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Abstract

Verifiably encrypted signature is useful in handling the fair exchange problem especially, online con-

tract signing. In this paper, we propose a verifiably encrypted signature scheme using bilinear pairings.

Our scheme facilitates the adjudication to be done in a threshold manner to achieve robustness. We show

that the distribution of adjudication capability is robust and unforgeable. Our scheme is secure against

extraction and existential forgery in the random oracle model.
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1 Introducion

Fair exchange is the problem of exchanging data in a way that guarantees that either all participants obtain
what they want, or none do [1]. Contract signing is a particular form of fair exchange, in which the parties
exchange commitments to a contract; typically, containing the terms of the deal. In the case of online
contracts [11], a commitment is often identified with the party’s digital signature on the contract. The
important properties a contract signing protocol should guarantee are fairness and timeliness [13], [12].

A Verifiably Encrypted Signature (VES) enables optimistic fair exchange (see [1] and [4]) over the In-
ternet. It uses no “time-out” mechanism[3] and neither party can be left hanging or cheated so long as the
Adjudicator, a trusted party, is available. A VES enables the verifier to test that a given ciphertext is the
encryption of a signature on a given message. Alice performs a VES by first signing on the message using
her private key and then encrypting the signature using public key of an Adjudicator. The verifier, Bob is
convinced that the encrypted signature is indeed of Alice by verifying it with the public keys of Alice and
the Adjudicator. Even though Bob does not have the capability of decrypting the VES, the verification can
be performed without deducing any information about Alice’s signature. At a later stage, on agreed terms,
Bob can obtain the original signature from Alice. In case of disputes, Bob approaches the Adjudicator who
can retrieve Alice’s signature from a valid VES.

It is clear that the property of fairness is defied if the adjudicator colludes with any of the participating
entities. Distribution of trust, equally among multiple adjudicators, overcomes the problem of collusion of
adjudicator with entities to some extent. However, this requires the contribution from all the adjudicators.
Another major limitation of the existing VES schemes (see [4], [17] and [9]) is single point of failure of the
adjudicator. Since most of the applications of VES are online, it is expected that the adjudication services
are always available (i.e. timeliness). We address the limitation of the existing schemes w.r.t. fairness and
timeliness by using the concept of threshold cryptosystem [7]. In our scheme, we use threshold adjudication
in such a way that the adjudication services can be offered even if t of the adjudicators are corrupted. For
this, we employ secure distributed key generation protocol of [8], which produces Shamir’s secret-sharing
[14] of a secret without trusted dealer. By using this interactive protocol, the adjudication capability can be
distributed to n adjudicators out of which any (t + 1) can adjudicate a VES.



Boneh et al. [4] gave a VES as an application of aggregate signature considering [6] as the base scheme.
Later, Zhang et al.[17] proposed another VES scheme based on the signature scheme in [16]. Both these
schemes are based on bilinear pairings with security proofs in random oracle model. Recently, Hess [9]
presented an efficient attack on the VES scheme in [4] by allowing adversaries to access the adjudication
oracles for different users but the same adjudicator and proposed an improvement over it.

In this paper, we propose a verifiably encrypted signature scheme with threshold adjudication using the
VES scheme given in [9]. We show that the distribution of adjudication capability is robust and unforgeable.
Our scheme is secure against extraction and existential forgery in the random oracle model [2].

The rest of the paper is organized as follows: Section 2 gives background concepts. In Section 3, we
present our verifiably encrypted signature with threshold adjudication. We analyze the security of our
scheme in Section 4 and Section 5 concludes the work.

2 Background Concepts

2.1 The Bilinear Pairings

We use cryptographic bilinear pairing, which is a modified Weil pairing [5] to construct our scheme. The
pairing is defined as e : G × G → V , where G and V both are multiplicative cyclic groups of prime order p
with the following properties.
Bilinear: For any r, s, t ∈ G, e(rs, t) = e(r, t)e(s, t) and e(r, st) = e(r, s)e(r, t)
Non-degenerate: There exists r, s ∈ G such that e(r, s) 6= IV where IV denotes the identity element of the
group V .
Computable: There exists an efficient algorithm to compute e(r, s) ∀ r, s ∈ G.

2.2 Modified Short Signature Scheme

In 2001, Boneh et al. [6] proposed a short signature (BLS) scheme based on Weil pairing. Recently, Tan [15]
identified that BLS scheme suffers from key substitution attack [10]. However, we observe that the modified
version of BLS (H-BLS) scheme presented by Hess [9] successfully withstands the key substitution attack.
We briefly describe the H-BLS scheme here.
Let M ⊆ {0, 1}∗ be the message space and H : M × G → G a full domain hash function.
KeyGen: A signer picks a random a ∈ Zp and computes v ← ga, where g is an arbitrary generator of G. The
private key of the signer is a and the corresponding public key is v ∈ G.
Sign: Given a message m ∈ M and a secret key a, compute h ← H(m, v) and σ ← ha. The signature is
σ ∈ G.
Verify: Given a signature σ on a message m and public key v, compute h ← H(m, v). Accept the signature
if e(g, σ) = e(v, h), reject otherwise.

3 VES with Threshold Adjudication

A verifiably encrypted signature(VES) scheme consists of three entities: signer, verifier and adjudicator. In
our scheme the entity adjudicator is represented by a set of n distinct adjudicators, to whom the adjudication
capability is distributed in a threshold manner. The seven phases of the VES scheme are described as below.

KeyGen, Sign, Verify: Same as in the H-BLS scheme given in section 2.2.

AdjKeyGen: In this phase, the shares for all the n adjudicators are generated using the interactive distributed
key generation protocol of [8]. Following this protocol, all the n adjudicators communicate among them-
selves for computing their shares b1, . . . , bn and a common public key v′ = gb, where b is the secret key
corresponding to v′. The secret key b can be generated by any (t + 1) adjudicators with their shares by
Lagrange’s interpolation. The n adjudicators also have individual public keys corresponding to their secret
shares as v′

i ← gbi for 1 ≤ i ≤ n.

VES-Creation: The verifiably encrypted signature is generated on a given message m ∈ M using the user’s
secret key a and adjudicators’ public key v′. The VES 〈µ, ω〉 ∈ G × G is computed as



h ← H(m, v)
σ ← ha

s ∈R Zp

µ ← gs

ω ← σv′s

The VES on the message m is 〈µ, ω〉.

VES-Verification: A given VES 〈µ, ω〉 on a message m is verified using the adjudicators’ public key v′ and
signer’s public key v. It is accepted if and only if the equation e(g, ω) = e(v, h)e(v′, µ) holds, setting
h ← H(m, v).

Adjudication: If the signer is unable or unwilling to cooperate with the verifier, the verifier sends the the
VES 〈µ, ω〉 to all the n adjudicators. Then each adjudicator computes the share σi ← ω/µbi for 1 ≤ i ≤ n
and sends it to the verifier in a secure channel. The verifier validates the correctness of each of the received
σi by checking the below equation using the individual public key v′

i of ith adjudicator,

e(σi, g) = e(ω, g)e(1/µ, v′i)

The share to the signature σi is rejected if it does not satisfy the above equation. The original signature is
reconstructed from all the valid signature shares σi, by the following equation

σ ← ω
∏

i

(σi

ω

)Li

Here, i represents the index for honest adjudicator and Li is the corresponding Lagrange’s coefficient available
publicly.
Note that using the interactive protocol of [8], the original signature σ can be reconstructed only if at least
(t + 1) honest adjudicators contribute in the adjudication process.
Validity: The correctness of the VES verification equation is justified as below:

e(g, ω)
= e(g, σv′s)
= e(g, σ)e(g, v′s)
= e(g, ha)e(g, gbs)
= e(ga, h)e(gb, gs)
= e(v, h)e(v′, µ)

The above equations mean VES-Verification(m, VES-Creation) is true.
And also the verification of the signature extracted from the given 〈µ, ω〉 in the adjudication phase holds
good as shown below.
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= e(g, ha)
= e(ga, h)
= e(v, h).

which means Verify(m, Adjudication(VES-Creation(m))) is true.

Hence, the Validity of our verifiably encrypted signature scheme holds.



4 Security Analysis

In this section we first show that the protocol executed by the adjudicators is robust and unforgeable.
Subsequently, we give the proof of security against extraction and unforgeability for our scheme using the
result of [9].

Theorem I. The protocol executed by the adjudicators is secure against an adversary which can corrupt t
adjudicators, for any t < n/2 in the random oracle model.

Proof. We first prove that the protocol is robust and then show that it is unforgeable.
Robustness. In the presence of an adversary that corrupts t < n/2 adjudicators, all subsets of (t + 1)
shares generate the same unique b that correspond to the unique public key v′ = gb. Note that b is
uniformly distributed in Zp and thus v′ is also uniformly distributed in G and hence the AdjKeyGen completes
successfully even in the presence of a corruptive adversary. It may also be noted that only valid signature
shares of the adjudicators can pass the verification step performed by the verifier in the Adjudication phase
since each valid signature share σi is generated by a valid secret share bi corresponding to the individual
public key v′

i. The fact that the original signature σ can be constructed from any (t + 1) valid signature
shares σi using Lagrange’s interpolation implies that threshold adjudication is complete.
Unforgeability. The threshold adjudication is unforgeable if no signature share can be forged without
the knowledge of corresponding secret share. To analyze this, we assume that there exists a probabilistic
polynomial-time simulator (SIM) for every probabilistic polynomial-time adversary A that corrupts up to t
adjudicators. Given the public key v′, the VES 〈µ, ω〉 and signature σ on a message m the SIM can simulate
the view for A. But, this view is polynomially indistinguishable from A’s view of the runs of the AdjKeyGen

and Adjudication that output v′ and σ respectively.
Without loss of generality assume that the adversary corrupts the adjudicators with indices 1, . . . , t′

where t′ ≤ t. Due to [8], the SIM knows all the shares bi except one (with out loss of generality assumed
to be bn) of the honest adjudicators. The values corresponding to the last share can be computed using the
fixed v′ and the rest of the shares. The SIM can verify the validity of the shares σi that are output by the
corrupted adjudicators, who are honest during the run of AdjKeyGen, using the knowledge of their shares.
Now, it needs to simulate the signature shares of the uncorrupted adjudicators. Since SIM has all the shares
bt′+1, . . . , bn−1, it can generate the signature shares σi as σi ← ω/µbi for i = t′ + 1, . . . , n − 1. SIM creates

the signature share corresponding to the honest adjudicator as σn = σ
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)

. Since all the shares

bi used by SIM have the right distribution, all the signature shares computed by SIM also have the right
distribution. This is because all signature shares except σn explicitly use known corresponding secret shares
and by construction σn corresponds to the share bn which is implicitly used by SIM. Thus no signature share
can be forged without the knowledge of corresponding secret share and hence the adjudication is unforgeable.

Theorem II. Our verifiably encrypted signature scheme is secure against extraction.

Proof. An extracting adversary is successful in its attempts if it can retrieve the original signature from the
the VES.A forging adversary to the H-BLS scheme is trivially an extracting adversary against our scheme.
The security of our scheme is derived from the fact that H-BLS scheme is secure against existential forgery
and directly follows from Theorem 1 of [9].

Theorem III. Our verifiably encrypted signature scheme is secure against existentially forgery.

Proof. A forging adversary is successful in its attempts if it can
(i) construct a valid signature by corrupting t adjudicators for t < n/2. or
(ii) perform an existential forgery on the original signature.
The adversary becoming successful in (i) is a contradiction to the unforgeability property given in Theorem
I. The proof for (ii) directly follows from Theorem 2 of [9].

5 Conclusions

Verifiably encrypted signatures find applications in online fair exchange, especially in online contract signing
protocols. In this work, we proposed a verifiably encrypted signature scheme with threshold adjudication by
distributing the adjudication capability in such a way that the service can be provided if at least (t+1) honest



adjudicators contribute to the adjudication. We showed that the distribution is robust and unforgeable. Our
scheme is secure against extraction and existential forgery in the random oracle model.
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