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Abstract. In this paper, we present a new proxy cryptosystem named
subject-delegated decryption scheme, in which the original decryptor del-
egates decryption authority to multiple proxies according to different
subjects. The advantage of our scheme is that the proxy authorities are
tightly limited (“Tightly” Limited Authority). This means that the proxy
authority can be temporarily aborted even if the validity period of the
proxy key does not expire. Consequently, our protocol is more practical
than the existential protocols because the secrecy of the original de-
cryptor can be protected efficiently from his proxy, especially when the
proxy becomes corrupted. Our scheme is efficient because the encryption
method in our scheme is based on a hybrid of symmetric key and pub-
lic key cryptographic techniques. We give the provable security using a
variant decisional Bilinear Diffie-Hellman (BDH) assumption named the
Decisional β-BDH Assumption.

Keywords: proxy cryptosystem, pairing, symmetric/public key cryptog-
raphy.

1 Introduction

Proxy cryptosystems were invented by Mambo and Okamoto [8] for the dele-
gation of the power to decrypt ciphertexts. In a proxy cryptosystem, there are
three participants involved: encryptor Alice, original decryptor Bob and Bob’s
proxy Charlie.

1.1 Motivation

Let us consider the following scenario: A busy corporate manager, Bob, receives
a large number of e-mail every day, which are encrypted using his public key.
In order to release himself from his heavy office work, Bob partially delegates
his decryption power to his secretaries, say Charlie, Clara etc., corresponding
to various subjects. Here, the subjects might be established according to the
duties corresponding to routine works, or the topics similar to the subject lines
in the e-mail system (i.e., subjects may also be special projects such as the names
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of trades). Suppose that Bob delegates the decryption power corresponding to
some subject sub to Charlie, in order that Charlie can perform the decryption
operation to the ciphertext under subject sub. From the convenience viewpoint,
the encryptor Alice needs not know who Bob’s proxies are. In fact, sub acts as
proxy’s “identity”. So that Alice only needs to encrypt the plaintext with Bob’s
public key and sub.

In the real world, it is impossible for a person to trust others completely
forever. When Charlie becomes corruptible and Bob dose not trust him anymore,
it is desirable for Bob to abort Charlie’s proxy authority even if the validity
period of the proxy key does not expire. Meanwhile, the communication under
the subject sub (the corresponding proxy authority was delegated to Charlie) can
be continued securely. So the following properties should be strongly required:

(1) Bob can reveal any ciphertexts while Charlie can only reveal the ciphertexts
under the subject he was delegated.

(2) The proxy authority should be limited to some validity period. In other
words, the authority will be discontinued automatically after the validity
period.

(3) The proxy authority can be temporarily aborted if it is necessary, even if it
is during the valid proxy period distributed to Charlie.

The first two properties is called authorization-limited in [13] and [14]. We
call a proxy decryption system with “Tightly” Limited Authority if the above
three properties are satisfied.

1.2 Related Works and Our Contributions

In Mambo-Okamoto proxy cryptosystems, Alice encrypts a plaintext and trans-
mits its ciphertext to Bob. In a conventional proxy cryptosystem, after a trans-
formation of the ciphertext into another ciphertext, Bob forwards the new ci-
phertext to Charlie, his proxy decryptor, to recover the plaintext. That is to say
Bob can not be really released from his heavy work because he has to transform
the ciphertext into another ciphertext before Charlie works every time. So the
efficiency of original Mambo-Okamoto proxy cryptosystems [8] is not good.

Series ciphertext transformation-free proxy cryptosystems, in which the proxy
(or proxies) can do the decryption operation without ciphertexts transformation
(e.g., [10], [12], [13] and [14]), have also been studied.

Referring to the above research works, three types of delegation formation
are studied: one proxy is delegated to do all the decryption work for the original
decryptor, such as Mambo-Okamoto schemes in [8]; a number of proxies are
delegated to do the same decryption works for the original decryptor, such as
MVN scheme in [10]; a number of proxies are delegated to do different decryption
works in terms of subjects for the original decryptor, such as HEAD in [12] and
AL-TFP systems in [13, 14], which is corresponding to the scenario described in
Section 1.1. We name the last one a subject-delegated decryption scheme in this
paper (see Section 1.1).
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The HEAD proposed by Sarkar [12] is a hybrid encryption system, whose
advantage is efficient, since in his scheme messages are encrypted by symmetric
algorithms and signed by PKC. Due to the limited authorization, the AL-TFP
systems proposed by Wang et al. [13, 14] have the advantage that the message
is graded into two secrecy levels so that the important message between the
encryptor and the original decryptor can be protected secretly by restricting the
proxy decryptor’s power.

Unfortunately, neither HEAD [12] nor AL-TFP systems [13, 14] can tightly
limit the proxy authorities. That is to say, the proxy authority cannot be aborted
during the distributed validity period. Consequently, if Charlie has been cor-
rupted, the communication under the corresponding subject has to be stopped
during Charlie’s valid proxy period.

Our scheme is also hybrid encryption system as the HEAD [12]. As de-
scribed in [12], DHIES [2] is a hybrid encryption scheme which is presented
in draft standards of IEEE P1636a and ANSI X9.63 [3]. It combines an ElGa-
mal type encryption with a symmetric encryption and a message authentication
code (MAC) generation scheme. DHIES is an efficient encryption scheme and
has been proved to be secure under the oracle Diffie-Hellman assumption; cho-
sen plaintext security for symmetric encryption and unforgeable chosen message
security for the MAC scheme. Kurosawa and Matsuo [7] showed that the MAC
component can be removed from DHIES. Instead, they require the symmetric
encryption scheme to satisfy chosen ciphertext security. Following [7], by doing
away with the MAC component and using only a symmetric encryption scheme,
Sarkar modified DHIES to achieve delegated decryption functionality. His main
innovation is in the replacement of the public key part of DHIES.

In this paper, by reconstructing the ID-based encryption scheme introduced
by Waters in [15], we modify the public key part of HEAD to construct a new
subject-delegated decryption scheme, so that all of the conditions described in
Section 1.1 are satisfied. In other words, our scheme is the first proxy decryption
scheme with “Tightly” Limited Authority.

“Tightly” Limited Authority: the proxy authority is possible to be aborted
temporarily even if the validity period of the proxy key does not expire, at the
same time that the communication under the subject sub (the corresponding
proxy authority was delegated to Charlie) can be continued securely.

The rest of this paper is organized as follows. In Section 2, we introduce the
properties of pairing and the complexity assumptions briefly. In Section 3, we
describe the formal definition of subject-delegated decryption scheme and then
propose our new protocol. In Section 6, we analyze the security of our scheme.
Then, in order to overcome the lack of the proposed scheme, we devise a variant
scheme in Section 4. Finally, a brief conclusion is drawn in Section 6.

2 Preliminaries

Our protocols are based on bilinear pairing which was first used to generate
cryptosystems independently by Sakai et al. [11] in 2000 and Boneh et al. [5]
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in 2001. In this section, we recall the basic properties related to bilinear maps
between groups and introduce the corresponding complexity assumptions briefly.

2.1 Pairings

Let G1, G2 be two multiplicative groups with prime order p and g be a generator
of G1. G1 has an admissible bilinear map, ê : G1 × G1 −→ G2, into G2 if the
following three conditions hold:

(1) Bilinear. ê(ga, gb) = ê(g, g)ab for all a, b ∈ Zp.
(2) Nondegenerate. ê(g, g) �= 1.
(3) Computable. There is an efficient algorithm to compute ê(A,B) for any

A,B ∈ G1.

2.2 Complexity Assumptions

(1) BDH Assumption: We assume that the BDH problem is hard in 〈G1, G2, ê〉,
which means that there is no efficient algorithm to solve the BDH problem with
non-negligible probability.

Let SucBDH(g, ga, gb, gc) denote the event that the BDH problem in 〈G1, G2, ê〉
is solved, that is, if 〈g, ga, gb, gc〉 for some a, b, c ∈ Zq \ {0} are known where g is
a generator of G1, then ê(g, g)abc ∈ G2 can be computed. Therefore, according
to the BDH assumption, the probability

Pr[SucBDH(g, ga, gb, gc)]

is negligible in our schemes.
As usual, we say that a function h : R → R is a negligible if h(k) is smaller

than 1/f (k) for any polynomial f , where k is the security parameter.

(2) Decisional Bilinear Diffie-Hellman Assumption (Decisional BDH
Assumption) [15]: The challenger chooses a, b, c, z ∈R Zp and then flips a fair
binary coin γ. If γ = 1 it outputs the tuple (g, A = ga, B = gb, C = gc, Z =
ê(g, g)abc). Otherwise, if γ = 0, the challenger outputs the tuple (g, A = ga, B =
gb, C = gc, Z = ê(g, g)z). The adversary must then output a guess γ′ of γ. An
adversary, B, has at least an ε advantage in solving the decisional BDH problem
if

|Pr[B(g, ga, gb, gc, ê(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, ê(g, g)z) = 1]| ≥ ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by B.

Definition 1 The decisional (t, ε)-BDH assumption holds if no t-time adversary
has at least ε advantage in solving the above game.

Similarly, we define the β appended decisional BDH assumption (Decisional
β-BDH Assumption) as follows:
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(3) Decisional β-BDH Assumption: The challenger chooses a, b, c, z ∈R

Zp and then flips a fair binary coin γ. If γ = 1 it outputs the tuple (g, A =
ga, B = gb, C = gc, β, βc, Z = ê(g, g)abc), where β ∈ G1. Otherwise, if γ = 0,
the challenger outputs the tuple (g, A = ga, B = gb, C = gc, β, βc, Z = ê(g, g)z).
The adversary must then output a guess γ′ of γ. An adversary, B, has at least
an ε advantage in solving the decisional β-BDH problem if

|Pr[B(g, ga, gb, gc, β, βc, ê(g, g)abc) = 1]−Pr[B(g, ga, gb, gc, β, βc, ê(g, g)z) = 1]| ≥ ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by B.

Definition 2 The decisional (t, ε) β-BDH assumption holds if no t-time adver-
sary has at least ε advantage in solving the above game.

It is clear that the decisional (t, ε)-BDH assumption holds, if the decisional
(t, ε) β-BDH assumption holds.

3 Our New Subject-DD Scheme with “Tightly” Limited
Authority

In this section, we give the formal definitions of subject-delegated decryption
(subject-DD) scheme and then propose a new subject-DD protocol.

3.1 Definitions

Definition 3 A subject-delegated decryption (subject-DD) scheme (G, PA, E,
D, Random, Mspace) is a 4-tuple of algorithms associated with two finite sets,
Random(k), Mspace(k) ⊆ {0, 1}∗, for k ∈ N under subject sub ∈ {sub}, where:

- G, called the key generation algorithm, is a probabilistic algorithm which on
input 1k outputs a public/private key pair (pk, sk)← G(1k).

- PA, called the proxy-authorization algorithm, is an algorithm which on input
a private key sk and subject sub outputs a corresponding proxy key sksub ←
PA(sk, sub).

- E, called the encryption algorithm, is a probabilistic algorithm which on
input a public key pk, a plaintext x ← Mspace(k), and a random num-
ber r ← Random(k) under subject line sub, outputs the ciphertexts Csub ←
E(pk; x; r; sub).

- D = (Dbasic,Dsub), called the decryption algorithm, is a deterministic algo-
rithm which consists of an original decryption algorithm Dbasic and a proxy
decryption algorithm Dsub, which on input a private key and a ciphertext
Csub outputs the corresponding plaintext x, where

x = Dbasic(sk; Csub); x = Dsub(sksub; Csub).
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In a subject-DD scheme, the subject sub acts as the “identity” of the proxy.
HEAD in [12] and AL-TFP systems in [13, 14] are subject-DD schemes.

Definition 4 A symmetric encryption scheme (Gsym, Esym, Dsym, Mspace(kS))
is a 3-tuple of algorithms associated with a finite set, Mspace(kS) ⊆ {0, 1}∗, for
kS ∈ N , where:

- Gsym, called the key generation algorithm, is a probabilistic algorithm which
on input 1kS outputs a symmetric key sksym ← G(1kS ).

- Esym is the encryption algorithm which on input a key sksym, a plaintext
M ← Mspace(kS) and outputs the ciphertext C ← Esym(sksym; M).

- Dsym is the decryption algorithm which on input a key sksym and a ciphertext
C outputs the corresponding plaintext M ← Dsym(sksym; C).

3.2 Our Protocol

In this subsection, by reconstructing the ID-based encryption scheme introduced
by Waters in [15], we modify the public key part of HEAD to construct a new
subject-delegated decryption scheme. We describe the four algorithms in our
new subject-DD scheme as follows.

G (Original Key Generation): The public/private keys are generated as fol-
lows:

- Choose random values ui ∈ G1, i = 0, 1, ..., n, a random generator g of G1,
a secret integer α ∈R Zp, and two non-collision injection functions H : G2 →
{0, 1}kS and H ′ : {0, 1}∗ → G1.

- Set the value gpub = gα, choose gU randomly in G1 as Bob’s public key and
compute Bob’s private key sk

U
= (g

U
)α. The parameters (ui(i = 0, 1, ..., n),

g, gpub, g
U
, H, H ′) are published while the private key sk

U
is held secretly

by Bob himself.

PA (Proxy Key Generation): Bob generates proxy keys for his l proxies as
follows:

- Set l subjects subj ∈ {0, 1}n, j = 1, ..., l for some n ∈ N .
- For a sub ∈ {sub1, ..., subl}, compute the subject proxy key sksub

U
= (sk1, sk2)

= ((gU )αβd, gd) for d ∈R Zp, where sub = (s1s2...sn)2 is the binary of sub,
i.e.,

sub = s1 · 2n−1 + s2 · 2n−2 + ... + sn,

si ∈ {0, 1} for i = 1, ..., n and β = u0

∏n
i=1 usi

i .
- sksub

U
is distributed to the assistant in terms of the subject, sub, secretly by

Bob.

E (Encryption): To encrypt message M under subject sub, where sub =
(s1s2...sn)2, si ∈ {0, 1}, the encryptor, Alice,

- computes β = u0

∏n
i=1 usi

i ,
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- selects r ∈R Zp and computes symmetric key sksym = H(ê((g
U
)r, gpub)),

- computes the ciphertext C = (C1, C2, C3), where

C1 = Esym(sksym; M), C2 = gr, C3 = βr.

- sends 〈sub, C〉 to Bob.

D (Basic/Proxy decryption):

- Dbasic: Bob can perform the decryption operation of the ciphertext under
any subject, sub, by computing

sksym = H(ê(sk
U
, C2)).

- Dsub: Charlie, Bob’s proxy under sub, computes

sksym = H(
ê(C2, sk1)
ê(C3, sk2)

).

Then the plaintext can be obtained as follows:

M = Dsym(sksym, C1).

3.3 The correctness

The correctness of this scheme can be proved as follows:
For Dbasic, we have

ê(C2, (gU )α) = ê(gr, (gU )α) = ê(gpub, (gU )r).

For Dsub, we have

ê(C2, sk1)
ê(C3, sk2)

=
ê(gr, (g

U
)αβd)

ê(βr, gd)
= ê(gr, (g

U
)α) = ê(gpub, (gU

)r).

3.4 Can the Proxy Authority be Limited Tightly?

Recall the description about “tightly” limited authority in Section 1.1. “Tightly”
means that the proxy authority can be temporarily aborted if it is necessary, even
if it is during the valid proxy period distributed to the proxy. Here, there are
two cases should be considered.

(1) Limitation from encryptor : the encryptor Alice might send a ciphertext
under sub which cannot be decrypted by the proxy Charlie.

(2) Limitation from decryptor : the original decryptor Bob might stop the proxy
authority distributed to Charlie, even if it does not expire.
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Note that, in our new subject-DD scheme provided in Section 3.2, Bob can
decrypt the ciphertext under any subject only with his master private key. This
implies case (1). In detail, when Alice wants to keep the information under
subject, sub, secret from the assistant, Charlie, in terms of sub, she needs only
to delete C3 or let C3 = 0.

However, when Charlie becomes corruptible, and Bob does not trust him
any more, Bob cannot stop the proxy authority directly in the distributed proxy
period, if Alice has sent the ciphertext according to rule. So in order to abort
Charlie proxy authority, and in the same time let the communication under
subject sub continue securely Bob needs to cope with this situation as follows:

- Stop to distribute the proxy keys to Charlie, which correspond to the fol-
lowing periods.

- Broadcast a sub-alert on period τ to the parties concerned.
- Run the basic decryption algorithm with the master private key by himself

during the period remained.
- Delegate the proxy decryption power to other assistant from the next period.

As the correspondence for the above situation, the parties concerned deal with
it as follows:

- Set C3 = RandomNumber instead of βr when they send the messages under
subject sub in period τ .

- Come back to the normal operation from the next period.

Note: The proposed scheme has the lack that Bob cannot stop the proxy au-
thority directly in the distributed proxy period, if the encryptor has sent the
ciphertext according to rule. Therefore he has to broadcast an sub-alert, whose
validity can be verified, to the parties concerned. In the next section, we devise
a variant scheme to solve this problem.

4 A Variant Scheme with Bulletin Board

In this variant scheme, we use a bulletin board for the proxies to limit the proxy
authority tightly.

4.1 The Outline of This Variant Scheme

We show the outline of this variant scheme in Fig.1. In detail,

- Bob distributes proxy keys to his proxies in advance, e.g., sksub denotes
the proxy key that Bob distributes to Charlie, who is delegated the proxy
authority under subject, sub;

- Bob often (e.g., once a day) renews the bulletin board parameters with time
stamp which are published on his private bulletin board for his proxies;
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Fig. 1. The outline of the new scheme

- On receipt of the ciphertext corresponding to subject, sub, Charlie, the proxy
under sub, fetches the parameter P (τ), then decrypts the ciphertext corre-
sponding to subject, sub, using both sksub, the proxy key in terms of sub,
and P (τ), the bulletin board parameter with time stamp.

Bob has the power to change the parameter any time so long as he needs. Con-
sequently, this variant scheme is in fact a special subject-DD scheme, in which
the proxy authority is limited tightly with the aid of the bulletin board.

4.2 Our protocol

G (Original Key Generation): It is the same to the original key generation
algorithm G in the above proposed scheme.

PA (Proxy Key Generation): Bob generates proxy keys for his l proxies. For
example, Charlie, whose authority is under subject sub (= (s1s2...sn)2), is one
of them. Where (s1s2...sn)2 is the binary of sub, i.e.,

sub = s1 · 2n−1 + s2 · 2n−2 + ... + sn,

si ∈ {0, 1} for i = 1, ..., n.
There are two steps have to be done.

- Proxy key distribution: Bob selects b0, b1 ∈ Zp\{0} such that b0+b1 = 1 mod
p for his proxies, and dsub ∈R Zp \ {0} for Charlie whose proxy authority is
under sub, then computes personal proxy key sksub = (sk1, sk2) for Charlie
as follows:

sk1 = skb0
U

βdsub = gαb0
U

βdsub , sk2 = gdsub ,

where β = u0

∏n
i=1 usi

i .
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- Bulletin board parameters renovation: Bob selects d(τ) ∈R Zp\{0}, computes
P (τ) = (x(τ), y(τ)) as follows:

x(τ) = skb1
U

H ′(τ)d(τ)
= gαb1

U
H ′(τ)d(τ)

, y(τ) = gd(τ)
.

Then he publishes the parameter P (τ) to his private bulletin board for his
proxies.

In the above proxy key generation algorithm, the parameters b0, b1, d(τ) (τ =
τ1, τ2, ...,) and dsub (sub ∈ {sub1, ..., subl}) must be held secretly by Bob himself.

E (Encryption): To encrypt message M under subject sub during period τ ,
the encryptor, Alice:

- selects r ∈R Zp and computes sksym = H(ê((g
U
)r, gpub));

- computes the ciphertext C = (C1, C2, C3, C4), where

C1 = Esym(sksym; M), C2 = gr, C3 = βr, C4 = H ′(τ)r ;

- sends 〈sub, τ, C〉 to Bob.

D (Basic/Proxy decryption):

- Dbasic: Bob can perform the decryption operation of the ciphertext under
any subject, sub, by computing

sksym = H(ê(skU , C2)).

- Dsub: Charlie, Bob’s proxy under sub, computes

sksym = H(
ê(sk1x(τ), C2)

ê(C3, sk2)ê(C4, y(τ))
).

Then the plaintext can be obtained as follows:

M = Dsym(sksym, C1).

4.3 The correctness

The correctness can be proved as follows:
For Dbasic, we have

ê(sk
U
, C2) = ê(gα

U
, gr) = ê((g

U
)r, gpub);

For Dsub, we have

ê(sk1x(τ), C2)

= ê(gα
U
βdsubH ′(τ)d(τ)

, gr)

= ê(gα
U
, gr)ê(βdsub , gr)ê(H ′(τ)d(τ)

, gr)

= ê(gr
U
, gα)ê(βr, gdsub)ê(H ′(τ)r , gd(τ)

)
= ê((gU )r, gpub)ê(C3, sk2)ê(C4, y(τ)).
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4.4 How to Limit the Proxy Authority Tightly

Recall the description about “tightly” limited authority in Section 1.1. “Tightly”
means that the proxy authority can be temporarily aborted if it is necessary, even
if it is during the valid proxy period distributed to the proxy. Here, there are
two cases should be considered.

(1) Limitation from encryptor : the encryptor Alice might send a ciphertext
under sub which cannot be decrypted by the proxy Charlie.

Note that, in the special subject-DD scheme with bulletin board provided in
Section 4.2, Bob can decrypt the ciphertext under any subject only with his
master private key by performing the basic decryption operation Dbasic. This
implies case (1). In detail, when Alice wants to keep the information under
subject, sub, secret from the proxy, Charlie, in terms of sub, she needs only to
delete C3, C4 or let C3 = C4 = 0.

(2) Limitation from decryptor : the original decryptor Bob might stop the proxy
authority distributed to Charlie, even if it does not expire.

When Charlie who is under subject sub becomes corruptible, and the original
decryptor Bob does not trust him any more. In order to maintain the secrecy
and in the same time have the communication under subject sub continued, Bob
can cope with this situation by changing original parameters b0, b1, dsub into new
parameters b′0, b

′
1, d

′
sub ∈ Zp \ {0}, where bi �= b′i for i = 0, 1, dsub �= d′sub, and

b′0 + b′1 = 1 mod p. In detail,

- Renew the data P (τ) on the private bulletin board corresponding to the new
parameter b′1.

- Renew the proxy keys for other proxies in terms of the new parameter b′0.
- Perform the basic master decryption before the decryption authority is del-

egated to another assistant under the above new parameters b′0, d
′
sub.

4.5 Security Requirements

The general requirements of secure proxy cryptsystems include the following
three aspects:

1. Outsiders can perform neither basic decryption nor proxy decryption oper-
ation;

2. Proxies cannot perform basic decryption operation;
3. Any proxy cannot perform the proxy decryption operation in terms of the

subjects which are not delegated to him/her.

We say a subject-DD scheme secure if it satisfies the above three requirements.
Apart from the above three requirements for general secure subject-DD

scheme, a secure subject-DD scheme with tightly limited authority also requires
that the proxy whose authority is limited cannot decrypt any new ciphertexts
under his/her subject
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4. the proxy whose authority is limited cannot decrypt any new ciphertexts
under his/her subject using proxy key only.

5. the proxy whose authority is limited cannot decrypt any new ciphertexts
under his/her subject even if he/she can obtain the new parameter P (τ).

6. the proxy whose authority is limited cannot decrypt any new ciphertexts
under his/her subject even if he/she can collude with other proxies under
different subject.

Consider the attacks to the limitation from encryptor and the limitation
from decryptor (see Section 4.4) respectively. We analyze the security of the new
proposed scheme under the BDH assumption, if the algorithm PA is properly
carried out.

(1) Adversary, Charlie who suffers the limitation from encryptor, tries to decrypt
the ciphertext under subject sub.

Because the ciphertext only includes C1, C2, he has to perform basis decryption
operation without private key. Our scheme is secure because it satisfies require-
ments 1. and 2. under BDH assumption.

(2) Adversary, Charlie who suffers the limitation from decryptor, tries to decrypt
the ciphertext (C, sub, τ ′), where C = (C1, C2, C3, C4).

That is to say, Charlie tries to perform proxy decryption with proxy key only.
Of course he has some old parameters for past periods τi (τi < τ ′), and he might
also collude with the proxies, whose proxy authorities are not limited, under
other subjects. In the following context, we show that Charlie cannot decrypt
the ciphertext using his proxy key and old parameters for past periods, even if
he can obtain the new data, P (τ ′) = (x(τ ′), y(τ ′)), on Bob’s private bulletin
board and collude with the proxies under other subjects.

From the parameter P (τ ′) = (x(τ ′), y(τ ′)), ê(gα
U
, gr′

)b′1 can be cumputed.
On the other hand, from Charlie’s proxy key sksub = (sk1, sk2), where sk1 =
gαb0

U
βdsub and sk2 = gdsub , ê(gα

U
, gr′

)b0 can be computed. The secret parameters
b0 and b′1 are independent each other, so the security is based on the hardness
of the discrete logarithm problem in G2. In order to obtain ê(gα

U
, gr′

)b′0 corre-
sponding to the new parameter b′0 which satisfies b′0 + b′1 = 1 mod p, Charlie
corrupts the proxy under subject subc, subc �= sub, whose proxy key sk(subc) =
(sk(subc)

1 , sk
(subc)
2 ) has been renewed by Bob:

sk
(subc)
1 = gαb′0

U
β

dsubc
c , sk

(subc)
2 = gdsubc .

Accordingly,
ê(sk(subc)

1 , gr′
) = ê(gα

U
, gr′

)b′0 ê(βdsubc
c , gr′

)

Therefore, obtaining ê(gα
U
, gr′

)b′0 is equivalent to computing ê(βdsubc
c , gr′

) = ê(βr′
c ,

gdsubc ) when βc, β, βr′
and g, gr′

, sk
(subc)
2 = gdsubc are given.

First of all, neither β
dsubc
c nor βr′

c can be computed using the above given
parameters. If the adversary, Charlie, can produce β

dsubc
c or βr′

c , then from the
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fact that there exists an a ∈ Zp \ {0} such that βc = ga, and there exists an
f ∈ Zp \ {0} such that β = gf , we will conclude that Charlie can solve the
CDH problem in G1: “Given g, ga, gr′

, compute gar′
”, or “Given g, ga, gfdsubc ,

compute gafdsubc ”, which contradicts with the BDH assumption because the
BDH assumption implies that the CDH problem is hard.

Next, the pairing ê(βr′
c , gdsubc ) cannot be computed using the above given

parameters. If the adversary, Charlie, can produce ê(βr′
c , gdsubc ), we will conclude

that Charlie can solve the BDH problem in 〈G1, G2, ê〉: “Given g, ga, gr′
, gdsubc ,

compute ê(g, g)ar′dsubc ”, which contradicts with the BDH assumption.

5 Discussion

5.1 Bulletin Board and Ciphertext Transformation

In Mambo-Okamoto scheme [8], Bob can limit the proxy authority “tightly”,
because his proxy cannot do decryption at all if he does not transfer the cipher-
text for his proxy. In our scheme, Bob limit the proxy authority with the aid of
bulletin board. Bob renews the parameter on the bulletin board once a day for
his proxies. So the computation cost is nearly 1

n(τ) of that in Mambo-Okamoto
scheme, where n(τ) denotes the number of the ciphertexts that Bob received on
the day, τ . So our variant scheme limits the proxy authority tightly and is more
flexible and efficient than Mambo-Okamoto scheme.

5.2 Encryption under Multi-subject

Alice can send a ciphertext of a message m, which is in terms of several subjects,
once if she likes. For example, she can send m to Bob under subjects sub1 and
sub2, by computing C3 = {βr

1 , βr
2} instead of the original one. In that case, it

can be easily verified that either the proxy under sub1 or the proxy under sub2

can decrypt the ciphertext. Also in MVN scheme [10], a number of proxies are
delegated to do the same decryption works for the original decryptor, but the
encryptor cannot “select” the subjects/proxies. In a word, our scheme can fulfill
almost all of the tasks that the previous related works do.

5.3 Application to the Key-insulated Scheme

The notion of key-insulated public key cryptosystem was first introduced by
Dodis et. al [6] to minimize the damage of key exposures, in which a user begins
by registering a single public key which remains for the lifetime of the scheme.
Exposure of secret keys is perhaps the most devastating attack on a cryptosystem
since it typically means that security is entirely lost. This problem is probably
the greatest threat to cryptography in the real world: in practice, it is typically
easier for an adversary to obtain a secret key from a naive user than to break the
computational assumption on which the system is based. The threat is increasing
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nowadays with users carrying mobile devices which allow remote access from
public or foreign domains.

The secret key associated with a public key is here shared between the user
and a physically-secure device. The master key is stored on a physically-secure
device and a temporary secret key used to perform cryptographic operations is
stored in an insecure device and updated regularly with the help of a physically-
secure device that stores a master key.

Our varaint scheme can be used to construct an identity-based key-insulated
scheme. We will describe it in the next version.

6 Conclusion

In this paper, we presented a new subject-delegated decryption protocol and its
variant: a special subject-delegated decryption scheme with bulletin board. This
variant scheme is a proxy decryption scheme with tightly limited authority. It
means that the proxy authority can be temporarily aborted even if the validity
period of the proxy key does not expire. Therefore our scheme is more practical
than the existential protocols in protecting the privacy of the original decryptor
from his proxies, because that even if during the validity period of the proxy
key, the proxy authority can be aborted if it is necessary. We proved that the
security of our scheme is based on a variant decisional BDH assumption and a
secure symmetric encryption scheme.
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Appendix: Security Analysis

In this section, we describe the security notions in Section 6, and then show that
the security of our scheme described in Section 3.2 is based on the decisional β-
BDH assumption and the security of the symmetric encryption algorithm being
used in our scheme.

A. Security Notions

We present the definition of semantic security against the chosen ciphertext
attack (CCA) for a subject-DD scheme with l subjects being delegated, which
was first described by Sarkar [12].

(1) Semantic Security against the CCA for a Subject-DD Scheme Consider the
following game played by an adversary.
Setup. The challenger generates the public parameters and gives them to the
adversary.
Phase 1. The adversary A has access to a decryption oracle, which is the de-
cryption algorithm instantiated by a randomly chosen secret (i.e. unknown to
the adversary) key. In other words, the adversary A can ask to the decryption
oracle for ciphertexts under any subject sub ∈ {sub1, ..., subl} and receive the
corresponding plaintexts.
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Challenge. The adversaryA submits two messages M0, M1. The challenger flips
a fair binary coin, γ, encrypts Mγ using l subjects subi, i = 1, 2, ..., l, and then
gives the l corresponding targets T1, T2, ..., Tl to A.
Phase 2. Phase 1 is repeated with the natural restriction that the adversary
cannot query the decryption oracle on the targets T1, T2, ..., Tl.
Guess. The adversary A submits a guess γ′ of γ.

The adversary A’s advantage in breaking the system is defined to be

AdvSub−DD
A = 2|Pr[γ′ = γ]− 1/2|.

The system’s advantage is defined as

AdvSub−DD(t, q) = max
A

AdvSub−DD
A

where the maximum is taken over all adversaries running in time at most t and
making at most q queries to the decryption oracle.

(2) Semantic Security against the CCA for a Symmetric Encryption Scheme
The usual model of security is extended in the following manner. First l keys
K1, ...,Kl ∈ {0, 1}kS are chosen randomly. An adversary A for symmetric en-
cryption scheme is given access to l decryption oracles DKi(). Then the adversary
A runs in two stages Phase 1 and Phase 2 as follows.
Setup. l keys K1, K2, ...,Kl ∈ {0, 1}kS are chosen randomly.
Phase 1. An adversary Asym can make arbitrary queries to any of decryption
oracle DKi() for q1 queries.
Challenge. The adversary Asym outputs two messages (x0, x1). The challenger
flips a fair binary coin, γ, encrypts xγ under K1, K2, ...,Kl. The corresponding
l targets y1, ..., yl are given to Asym.
Phase 2. Phase 1 is repeated with the natural restriction of the l targets, i.e.,
the ith decryption oracle, DKi(), is not queried with the ith target, yi.
Guess. Asym outputs a bit γ′. Formally, the advantage that Asym has in break-
ing the symmetric encryption scheme is defined as

Advsym
Asym = 2|Pr[γ′ = γ]− 1

2
|.

The quantity Advsym(t, q) is defined to be the maximum of Advsym
Asym , where

the maximum is taken over all adversaries Asym running in time at most t and
making a total of at most q queries to its decryption oracles.

B. The Security against the CCA

Consider, first of all, the security against the CCA from outsiders. The adversar-
ial behavior described in Appendix A is modelled by playing the following game.
For 0 ≤ i ≤ l, we define the game Gi as follows. The phase 1 and the phase 2 of
Appendix A remain unchanged. In the challenge step, the adversary generates
(M0, M1) as usual. The targets generation for game Gi is constructed as follows:



A Subject-Delegated Decryption Scheme with “Tightly” Limited Authority 17

choose a random bit γ ∈ {0, 1}.
for j = 1 to i do

randomly choose rj ∈ Zp and form Xj = grj , Yj = βrj ;
randomly choose Kj ∈ {0, 1}kS ;
set yj = Esym(Kj, Mγ)
set target Tj = (yj , Xj, Yj)

end for;
for j = i + 1 to l do

generate Tj from Mγ using the system’s public key gpub, user U ’s public
key g

U
and subj as defined by Subject-DD scheme.

end for;
output targets (T1, ..., Tl)

According to the guess, γ′, output by the adversary A, define the output of Gi

to be: A(Gi) = 1, if γ′ = γ; otherwise A(Gi) = 0. Formally the notation

AdvSub−DD
A = 2|Pr[A(G0) = 1]− 1/2|

denotes the advantage that an adversary A has in breaking subject-DD scheme.
AdvSub−DD(t, q) is defined to be maximum of AdvSub−DD

A where the maximum
is taken over all adversaries running in time t and making at most q queries to
its decryption oracle.

Lemma 1 Let A be an adversary for Subject-DD scheme which runs in time t
and makes q queries to its decryption oracle. Then for all 0 ≤ i ≤ l − 1,

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| ≤ p

p− q
Advβ−dbdh(t, q).

Proof: Our proof is a reduction. We show that if A can distinguish between Gi

and Gi+1, then it is possible to construct an algorithm B to solve the decisional
β-BDH problem.

In order to prove it, we set the instance of decisional β-BDH problem as the
(i + 1)-th target, Ti+1, in the game described in Section 6. Then, if the instance
is a valid tuple then the game is in fact the game Gi; otherwise the game is
corresponding to the game Gi+1.

A: the adversary of subject-DD scheme;
B: an algorithm to solve the decisional β-BDH problem;
C: the BDH problem oracle.
DK : the decryption oracle for the symmetric encryption scheme.

Setup.

- Set ui ∈ G1, i = 0, ..., n and let (g, ga, gb, gc, sub ⇒ β, βc, Z) be the corre-
sponding instance of the decisional β-BDH problem.

- Algorithm B constructs an instance of subject-DD scheme in the following
manner. For j = 1, ..., l with j �= i + 1, randomly choose subj ∈ {0, 1}n. Set
subi+1 = sub, gpub = ga and g

U
= gb.
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- choose a non-collision injection function H : G2 → {0, 1}kS .
- The public information (gpub; gU

; sub1, sub2, ..., subl; u0, u1, ..., un; H) is pro-
vided to A.

Phase 1.
The adversary A asks q1 decryption oracle queries on (sub′i, y

′
i, g

ri , β′ri), i =
1, ..., q1. On receipt of the queries,

- B queries the BDH problem oracle C on (gpub, gU
, gri) and obtains the answer

wi = ê(g, g)abri from C,
- B computes Ki = H(wi), xi = DKi(y′

i) for i = 1, ..., q1 and then returns the
answer xi to A.

Note that if sub′i = sub, then with certain probability r = c and due to the
oracle restriction, algorithm B cannot invoke w = ê(g, g)abc on (ga, gb, gc) and
thus fail to answer the query. In this case, algorithm B outputs a random bit
and exits.
Challenge.

(1) The adversary A submits two messages M0, M1.
(2) B flips a fair binary coin, γ, and generates the corresponding l targets of

Mγ as follows:

- For 1 ≤ j ≤ i, randomly generate rj ∈ Zp and form Xj = grj , Yj =
βrj . Randomly choose K1, ...,Ki ∈ {0, 1}kS to compute yj = Esym

Kj
(Mγ),

respectively. Set Tj = (subj , yj, Xj , Yj), for 1 ≤ j ≤ i.
- For j = i + 1, set Xj = gc and encrypt Mγ with Ki+1 = H(Z) to obtain

yi+1. Set Ti+1 = (sub, yi+1, g
c, βc).

- For i + 2 ≤ j ≤ l, encrypt Mγ using subject-DD scheme encryption al-
gorithm under subjects subi+2, ..., subl to obtain the corresponding targets
Ti+2, ..., Tl.

(3) All the targets T1, ..., Tl are given to the adversary A.

Phase 2.
A asks q2 queries to the decryption oracle for the plaintext of (sub′, y′, X ′ =

gr′
, Y ′ = βr′

). There are two cases should be considered:
Case 1. (sub′, X ′) = (subj, Xj), for some j ∈ {1, ..., l}. It implies that Y ′ = Yj

and y′ �= yj because of the restriction, then the simulator sets

K ′
j = Kj , if 1 ≤ j ≤ i;

K ′
j = Z, if j = i + 1;

K ′
j = H(ê(gpub, gU )rj ), if i + 2 ≤ j ≤ l.

Case 2. (sub′, X ′) �= (subj, Xj), for any j ∈ {1, ..., l}, then the simulator asks
the BDH oracle C on (gpub, X

′, gU ). Using the answer, wj = C(gpub, X
′, gU ) =

ê(g, g)abr′
j , from C, the simulator obtains K ′

j = H(wj).
The simulator computes x′

j = DK′
j
(y′

j) and gives the answers to A. This
completes the description of the simulation of adversary A by algorithm B.
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Guess.
A outputs his guess γ′ for γ. According to A’s answer, B outputs his guess

as follows:

B(g, ga, gb, gc, β, βc, Z) =
{

1, γ′ = γ,
0, γ′ �= γ.

Let event E1 = {Z = ê(g, g)abc} and event E2 = {Z = random}. Suppose
that E1 occurs, then there are two possibilities,

• Fail occurs: In this case, B outputs a random bit. The probability that B
fails for any particular query is the probability that for that query r = c
and this probability is 1

p . Since A makes a total of q = q1 + q2 queries, then
Pr[Fail] = q

p ;
• Fail does not occur: In this case, B in fact runs A on game Gi, it is because

that B’s challenge is a decisional β-BDH valid tuple and is set as the (i+1)-th
target.

Therefore,

Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E1] =
1
2
× q

p
+ Pr[A(Gi) = 1]× (1− q

p
).

By a similar argument, if E2 occurs, in the case that Fail does not occur, B in
fact runs A on game Gi+1. So that we have

Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E2] =
1
2
× q

p
+ Pr[A(Gi+1) = 1]× (1− q

p
).

Combining the above two equations we have,

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]|
=

p

p− q
× |Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E1]

−Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E2]|.
Since adversary A for the subject-DD scheme makes at most q decryption
queries, algorithm B for decisional β-BDH problem also makes at most q BDH
oracle queries. Further, since adversary A runs in time t, algorithm B also runs
in time t. Thus we have,

|Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E1]− Pr[B(g, ga, gb, gc, β, βc, Z) = 1|E2]|
≤ Advβ−dbdh(t, q).

Therefore,

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| ≤ p

p− q
Advβ−dbdh(t, q).

The proof of Lemma 1 is completed. �
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Lemma 2 Let A′ be an adversary for Gl running in time t and making q queries
to its decryption oracle. Then

2|Pr[A(Gl) = 1]− 1/2| ≤ Advsym(t, q).

Proof: Our proof is a reduction. In order to prove it, we construct an adver-
sary Asym for breaking symmetric encryption scheme in the sense described in
Appendix A. Then show that the advantage of the adversary A has in game Gl

is bound by the advantage of the adversary Asym has in breaking symmetric
encryption scheme.

The adversary Asym is given l decryption oracles DK1 , ...,DKl
corresponding

to randomly chosen keys K1, ...,Kl ∈ {0, 1}kS .
Setup.

- Asym chooses a random a ∈ Zp and forms gpub = ga.
- Asym randomly chooses subj ∈ {0, 1}n, j = 1, ..., l. Sets ui ∈ G1, i = 0, ..., n.
- The public information (gpub; gU

; sub1, sub2, ..., subl; u0, u1, ..., un) is pro-
vided to A′.

Phase 1.
A′ asks the decryption oracle query on (sub, y, X, Y ). To answer this query,

Asym forms
K = H(ê(X, g

U
)a).

It then uses K to decrypt y and sends the answer to A′.
Challenge.
A′ outputs two messages M0, and M1. Asym also outputs these two messages

as his challenge. Asym’s challenger flips a fair coins to get γ and encrypts Mγ

using K1, ...,Kl to get y1, ..., yl, respectively. Then Asym is given the l targets
y1, ..., yl of Mγ . Next, Asym randomly chooses r1, ..., rl ∈ Zp. It forms l targets
T1, ..., Tl by setting Tj = (subj, yj, Xj , Yj). These targets are given to A′.
Phase 2.

Let (sub, y, X, Y ) be a decryption query from A′. There are two cases to
consider:
Case 1. (sub, X) = (subj, Xj), for some j ∈ {1, ..., l}. It implies that Y = Yj

and y �= yj as otherwise, (sub, y, X, Y ) = Tj . In this case, Asym queries its jth
decryption oracle DKj () on yj and returns the answer to A′.
Case 2. (sub, X) �= (subj, Xj), for any j ∈ {1, ..., l}. In this case, the query is
dealt with as in the Phase 1.
Guess.
Asym outputs whatever is produced by A′. The above ensures a correct sim-

ulation by Asym of A′ on Gl. Also, the number of decryption queries made by
Asym to all its decryption oracles is at most equal to q. Since A′ runs in time t,
the advantage of A′ while running on Gl is

2|Pe[A′(Gl) = 1]− 1
2
| ≤ Advsym(t, q).

This competes the proof. �
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Theorem 1 The security of our scheme is based on the decisional β-BDH as-
sumption and the security of symmetric encryption scheme. In detail,

AdvSubject−DD(t, q) ≤ 2lp

p− q
Advβ−dbdh(t, q) + Advsym(t, q).

Proof: Theorem 1 is an immediate consequence of Lemma 1 and Lemma 2. In
detail, let A be any adversary for Subject-DD scheme which runs in time at
most t and makes at most q queries to the decryption oracle. Then from the
definition, we have

AdvSubject−DD
A = 2|Pr[A(G0) = 1]− 1/2|.

From Lemma 1, we have for each i ∈ {0, 1, ..., l− 1},

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| ≤ p

p− q
Advβ−dbdh(t, q).

Now consider

|Pr[A(G0) = 1]− Pr[A(Gl) = 1]|
= |Σl−1

i=0Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]|
≤ Σl−1

i=0 |Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]|
≤ l

p

p− q
Advβ−dbdh(t, q).

It implies

2|Pr[A(G0) = 1]− 1/2| − 2|Pr[A(Gl) = 1]− 1/2|
≤ 2|(Pr[A(G0) = 1]− 1/2)− (Pr[A(Gl) = 1]− 1/2)|
≤ 2|Pr[A(G0) = 1]− Pr[A(Gl) = 1]|
≤ 2l

p

p− q
Advβ−dbdh(t, q).

Further, from Lemma 2, we have 2|Pr[A(Gl) = 1]− 1/2| ≤ Advsym(t, q). There-
fore,

2|Pr[A(G0) = 1]− 1/2|
≤ 2l

p

p− q
Advβ−dbdh(t, q) + 2|Pr[A(Gl) = 1]− 1/2)|

≤ 2l
p

p− q
Advβ−dbdh(t, q) + Advsym(t, q).

Since A was chosen to be arbitrary adversary running in time at most t and
making at most q queries to the decryption oracle, the above inequality holds
for all such adversaries A and hence for any adversary which maximizes the
advantage. The proof is completed. �

The above security proof is corresponding to the attack from outsiders, which
is not enough for a subject-DD scheme. We have to consider the attack from
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insiders, say a collusion of the proxies. It means that the adversary can obtain
the keys of some of the proxies. Consider this case into the attack game described
in Appendix A as follows: permit the adversary A to ask qk queries to proxy
key oracle in phase 1, and then challenger generates l− qk targets corresponding
to the left l − qk subjects. By extending the above proof, we can also prove the
security of our scheme against the CCA from insiders.

Similar to the proposed scheme introduced in Section 3.2, the security of the
proposed variant scheme is also based on a variant BDH assumption. We will
give the security proof in a full version of this paper.


