A − B| = |B − A| = |A − B| = |(a ⊕ b̄) − (b ⊕ c̄)|,
which completes the proof. �

§3.5.3 The Known/Chosen-Plaintext Attacks

Although it was claimed that DSEA can resist this kind of attacks [42, Sec. IV.B],
we found this claim is not true: with a limited number of continuous plain-bytes
of only one known/chosen plaintext, one can completely break the secret key to
decrypt other unknown plain-bytes of the known/chosen plaintext and any new
ciphertexts encrypted with the same key. Apparently, even when the secret key
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is changed for each plaintext (as mentioned in [42, Sec. IV.B]), DSEA is insecure
against known/chosen-plaintext attacks. In the following, let us discuss how to
break the four sub-keys, respectively.

1) Breaking the sub-key L: as mentioned above, once one gets a ciphertext, he
can easily deduce the value of L by observing the periodically-occurring straight
lines in the two constructed mask texts, g∗0 and g∗1 . Furthermore, since the plaintext
is also known, it is possible to generate an enhanced differential image, g∗d, as
follows: g∗d(0) = 0, and ∀ n = 1 ∼M − 1,

g∗d(n) =

{
0, g(n) ∈ {g∗0(n), g∗1(n)},

255, g(n) 6∈ {g∗0(n), g∗1(n)}.
(3.23)

See Fig. 3.17 for the enhanced differential image corresponding the cipher-image
shown in Fig. 3.15b. Compared with Fig. 3.16, one can see that the straight lines
become clearer.

Figure 3.17: The enhanced differential image g∗d.

2) Breaking the initial key: for all values of n that satisfy n mod L = 0, it is
obvious that

initial key =

{
g(n)⊕ g′(n), b(n) = 1,

g(n)⊕ g′(n), b(n) = 0.
(3.24)

Note that it is possible to uniquely determine the value of initial key,
when there may exist pixels satisfying n mod L = 0 and g∗d(n) = 0, i.e.,

g(n) ∈ {g∗0(n), g∗1(n)} =
{

g′(n)⊕ g′(n− 1), g′(n)⊕ g′(n− 1)
}

. Considering

g′(n) = g(n)⊕ initial key, one can immediately deduce that

initial key =

{
g′(n− 1), g(n) = g∗1(n),

g′(n− 1), g(n) = g∗0(n).
(3.25)
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3) Breaking the chaotic PRBS and the other two sub-keys: once L and
initial key have been determined, the chaotic PRBS, {b(n)}M−1

n=0 , x(0) =
∑7

i=0 bi ·
2−(i+1) can be immediately derived as follows:

• when n mod L 6= 0: if g(n) = g∗0(n) then b(n) = 0, else b(n) = 1;

• when n mod L = 0: if initial key = g(n)⊕g′(n) then b(n) = 1, else b(n) = 0.

With 16 consecutive chaotic bits, b(8k + 0) ∼ b(8k + 15), one can further derive
two consecutive chaotic states: x(k) = 0.b(8k + 0) · · · b(8k + 7) and x(k + 1) =
0.b(8k + 8) · · · b(8k + 15), and then derive an estimation of the sub-key µ like the
procedures in §3.3.3.2.

With the above steps, the whole secret key (L, initial key, µ, x(0)) can be
recovered, and then be used for decryption. For the plain-image “Lenna”, a break-
ing result is shown in Fig. 3.18. It can be verified that the complexity of the
known/chosen-plaintext attacks is only O(M), which means a perfect breaking of
DSEA.

Figure 3.18: The recovered plain-image of “Lenna” in a
known-plaintext attack.

§3.5.4 Improving DSEA

In this section, we study some possible remedies to DSEA to resist the pro-
posed attacks. It is concluded that DSEA cannot be simply enhanced to resist
known/chosen-plaintext attacks.

To ensure the complexity of the brute-force attack cryptographically large,
the simplest idea is to increase the presentation precision of x(0) and µ. Binary
presentations of x(0) and µ with 64-bit (long integers) are suggested to provide a
complexity not less than O(2128) against the brute-force attack.

Apparently, the insecurity of DSEA against ciphertext-only and
known/chosen-plaintext attacks is mainly due to the invertibility of XOR
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operations. This is actually the weakness of all XOR-based stream ciphers. To
make DSEA securer, one has to change the encryption structure and/or the basic
masking operations, in other words, one has to design a completely new cipher,
instead of enhancing DSEA to design a modified cipher.

In addition, there exists a special flaw in DSEA. According to [? , Sec. 2.5],
when a chaotic system is implemented in s-bit finite computing precision, each
chaotic orbit will lead to a cycle whose length is smaller than 2s (and generally
much smaller than 2s). Figure 3.19a shows the pseudo-image of the chaotic PRBS
recovered in a known-plaintext attack. It is found that the cycle of the chaotic
PRBS is only 26 = 64 and the period of the corresponding chaotic orbit is only 23 =
8. Such a small period of the chaotic PRBS will make all attacks easier. To amend
this defect, using a higher implementation precision or floating-point arithmetic
is suggested. Figure 3.19b gives the pseudo-image of the chaotic PRBS when the
chaotic states are calculated under double-precision floating-point arithmetic. It
is obvious that the short-period effect of the chaotic PRBS is effectively avoided.

a) 8-bit fixed-point
arithmetic

b) double-precision
floating-point arithmetic

Figure 3.19: The pseudo-image of the chaotic PRBS, under
two different finite-precision arithmetics.

§3.6 Yet Another Cryptanalysis of TDCEA

The known/chosen-plaintext attacks given in §2.5.4, §2.5.5 have two disadvantages:
1) the number of required known plain-images is somewhat large; 2) with n known
plain-images of size M ×N , this attack can only decrypt cipher-images of size not
greater than M × N . In this section, we will introduce another known-plaintext
attack and chosen-plaintext attack, by which we can get the secret keys with only
one known plain-image (but with a larger complexity).
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§3.6.1 Known-Plaintext Attack: Getting the Secret Key from

One Known Plain-Image

The known-plaintext attack introduced in this subsection is actually an optimized
brute-force attack. By utilizing the correlation information existing between two
consecutive chaotic states and the control parameter µ, the multiplicative search of
the two sub-keys x(0) and µ can be reduced to be the additive search of two chaotic
states x(k) and x(k+1). This can dramatically reduce the attack complexity. Also,
since each guessed chaotic state can be verified by a few number of 8-pixel blocks,
not by the whole known plain-image, the attack complexity can be further reduced.

The basic idea of this attack is based on the following facts: 1) each permu-
tation matrix Wk is uniquely determined by the current chaotic state x(k) and
the two sub-keys α, β; 2) two consecutive chaotic states x(k) and x(k + 1) satisfy
x(k + 1) ≈ µ · x(k) · (1− x(k)). Once an attacker gets the right values of any two
consecutive chaotic states, he can immediately get an estimation of µ, and then
completely break TDCEA if α and β are also known.

To get the right value of a chaotic state x(k) corresponding to the k-th bit
matrix Mk, one can use the permutation information existing in Mk and M ′

k.
When there are t 0-bits and (64 − t) 1-bits in Mk, one can calculate that the
number of all possible values of M ′

k is C(t) =
(
64
t

)
= 64!

t!(64−t)! . In comparison, the
number of all possibilities of each permutation matrix is equal to the number of
all possible values of the 3-tuple data (x(k), α, β), which is less than Ns = 217 · 25.
When 5 ≤ t ≤ 59, one has C(t) � Ns (see Fig. 3.20). This means that the
probability that a wrong value of (x(k), α, β) coincides with W ′

k is close to zero,
i.e., one can exhaustively search all possible values of (x(k), α, β) to find a few
number of candidates of the right value. Apparently, such an exhaustive searching
procedure is optimized when t = 32.
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Figure 3.20: C(t) =
(
64
t

)
= 64!

t!(64−t)! with respect to t

78



Master Thesis of Zhejiang University

Carrying out the above procedure on two consecutive bit matrices, one can find
some candidates of two consecutive chaotic states, x(k) = 0.b(17k + 0) · · · b(17k +
16) and x(k + 1) = 0.b(17k + 17) · · · b(17k + 33). Then, an estimated value of the
sub-key µ can be derived as §3.3.3.2.

The proposed known-plaintext attack can be concretized step by step as fol-
lows.

• Step 1 : Find the first two consecutive plain-blocks, f (8)(k) and f (8)(k + 1),
whose corresponding bit matrices Mk and Mk+1 both have about 32 0-bits.

Note: assuming that each bit in Mk distributes uniformly and independently,
one can deduce that

Ps = Prob [|t− 32| ≤ s] =

∑32+s
i=32−s

(
64
i

)
264

, (3.26)

where t is the number of nonzero elements of Mk and 0 ≤ s ≤ 32. When
s = 4, Ps ≈ 0.7396, which is sufficiently large for an attacker to find valid
plain-blocks within all the MN/8 blocks.

• Step 2 : Exhaustively search all possible values of (x(k), α, β), and record
those coinciding with Mk and M ′

k. Assume that m1 candidates are recorded
in total: {xi(k), α∗i , β

∗
i }

m1−1
i=0 .

• Step 3 : Search all possible values of x(k + 1) and all values of (α, β) in
{α∗i , β∗i }

m1−1
i=0 , and record those coinciding with Mk+1 and M ′

k+1. Assume
that m2 candidates are recorded in total: {xj(k + 1), α∗∗j , β∗∗j }

m2−1
j=0 .

• Step 4 : For i = 0 ∼ m1−1 and j = 0 ∼ m2−1, do the following operations.

– Step 4a: If α∗i = α∗∗j and β∗i = β∗∗j , then calculate µ̃ =
xj(k + 1)

xi(k) · (1− xi(k))
and continue to execute Step 4b; otherwise, go to

the next loop.

– Step 4b: Assuming that xj(k+1) ≥ 2−n, exhaustively search all possible
2n+3 values of µ within the neighborhood of µ̃. For each searched value,
iterate the Logistic map from xi(k+1) to xi(MN/8−1). If every chaotic
state xi(l) and (α∗i , β

∗
i ) agree with Ml and M ′

l (l = k+2 ∼MN/8−1),
then stops (the attack completes).

The time complexity of this attack can be calculated as follows.

• The average complexity of Step 2 is 217 · 25 · (14 · 8 + 1
2 · 8 · 8) < 229.

• The complexity of Step 3 is obviously less than that of Step 2.
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• The average number of exhaustive searching loops in Step 4 is (m1 ·m2 ·Cx),
where

Cx =
17∑

n=1

2n+3 · Prob
[
2−n ≤ xj(k + 1) < 2−(n−1)

]
,

which is the mathematical expectation of the space size of the searching
neighborhood of µ̃. Considering the computational complexity for each
searching loop, the average complexity of Step 4 is of order m1·m2·Cx

2 ·49MN .
Without loss of generality, assume that xj(k + 1) distributes uniformly over
the interval [0,1], i.e., Prob

[
2−n ≤ xj(k + 1) < 2−(n−1)

]
= 2−n. Thus,

Cx =
∑17

n=1 2n+3 · 2−n = 23 · 17 = 136. Then, the average complexity
becomes O(833m1m2MN

2 ). Since, in almost cases, MN ≤ 4096 · 4096 = 224

and m1,m2 are generally very small, the complexity is generally not greater
than O(236).

Combining the above results, one concludes that the total complexity is
O(236), which is practically small even for a PC and much smaller than O(260),
the complexity of the simple brute-force attack shown in §2.5.3.

Figure 3.21 shows an experimental result of the recovered plain-image “Pep-
pers”, where the 5-th and 6-th pixel-blocks are chosen to exhaustively search the
secret key. As a result, all chaotic states from x(5) are successfully derived and
only (5 · 8 = 40) leading plain-pixels at the left-bottom corner are not recovered
correctly.

Figure 3.21: The recovered plain-image “Peppers” by the
second known-plaintext attack.

§3.6.2 Chosen-Plaintext Attack: Getting the Secret Key

In the first chosen-plaintext attack presented in §2.5.5, one can get 16 values,
sk(0) ∼ sk(7) and rk(0) ∼ rk(7), for each pixel block f (8)(k). Based on the 16
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values, the second known-plaintext attack discussed in §2.5.5 can be dramatically
enhanced in most cases by introducing a much more effective way of deriving the
17 secret bits, b(17k + 0) ∼ b(17k + 16), of the chaotic state x(k).

To simplify the following discussions, create a new vector, rsk(i) (i = 0 ∼ 15),
which satisfies that ∀ i = 0 ∼ 7, rsk(i) = rk(i) and ∀ i = 8 ∼ 15, rsk(i) = sk(i−8).

Recalling the encryption procedure of TDCEA, it is obvious that the 16 values
{rsk(i)}15i=0 have a deterministic relation with the 17 secret bits b(17k+0) ∼ b(17k+
16). Similar to §3.4.2.5, such a relation can be used to facilitate an exhaustive
search of the 17 secret bits, i.e., the search of the k-th chaotic state x(k) = 0.b(17k+
0) · · · b(17k + 16).

Considering the fact that RotateX0,r
i = RotateX1,8−r

i , RotateY 0,s
j =

RotateY 1,8−s
j , one can see that ∀ i = 0 ∼ 15, k = 0 ∼ MN/8− 1, rsk(i) must be

a value in the set S = {α, α + β, 8− α, 8− (α + β)}.
For each guessed value (α̃, β̃), one can determine 16 bits, denoted by b̃(17k +

1) ∼ b̃(17k+16), as estimations of b(17k+1) ∼ b(17k+16), as follows: ∀ i = 1 ∼ 16,

b̃(17k + i) =

{
0, rsk(i− 1) ∈ {α̃, 8− α̃},

1, rsk(i− 1) ∈ {α̃ + β̃, 8− (α̃ + β̃)}.
(3.27)

Note that the above equation is invalid when α̃ = α̃ + β̃ or α̃ = 8 − (α̃ + β̃), i.e.,
β̃ = 0 or 2α̃+ β̃ = 8. Similarly, one has another equation for estimating the values
of b(17k + 0) ∼ b(17k + 15): ∀ i = 0 ∼ 15,

b̃(17k + i) =

{
0, rsk(i) ∈ {α̃, α̃ + β̃},

1, rsk(i) ∈ {8− α̃, 8− (α̃ + β̃)}.
(3.28)

The above equation is invalid when α̃ = 4, α̃ + β̃ = 4 or 2α̃ + β̃ = 8.
According to how much information that one can get from {rsk(i)}15i=0, all

values of (α̃, β̃) can be divided into the following classes in the chosen-plaintext
attack.

• C1) α̃ 6= 4, α̃ + β̃ 6= 4, β̃ 6= 0 and 2α̃ + β̃ 6= 8: b̃(17k + 1) ∼ b̃(17k + 16)
and b̃(17k + 0) ∼ b̃(17k + 15) can be uniquely determined by Eq. (3.27) and
Eq. (3.28), respectively, so all the 17 bits, b̃(17k + 0) ∼ b̃(17k + 16), can be
uniquely recovered.

– There are 12 C1 -values of (α̃, β̃), as follows: (1, 1), (1, 2), (1, 4), (1, 5),
(2, 1), (2, 3), (2, 5), (3, 3), (3, 4), (5, 1), (5, 2), (6, 1).

• C2) 4 ∈ {α̃, α̃ + β̃} and β̃ 6= 0 (which ensures 2α̃ + β̃ 6= 8): b̃(17k + 1) ∼
b̃(17k +16) can be uniquely determined by Eq. (3.27), but b̃(17k +0) has to
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be guessed∗.

– There are 6 C2 -values of (α̃, β̃), as follows: (1, 3), (2, 2), (3, 1), (4, 1),
(4, 2), (4, 3).

• C3) α̃ 6= 4 and β̃ = 0 (which ensures 2α̃ + β̃ 6= 8): b̃(17k + 0) ∼ b̃(17k + 15)
can be uniquely determined by Eq. (3.28), but b̃(17k+16) has to be guessed.

– There are 6 C3 -values of (α̃, β̃), as follows: (1, 0), (2, 0), (3, 0), (5, 0),
(6, 0), (7, 0).

• C4) 2α̃ + β̃ = 8: all the 17 bits has to be exhaustively guessed, as in the
second known-plaintext attack discussed in Sec. 4.2.

– There are 4 C4 -values of (α̃, β̃), as follows: (1, 6), (2, 4), (3, 2), (4, 0).

The above four different cases correspond to different values of #(S) as follows:

• #(S) = 4: (α̃, β̃) is one of the 12 C1 -values;

• #(S) = 3: (α̃, β̃) is one of the 6 C2 -values;

• #(S) = 2: (α̃, β̃) is one of the 6 C3 -values and the following C4 -values:
{(1, 6), (2, 4), (3, 2)};

• #(S) = 1: (α̃, β̃) = (4, 0) (a C4 -value).

Since one can guess the value of #(S) by observing the cardinality of the set
{rsk(0), · · · , rsk(15)} ⊆ S, it is possible to search (α, β) in part of all possible
values to reduce the attack complexity. Apparently, the success probability of such
a guess is Pe = Prob[S = {rsk(0), · · · , rsk(15)}]. Since the theoretical deduction
of Pe is rather difficult, experiments are performed to test all 217 possible values
of b(17k + 0) ∼ b(17k + 16). It results in that Pe = 122684/217 ≈ 0.936, which is
sufficiently large. Note that it is easy to further increase the success probability
of the guess, by observing n > 1 blocks at the same time. In doing so, the success
probability will be greater than P

(n)
e = 1 − (1 − Pe)n under the assumption that

the chaotic bits for different blocks distribute uniformly and independently. As
n increases, P

(n)
e will approach 1 exponentially. In real attacks, even n = 2 is

enough in almost all cases, since P
(2)
e ≈ 0.996. If all guessed values determined

∗Note that eb(17k + 0) can be uniquely determined in the following two sub-cases: a)

when eα = 4 and eb(17k + 1) = 1, one can uniquely determine eb(17k + 0) by Eq. (3.28) since

eα + eβ 6= 4; b) when eα 6= 4 and eb(17k + 1) = 0, one can also uniquely determine eb(17k + 0)
by Eq. (3.28). The two sub-cases occur with a probability of 0.5 when {b(i)} distributes
uniformly over {0, 1}.
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by #({rsk(0), · · · , rsk(15)}) fail to pass the verification, it means that the rare
event {rsk(0), · · · , rsk(15)} ⊂ S occurs∗. In this case, one has to continue to
exhaustively search all other values of (α, β).

When the real value of (α, β) belongs to C1, C2, C3 classes, the complexity
of the chosen-plaintext attack will be much smaller than the complexity of its
known-plaintext counterpart, due to the following reasons:

• the exhaustive searching procedure for the 17 bits of each chaotic state is
simplified to be a deterministic calculation procedure dominated by Eqs.
(3.27) and/or (3.28);

• the number of guessed values of (α, β) is reduced from 28 to 12 for C1, 6 for
C2 and C3 ;

• some values of (α, β) can be verified by checking whether or not
{rsk(0), · · · , rsk(15)} ⊆ {α̃, α̃ + β̃, 8− α̃, 8− (α̃ + β̃)};

• one can intentionally choose the second chaotic state to ensure x(k+1) ≥ 0.5,
i.e., b(17(k+1)+0) = 1, so as to reduce Cx, the average searching complexity
of µ, from 136 to 21+3 = 16.

• the exhaustive search of µ can be validated by just comparing the calculated
chaotic state with the bits derived by Eqs. (3.27) and/or (3.28).

When the real value of (α, β) belongs to C4 class, the average complexity of
the chosen-plaintext attack is also smaller than the one of its known-plaintext
counterpart, since the value of (α, β) can be immediately determined∗ with
a sufficiently high probability, P

(n)
e ≈ 1, that is, only when the rare event

{rsk(0), · · · , rsk(15)} ⊂ S occurs, one needs to exhaustively search the value of
(α, β).

§3.7 Conclusion

In this chapter, the security properties of three chaotic multimedia encryption
algorithms, RCES [37, 41], MES [44] and DSEA[42], have been analyzed in detail.
In addition, scheme TDCEA[38, 43] has been investigated from different point of
view with §2.5. The following security problems are found: 1) RCES can be broken
with one and/or two known-plaintexts and one chosen-plaintext respectively; 2)

∗Note that the occurrence probability is not zero, though it is very close to zero when n is
sufficiently large.

∗If #(S) = 1, then (α, β) ≡ (4, 0); otherwise, one can determine the value of (α, β) quickly
by checking the following three candidates: (1, 6), (2, 4), (3, 2).
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given two chosen-plaintexts, one can break MES; 3) DSEA can be partially and
totally broken with one ciphertext and one known/chosen-plaintext respectively;
4) The security of the three schemes against brute-force was all over-estimated
much by the authors; 5) TDCEA can be broken with one known-plaintext and
two chosen-plaintexts respectively. Both theoretical and experimental analyses
have been given to support the feasibility of the above proposed attacks.

The insecurity of these algorithms are caused by a careless design. Although
the four schemes cannot be used in practice as secure ciphers to protect multimedia
data, they serve as typical examples for caution.
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Chapter 4

Cryptanalyses of Two

Neural-Network-Based Encryption

Schemes

§4.1 Introduction

From 1998, research group of Yen proposed a number of multimedia encryption
schemes [84, Sec. 4.4.3]. Among them, a class of chaotic-neural-network based
encryption schemes were presented in [31, 34, 36]. In a recent paper [26], this class
of schemes were simply extended to arbitrary block size without influencing the
security and then applied for JPEG2000 image encryption. In this chapter, we
name this class of schemes as Yen’s scheme. This chapter evaluates the security of
the neural-network-based scheme and points out two security problems: 1) it can be
easily broken by the known/chosen-plaintext attacks with only one known/chosen
plaintext; 2) its security against the brute-force attack was much over-estimated.

In ISNN’04 ([24]), Zhou etal. proposed another clipped-neural-network (CNN)
based chaotic cipher, which is named as Zhou’s scheme in this chapter. This chaotic
cipher employs a chaotic pseudo-random signal and the output of an 8-cell clipped
neural network to mask the plaintext, along with modulus additions and XOR
operations. Also, the evolution of the neural network is controlled by the chaotic
signal. With such a complicated combination, it was hoped that the chaotic cipher
can resist chosen-plaintext attacks. Unfortunately, our analysis shows that it is
still not secure against chosen-plaintext attacks. By choosing only two plaintexts,
an attacker can derive an equivalent key to break the cipher.

The rest of this chapter is organized as follows. In the next section, a brief
introduction of two neural-network-based encryption algorithms is given. Crypt-
analysis of Yen’s scheme is given in §4.3, where some experimental results are given
to support the proposed attacks, and some remedies of the scheme are also dis-
cussed. The chosen-plaintext attack of Zhou’s scheme is given in §4.4, with some
theoretical and experimental results. The last section is the conclusion.
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§4.2 Two Neural-Network-Based Encryption

Schemes

§4.2.1 The Yen’s Scheme

Assuming that {f(n)}M−1
n=0 is a 1-D signal for encryption, the encryption procedure

of Yen’s scheme can be briefly depicted as follows:

• The secret key is the control parameter µ and the initial point x(0) of the
chaotic Logistic map Eq. (2.8), which are all L-bit binary decimals.

• The initialization procedure: under L-bit finite computing precision, run
the Logistic map from x(0) to get a chaotic sequence {x(i)}d8M/Ke−1

i=0 , and
extract K bits below the decimal dot of each chaotic state∗ to generate a
chaotic bit sequences {b(i)}8M−1

i=0 , where x(i) = 0.b(Ki + 0) · · · b(Ki + K −
1) · · · .

• The encryption procedure: For the n-th plain-element f(n) =
∑7

i=0 di(n) ·2i,
the corresponding cipher-element f ′(n) =

∑7
i=0 d′i(n) · 2i is determined by

the following process:

– for i = 0 ∼ 7 and j = 0 ∼ 7, 64 weights wji are calculated as follows:

if i = j, wji = 0; else wji = 1− 2b(8n + i) =

{
1, b(8n + i) = 0,

−1, b(8n + i) = 1;

– for i = 0 ∼ 7, 8 biases θi are calculated as follows:

θi =
2b(8n + i)− 1

2
=

{
−1/2, b(8n + i) = 0,

1/2, b(8n + i) = 1;

– the i-th cipher-bit d′i(n) is calculated as follows:

d′i(n) = sign
(∑7

j=0
wji · di(n) + θi

)
, (4.1)

where sign(·) denotes the sign function, i.e., sign(x) =

{
1, x ≥ 0,

0, x < 0.

• The decryption procedure is the same as the above one.

∗In real implementations of Yen’s scheme, the K bits can be extracted from the direct
multiplication result µx(i− 1)(1− x(i− 1)), before x(i) is obtained by quantizing the value.
As a result, it is possible that K > L. For example, in [36], K = 32 > L = 17.
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The above encryption procedure looks very complicated, however, actually it
can be simplified to be a much more precise form. Observing the proofs of [31, 34,
Proposition 1] and [36, Lemma 1], one can see the following fact:

d′i(n) =


0, if di(n) = 0 and b(8n + i) = 0,

1, if di(n) = 1 and b(8n + i) = 0,

1, if di(n) = 0 and b(8n + i) = 1,

0, if di(n) = 1 and b(8n + i) = 1,

(4.2)

which means that
d′i(n) = di(n)⊕ b(8n + i). (4.3)

Obviously, Yen’s scheme is a stream cipher encrypting the plain-signal bit by
bit, where the key stream for masking is the chaotic bit sequence {b(i)}.

§4.2.2 The Zhou’s Scheme

At first, we give an introduction to the CNN employed in the chaotic ciphers.
The neural network contains 8 neural cells, denoted by S0, · · · , S7 ∈ {1,−1}, and
each cell is connected with other cells with eight synaptic weights wij ∈ {1, 0,−1},
among which only three are non-zeros. The syntax weights between two connected
cells are identical: ∀ i, j = 0 ∼ 7, wij = wji. The neural network evolves with the
following mechanism: ∀ i = 0 ∼ 7,

f(Si) = sign
(
S̃i

)
=

{
1, S̃i > 0,

−1, S̃i < 0,
(4.4)

where S̃i =
∑7

j=0 wijSj . Note that S̃i 6= 0 holds at all time.
Now let us see how the chaotic cipher works with the above CNN. Without

loss of generality, assume that f = {f(i)}N−1
i=0 is the plaintext signal, where f(i)

denotes the i-th plain-byte and N is the plaintext size in byte. Accordingly, denote
the ciphertext by f ′ = {f ′(i)}N−1

i=0 , where f ′(i) is a double-precision floating-point
number corresponding to the plain-byte f(i). Then, the encryption procedure can
be briefly depicted as follows∗.

• The secret key includes the initial states of the 8 neural cells in the CNN,
S0(0), · · · , S7(0), the initial condition x(0) and the control parameter r of
the following chaotic tent map:

T (x) =

{
rx, 0 < x ≤ 0.5,

r(1− x), 0.5 < x < 1,
(4.5)

∗Note that some original notations used in [24] have been changed in order to achieve a
better description.
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where r should be very close to 2 to ensure the chaoticity of the tent map.

• The initial procedure: 1) in double-precision floating-point arithmetic, run
the tent map from x(0) for 128 times before the encryption starts; 2) run
the CNN for 128/8 = 16 times (under the control of the tent map, as dis-
cussed below in the last step of the encryption procedure); 3) set x(0) and
S0(0), · · · , S7(0) to be the new states of the tent map and the CNN.

• The encryption procedure: for the i-th plain-byte f(i), do the following steps
to get the ciphertext f ′(i):

– evolve the CNN for one step to get its new state: S0(i), · · · , S7(i);

– in double-precision floating-point arithmetic, run the chaotic tent map
for 8 times to get 8 chaotic states: x(8i + 0), · · · , x(8i + 7);

– generate 8 bits by extracting the 4-th bits of the 8 chaotic states: b(8i+
0), · · · , b(8i + 7), and then ∀ j = 0 ∼ 7, set Ej = 2 · b(8i + j)− 1;

– encrypt f(i) as follows∗:

f ′(i) =
((

f(i)⊕B(i)
256

+ x(8i + 7)
)

mod 1
)

, (4.6)

where B(i) = (b(8i + 0), · · · , b(8i + 7))2 =
∑7

j=0 b(8i + j) · 27−j ;

– ∀ i = 0 ∼ 7, if Si 6= Ei, update all the three non-zero weights of the
i-th neural cell and the three mirror weights as follows: wij = −wij ,
wji = −wji.

• The decryption procedure is similar to the above one with the following de-
cryption formula:

f(i) = (256 · ((f ′(i)− x(8i + 7)) mod 1))⊕B(i). (4.7)

§4.3 Cryptanalysis of Yen’s Scheme

§4.3.1 The Brute-Force Attacks

In [31, 34, 36], it was claimed that the computing complexity of a brute-force
attack to Yen’s scheme is O

(
28M

)
, since there are 8M bits in {b(i)}8M−1

i=0 (which
is unknown to the attacker). However, this statement is not true due to the
following fact: the 8M bits are uniquely determined by the secret key, i.e., the

∗In [24], x(8i + 7) was mistaken as x(8).
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control parameter µ and the initial condition x(0), which have only 2L secret bits.
This means that there are only 22L different chaotic bit sequences.

Now, let us see what is the real complexity of a brute-force attack. For each
guessed value of x(0) and µ, about 8M/K chaotic iterations and 8M XOR opera-
tions are needed for verification. Assuming that each L-bit digital multiplication
needs L times of additions, then each chaotic iteration needs 2L + 1 times of ad-
ditions. Therefore, the complexity of a brute-force attack to Yen’s scheme will
be O

(
22L ·

(
8M(2L+1)

K + 8M
))

= O
(
22LM

)
, which is much smaller than 28M

when M is not too small. What’s more, considering the fact that the Logistic map
can exhibit strong chaotic behavior only when µ is close to 4 [82], the complexity
should be even smaller than O

(
22LM

)
.

The above analysis shows that the security of Yen’s scheme was much over-
estimated by the authors, even under the simplest attack. Because of the rapid
progress of digital computer and distributed computing techniques, the complexity
not lower than O

(
2128

)
is required for a cryptographically strong cipher [1]. To

achieve such a security level, L ≥ 64 is required. As a comparison, L = 8 in [34]
and L = 17 in [36], which are both too small∗.

§4.3.2 The Known/Chosen-Plaintext Attacks

In known-plaintext or chosen-plaintext attacking scenarios, Yen’s scheme can be
broken with only one known/chosen plaintext {f(n)}M−1

n=0 and its corresponding
ciphertext {f ′(n)}M−1

n=0 , with a complexity that is smaller than the complexity of
a brute-force attack.

From Eq. (5.3), one can get b(8n + i) = gi(n) ⊕ g′i(n). That is, an attacker
can successfully reconstruct the chaotic bit sequence {b(i)}8M−1

i=0 by simply XORing
{f(n)}M−1

n=0 and {f ′(n)}M−1
n=0 bit by bit. Assuming {fm(n) = f(n) ⊕ f ′(n)}M−1

n=0 ,
one has fm(n) = 0.b(8n+0) · · · b(8n+7). Without deriving the secret key (µ, x(0)),
given any ciphertext g′ encrypted with the same secret key, the attacker can use fm

to decrypt the M leading bytes of the corresponding plaintext g: n = 0 ∼M − 1,
g(n) = g′(n) ⊕ fm(n). Here, we call fm the mask signal (or the mask image
when Yen’s scheme is used to encrypt digital images), since the plaintext can be
decrypted by using fm to “mask” (i.e., XOR) the ciphertext†.

To demonstrate the above attack, with the parameters L = 17,K = 32 [36]
and the secret key µ = 3.946869, x(0) = 0.256966, some experiments are given for
the encryption of digital images. In Fig. 4.1, a 256 × 256 known/chosen plain-
image “Lenna”, its corresponding cipher-image, and the mask image fm = f ⊕ f ′

∗In [31], the value of L is not explicitly mentioned. Since [31] is an initial version of [34],
it is reasonable to assume L = 8.

†In fact, it is a common defect of most stream ciphers [1].
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are shown. If another plain-image “Babarra” (of size 256× 256) is encrypted with
the same key, it can be broken with the mask image fm derived from “Lenna” as
shown in Fig. 4.2. For a larger plain-image “Peppers” (of size 384 × 384), the
256× 256 leading pixels can be successfully broken with fm as shown in Fig. 4.3.

a) The plain-image f b) The cipher-image f ′ c) The mask image fm

Figure 4.1: One known/chosen plain-image “Lenna”
(256× 256), its corresponding cipher-image, and the mask image

fm = f ⊕ f ′

a) The plain-image
“Babarra”

b) The encrypted
“Babarra”

c) The recovered
“Babarra” with fm

Figure 4.2: Decrypt a plain-image “Babarra” (256× 256) with
fm shown in Fig. 4.1c

From the above experiments, one can see that the breaking performance of
known/chosen-plaintext attacks based on fm is limited. Fortunately, from the
reconstructed bit sequence {b(i)}8M−1

i=0 , it is easy for an attacker to derive the
values of µ and x(0), and then to completely break Yen’s scheme. Even when only
part of a plaintext f(n1) ∼ f(n2) is known to the attacker, he can still derive the
values of µ and a chaotic state x(i), which can be used to calculate all following
chaotic states, i.e., all following chaotic bits {b(i)}∞i=8n2

. In this case, all plain-
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a) The plain-image
“Peppers”

b) The encrypted
“Peppers”

c) The recovered
“Peppers” with fm

Figure 4.3: Decrypt a plain-image “Peppers” (384× 384) with
fm shown in Fig. 4.1c

pixels after the n1-th position can be broken. In the following, let us discuss how
to derive chaotic states and the value of µ.

Firstly, let us see how a chaotic state x(i) is derived. Recall the generation
procedure of {b(i)}8M−1

i=0 . It is easy to reconstruct a K-bit approximate of the
chaotic sequence by dividing {b(i)}8M−1

i=0 into K-bit segments: {x̃(i)}d8M/Ke−1
i=0 ,

where x̃(i) = 0.b(Ki + 0) · · · b(Ki + K − 1) and

|∆x(i)| = |x̃(i)− x(i)| ≤ 0.

K︷ ︸︸ ︷
0 · · · 0

L−K︷ ︸︸ ︷
1 · · · 1 =

L∑
j=K+1

2−j < 2−K . (4.8)

Apparently, when L ≤ K, x̃(i) = x(i); when L > K, the exact value of each
chaotic state x(i) can be derived by exhaustively guessing the L − K unknown
bits, and the guess complexity is O

(
2L−K

)
.

Once two consecutive chaotic states x(i) and x(i+1) are derived, the estimated
value of µ can be calculated like §3.3.3.2 with a sufficiently small search complexity.
With the mask image fm derived from the known plain-image “Lenna” (of size
256 × 256) shown in Fig. 4.1a, the values of x(0) and µ are calculated following
the above procedure to completely decrypt the larger plain-image “Peppers” (of
size 384× 384). The decryption result is given in Fig. 4.4.

Finally, it deserves being mentioned that even without deriving the secret
key there is another way based on a mask signal fm to decrypt any plaintext
of arbitrary size. It is due to the following fact: for a digital chaotic system
implemented in L-bit finite computing precision, each chaotic orbit will lead to a
cycle whose length is smaller than 2L (and generally much smaller than 2L, see
[83, Sec. 2.5]). For the implementation of Yen’s scheme in [36], L = 17, K = 32.
Thus, the cycle length of each chaotic orbit will be much smaller than 217 in most
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Figure 4.4: The decrypted “Peppers” (384× 384) with the
secret key derived from fm shown in Fig. 4.1c

a) The extended mask
image f∗m

b) The recovered “Peppers”
with f∗m

Figure 4.5: Decrypt “Peppers” (384× 384) with f∗m extended
from fm shown in Fig. 4.1c

cases. Such a length is not sufficiently large in comparison with the size of many
plaintexts, especially for digital images and videos. For example, a 256×256 image
corresponds to a chaotic orbit {x(i)} whose length is 8 · 256 · 256/32 = 214. For
almost every value of µ and x(0), the cycle length of {x(i)} is even much smaller
than 214, which means that there exists an visible repeated pattern in {x(i)}.
Carefully observing the mask image fm shown in Fig. 4.1c, one can easily find
such a repeated pattern. Then, it is easy to get the cycle of fm, and to extend it
to arbitrary sizes by appending more cycles at the end of the original mask signal.
This means that any ciphertext can be decrypted with a mask signal f∗m extended
from the mask image fm. Using such a method, the larger plain-image “Peppers”
is completely decrypted as shown in Fig. 4.5.
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§4.3.3 Improving Yen’s Scheme

The simplest way to improve the original Yen’s scheme is to make L sufficiently
large so as to ensure the complexity of the brute-force attack cryptographically
large. In addition, to make the complexity of guessing the L−K unknown bits of
each chaotic state cryptographically large, L−K should also be sufficiently large.
To be practical, (L,K) = (64, 8) is suggested. In this case, the complexity to get
the value of x(0) is O

(
2L−K

)
= O

(
256
)
, and the complexity to get the value of

µ (i.e., to get two consecutive chaotic states) is O
(
22(L−K)

)
= O

(
2112

)
. Such a

complexity is sufficiently large to make both the brute-force attack and the attack
of deriving the secret key from fm impossible in practice.

However, because Yen’s scheme is a stream cipher, making L−K sufficiently
large cannot enhance the security against the known/chosen-plaintext attacks
based on the mask signal fm. To resist such attacks, a substitution encryption
part should be used to make Yen’s scheme a product cipher. Note that the secu-
rity of the modified Yen’s scheme is ensured by the new substitution part, not the
Yen’s scheme itself. So, essentially speaking, the Yen’s scheme cannot be enhanced
to resist known/chosen-plaintext attacks.

§4.4 Cryptanalysis of Zhou’s Scheme

§4.4.1 The Chosen-Plaintext Attack

Although it was claimed that the chaotic cipher under study can resist this kind
of attacks [24, Sec. 4], our cryptanalysis shows that such a claim is not true. By
choosing two plaintexts, f1 and f2, satisfying ∀ i = 0 ∼ N − 1, f1(i) = f2(i), one
can derive two masking sequences as equivalent keys for decryption.

Before introducing the chosen-plaintext attack, three lemmas are given, which
are useful in the following discussions.

Lemma 4.1: ∀ a, b, c ∈ R, c 6= 0 and n ∈ Z+, if a = (b mod c), one has a · n =
((b · n) mod (c · n)).

Proof : From a = (b mod c), one knows that ∃ k ∈ Z, b = c · k + a and 0 ≤ a < c.
Thus, ∀ n ∈ Z+, b · n = c · n · k + a · n and 0 ≤ a · n < c · n, which immediately
leads to a · n = ((b · n) mod (c · n)) and completes the proof of this lemma. �

Lemma 4.2: ∀ a, b, c, n ∈ R and 0 ≤ a, b < n, if c = ((a − b) mod n), one has
a− b ∈ {c, c− n}.

Proof : This lemma can be proved under two conditions. i) When a ≥ b, it is
obvious that ((a − b) mod n) = a − b = c. ii) When a < b, ((a − b) mod n) =
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((n + a − b) mod n). Since −n < a − b < 0, one has 0 < n + a − b < n, which
means that ((a − b) mod n) = n + a − b = c. That is, a − b = c − n. Combining
the two conditions, this lemma is thus proved. �

Lemma 4.3: Assume that a, b are both 8-bit integers. If a = b ⊕ 128, then a ≡
(b + 128) (mod 256).

Proof : This lemma can be proved under two conditions. i) When 0 ≤ a < 128:
b = a ⊕ 128 = a + 128, so a ≡ (b + 128) (mod 256). ii) When 128 ≤ a ≤ 255:
b = a⊕ 128 = a− 128, so a ≡ (b− 128) ≡ (b + 128) (mod 256). �

From Lemma 4.1, one can rewrite the encryption formula Eq. (4.6) as follows:

256 · f ′(i) = (((f(i)⊕B(i)) + 256 · x(8i + 7)) mod 256) . (4.9)

Given two plain-bytes f1(i) 6= f2(i) and the corresponding cipher-blocks
f ′1(i), f

′
2(i), one has 256 · (f ′1(i) − f ′2(i)) ≡ ((f1(i)⊕B(i))− (f2(i)⊕B(i)))

(mod 256). Without loss of generality, assume that f ′1(i) > f ′2(i) and that
∆f1,2 = 256 · (f ′1(i) − f ′2(i)). It is true that 0 < ∆f1,2 < 256. Thus, one has

∆f1,2 = (((f1(i)⊕B(i))− (f2(i)⊕B(i))) mod 256) . (4.10)

Because f1(i)⊕B(i) and f2(i)⊕B(i) are 8-bit integers and ∆f1,2 6= 0, from Lemma
4.2, one of the following facts is true:

1. (f1(i)⊕B(i))− (f2(i)⊕B(i)) = ∆f1,2 ∈ {1, · · · , 255} ; (4.11a)

2. (f2(i)⊕B(i))− (f1(i)⊕B(i)) =
(
256−∆f1,2

)
∈ {1, · · · , 255} .(4.11b)

For the above two equations, when f1(i) = f2(i) is satisfied, two possible values of
B(i) can be uniquely derived according to the following theorem.

Theorem 4.1: Assume that a, b, c, x are all 8-bit integers, and c > 0. If a = b̄,
then the equation (a⊕x)−(b⊕x) = c has an unique solution x = a⊕(1, c7, · · · , c1)2,
where c = (c7, · · · , c0)2 =

∑7
i=0 ci · 2i.

Proof : Since a = b̄, one has b ⊕ x = a⊕ x. Thus, by substituting y = a ⊕ x

and ȳ = a⊕ x = b ⊕ x into (a ⊕ x) − (b ⊕ x) = c, one can get y − ȳ = c, which
is equivalent to y = ȳ + c. Let y =

∑7
i=0 yi · 2i, and consider the following three

conditions, respectively.
1) When i = 0, from y0 ≡ (ȳ0 + c0) (mod 2), one can immediately get c0 = 1.

Note the following two facts: i) when y0 = 0, ȳ0 + c0 = 2, a carry bit is generated
for the next bit, so y1 ≡ (ȳ1 + c1 + 1) (mod 2) and c1 = 0; ii) when y0 = 1,
y0 + c0 = 1, no carry bit is generated, so y1 ≡ (ȳ1 + c1) (mod 2) and c1 = 1.

94



Master Thesis of Zhejiang University

Apparently, it is always true that y0 = c1. Also, a carry bit is generated if c1 = 0
is observed.

2) When i = 1, if there exists a carry bit, set c′1 = c1 + 1 ∈ {1, 2}; otherwise,
set c′1 = c1 ∈ {0, 1}. From y1 ≡ (ȳ1 + c′1) (mod 2), one can immediately get
c′1 = 1. Then, using the same method shown in the first condition, one has y1 = c2

and knows whether or not a carry bit is generated for i = 2. Repeat the above
procedure for i = 2 ∼ 6, one can uniquely determine that yi = ci+1.

3) When i = 7, it is always true that the carry bit does not occur, so c′7 = 1,
and y7 ≡ 1.

Combining the above three conditions, one can get y = (1, c7, · · · , c1)2, which
results in x = a⊕ (1, c7, · · · , c1)2. �

Assume that the two values of B(i) derived from Eqs. (4.11a) and (4.11b) are
B1(i) and B2(i), respectively. The following corollary shows that the two values
have a deterministic relation: B2(i) = B1(i)⊕ 128.

Corollary 4.1: Assume that a, b, c, x are all 8-bit integers, a = b̄ and c > 0. Given
two equations, (a ⊕ x) − (b ⊕ x) = c and (b ⊕ x′) − (a ⊕ x′) = c′, if c′ = 256 − c,
then x′ = x⊕ 128.

Proof : Since c + c̄ = 255, one has c′ = 256− c = c̄ + 1. Let c =
∑7

i=0 ci · 2i, and
observe the first condition of the proof of Theorem 4.1. One can see that c0 = 1,
so c′0 = c̄0 + 1 = 1. Since there is no carry bit, one can deduce that ∀ i = 1 ∼ 7,
c′i = c̄i. Applying Theorem 4.1 for (a ⊕ x) − (b ⊕ x) = c, one can uniquely get
x = a ⊕ (1, c7, · · · , c1)2. Then, applying Theorem 4.1 for (b ⊕ x′) − (a ⊕ x′) = c′,
one has x′ = b⊕(1, c′7, · · · , c′1)2 = ā⊕(1, c̄7, · · · , c̄1)2 = (a7, ā6⊕ c̄7, · · · , ā0⊕ c̄1)2 =
(a7, a6 ⊕ c7, · · · , a0 ⊕ c1)2 = a ⊕ (1, c7, · · · , c1)2 ⊕ (1, 0, · · · , 0)2 = x ⊕ 128. Thus,
this corollary is proved. �

For any one of the two candidate values of B(i), one can further get an equiv-
alent chaotic state x̂(8i + 7) from B(i), f(i) and f ′(i) as follows:

x̂(8i + 7) = 256 · f ′(i)− (f(i)⊕B(i)) ≡ 256 · x(8i + 7) (mod 256) . (4.12)

With B(i) and x̂(8i + 7), the encryption formula Eq. (4.6) becomes

f ′(i) =
((f(i)⊕B(i)) + x̂(8i + 7)) mod 256

256
, (4.13)

and the decryption formula Eq. (4.7) becomes

f(i) = ((256 · f ′(i)− x̂(8i + 7)) mod 256)⊕B(i) . (4.14)

Assume that x̂1(8i+7) and x̂2(8i+7) are calculated by Eq. (4.12), from B1(i)
and B2(i), respectively. Then, we have the following proposition.
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Proposition 4.1: (B1(i), x̂1(8i + 7)) and (B2(i), x̂2(8i + 7)) are equivalent for
the above encryption procedure Eq. (4.13), though only one corresponds to the
correct value generated from the secret key. That is,

((f(i)⊕B1(i)) + x̂1(8i + 7)) ≡ ((f(i)⊕B2(i)) + x̂2(8i + 7)) (mod 256) .

Proof : From B1(i) = B2(i) ⊕ 128, one has f(i) ⊕ B1(i) = (f(i) ⊕ B2(i) ⊕ 128).
Then, following Lemma 4.3, it is true that (f(i) ⊕ B1(i)) ≡ ((f(i) ⊕ B2(i)) +
128) (mod 256). As a result, x̂1(8i + 7) = (256 · f ′(i) − (f(i) ⊕ B1(i))) ≡
(256 · f ′(i) − ((f(i) ⊕ B2(i)) − 128)) (mod 256) ≡ (x̂2(8i + 7) + 128) (mod 256),
which immediately leads to the following fact: ((f(i)⊕B1(i)) + x̂1(8i + 7)) ≡
((f(i)⊕B2(i)) + x̂2(8i + 7)) (mod 256). Thus, this proposition is proved. �

Considering the symmetry of the encryption and decryption procedures, the
above proposition immediately leads to a conclusion that (B1(i), x̂1(8i + 7)) and
(B2(i), x̂2(8i + 7)) are also equivalent for the decryption procedure Eq. (4.14).

From the above analyses, with two chosen plaintexts f1 and f2 = f̄1, one
can get the following two sequences: {B1(i), x̂1(8i + 7)}N−1

i=0 and {B2(i), x̂2(8i +
7)}N−1

i=0 . Given a ciphertext f ′ = {f ′(i)}N−1
i=0 , ∀ i = 0 ∼ N − 1, one can use either

(B1(i), x̂1(8i+7)) or (B2(i), x̂2(8i+7)) as an equivalent of the secret key to decrypt
the i-th plain-byte f(i), following Eq. (4.14). This means that the chaotic cipher
under study is not sufficiently secure against the chosen-plaintext attack.

§4.4.2 Experiments

To demonstrate the feasibility of the proposed attack, some experiments have
been performed for image encryption, with secret key r = 1.99, x(0) = 0.41 and
[S0(0), · · · , S7(0)] = [1,−1, 1,−1, 1,−1, 1,−1]. One plain-image “Lenna” of size
256×256 is chosen as f1 and another plain-image is manually generated as follows:
f2 = f̄1. The two plain-images and their cipher-images are shown in Fig. 4.6.
With the two chosen plain-images, two sequences, {B1(i), x̂1(8i + 7)}256·256−1

i=0 and
{B2(i), x̂2(8i+7)}256·256−1

i=0 , are generated by using the above-mentioned algorithm.
The first ten elements of the two sequences are given in Table 4.1. ∀ i = 0 ∼
(256 · 256 − 1), either (B1(i), x̂1(8i + 7)) or (B2(i), x̂2(8i + 7)) can be used to
recover the plain-byte f(i). As a result, the whole plain-image (“Peppers” in this
test) can be recovered as shown in Fig. 4.6f.

§4.5 Conclusion

In this chapter, the security of two neural-network-based encryption schemes have
been investigated in detail. It is found that the two schemes can be successfully
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Table 4.1: The first ten elements of {B1(i), x̂1(8i + 7)}256·256−1
i=0

and {B2(i), x̂2(8i + 7)}256·256−1
i=0 .

i 0 1 2 3 4 5 6 7 8 9
B1(i) 146 231 54 202 59 243 166 173 233 82
B2(i) 18 103 182 74 187 115 38 45 105 210

x̂1(8i + 7) 242.40 38.63 242.62 222.09 81.03 214.73 240.91 203.59 138.20 9.33
x̂2(8i + 7) 114.40 166.63 114.62 94.09 209.03 86.73 112.91 75.59 10.20 137.33

a) Chosen plain-image f1 c) Chosen plain-image f2 e) A cipher-image f ′3

b) Cipher-image f ′1 d) Cipher-image f ′2 f) Recovered image f3

Figure 4.6: The proposed chosen-plaintext attack.

broken with one known/chosen plaintext and two chosen plaintexts respectively.
Both theoretical and experimental analyses have been given to support the above
attacks. In addition, the Yen’s scheme is not secure against brute-force attacks,
some possible methods to enhance it are also discussed. It can be seen that the
security of a encryption scheme is mainly dependent on the encryption structure
instead of the underlying complex theory. In conclusion, the two schemes are not
suggested in applications requiring a high level of security.
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Chapter 5

Cryptanalysis of a Data Security

Protection Scheme for VoIP

§5.1 Introduction

With the rapid development of the Internet and digital communication technolo-
gies, it becomes possible to make a telephone call with a PC connected to the
Internet, or to connect the link between two telephones partially via the Internet.
This technique is called voice over Internet protocol (VoIP in short) [87]. In fact,
VoIP can be extended to realize many other services, such as fax over Internet
protocol (FoIP), video teleconferences, and so on. Due to the obvious benefits and
potential applications of the VoIP technology, it attracts more and more interests
from both vendors and consumers.

Differing from the traditional telephony service, VoIP faces new risks in the
networked world: since all data are transmitted over the Internet, any attack to
digital computers can be used to break a VoIP system. Thus, it is very important
to provide sufficient security for VoIP services with a reasonable cost. In [63, 64], a
new VoIP protocol with a hierarchical data security protection (HDSP) scheme was
proposed as a possible solution to the following two concerns: reducing continuous
packet loss to avoid large voice corruption, and encrypting the transmitted voice
to provide a high level of security. HDSP works under the control of a chaotic
bit sequence, which is generated from the secret key by iterating a discrete-time
chaotic map. In [63], it was claimed that HDSP can resist the known-plaintext
attack.

The present chapter analyzes the security of HDSP in detail. Due to some
insecure properties of the HDSP scheme, the following facts are found: 1) given
n known plaintexts, only about 50/2n percent of secret chaotic bits cannot be
uniquely determined; 2) given only one specially chosen plaintext, all secret chaotic
bits can be uniquely derived; 3) the secret key can be derived with a practically
small complexity even when only one plaintext is known (or chosen). As a result,
HDSP is very weak against known/chosen-plaintext attacks. In addition, it is
found that the security of HDSP against the brute-force attack is not practically
strong.

The organization of this chapter is as follows. §5.2 briefly introduce HDSP.
§5.3 is the main body of this chapter, which focuses on the cryptanalysis of the
HDSP scheme. Some experimental results are shown in §5.4 to support the theo-
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retical results given in §5.3. §5.5 briefly discusses how to improve the security of
HDSP. The last section concludes the chapter.

§5.2 The Hierarchical Data Security Protection

(HDSP) Scheme

In the HDSP-based VoIP system, the encryption part is placed after speech en-
coder, and the decryption part is placed before the speech decoder. So, the plain-
text of HDSP is the bit-stream encoded by the speech CODEC, not the raw voice
signal. The ciphertext is obtained by performing the following two steps on the
plaintext [63, 64]:

1. the inter-frame interleaving (frame swapping) – divide the plaintext into
Sf -byte frames, and pseudo-randomly permute the orders of Sg continuous
frames (i.e., every Sg frames compose an interleaving group);

2. the intra-frame encryption (bit swapping and masking) – for each input byte,
pseudo-randomly permute some bits, and mask the 4 odd bits with XOR
operations.

The frame/bit swapping and the bit masking operations are all controlled by a
secret chaotic bit sequence {b(i)}, which is generated by iterating the chaotic
Logistic map Eq. (2.8). Although the inter-frame interleaving was only intended
for avoiding possible loss of continuous packets [63, 64], the use of secret chaotic
bits has effectively made it one part of the whole encryption scheme.

For a plaintext g = {g(i)}N−1
i=0 , where g(i) denotes the i-th byte of g, the HDSP

encryption scheme can be described as follows (to better describe the original
algorithm, some notations and definitions used in [63, 64] have been intentionally
changed):

• The secret key is the control parameter µ and the initial condition x(0) of
the chaotic Logistic map, which are both represented in the 16-bit binary
form.

• The initialization procedure: run the Logistic map from x(0) to generate a
chaotic sequence x(i)dLb/16e−1

i=0 , where Lb denotes the number of bits required
during the following encryption procedure, and then extract the 16-bit rep-
resentation of each chaotic state x(i) to obtain a PRBS {b(i)}Lb−1

i=0 .

• The encryption procedure is composed of the following stages:

1. The inter-frame interleaving :
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– divide g into Sf -byte frames: {frame(i)}Nf−1
i=0 , where Nf =

bN/Sfc;
– further divide g into Sg-frame groups: {group(i)}Ng−1

i=0 , where
Ng = bNf/Sgc;

– set L = blog2 Sgc and ∆L = Sg − 2L;

– all Sg frames in each group is permuted with Sg pseudo-random
swapping operations: for i = 0 ∼ (Ng−1) and for j = 0 ∼ (Sg−1),
swap frame(i · Sg + j) and frame(i · Sg + j′), where

j′ =
L−1∑
k=0

2k · b(s + k) +
∆L−1∑
k=0

b(s + L + k), (5.1)

and s = (i · Sg + j) · L.

* Note: in this stage, totally (Ng · Sg · L + ∆L) chaotic bits are
required: b(0) ∼ b(Ng · Sg · L + ∆L − 1).

2. The intra-frame encryption – assuming g∗ = {g∗(i)}N−1
i=0 is the out-

put plaintext of the inter-frame interleaving stage, the ciphertext
g′ = {g′(i)}N−1

i=0 is determined in the following two steps:

– pseudo-randomly swap the 4 most significant bits (MSB-s) and the

4 least significant bits (LSB-s) of each byte g∗(i) =
∑7

k=0 d∗k(i) ·2k

to get an intermediate byte g∗∗(i) =
∑7

k=0 d∗∗k (i) ·2k: ∀ k = 0 ∼ 3,

(
d∗∗k (i), d∗∗k+4(i)

)
= Swapb(4i+k)

(
d∗k(i), d∗k+4(i)

)
. (5.2)

– mask the 4 odd bits of g∗∗(i) to get the cipher-byte g′(i) =∑7
k=0 d′k(i) · 2k: ∀ k = 1, 3, 5, 7,

d′k(i) = d∗∗k (i)⊕ b(4i + k). (5.3)

* Note: in this stage, totally (4N + 2) chaotic bits are required:
b(0) ∼ b(4N − 1), b(4N + 1), b(4N + 3).

* Note: in the whole encryption procedure, totally max(Ng · Sg · L +
∆L, 4N + 2) chaotic bits are required. Since the index of the last
required chaotic bit is max(Ng · Sg · L + ∆L − 1, 4N + 3), one has
Lb = max(Ng · Sg · L + ∆L, 4N + 4).

• The decryption procedure is the reversion of the encryption procedure, and
can be briefly described as follows:

1. The inverse intra-frame decryption (bit swapping and masking opera-
tions):
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– mask the 4 odd bits of the cipher-byte g′(i) =
∑7

k=0 d′k(i) · 2k to

restore the intermediate byte g∗∗(i);

– pseudo-randomly swap the 4 MSB-s and the 4 LSB-s of each byte

g∗∗(i) =
∑7

k=0 d∗∗k (i) · 2k to restore another intermediate byte

g∗(i) =
∑7

k=0 d∗k(i) · 2k.

2. The same inter-frame interleaving is inversely exerted on g∗ =
{g∗(i)}N−1

i=0 to restore the plaintext g = {g(i)}N−1
i=0 , where the term

“inversely” means that i = 0 ∼ (Ng − 1) and j = (Sg − 1) ∼ 0.

§5.3 Cryptanalysis of HDSP

§5.3.1 The Brute-Force Attack

The secret key in HDSP is (µ, x(0)), which is represented by 2 ·16 = 32 secret bits.
Thus, the size of the key space is 232. Considering that the complexity of verifying
each key is equal to the one of the encryption procedure of HDSP – O(N)[63, Sec.
4.1], the total complexity of the brute-force attack is O

(
N · 232

)
. However, because

not all values of µ can ensure the chaoticity of the Logistic map[82], actually the
size of the key space is smaller than 232 and the attack complexity is smaller than
O
(
N · 232

)
.

Here, note the following facts: 1) in the known-plaintext attack scenario, the
key can be validated by simply comparing the decrypted signal with the known
plaintext; 2) in the ciphertext-only attack scenario, the key has to be validated by
some inherent features of the plaintexts, which may increase the attack complexity
to some extent, but generally the complexity will be not larger than O

(
N2 · 232

)
.

To guarantee a high level of security in today’s digital world, a complexity of
order O

(
2100

)
is required[1]. Apparently, O

(
N · 232

)
is too small to reach such

a goal. An attacker can easily find the secret key within a few hours (or even
minutes) using a PC with a 1G CPU, if N is not too large (when N is too large,
checking a small segment of the plaintext can work). To ensure a high level of
security, 64-bit binary representations of µ and x(0) are suggested to provide a
complexity of order O

(
2128

)
against brute-force attacks.

§5.3.2 The Known-Plaintext Attack

In [63, Sec. 4.2], it was claimed that HDSP can efficiently resist the known-
plaintext attack∗. In this subsection, this claim is re-evaluated, concluding that

∗ As introduced in §1.2, the known-plaintext attack becomes possible when an attacker
can temporarily access the encryption machine. Under such a condition, it is reasonable to
assume that the attacker can get the plaintext output from the speech CODEC, since details
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HDSP is not sufficiently secure against known-plaintext attacks. Basically, with n

known plaintexts, from the probabilistic point of view, about
(
100− 50

2n

)
% of all

chaotic bits can be correctly restored and only 16/2n bits have to be exhaustively
guessed to break the secret key. Even with n = 1, the complexity of breaking
the secret key is sufficiently small: only O

(
28
)
. Once the secret key is uncovered,

the HDSP scheme can be completely broken. Furthermore, because HDSP works
like a stream cipher, even without deriving the secret key, one can still use the
partially-reconstructed chaotic bit sequence to partially (almost completely when
n is relatively large) recover the unknown plaintexts.

Similar to the encryption procedure of HDSP, the known-plaintext attack also
works in two stages: 1) break the inter-frame interleaving; 2) break the intra-frame
encryption. The two stages provide a partial (or total) reconstruction of the secret
chaotic bit sequence, which can be used to restore the secret key. Generally, if N

is sufficiently large, only one known plaintext is enough for an attacker to restore
the sub-key µ and an equivalent of another sub-key x(0). In addition, if two or
more plaintexts of size N are known, it is possible to correctly restore most chaotic
bits, which can also be directly used as a replacement of the secret key to decrypt
the ciphertexts encrypted with the same key (if their sizes are not larger than N).

Next, some important properties of the intra-frame encryption stage of HDSP
are discussed, which are the essential reasons for the insecurity of HDSP against
known/chosen-plaintext attacks. These insecure properties are structural defects
of the encryption procedure used in HDSP, independent of any specifics of the
speech data and the speech CODEC. The theoretical analysis of the proposed
attacks will be based on the assumption that the plaintext (i.e., the output of the
speech CODEC) is a uniformly-distributed random source. When the plaintext
does not obey the uniform distribution, our experiments show that the performance
of the proposed attacks may be somewhat better or worse (see Sec. 5).

§5.3.2.1 Some insecure properties of the HDSP encryption scheme

In the intra-frame encryption stage of HDSP, the i-th byte of the input signal,
g∗(i) =

∑7
k=0 d∗k(i) ·2k, and the i-th byte of the output signal (i.e., the ciphertext),

g′(i) =
∑7

k=0 d′k(i) · 2k, satisfy the following properties.

Property 5.1: For k = 0, 2: a) d∗k(i)+d∗k+4(i) ≡ d′k(i)+d′k+4(i); b) when d∗k(i) 6=
d∗k+4(i), one has b(4i + k) = d∗k(i)⊕ d′k(i) = d∗k+4(i)⊕ d′k+4(i).

Proof : From Eqs. (5.2) and (5.3), one can see that the 4 even bits are swapped
without being masked. Thus, for k = 0, 2, d∗k(i)+d∗k+4(i) remains unchanged after
the intra-frame encryption, i.e., d∗k(i) + d∗k+4(i) ≡ d′k(i) + d′k+4(i).

of the CODEC are not kept secret in the HDSP-based VoIP system.
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When d∗k(i) 6= d∗k+4(i), which means that d∗k(i) = d∗k+4(i) and d∗k+4(i) = d∗k(i),
the bit swapping operation Swapw(a, b) becomes (in this case, a 6= b)

Swapw(a, b) =

{
(a, b) = (a⊕ 0, b⊕ 0) = (a⊕ w, b⊕ w), w = 0,

(b, a) = (ā, b̄) = (a⊕ 1, b⊕ 1) = (a⊕ w, b⊕ w), w = 1.
(5.4)

That is, Swapw(a, b) ≡ (a⊕w, b⊕w). Then, one has d′k(i) = d∗k(i)⊕ b(4i+ k) and
d′k+4(i) = d∗k+4(i)⊕b(4i+k), which immediately leads to b(4i+k) = d∗k(i)⊕d′k(i) =
d∗k+4(i)⊕ d′k+4(i). Thus, the proof is completed. �

Property 5.2: For k = 1, 3: a) when d∗k(i) = d∗k+4(i), one has b(4i + k) =
d∗k(i)⊕ d′k(i) and b(4(i + 1) + k) = d∗k+4(i)⊕ d′k+4(i); b) when d∗k(i) 6= d∗k+4(i), one
has d′k(i) ≡ d∗k(i) and b(4i + k)⊕ b(4(i + 1) + k) = d∗k+4(i)⊕ d′k+4(i).

Proof : The two conditions are proved separately.
a) When d∗k(i) = d∗k+4(i), the bit swapping operation disappears and the

cipher-bit is determined by the masking operation only: d′k(i) = d∗k(i)⊕ b(4i + k)
and d′k+4(i) = d∗k+4(i) ⊕ b(4i + k + 4). That is, b(4i + k) = d∗k(i) ⊕ d′k(i) and
b(4(i + 1) + k) = d∗k+4(i)⊕ d′k+4(i).

b) When d∗k(i) 6= d∗k+4(i), from Eq. (5.4), Swapw(a, b) ≡ (a⊕w, b⊕w), so one
can get d∗∗k (i) = d∗k(i)⊕ b(4i + k) and d∗∗k+4(i) = d∗k+4(i)⊕ b(4i + k). Substituting
the two results into Eq. (5.3), one has the following results:

• d′k(i) = d∗∗k (i)⊕ b(4i + k) = (d∗k(i)⊕ b(4i + k))⊕ b(4i + k) ≡ d∗k(i);

• d′k+4(i) = d∗∗k+4(i) ⊕ b(4i + k + 4) =
(
d∗k+4(i)⊕ b(4i + k)

)
⊕ b(4i + k + 4) =

d∗k+4(i)⊕(b(4i + k)⊕ b(4i + k + 4)), which is equivalent to b(4i+k)⊕b(4(i+
1) + k) = d∗k+4(i)⊕ d′k+4(i).

From the above two conditions, the property is proved. �

Property 5.3: For k = 1, 3, ∀ i = 0 ∼ N − 2, if d∗k(i) = d∗k+4(i) and d∗k(i + 1) =
d∗k+4(i + 1), then b(4(i + 1) + k) = d∗k+4(i)⊕ d′k+4(i) = d∗k(i + 1)⊕ d′k(i + 1).

Proof : This property is a natural corollary of the above Property 5.2a. �

In the following, it will be shown that the above properties make the known-
plaintext attack feasible in practice.

§5.3.2.2 Breaking the inter-frame interleaving

The frame swapping operations in the inter-frame interleaving stage actually
correspond to a pseudo-random and secret frame-permutation in each group.
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One can represent the permutation of group(i) by a permutation vector v(i) =
[v(i, 0), · · · , v(i, Sg − 1)], where ∀ j1 6= j2, v(i, j1) 6= v(i, j2). With the permuta-
tion vector, the inter-frame interleaving of group(i) can be described as follows:
∀ j = 0 ∼ (Sg − 1), the j-th frame in group(i) is permuted to be the v(i, j)-th
frame, i.e., frame(i ·Sg + j) is permuted to be frame(i ·Sg +v(i, j)). Basically, in
this restoration stage, the goal is to restore the permutation vectors of all groups:
v(0) ∼ v(Ng − 1).

To restore the permutation vectors, at least an input signal (i.e., the plain-
text g) and the corresponding output signal (i.e., g∗) should be known. However,
in the known-plaintext attack, generally the intermediate signal g∗ is not known.
Fortunately, due to Property 5.1a proved above, some information of g∗ can be ob-
tained from the ciphertext g′. This generally is enough to restore the permutation
vectors.

Next, define three sequences, ĝ = {ĝ(i)}N−1
i=0 , ĝ∗ = {ĝ∗(i)}N−1

i=0 and ĝ′ =
{ĝ′(i)}N−1

i=0 , where

ĝ(i) = (d0(i) + d4(i)) + (d2(i) + d6(i)) · 3 ∈ {0, · · · , 8}, (5.5)

ĝ∗(i) = (d∗0(i) + d∗4(i)) + (d∗2(i) + d∗6(i)) · 3 ∈ {0, · · · , 8}, (5.6)

ĝ′(i) = (d′0(i) + d′4(i)) + (d′2(i) + d′6(i)) · 3 ∈ {0, · · · , 8}. (5.7)

From Property 5.1a, one can see that ĝ∗ = ĝ′. Considering that the inter-frame
interleaving stage does not change the values of all frames but their positions,
one can use ĝ and ĝ′ to restore the permutation vectors. To do so, one has to

divide both ĝ and ĝ′ into Nf frames,
{

f̂ rame(i)
}Nf−1

i=0
,
{

̂frame′(i)
}Nf−1

i=0
, and

Ng groups,
{
ĝroup(i)

}Ng−1

i=0
,
{

ĝroup′(i)
}Ng−1

i=0
, respectively, in the same way as

the encryption procedure of HDSP. Now, ∀ i = 0 ∼ (Ng − 1), the permutation
vector of group(i) can be estimated as follows∗

• Step 1 : For j = 0 ∼ (Sg − 1), calculate Rf (i, j) =
Sf−1∑
k=0

ĝf (i, j, k) · 9k and

R′
f (i, j) =

Sf−1∑
k=0

ĝ′f (i, j, k) · 9k, where ĝf (i, j, k) and ĝ′f (i, j, k) denote the k-th

byte of the j-th frame in ĝroup(i) and in ĝroup′(i), respectively.

• Step 2 : Compare the values of Rf (i, 0) ∼ Rf (i, Sg − 1) and R′
f (i, 0) ∼

R′
f (i, Sg − 1) to get two partitions of the index-set Sg = {0, · · · , Sg − 1}:
{Λ(k)}K−1

k=0 and {Λ′(k)}K−1
k=0 , where K is the number of different values

∗A more general description on this algorithm of breaking secret permutations with a
number of known/chosen plaintexts can be found in §2.2.
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in the set {Rf (i, 0), · · · , Rf (i, Sg − 1)} = {R′
f (i, 0), · · · , R′

f (i, Sg − 1)} and
∀ a, b ∈ Λ(k),∀ a′, b′ ∈ Λ′(k), Rf (i, a) = Rf (i, b) = R′

f (i, a′) = R′
f (i, b′).

* Note 1: {Λ(k)}K−1
k=0 and {Λ′(k)}K−1

k=0 are partitions of Sg, which means
that

⋃K−1
k=0 Λ(k) =

⋃K−1
k=0 Λ′(k) = Sg and ∀ k1 6= k2, Λ(k1) ∩ Λ(k2) =

Λ′(k1) ∩ Λ′(k2) = ∅.

* Note 2: because the frame swapping operations do not change the value
of Rf (i, j), it is obvious that ∀ k = 0 ∼ (K − 1), the cardinality (size)
of Λ(k) is equal to that of Λ′(k), i.e., #(Λ(k)) = #(Λ′(k)).

• Step 3 : Derive an estimation of the permutation vector v(i) of group(i) from
{Λ(k)}K−1

k=0 and {Λ′(k)}K−1
k=0 , under the following two conditions:

– Condition 1 : if ∀ k ∈ {0, · · · ,K − 1}, Λ(k) contains only one element,
i.e., #(Λ(k)) = #(Λ′(k)) = 1 (and K = Sg), then the permutation
vector v(i) of group(i) can be uniquely derived: ∀ k = 0 ∼ (K − 1 =
Sg − 1), and v(i, Λ(k)) is set to be the only element in Λ′(k).

– Condition 2 : if ∃k ∈ {0, · · · ,K − 1}, Λ(k) contains more than one
elements, i.e., #(Λ(k)) = #(Λ′(k)) ≥ 2 (and K < Sg), then the
permutation vector v(i) cannot be uniquely derived from {Λ(k)}K−1

k=0

and {Λ′(k)}K−1
k=0 . But one can get an estimated permutation vector

ṽ(i) = [ṽ(i, 0), · · · , ṽ (i, Sg − 1)] as follows: for k = 0 ∼ (K − 1), deter-
mine a one-to-one mapping fΛ(k) : Λ(k)→ Λ′(k), and then ∀ a ∈ Λ(k),
set ṽ(i, a) = fΛ(k)(a).

Under Condition 1 in Step 3, the permutation vector can be correctly derived
without any error. However, under Condition 2, the estimated permutation vector
ṽ may be wrong with a non-negligible probability. This is due to the following
fact: ∀ k = 0 ∼ (K − 1), there are (#(Λ(k)))! possible mappings of fΛ(k), so there
are

∏K−1
k=0 (#(Λ(k)))! possible estimations of v(i), among which only one is the

correct permutation vector v.
Now, let us study the occurrence probability of Condition 2. Assuming the

number of all possible values of Rf (i, j) is NRf
, this probability can be easily

calculated as follows:

Prob[Condition 2 occurs] = 1−
(

1− 0
NRf

)
·
(

1− 1
NRf

)
· · ·
(

1− Sg − 1
NRf

)
.

(5.8)
From the definition of Rf , one has NRf

= 9Sf . In most cases, 9Sf is much larger
than Sg, so the occurrence probability of Condition 2 is so small that it can be
simply ignored in practice. When Condition 2 cannot be ignored (i.e., when 9Sf is
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not much larger than Sg), the following constraints in the intra-frame encryption
stage can be used to detect wrong estimations:

• Constraint 1 : k = 1, 3, ∀ i = 0 ∼ (N − 1), if d∗k(i) 6= d∗k+4(i), d′k(i) = d∗k(i).

• Constraint 2 : k = 1, 3, ∀ i = 0 ∼ (N − 2), if d∗k(i) = d∗k+4(i) and d∗k(i + 1) =
d∗k+4(i + 1), then d∗k+4(i)⊕ d′k+4(i) = d∗k(i + 1)⊕ d′k(i + 1) = b(4(i + 1) + k).

• Constraint 3 : As shown later in the next sub-subsection, the two chaotic bit
sequences {b(4i + 1)}Ni=0 and {b(4i + 3)}Ni=0 are completely correlated, i.e.,
they satisfy Eq. (5.9) below. It will be precisely explained there as how to
use this constraint to detect wrong permutation vectors.

The above three constraints can be deduced from Properties 5.2 and 5.3. Once any
of these constraints is violated, it can be immediately asserted that the current
permutation vector is wrong.

Finally, the following fact should be noticed: in Condition 2, the larger the
number of the known plaintexts is, the less the probability of ṽ(i) 6= v(i) will
be. Given n known plaintexts g1 ∼ gn, the number of all possible combinations of
Rf,1(i, j) ∼ Rf,n(i, j) becomes Nn

Rf
= 9nSf , which means that the probability that

Condition 2 occurs exponentially decrease as n increases. That is, the probability
of getting a wrong permutation vector will be exponentially decrease, so it is
negligible when n is sufficiently large∗.

§5.3.2.3 Breaking the intra-frame encryption

Once the inter-frame interleaving is correctly broken, one can get the intermedi-
ate signal g∗ = {g∗(i)}N−1

i=0 from the plaintext g successfully. With g∗ and the
ciphertext g′, the intra-frame encryption can also be partially (or even totally)
broken. During this breaking stage, one can partially (or even totally) reconstruct
the secret chaotic bit sequence, which can be used to further derive the secret key.
The following properties, summarized above, are now available for an attacker to
break the intra-frame encryption:

• Property 5.1b: k = 0, 2, when d∗k(i) 6= d∗k+4(i), b(4i + k) = d∗k(i) ⊕ d′k(i) =
d∗k+4(i)⊕ d′k+4(i);

• Property 5.2a: k = 1, 3, when d∗k(i) = d∗k+4(i), b(4i + k) = d∗k(i)⊕ d′k(i) and
b(4(i + 1) + k) = d∗k+4(i)⊕ d′k+4(i);

∗Generally speaking, “n is sufficiently large” if n � (log9 Sg)/Sf , which ensures that
9nSf � Sg.
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• Property 5.2b: k = 1, 3, when d∗k(i) 6= d∗k+4(i), b(4i + k)⊕ b(4(i + 1) + k) =
d∗k+4(i)⊕ d′k+4(i).

Based on the above three properties, we can estimate how many chaotic bits one
is able to get in a known-plaintext attack. Without loss of generality, assume that
each bit in g∗(i) and g′(i) distributes uniformly over {0, 1} and any two bits are
independent of each other. Under this assumption, one can deduce the following
results.

• Even bits (k = 0, 2, from Property 5.1b):

– with only one known plaintext : the probability of d∗k(i) 6= d∗k+4(i) is 1
2 ,

so averagely 50% of all even chaotic bits can be correctly restored;

– with n > 1 known plaintexts: when d∗k(i) 6= d∗k+4(i) holds for at least
one plaintext, the bit b(4i + k) can be correctly restored, and then it
can be deduced that the probability of the above event is 1−

(
1
2

)n
.

• Odd bits (k = 1, 3, from Property 5.2a/b):

– with only one known plaintext : ∀ i = 0 ∼ (N − 1), the value of b(4i +
k) ⊕ b(4(i + 1) + k) can be correctly determined, i.e., one can get a
new sequence

{
b⊕k (i) = b(4i + k)⊕ b(4(i + 1) + k)

}N−1

i=0
. Apparently, if

only one bit b(4i∗ + k) is known, the whole bit sequence {b(4i + k)}Ni=0

can be correctly restored with the deterministic sequence {b⊕k (i)}N−1
i=0

as follows:

b(4i∗+k)


⊕b⊕k (i∗−1)
−−−−−−−→ b(4(i∗ − 1) + k)

⊕b⊕k (i∗−2)
−−−−−−−→ · · ·

⊕b⊕k (0)
−−−−−→ b(4 · 0 + k),

⊕b⊕k (i∗)
−−−−−→ b(4(i∗ + 1) + k)

⊕b⊕k (i∗+1)
−−−−−−−→ · · ·

⊕b⊕k (N−1)
−−−−−−−→ b(4N + k).

(5.9)
From Property 5.2a above, two bits b(4i + k) and b(4(i + 1) + k) can
be correctly restored when d∗k(i) = d∗k+4(i). Thus, it can be deduced
that the probability that at least two bits in {b(4i+k)}Ni=0 are correctly
restored is

1−
(
Prob[d∗k(i) 6= d∗k+4(i)]

)N
= 1− 1

2N
.

Since N is generally sufficiently large, it is probabilistically true in
almost all cases that all odd bits can be correctly restored.

∗ Note 1: even under an extreme condition where no intermediate
byte g∗(i) satisfying d∗k(i) = d∗k+4(i), one can randomly guess the
value of any bit b(4i + k) and then get the whole bit sequence
{b(4i+k)}Ni=0. In this case, at most four guesses (two for k = 1 and
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the other two for k = 3) are needed to correctly restore all odd bits.
In this sense, all odd bits can always be correctly reconstructed.

∗ Note 2 (a precise explanation of Constraint 3 ): assuming that
two bytes g∗(i1) and g∗(i2) satisfy d∗k(i1) = d∗k+4(i1) and d∗k(i2) =
d∗k+4(i2) and all in-between bytes g∗(i1 + 1) ∼ g∗(i2 − 1) do not
satisfy this condition, where i2 ≥ i1 + 2, the sub-sequence {b(4i +
k}i2−1

i=i1+1 can be uniquely derived by using Eq. (5.9) twice:

b(4i1 + k)⇒ b(4(i1 + 1) + k)→ · · · → b(4(i2 − 1) + k),

b(4(i1 + 1) + k)← · · · ← b(4(i2 − 1) + k) ⇐ b(4i2 + k).

If the two derived sub-sequences are not identical, it can be asserted
that at least one permutation of the frame(s) between g(i1) and
g(i2) is wrong, i.e., at least one permutation vector of the group(s)
between g(i1) and g(i2) is wrong, and, when there is only one group
between g(i1) and g(i2), the permutation vector of this group must
be wrong.

– with n > 1 known plaintexts: the probability that at least two bits in

{b(4i + k)}Ni=0 can be correctly restored is
(

1− 1
2n·N

)
.

As a summary, when only one plaintext is known, averagely 50% of even
bits and all odd bits, i.e., 75% of all bits in {b(i)}4N−1

i=0 and the last two bits
b(4N +1), b(4N +3), can be correctly restored; furthermore, when n ≥ 1 plaintexts
are known, the percentage of correctly restored bits in {b(i)}4N−1

i=0 becomes(
50 + 25 +

25
2

+ · · ·+ 25
2n−1

)
% =

(
100− 50

2n

)
%,

which exponentially approaches 100% as n increases. For the rest unrecovered
chaotic bits, one can randomly guess their values, and averagely half of the bits
can be correctly matched to the true values. That is, the correctly restored bits
in {b(i)}4N−1

i=0 will reach
(
100− 50

2n+1

)
%, which is 87.5% for n = 1.

In addition, if some permutation vectors have been uniquely determined in
the stage of breaking the inter-frame interleaving, the corresponding guessed bits
can be checked with Eq. (5.1), and the correctly restored bits can be even more. In
addition, since the wrong bits distribute randomly within the whole bit sequence
and since human ears have a high capability to bear large audio noises, their
negative influence on the quality of the voice data may not be so much, as verified
by our experiments to be discussed later.

Finally, let us study the success probability of the decryption with the partially
reconstructed chaotic bit sequence b(0) ∼ b(4N − 1), b(4N + 1), b(4N + 3), when
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only one plaintext is known (i.e., n = 1). Since the two even bits b(4i), b(4i + 2),
corresponding to a plain-byte g(i), are correctly restored with probability

(
1
2

)2
=

1
4 , it seems that the probability of correctly decrypting an unknown plain-byte
g̃(i) =

∑7
k=0 d̃k(i) · 2k should also be 1

4 . However, such an “intuition” is not true,
because this probability is actually the addition of the following four probabilities:

• the probability that b(4i), b(4i + 2) are both correct, which is 1
4 ;

• the probability that b(4i) is correct, but b(4i + 2) is incorrect, and d̃∗2(i) =
d̃∗6(i), which is 1

2 ·
1
2 ·

1
2 = 1

8 ;

• the probability that b(4i) is incorrect, but b(4i + 2) is correct, and d̃∗0(i) =
d̃∗4(i), which is also 1

2 ·
1
2 ·

1
2 = 1

8 ;

• the probability that b(4i), b(4i + 2) are both incorrect, d̃∗0(i) = d̃∗4(i) and
d̃∗2(i) = d̃∗6(i), which is 1

2 ·
1
2 ·

1
2 ·

1
2 = 1

16 .

So, the final probability of correctly decrypting a plain-byte is 1
4 + 1

8 + 1
8 + 1

16 = 9
16 .

In a similar way, this probability with n(≥ 1) known plaintexts can be calculated
to be

P (n) =
(

1− 1
2n

)2

+
(

1− 1
2n

)
· 1
2n
· 1
2

+
1
2n
·
(

1− 1
2n

)
· 1
2

+
1
2n
· 1
2n
· 1
2
· 1
2

= 1− 1
2n

+
1

22n+2
= 1− 2

2n+1
+
(

1
2n+1

)2

=
(

1− 1
2n+1

)2

.

Considering each undetermined chaotic bit is identical with the original bit with
probability 1

2 , one has

• Prob[b(4i) is incorrect] = Prob[b(4i + 2) is incorrect] = 1
2 ·

1
2n = 1

2n+1 ;

• Prob[b(4i) is correct] = Prob[b(4i + 2) is correct] = 1− 1
2n+1 .

Then, the probability of correctly decrypting a plain-byte in real attacks will be-
come P ′(n) = P (n + 1) =

(
1− 1

2n+2

)2
. This result agrees with our experiments

well (see Table 5.2 below).

§5.3.2.4 Completely breaking the encryption scheme (breaking the
secret key)

With the reconstructed permutation vectors v(0) ∼ v(Ng − 1) and the partially
restored chaotic bit sequence b(0) ∼ b(4N − 1), b(4N + 1), b(4N + 3), a ciphertext
g′ can be decrypted to get an estimated plaintext g̃ = {g̃(i)}N−1

i=0 as follows:
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• use the partially reconstructed chaotic bits to cancel the intra-frame encryp-
tion;

• derive the inverse permutation vector of each interleaving group and use it
to cancel the inter-frame interleaving.

In the previous sub-subsection, it was shown that the breaking performance is
not satisfactory because about 25% of plain-bytes cannot be correctly decrypted
when only one plaintext is known. Although the performance can be exponentially
enhanced with more known plaintexts, the above procedure cannot decrypt any
plain-byte beyond the position N . Therefore, to thoroughly break the HDSP
encryption scheme, one has to break the secret key itself. In the following, we
show how to break the secret key from some consequent partially-reconstructed
chaotic bits.

a) Breaking the initial condition x(0) or an equivalent x(i)

Recalling the generation of chaotic bits in the initialization procedure of
HDSP, one can see that each chaotic state x(i) can be represented in the bi-
nary form as 0.b(16i + 0) · · · b(16i + 15). Thus, if the first 16 chaotic bits are all
correctly restored, one can directly get the initial condition x(0) = 0.b(0) · · · b(15).
However, following the discussion in the previous sub-subsection, generally not all
even bits in b(0) ∼ b(15) can be uniquely determined. To restore these bits, one
has to exhaustively guess their values. Assuming the number of undetermined bits
is m ∈ {0, · · · , 8}, the guessing complexity is O (2m). Averagely, m = 1

4 · 16 = 4,
and the searching complexity is O

(
24
)
, which is practically small for PC-s. Even

under the worst condition, m = 8, the guessing complexity is only O
(
28
)
.

When x(0) is enhanced to be represented with B > 16 bits and all the B′ ≤
B bits are extracted to generate the chaotic bit sequence {b(i)}, the guessing

complexity under the worst condition will be O
(
2

B′
2 · 2B−B′

)
= O

(
2B−B′

2

)
. If(

B − B′

2

)
is sufficiently large∗, the guessing complexity will be too large for the

exhaustive guess of x(0) on PC-s. In this case, instead of guessing x(0), one can try
to find another chaotic state x(i) = 0.b(i ·B′) · · · b(i ·B′+(B′−1)) as an equivalent
of the sub-key x(0), where the number of undetermined bits is less than m < B′

4 , to

get a reduced guessing complexity not greater than O
(
2B−B′+m

)
< O

(
2B− 3B′

4

)
.

With x(i) and the derived µ (see below), one can exactly reconstruct all chaotic
bits beyond the position (i · B′) and then restore all plain-bytes starting from
the first group located after the plain-byte that is encrypted by the (i · B′)-th

∗For example, when B = 80, B′ = 16, one has B − B′

2
= 72, which can be considered to

be sufficiently large.
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chaotic bit. Apparently, for the original HDSP with B = B′ = 16, such an idea of
reducing the complexity is also feasible (but somewhat meaningless). Of course,

using this method, the guessing complexity has a lower bound O
(
2B−B′

)
, which

is the complexity of exhaustively guessing the (B − B′) bits that do not occur in
the chaotic bit sequence.

b) Breaking the control parameter µ

Given 32 consequent chaotic bits b(16i + 0) ∼ b(16i + 31), two consecutive
chaotic states can be determined: x(i) = 0.b(16i) · · · b(16i + 15) and x(i + 1) =
0.b(16i + 16) · · · b(16i + 31), and then an estimated value of the secret sub-key µ

can be derived as §3.3.3.2. All correctly-restored chaotic bits after b(16i+31) can
be used to verify whether or not a searched value of µ is right.

As discussed above, generally there are undetermined bits in b(16i + 0) ∼
b(16i + 31). The average number of such bits is 1

4 · 32 = 8, and the maximal
number is 16. This means that one has to exhaustively search all values of the
undetermined bits to calculate a number of different values of µ̃. One can see
that the complexity will be about O

(
28
)

in average and be O
(
216
)

in the worst
condition. To further reduce the searching complexity, one can try to find two
consecutive chaotic states that contain less than m < 8 undetermined bits∗. The
occurrence probability of such an event is p(m) =

∑m
i=0

(
16
i

) (
1
2

)16
, and the average

position of its first occurrence is 1/p(m) = 216
Pm

i=0 (16
i ) . In Table 5.1, the values of

p(m) and 1/p(m) for m = 0 ∼ 8 are shown. If the plaintext does not satisfy a
uniform distribution, the probability of d∗k(i) 6= d∗k+4(i) may not be 1

2 , and then
the probability p(m) may be different from the theoretical value (compare Tables
1 and 3).

Table 5.1: The occurrence probability of 32 consequent bits
with less than m ≤ 8 undetermined bits, and the average position
of the first occurrence of such bits in the chaotic bit sequence.

m 0 1 2 3 4 5 6 7 8
p(m) ≈ 0.0000153 0.000259 0.00209 0.0106 0.0384 0.105 0.227 0.402 0.598
d1/p(m)e 65536 3856 479 95 27 10 5 3 2

∗Similar to the condition of x(0), when B > 16 bits are used to represent chaotic states, it
will become very useful to do so.
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§5.3.3 The Chosen-Plaintext Attack

In the above-mentioned known-plaintext attack, the undetermined even bits in the
chaotic sequence are due to the following fact: for many (25% of all) plain-bytes,
d0(i) = d4(i) or d2(i) = d6(i), i.e., d∗0(i) = d∗4(i) or d∗2(i) = d∗6(i) holds for the
corresponding intermediate bytes. In the chosen-plaintext attack, one can create
a plaintext g = {g(i)}N−1

i=0 as follows: ∀ i = 0 ∼ (N − 1), d0(i) 6= d4(i) and
d2(i) 6= d6(i). With such a plaintext and its ciphertext g′, all chaotic bits can
be uniquely determined. Thus, the secret sub-key x(0) = 0.b(0) · · · b(15) will be
accurate, and another sub-key µ can be exactly derived from any two consecutive
chaotic states x(i) and x(i + 1) as §3.3.3.2. As a result, one can see that HDSP is
not secure at all against the chosen-plaintext attack.

§5.4 Experiments

In this section, some experiments are shown to support the theoretical analysis
on the known-plaintext attack∗. The parameters used in the experiments are
N = 65536, Sf = 32, Sg = 16, and the secret key is x(0) = 16326

216 ≈ 0.249,
µ = 259752

216 ≈ 3.96. Note that the values of x(0) and µ are both randomly generated
via the standard rand() function, not specially chosen to maximize the proposed
attacks. The eight involved plaintexts are shown in Fig. 5.1, from top to bottom,
denoted by g0 ∼ g7, respectively, where the first seven ones are candidates of
known plaintexts and the last one is used to show the breaking performance.
The corresponding ciphertexts of the eight plaintexts are respectively denoted by
g′0 ∼ g′7, which are not shown here since all of them are like meaningless noisy
signals.

To simplify the experiments, we remove the speech CODEC in the whole
HDSP-based VoIP system and directly use the uncompressed raw data as the
plaintext. Such a simplification will not make any influence on the breaking of
the secret key from the recovered chaotic bit sequence. For the known-plaintext
attack, when the partially-recovered chaotic bit sequence is directly used to decrypt
a ciphertext, the existence of speech CODEC may enlarge the recovery errors in the
decoded voice signal. If such an enlargement is so serious that the intelligibility of
the recovered voice signal is damaged, one can turn to derive the secret key, which
always works as a perfect tool to break HDSP.

∗The chosen-plaintext attack is omitted here, since it is just a special case of the known-
plaintext attack.
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Figure 5.1: The eight plaintexts used in the experiments:
g0 ∼ g7 (from top to bottom).

§5.4.1 Partially Reconstructing the Chaotic Bit Sequence

Following the breaking procedure discussed in the last section, when plaintexts
g0, · · · , gn−1 and their ciphertexts g′0, · · · , g′n−1 are known (for n = 1 ∼ 7), we test
the partial reconstruction of the chaotic bit sequence and the breaking performance
when directly using it to decrypt the ciphertext g′7. The percentage of undeter-
mined chaotic bits for different values of n is shown in Table 5.2, from which one
can see that the percentage of the undetermined bits and and the percentage of
the undetermined bytes are both close to the theoretical expectations: 1

2n+1 , and
1− P ′(n) = 1−

(
1− 1

2n+2

)2
, respectively.

Table 5.2: The percentage of the undetermined bits in the partially
reconstructed chaotic bit sequence, Per1, and the percentage of plain-bytes of g7

that are not correctly decrypted, Per2, when n = 1 ∼ 7 plaintexts are known.

n 1 2 3 4 5 6 7
Per1 26.4% 13.8% 7.23% 4.23% 2.28% 1.17% 0.640%
1

2n+1 ≈ 25.0% 12.5% 6.25% 3.13% 1.56% 0.781% 0.391%

Per2 24.5% 13.1% 6.90% 3.92% 2.05% 1.06% 0.591%

1− P ′(n) = 1−
(
1− 1

2n+2

)2 ≈ 23.4% 12.1% 6.15% 3.10% 1.55% 0.780% 0.390%

By randomly assigning values to all the undetermined bits, the partially-
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reconstructed bit sequence is used to decrypt the ciphertext g′7 so as to get an
estimation of the plaintext g7. The decrypted results with respect to different
values of n are given in Fig. 5.2. The decryption errors between the recovered
plaintexts and the original plaintext g7 are shown in Fig. 5.3, and the percentage of
the decryption errors are listed in the last row of Table 5.2. Although the recovery
error when n = 1 looks rather large, the recovered plaintext is still recognizable by
human ears. The reason is that almost all frequency information remains in the
recovered plaintext. For a comparison of the power energy spectrum of the original
plaintext g7 and those of the seven recovered plaintexts when n = 1 ∼ 7, see Fig.
5.4. It is obvious that all important frequency peaks remain in the spectra of all the
seven recovered plaintexts (but with larger amplitudes). As a result, even under
the condition that the secret key is not derived, one known plaintext is still enough
for recovering an intelligible version of the secret voice information. In addition,
with a good noise reduction algorithm, the audio quality of the decrypted signal
can be further enhanced.
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Figure 5.2: The decrypted plaintexts of g′7 with the partially-reconstructed
chaotic bit sequence when n = 1 ∼ 7 (from top to bottom) plaintexts are known.

§5.4.2 Breaking the Secret Key

As analyzed above, generally it is possible to derive the secret key x(0) (or its
equivalent x(i)) and µ from the partially-reconstructed chaotic bit sequence. To
do so, one needs to find 32 consequent chaotic bits in which less than m bits are
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Figure 5.3: The decryption errors between the recovered plaintexts and the
original plaintext g7 when n = 1 ∼ 7 (from top to bottom) plaintexts are known.
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Figure 5.4: The power energy spectrum of the original plaintext g7 (the 1st
line) and the spectra of the recovered plaintexts when n = 1 ∼ 7 (from the 2nd

line to the last) plaintexts are known.

undetermined. When only the plaintext g0 is known, for different values of m, the
numbers of all 32-bit groups satisfying the above requirement are listed in Table
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5.3. One can see that even for m = 0 there are enough positions to derive the
secret key. By taking the first occurrence of the 32 consequent bits to successfully
derive a chaotic state x(i) and the value of µ, one can decrypt any ciphertext from

the first group after x(i), which begins at the position
⌈

4·i
Sg·Sf

⌉
· (Sg ·Sf ). When g0

is known, it was found that the first 32 consequent bits satisfying m = 0 occurs at
x(163), which is used to derive µ and then to decrypt g′7. The decrypted plaintext
and the recovery error are shown in Fig. 5.5. It can be seen that all plain-bytes
from g

(⌈
4·163
16·32

⌉
· (16 · 32)

)
= g(1024) are exactly recovered.

Table 5.3: The number of 32 continuous chaotic bits that have m ≤ 8
undetermined bits, and the occurrence frequency.

m 0 1 2 3 4 5 6 7 8
N(m) 72 185 464 888 1574 2537 4106 6113 8715

Freq[N(m)] ≈ 0.0045 0.0113 0.0283 0.0542 0.0961 0.155 0.251 0.373 0.532
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Figure 5.5: The decrypted plaintext of g′7 and the recovery error with the
derived key.

§5.5 Improving HDSP

As shown in the last section, the insecurity of HDSP against known/chosen-
plaintext attacks is attributed to the properties proved in sub-subsection §5.3.2.1.
In the first stage of breaking the inter-frame interleaving, Properties 1a, 2a, 2b
and 3 are involved; in the second stage of breaking the intra-frame encryption,
Properties 1b, 2a and 2b are involved. Also, the second breaking stage relies on
the first one, since the intermediate signal g∗ will not be available if the first stage
does not work. This implies that the insecure properties play different roles in the
known/chosen-plaintext attacks, which can be shown as follows:

g
Property 5.1a, 5.3−−−−−−−−−−−−−−−→
Property 5.2a, 5.2b

g∗

g′

 Property 5.1b,−−−−−−−−−−−→
5.2a, and 5.2b

{b(i)} →

{
x(0)
x(i), x(i + 1)→ µ

(5.10)
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One can see that Property 5.1a is the basis of the whole attack, since Property 5.2a,
5.2b and 5.3 are just used to detect wrong permutation vectors. As a hint, if HDSP
is modified to eliminate Property 5.1a, then the security against known/chosen-
plaintext attack will be enhanced. However, if Sg is too small, it may be possible
for an attacker to exhaustively search all (Sg!) possible permutation vectors so
as to pass the first breaking stage. Therefore, from the cryptographical point of
view, all insecure properties of HDSP should be avoided to provide a high level of
security. In addition, to resist other potential attacks, all known security defects
should also be removed. In the following, we discuss how to amend the original
HDSP scheme for better encryption.

• Property 5.1a is caused by the fact that no even bits are masked pseudo-
randomly by the secret chaotic bits. Also, Property 5.1b is related to this
defect. To fix this defect, we suggest masking all bits, including odd bits and
even bits.

• Properties 5.1b, 5.2a and 5.3 are caused by the incapability of swapping
operations for encryption purpose, and Properties 2a and 3 are also partially
caused by the invertibility of the XOR operation. These properties can be
destroyed by changing the bit swapping and masking operations to other more
complicated ones, for example, inserting an extra masking operation before
the two bits are swapped, or changing bit swapping operation to a different
bit function.

• Property 5.2b is caused by two flaws: a) the equality of the masking operation
and the swapping operation Swapw(a, b) when a 6= b (see Eq. (5.4)); b) the
reuse of all odd bits: for k = 1, 3, ∀ i = 1 ∼ N−1, each bit b(4i+k) are used
thrice – once for the swapping operation of d∗k(i), and twice for the masking
operations of d∗k+4(i − 1) and d∗k(i); similarly, when i = 0, the bit b(k) is
used twice for the swapping and masking operations of d∗k(0). The above
two flaws disable the encryption for some bits, and make the two chaotic
bit sequences {b(4i + 1)}Ni=0 and {b(4i + 3)}Ni=0 totally correlated. The first
flaw can be fixed with the same method for eliminating Property 5.2a, and
the second one can be removed by avoiding any reuse of chaotic bits, which
means that at least 4 + 8 = 12 chaotic bits are required for the encryption
of each plain-byte (if swapping and masking operations are not replaced by
other functions).
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§5.6 Conclusion

In this chapter, the security of a recently-proposed encryption technique for VoIP,
called HDSP [63], has been studied in detail. It is pointed out that HDSP cannot
resist known/chosen-plaintext attacks, and that only one known/chosen plaintext
is enough to break the secret key. It has also been found that the security of HDSP
against the brute-force attack is very weak even for PC-s. Both theoretical and
experimental analyses have been given to support the feasibility of the proposed
attacks. As a conclusion, HDSP is not suggested in sensitive applications, partic-
ularly, if the secret key may be reused to encrypt more than one plaintext (which
is the scenario where known/chosen-plaintext attacks work very well [1]). Finally,
some remedies for enhancing HDSP have been suggested.
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Chapter 6

Conclusion and Remarks on Future

Research

§6.1 Lessons from The Above Cryptanalyses

From cryptanalyses of the above eight multimedia encryption schemes, some prin-
ciples can be obtained for the design of good multimedia encryption schemes. Al-
though the security of theses schemes against the known/chosen-plaintext attack
is very weak of different degree, they are still useful as typical carelessly-designed
examples to show what one should do and what one should not do.

Principle 1: Security against the known/chosen-plaintext attacks
should be provided. As surveyed in [84], besides these eight schemes, many
other multimedia encryption schemes are also insecure against the known/chosen-
plaintext attack. However, without the capability against the known/chosen-
plaintext attacks, it will be insecure to repeatedly use the same secret key to
encrypt multiple multimedia files. When the cryptosystems are used to encrypt
multimedia streams transmitted over networks, this problem can be relaxed due to
the use of time-variant session keys [1]. Considering that most multimedia encryp-
tion systems are proposed to encrypt local multimedia files, the security against
the known/chosen-plaintext attacks is generally required.

Principle 2: Do not use invertible encryption function. Rewrite the
encryption function of a symmetric cipher as C = E(P,K). The function E(·, ·) is
said to be invertible, if K can be derived from C and P with its inverse function
E−1(·, ·), i.e., K = E−1(P,C). Most modern ciphers employs a mixture of opera-
tions defined in different groups to make the encryption function non-invertible.

In RCES/MES/DSEA/HDSP and the two neural network based schemes, one
main encryption function is XOR, which is an invertible operation since P ⊕K =
C ⇒ K = P ⊕ C. It is the essential reason why information about secret key
and/or plaintext can be got by different methods. Similarly, the invertibility of
other basic operations, permutation, bit recirculation, is the reason for the success
of breaking HCIE,TDCEA,MES. The whole security of one scheme cannot be
obtained by combining much more insecure basic operations since it can be broken
with the Divide and Conquer strategy.

To enhance the security of the eight schemes, the basic operations should be
replaced with some key-dependent invertible functions and/or more complex ones.
References [9, 16, 18, 21] suggest some typical image ciphers that use such an idea
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to ensure the security against the known/chosen-plaintext attacks.
Principle 3: The correlation information within/between the plain-

texts should be sufficiently reduced. As shown in §3.3, the high correlation in-
formation between adjacent pixels is an important reason of the good performances
for the known/chosen-plaintext attacks at RCES. In DSEA/HDSP, the main rea-
son for breaking of secret key and encryption procedures is the strong correlation
between the plaintexts (or some intermediate variables observable for attackers).
Strong correlation between different secret parameters should be avoided also.

In fact, there exists a large amount of correlation information within multime-
dia data, even between pixels whose distances are large, such as pixels in a smooth
area. To provide sufficient security against attacks, the correlation information
within the multimedia data should be sufficiently concealed. A typical method
to conceal the correlation information is to carry out complex long-distance per-
mutation operations [9, 16, 18, 21]. Note that the long-distance permutations are
not necessary conditions, but sufficient ones, since any secure text cipher can also
provide enough security for multimedia data.

Principle 4: Any non-uniformity existing in the cipher-images
should be avoided. From a cryptographer’s point of view, any non-uniformity
is not welcome due to the risk of causing statistics-based attacks, such as the well-
known differential attacks [1]. So, it should be carefully checked whether or not
there exists any non-uniformity in the ciphertexts.

The essential reason for the insecurity of RCES against the known/chosen-
plaintext attacks can also be ascribed to the non-uniformity of the distribution of
f(l)⊕ f ′(l) over {0, · · · , 255}:

• for any unswapped pixel, Prob[f(l)⊕ f ′(l) = Seed(l)] = 1, i.e., the distribu-
tion is one with the most non-uniformity;

• for any swapped pixel, the distribution of f(l) ⊕ f ′(l) has the same non-
uniformity level as the one of f(l)⊕ f(l + 1) (see the distribution of f

(⊕)
Peppers

shown in Fig. 3.5).

This also suggests that all pixels should be permuted. Actually, in the sec-
ond known-plaintext attack in §3.3.3, the feasibility of the quick-search algo-
rithm in finding the two random seeds is benefited from the non-uniformity of

the distribution of
{

f̃m(16k + j)
}15

j=0
over the discrete set {0, · · · , 127}. If each

f̃m(16k + j) distributes uniformly over {0, · · · , 127}, the exhaustive search algo-
rithm will be practically impossible when the block size is changed to a sufficiently
large value. Additionally, the breaking of secret key, L, of DSEA is also attributed
to g∗0(n)/g∗1(n) happen to be equal to g(n) with different probability.
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Principle 5: Never repeatedly use any (secret) intermediate vari-
ables generated in the encryption procedure. This problem exists in almost
all the schemes proposed by Yen’s group, where the same bit is reused to control
different operation of neighboring pixels. Ordinarily, the reuse will result in reduc-
ing the complexity of brute-force attack and make known/chosen-plaintext more
feasible. However, it become extremely serious for HDSP since it make HDSP be
disabled for some plain-bits and two secret bit sequences become totally correlated.

§6.2 Summary of this Thesis

Now let us summary this thesis. Our work described in this thesis mainly focuses
on the cryptanalysis of some encryption schemes protecting multimedia data, es-
pecially the capacity to withstand the known/chosen-plaintext attack. In the fol-
lowing we would like to sum up our achievements separately.

1. As for the security of permutation-only encryption schemes, this thesis an-
swered two questions:

• How many known/chosen plain-images are needed for an attacker to
achieve a rather good breaking performance?

• How much is the attack complexity when n plain-images are known or
chosen?

2. The security of chaos-based image encryption scheme called RCES was an-
alyzed and found that it can be broke with only one or two known/chosen-
plaintext. Both theoretical and experimental analyses are given to show the
performance of the suggested known/chosen-plaintext attacks. The crypt-
analysis show us how the strong correlation of multimedia data may bring
potential insecurity to multimedia encryption schemes.

3. Scheme MES is successfully broke with a differential chosen-plaintext attack,
which tell us that the whole security of one encryption scheme can not be
obtained by combining much more insecure basic encryption operations.

4. The security of DSEA is analyzed. It is found that the algorithm is even not
secure enough against ciphertext-only attack with only one ciphertext. All
secret information can be recovered by one known/chosen plaintext and the
corresponding ciphertext.

5. The security of TDCEA is analyzed comprehensively. It is demonstrated
that some essential security defects exist in TDCEA. The scheme can be
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broke with two different known-plaintext attack methods and their chosen-
plaintext attack counterparts.

6. The properties of two neural network based encryption schemes are analyzed
in detail. It is found that one can be easily broken by known/chosen-plaintext
attacks and the other can be broken by a chosen-plaintext attack. From the
cryptanalyses we can see that the security of a encryption scheme depends
on its good structure instead of so-called complex theory.

7. Some insecure properties of the HDSP scheme are analyzed, and then used
as the basis for the proposed known/chosen-plaintext attacks. The crypt-
analysis of the scheme tell us that the HDSP scheme serves a ‘good’ coun-
terexample to show the importance of prohibiting any reuse of secret bits.

8. Some principles for designing secure multimedia encryption schemes are
drawn from common essential security defects of the eight schemes, which
are analyzed in the previous four chapters.

§6.3 Future Research

During the research for this thesis a number of interesting problems were encoun-
tered, which are still not solved. We summarize briefly what we plan to do in the
near future as follows.

• Continue to study the security of some other proposed multimedia encryption
schemes which seem to be vulnerable to some attacks. To do these, some
related theories, such as chaos, number theory etc., need to be understood;

• Extend the attack methods that we have used to investigate the security
and robustness of some chaos-based secure communication schemes under
corresponding attack scenarios;

• Based on the security knowledge we have accumulated, study the security
of some Hash functions and authentication schemes against proposed attack
methods;

• Study deep into the general insecurity properties of multimedia encryption
schemes, and try to propose some corresponding countermeasures, further-
more, design some new schemes that have good security properties and can
meet the real application requirements at the same time.
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