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Abstract. We provide algorithms guaranteeing high levels of pri-
vacy by computing uniformly random solutions to stable nages
problems. We also provide efficient algorithms extractingom-
uniformly random solution and guaranteeing t-privacy foy thresh-
old t. The most private solution is expensive and is based dis-a
tributed/shared CSP model of the problem. The most efficient
sion is based on running the Gale-Shapley algorithm aftefflsig
the men (or women) in the shared secret description of thelem

We introduce an efficient arithmetic circuit for the Galealey
algorithm that can employ a cryptographic primitive we s for
vector access with an arbitrary number of participants.

Participants want to find a stable matching as defined by eeir
cret preferences and without leaking any of these secrets.

An additional advantage of the solvers based on secure aiiong
of arithmetic circuits is that it returns a solution pickezhdomly
among existing solutions. Besides the fact that this irsgea@rivacy
to a level ofrequested t-privagyit also provides fairness to partic-
ipants. A real implementation of a described secure saluigable
by participants on distinct computers on the Internet islémgnted
(by students in a class assignment) and is available on doxsite.
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The stable marriages problem consists of matching pairsfouto
distinct sets of participants [13]. One member of the paiusth be-
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long to the first set and the second member should belong to the

second set. The matching is stable if whenever one pantitipants
to change her partner for a third one, the third participaetgrs her
current partner to the change. The participants have atgaafer-
ence (or tie) between any pair of potential partners.

Versions of these problems, without privacy requiremehgsie
been long known and studied. Techniques for the stable aggsi
problem are used in US to assign hospitals to medical in{&Tis
It is an example of constraint satisfaction problem (CSPL2P is
modeled as a set of variables and a set of constraints on g8 po
ble values of those variables. The CSP problem consists dingjn
assignments for those variables with values from their dosnsuch
that all constraints are satisfied. The CSP techniques reeguery
eventual participant to reveal its preferences (e.g. tosted server),
to compute the solution. Therefore, they apply only wherpéuic-
ipants accept to reveal their preferences to the trusteg. par

We show that the stable marriages problems can be modelbd wit
the two known types of distributed CSP frameworks, but thaiokd
models are not efficient. A more efficient model is obtainedgithe
MPC-DisCSP framework introduced in [30].

We start introducing formally the CSP problem.

CSP. A constraint satisfaction problefCSP) is defined by three
sets: X, D, C). X {z1,..,zm} is a set of variables and
D = {Da,..., Dy, } is a set of finite domains such that can take
values only fromD; = {vi, ...,vfii}. C = {¢1,..., 0.} is a set of
constraints. A constraini; limits the legality of each combination of
assignments to the variables of an ordered sulseif the variables
in X, X; C X. An assignment is a paiz;, v,) meaning that the
variablez; is assigned the valug .

A tuple is an ordered set. The projection of a tuplef assign-
ments over a tuple of variable¥; is denoted |, . A solution of a
CSP (X,D,C) is a tuple of assignmentsk, with one assignment for
each variable inX such that eaclp;€C' is satisfied b)/e*‘xi. The
search space of a CSP is the Cartesian product of the donfatss o
variables.

We consider that a set of participants are the source of s&¢tsC
and one has to find agreements for a solution, from the setssipo
ble alternatives, that satisfies a set of (secret) requinetd the par-
ticipants. This view suggests a concept of a distributed. S&%eral
frameworks were proposed so far for Distributed Consti@atisfac-

tion [45, 6, 42]. Some versions consider that each agent avaas-
straint of the CSP [45, 38]. This constraint could model thegpe
information of the agent [33]. Other versions consider gzath agent
owns the domain of a variable while the constraints are shidrd.
The secret domains can also model some private constraints.

None of the two approaches, namely private variables oafaiv
domains, can modaedfficientlythe stable marriages problems. This
is because their private data does doectly constrain the alloca-
tion of the natural shared resources. An indirect relatidate with
such a constraint. Redundant variables need to be intrddadhe
system. The advantage of a framework based on shared s&fst C
will be stressed in this article, as it allows to avoid theumrdiant
variables. Classic CSP models allow for naturally modetiognplex
preferences (e.g. ties, etc.).

There exist frameworks and techniques to model and solve dis2  Background

tributed CSPs (DisCSPs) with privacy requirements, namgign
the domains of the variables are private to agents [41], @anwthe
constraints are private to agents [33, 26, 32, 22, 17].

1 This is the full version of the paper at ECAI distributed CSBrkshop,
August 2006. Fragments from this article were originallytpd [27, 35,
36].
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Related Work The stable marriages problem is an old and well
studied challenge [13]. Modeling this problem with CSPs beasn
discussed in [14]. Distributed approaches to solving tleblem also
appeared in several works among which we mention [5]. We-intr
duced the problem of privacy in stable marriages problen3@j s
an application of MPC-DisCSP1 algorithm. Other secureriigos
developed for the problem appear in [16] which also usediérail



mixnets and, while being more efficient than our first versjoih
cannot offer requested t-privacy.
In several general multi-party computation (MPC) framekgor

secretss from an algebraic structure F are distributed among par

ticipants using sharing schemes. In a sharing scheme, eath-p
ipant A; gets a share denotdd]’, and at least participants are
required to reconstruct the secret from their shares. metic cir-

cuits can then be evaluated securely over these shares,[2510
Our arithmetic circuits as well as our other protocols alsarkw

This version is much faster than the one above since it nadgs o
two expensivéits primitives instead ofV of them.

3.2 Mixnet-based secret index access

The next protocol achieves the resultirounds, where is the num-
ber of supposed trusted servers/participants. First, wenas that
z € [0..(N — 1)] and is shared using an additive sharing with shares
either from the set of integets or from Z . Transformations from

with MPC schemes where the secret are encrypted with a homomoany sharing to sharing of this form was discussed in [21, 1].

phic public key cyphet® allowing additions of plaintext by opera-
tions on ciphertexts [7], and whose secret key is distriarmongt
servers/participants.

Cryptographic Primitives on Shared Secrets We use the follow-
ing primitives on secret shares:

e bits(x). Transform the shared secre{with ¢ bits) into a vector
[x]” of £ shared secretgg]® = bo, by, ..., be, with possible values
{0,1} and representing the corresponding bits: ¢8].

e EXP(zx,[y]?). This primitive computes raises at exponenty
wherey is shared on bits [9].

o +, —,x,=,==,&&,||, <. These operators are equivalent to the

corresponding “C” operators but work on shared secrets [8].
e a?b: c. This operator is implemented as: (b — ¢) + c.

Read at secret index To perform the operatiog = a[z] where
a is an array ofN shared secrets, one can use a mixnet related to
the one we proposed in [29]. Each participantencrypts his shares
[a1];, .., [an]; Of the elements of using a homomorphic encryption
schemekE; for which it holds the secret key and which allows for
applying (+) 7 on its plaintext through some operation on cipher-
texts [29]. All shares are then passed through a mixnet fditoyehe
t participants holding shares of EachA; generates a vectarof NV
random sharings of zero, and then for each input:

Lii = |Ej([a1];), - Ej([an]y)]

computes the output to be sent to the next agent

e m=SHUFFLE(a). Generates and applies a secret random permuta O;; = |E;([a1]; + [21]5), ---, Ei([an]; + [2n]5)] <<< [z]:

tion  on vectora [29].

e UNSHUFFLE(br). Applies on vectob the inverse of the secret
permutationr previously applied on vectar [29].

e |, firstinArray(a). Sets all 1's in the array a to 0, except fu first
1[31].

e firstinArrayldx(a). Returns the index of the first 1 in [28].
Can be implemented by first computing firstinArray(a), anehth
>, (iali)).

e y = a[Z]. Reads iny the item at index: in the arraya containing
N shared secrets. Can be implemented with arithmetic ¢&res-
ing N equality testsy = Zf;l((x == 1) x ali]). [24, 25] gave
an efficient version for 2-party computations. We proposé e

ficient algorithms for this operation with threshald

e a[T] = y. Writesy at indexz in the array of shared secreis
We propose next an algorithm for this operation with thrésho
computations.

3 Accessing arrays at secret index

This can be done in constant rounds wiKhequality tests, but that is
asymptoticallylog(|F'|) more expensive in communication than the
techniques proposed next.

3.1 Bit-based Access

where[z]; is A;'s share ofr and<< < [z]; denotes rotational shift
with [z]; positions. In the case of MPCs based on homomorphic
threshold encryptiortZ, the mixnet is run on ciphertexts (operations
remain the same but without involving shares):

O; =|E(a1 +0),..., E(an + 0)| <<< [z]s

A; can prove that he shifted the arrays and did not simply replac
them with new arrays, by generating an interactive zero kedge
proof. The zero knowledge proof is based on generating afskt o
additional claims, consisting of vectors obtained witHietiéntz and
different shifts.

Cik = Ej([ar];+[21]), -, Bs(lan]j+[zN])| <<< s,k = [1.K]

The verifiers specify a challenge kit for eachk. For bitsc, = 0,
the prover reveals” and all shares of”*, showing that the claims
C.  are a rotation of the input. For bitg = 1, the prover reveals
s* —[z]:; and all shares of — z*, showing that the claim is a rotation
of the output.

At the end of the mix-net, the last agent in the chain broadalb
encrypted shares 0. :[1] and each participant decrypts its shares

obtaininga[z].

Write at a secret index To perform the operatioa[z] = y where

A fast method we propose is based on bit decomposition and ex; is an array ofV shared secrets, one can use a bidirectional mixnet

ponentiation with secret index [8, 9]. It works for accegsarrays
with size N < ¢ where/ = log,(|F|). Given the shared secret
index z for a vector of lengthN, first computedo, di,...,d¢ =
bits(EX P(2, [x]?)) by first running thevits algorithm [8] followed
by the secret exponentiation of [9], and followed again Bpitts al-
gorithm of [8].

Now one can read the array item WEiZ\LO(di xali]).

One can writgy in the arraya at indexz with
ali] = ali] + (y — a[i]) * ds, Vi € [0..N].

related to the one proposed in [29]. In Phase 1, each patitif;
encrypts his shards.];, .., [ax]; of the elements of using a ho-
momorphic encryption schenig; for which it holds the secret key
and which allows for applying+r) on its plaintext. All shares are
then passed through a mixnet formed by thearticipants holding
shares ofc. EachA; generates a vectarof N random sharings of
zero, and then for each input:

Iij = |Ej([a1];), -, Ej([an]))]



computes the output (to be sent to the next agent)

Oi; = |E;([ar]; + [21]5), -, Es(lan]; + [2n]5)] <<< [z]s
where[z]; is A;'s share ofr and<<< [z]; denotes rotational shift
with [z]; positions towards the left.

Atthe end of the mix-net, thé" participant in the chain obtains as
O.+[1] the encrypted shares ofz]. Now each participantl; sends
to A, its share ofy encrypted withE;, and A, replaceD; ,[1] with
E;(yl;).

In Phase 2, the mix-net is now run in the reverse directiot wit
O... as input. Eachd; generates a vectaf of N random sharings
of zero, and then for each input:

I = |Ej([a1]y), .-, Ej(lan];)]
computes the output
O} = |Ej([a1]j + [21]5), - Ej([an]j + [zn]5)| >>> [a]s

where[z]; is A;'s share ofr and>>> [z]; denotes rotational shift
with [z]; positions towards the right. The resul, ; is the result
vectora.

A, can prove that he shifted the arrays and did not simply replac
them with new arrays, by generating an interactive zero kedge
proof. This proof also shows that the rotation is with the saram-
ber of positions and in the reverse direction as the first@h@ke
zero knowledge proof is based on generating a sét @fdditional
claims, consisting of vectors obtained with differehtand the shifts
of the corresponding claims at the first phase.

Cjw = 1B (Jaa]u+[21"]y), -, By ([an]+12R15)| >>> s*, k = [1. K]

The verifiers specify a challenge lit for eachk in [1..K]. For bits
¢x = 0, the prover reveals® and all shares of andz'*, showing
that at both phases the clairi§ . andC; . are a rotation of their
inputs. For bits;, = 1, the prover reveals® — [x]; and all shares of
z — 2" andz’ — 2’*, showing that at both phases the claifis. and
Cj, . are rotations of the output.

algorithm SM-GS-AC2(prefM, prefW)
m=SHUFFLE((prefM);
for (i = 0;i < N?%; 4 + i) do
for (k = 1; k<N;+ + k) do
| freelk] = (wifelk|==0);
m = firstInArrayldz(free);
match = (m # 0);
nIndex = proposed[m] + 1;
proposed[m] = (match)?mIndex : 0,
w = (match)?pref M[m|[nIndez] : 0; /I select woman
H = (match)?h[w] : 0;
prefC = (match)?prefCrit[w] : 0;
prefN = prefWw][m]; /1 this is expensive ;
match = ((H!'=0)&&(prefN < prefC))?0 : match;
prefCrt[w] = (match)?prefN : prefC,
h[w] = (match)?m : 0;
wife[H| = match?0 : wife[H);
| wife[m] = match?w : 0;
UNSHUFFLE(wifer); I/l apply on vector wife the inverse
| permutation ofr; vector h can be recomputed from wife

Algorithm 2: Version of Algorithm 1 similar to Gale-Shapley

Stable Marriages The stable marriages problem is the problem of
finding a set of matches between a set of femalgs,..., A,,, and

a set of malespBy, ..., By, such that if any person from the set of
females,A;, prefers some mald3;, to the partner selected for her,
then B; prefers his current partner td;. If any male,B;, prefers
some female ;, to the partner selected for him, thep prefers her
current partner td3;.

The stable marriages problem is an instance of stable match-

ings [30] that can be modeled with a lower number of variabes

way of modeling the stable marriages problem as a CSP is t® hav

one variablez; for each femal& specifying the index of the male
assigned to her by the solution. The constraints are oluidipere-
processing the input of participants about their prefezentThe fact
that a perso; prefersB,, to B, is specified by the boolean constant
(input) P4, (u,v). The fact thatB; prefersA, to A, is specified by

At the end of the mix-net, the last agent in the chain broadcas the poolean constant (inpuBjs, (u, v). There is a constraint” be-
all encrypted shares if¥’. ; and each participant decrypts its shares yyeen every pair of variables; andz;. In first order logic notation,

obtaining the resuli.

3.3 Efficient arithmetic circuit

Here we show a compilation of the stable marriages probléman
standard arithmetic circuit simulating the solution of][13

The Algorithm 1 is equivalent to a circuit of size (). The arith-
metic circuit in Algorithm 2 follows more exactly the Galé&pley
and makes usage of array access for two of Ahdactors, in the
asymptotic complexity.

4 DisCSP Models for Stable Marriages Problems

We employ the distributed CSP framework, aiming to model effi
ciently (i.e. with a reduced search space) the distributibsome
famous CSP problems, namely the stable marriages probRass.
cally we argue to the return to a more CSP-like framework e/mer
direct association of the secret constraints to agentsjisnel. Such

a setting is enabled by secret sharing. The relation betseerets
and participants is relevant at computation steps that atsede the
CSP solution (during secret sharing and secret reconstnjct

the constraint between each two variabtegndz; is:

def

Vai, j: ¢V (i, 2;) = (Pa,(aj,2:) = Po,, (5,0) A

(PAj (ziyz5) = PBIi (4,7)) A
(s # 75) @

In this formulation, the preferences of an agent do not rezcdg
require a total order on the possible spouses, naturallyetimagities,
incomplete lists, etc. Note that a total order is part of thenmon
definition of the stable marriages problem [13, 37].

It is possible to extend the stable marriages problem to déise c
with an unequal number of males and females. In this caseanibe
modeled either:

e as a usual instance of the stable matching problem [30], avith
variable for the partner of each participant, each pasitipub-
licly preferring to be alone rather then with somebody ofshme
type, or

e with variables only for females (or males), where the vdesb

3 Or male. Then, everything is defined symmetrically.
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sharedsecrex [0..N] > proposed[N+1](0);
sharedsecrek [0..N] > prefCrt[N+1](0);
sharedsecrex [0..N] > wi fe[N+1](0);
sharedsecret {0,1} > free[N](1);
sharedsecrek [0..N] > h[N+1](0);
sharedsecrek {0,1} > cont;
sharedsecrek {0, 1} > test, match;
sharedsecrex [0..N] > w;

sharedsecrex [0..N] > prefC,prefN;
sharedsecrek [0..N] > H;

int<;

int j;

int k;

I previously proposed woman, by man index, alitied to O
/Il preference for fiance, by woman index, initzadd to O
/ current fiancee, by man index, initialized to 0
/ current fiancee, by man index, initialized to 0
/I current fiance, by woman index, initialized to 0
/I bool: does the current man get engaged to his next prefe?en
/I bool: intermediary test
/I the woman currently addressed
/I preference of current woman for her fiance, resp. for nemdate
/I previous fiance of the current woman
/I current round
/l index of man currently proposing
/I counter

algorithm SM-GS-arithmetic-circuit (prefM, prefW)

sharedsecrek [1..N] > prefM[N][N];
sharedsecrek [1..N] > prefWI[N][N];
m=SHUFFLE(prefM);

for (i = 0;i < N%;+ +1i) do

for (j = 1; j<N;+ + j) do

cont =1 — (wife[j]==0);

H = h[w];

prefC = prefCrt[w];

for (k = 1; k<N;+ + k) do
test = (k == w);

for (k = 1; k<N;k + +) do

| wifelj] = cont?wifelj] : w;

| UNSHUFFLE(wiferr);

proposed[j| = (cont)?proposed|j] : proposed[j] + 1;
w = (cont)?wifelj] : prefM]j][proposed[j]];

prefCrtlk] = (cont||(1 — test))?prefCrt[k] : prefW[k][j];
hlk] = (cont||(1 — test))?h[k] : j;

| wife[k] = (cont||(k!=H))?wife[k] : 0;

/l the men’s preferences in order
/I the women’s preferences by man index, bigger ittdre
/I shuffle matrix prefM, by a secret randpermutationr on its first index

/l'if already engaged then skip this man
/ try next woman
/I selected woman among those willing
I prefW[w][H]

[/l This loop can be replaced with array access for k=w

cont = cont?cont : (test)?((H'=0)&& (prefWk][j] < prefC)) : 0;

Il prefCrt[w] = (cont)?prefCri[w] : prefW[w][j i.e., update preference of w
Il prefCrt[w] = (cont)?prefCrt[w] : prefW[w][j]
Il h[@w] = (cont)?h[w] : j i.e., setfiance of wtoj

I wife[H] = cont?wife[H] : 0 i.e., set fiancee of Hto 0

/I set fiancee of j to w

/I apply on vector wife the inverse permutationngfvector h can be recomputed from wife

Algorithm 1: Stable Marriages: arithmetic circuit for thelg-Shapley algorithm (two circuits, selected with fimet ratherthantry_next).

have an additional value, 0, for specifying that the partiai re-

mains single.

For the second case, there is a global constraint:

def

Ve, p(e) =

(Vq,t : €){ay) F €1{x})

is m®, m? of them being actually fixed by public constraints (e.g.
Py, (u,u) = 0). However, also taking into account the variables

z1,...,Zm, the total search space becon@$mm2m3). This is

0(27”3) times worse than the centralized CSP formalization whose
search space is only @(™).

(Vi k= ((k # €)(a;3) A Pa, (K, €112,3)) =
((k #0) A (Ff = (e)a;y = k) A P, (5,4))) A

4.2 Using MPC-DisCSP

In the previous part of this section we have exemplified CSBetso

@)

The main complication with this kind of CSPs is that the con- for the stable marriage problem. We have seen that it is diffio

straints are functions of secrets that cannot be easilitegliérom
the participants. Distributed CSP frameworks are meanttess

such problems.

4.1 DisCSP Benchmark: Stable Marriages

Modeling the stable marriages problem with DisCSPs with se-
cret constraints that are known to some agents (e.g., AAS cap
One can model the stable matching problem with secret aintir
known to some agents [45, 34] by choosing as variahles, ., zm,

model efficiently these problems using existing privatdalge-, or
private constraint- oriented distributed constraintsfatition frame-
works.

Let us use a framework for modeling distributed CSPs, where a
constraint is not (necessarily) a secret known to an agemlalic,
but can also be a secret unknown to all agents. We have irteddu
such a framework in [30]. We refine it here by removing the negu
ment that inputs come straight from participants and thiiwte are
revealed directly to participants, since this forbindsesashere the
solution of a CSP is just part of a chain of intermediary cotapu

the index of the partner associated to each agent (that hae to tions that can comprise several CSPs (such as in auctionshel

computed) and using one additional boolean variable foh eae

new framework, secret inputs are assumed already sharguretia

cret preferencePy, (u,v). The total number of boolean variables ous step, and are not associated to a participant. Outpitdsar de-



livered in shared form, and are not necessarily revealedrtebody
immediately, but can be feed as inputs in other secure catipns.

Definition 1 A MPC Distributed CSP (MPC-DisCSP) is defined
by six sets 4, X,D,C, I, O) and an algebraic structureF'.
A={A4,..., A} is a set of agentsX, D, and the solution are de-
fined like for CSPs.

I is a tuple ofa shared secret inputs (defined &t). Each input!
belongs taF'.

Like for CSPs(' is a set of constraints. There may exist a public
constraint inC', ¢o, defined by a predicatg (¢) on tuples of assign-
mentse. However, each constraint;, :>0, in C'is defined as a set of
known predicate®; (¢, I') over the secret input$, and the tuples
of assignments to all the variables in a set of variablgs X; C X.

O={o1, ..., 0., } is the set of outputs. Let be the number of vari-
ables.o; : D; x ... x D, x I — F is a function receiving as
parameter a solution and the inputs and returning a secrepaiu
(from F).

The following theorems of [30] apply because this framewisrk
more general (less specified) that the framework define@ ther

Theorem 1 The framework in the Definition 1 can model any
distributed constraint satisfaction problems with prigaton-
straints [34].

Theorem 2 The framework in the Definition 1 can model distributed
constraint satisfaction problems with private domains][41

Modeling the stable marriages problem as a MPC-DisCSP. To
model the stable marriages problem as a MPC-DisCSP, onenhas
agent,A;, for each female participant; in the problem description.
Each participanBB; is mapped to an agent,, ;. One hasn vari-
ablesz1, ..., ., modeling the partners of the agents, ..., A,,. x;
specifies the index of the spouse assigned dy the solution, or
specifieq), if she remains alone. The inpuksare given by the set of
preferencess, (u, v) and Pz, (u, v), specifying whether; prefers
B, to By, respectively whetheB; prefersA,, to A,, for eachu and
v. The setF’ for inputs and outputs istrue, false}.

The constraint’/ between every pair of variables andz;, is
defined as in Equation 1. The output functions foe [1..m] are

defined aso; (¢) < €/{z;}- Namely, each female learns only the
index of the husband proposed to her. To return to each rale;
the identity of the spouse proposed the him, the correspgraitput
iS omyi < {k|zk = i}.

There is a public constraint:

do = Vi, j, i # x; ®)

5 Private Stable Marriages Solutions

Theorem 3 Stable marriages problems can have several solutions.
Proof. Namely take four agents withP4, (1,2), Pa,(2,1),
Pg, (2,1), Pp, (172). g.e.d. u]

If there exist several solutions, the agents will prefertoateveal
more then one of them. The remaining solutions would onlgaév
more secret preferences:

e Typically there is no other fair way, except randomness réab
the tie between several solutions.

e If the single solution that is returned is selected as the ding
in some given lexicographic order on the variables and dosnai
of the problem, then additional information is leaked canigy
the fact that tuples placed lexicographically before thggested
solution do not satisfy the constraints [26].

As it follows, if it is known that a certain problem has onlyeon
solution, then any technique is acceptable among either:

e Finding and returning all solutions using the technique2idy [ or
e Returning only the first solution (e.g. by sequentially dtieg
each tuple in lexicographical order until a solution is fdun

Otherwise, strong privacy requirements make techniquesniag
a random solution [26] desirable, despite their potentidlaving a
lower efficiency.

5.1 General Scheme

We will note that the main difference between the MPC-DisCSP
framework, and the DisCSPs with secret constraints thakroen

to some agents, is that now the constraints need to be cochgyte
namically from secrets inputs.

The techniques solving DisCSPs with private constraints lza
used as a black box, except for sharing and reconstructis.st
Namely, instead of simply sending encrypted Shamir shdreseis
constraint, those shares of the constraints have to be dechfrom
the secret inputs of the agents. We replace the sharing aodstuc-
tion with with simulations of arithmetic circuit evaluatiavhich will
%ompute eachyy (e, I) for each tuplec and for the actual inputs.
This step is calle@reprocessing

Similarly, instead of just reconstructing the assignmeatsari-
ables in a solutiom, one has to design and execute secure computa-
tions of the functionsx (¢). This step is callegpost-processing

AssumeA is some algorithm using Shamir's secret sharing for
securely finding a solution of a CSP (with secret constraintsvn
to some agents). The generic extension of the algorithto solve
problems in the MPC-DisCSP framework is:

Preprocessing:Share the secrets inwith Shamir’s secret sharing
scheme. Compute eaehy (¢ x, , I) for each tupleex, and for
the actual inputd by designing it as an arithmetic circuit and
simulating securely its evaluation. The public constraintcan
be shared by any agent.

Run the algorithmA as a black-box, for finding a solutiogx
shared with Shamir's secret sharing scheme, for a CSP with pa
rameters (i.e. constraints) shared with Shamir's secratirgip
scheme.

Post-processingCompute each; (ex) by designing it as an arith-
metic circuit and simulating securely its evaluation. Retke re-
sult of o; (ex) only to A;.

5.2 Pre- and post- processing for stable marriages
problems

In the remaining part of the article we will prove that it isgstble
to design the needed preprocessing and post-processintyéoosir
example of DisCSPs: stable marriages, using the generahsxe-
fined above.



Preprocessing for the stable marriages problem. Some simple
arithmetic circuits can implement the preprocessing fer stable
marriages problem.

Search Space size for DisCSP modelsNote that the complexity
analysis here is based on the assumption of using only baditan
and multiplication secure primitives. It can be easily shdlat by

Each variablex; specifies the index of the male associated tousing other primitives, such as first-in-array, CSPs areatbé in a

the femaleA;. The input of each femalel; specifies a prefer-
ence valuePy, (j, k) for each pair of males,B;, B). Each male
B; specifies a preference valugs, (j, k) for each pair of females
(Aj, Ar). Pa,(j, k)=1if and only if A; prefersB; to By. Other-
wise Py, (4, k)=0. Pg, (j, k)=1if and only if B; prefersA; to Ay.
Otherwise Pz, (5, k)=0. A constrainte™ is defined between each
two variablese; andz;. ¢*[u, v] is the acceptance value of the pair
of matches(A;, B.), (A;, By). One synthesizes.(m — 1)/2 con-
straints:

0 ifu=wv

6" [u,v] (1~ Pa,(v,u) (1= P5, (1))

(1 = Pa;(u,v) % (1 = Pp,(4,5))) ifu#v

The public constrain®, (same as in Equation 3) restricts each pair

of assignments:

def

Ve, e=({(zi, u), (x5, v)) : go(e) (u#v)

specifying that it is not possible for two persons to be aissed to
the same spouse in a solution.

Post-processing for the stable marriages problem. The stable
marriages problem requires a post-processing phase touterapd

linear number of rounds [8].

For a problem with size of the search sp&candc constraints, the
number of messages for finding all solutions with securertiegies
similar to the one in [20] is given byc — 1)© multiplications of
shared secrets(n—1) messages for each such multiplication).

For the stable marriages problem modeled with the MPC-DiBCS
framework, ©=m™ and c=1 for the version with a single global
constraint, orc=m?/2 for the version with binary constraints. For
the case with binary constraints, it yields a complexitygfn™2).

As mentioned before, the preprocessing has compléxXiiy*) mul-
tiplications between shared secrets, resulting in a taiedptexity
O(m?*(m™ +m?)).

Solving the same problem with the same algorithm but mod-
eled with the classic DisCSP framework with private coristsa
m™2™" ande = m, for one global constraint from each agent.
There is no preprocessing, but the total complexi'@(mm“Qm3 ).
The MPC-DisCSP framework behaves better since<< 2™,
The comparison is similar for other secure algorithms, NkeC-
DisCSP1 [26] whose complexity is given B dm(c+m)©) multi-
plications between shared secrets.

7 Conclusions

reveal to each male the spouse proposed to him. Remember that

the variables specify only the spouse for each female. Thetifan

Omti def {k|z, = i} can be computed with the following arithmetic
circuit.

m

Omti =y _((xx == 1)k : 0)
k=1
An implementation for this constraints, written as classigs
ment by students in Spring 2005, is available online at [19].

6 DisCSP Model based on Global Constraints

It can be noted that since in Equation 2 the variables areti@oned
to take distinct values, the arithmetic circuit can be \eritin a simple
equivalent form:

¢ (<‘T€17U1>7"'7<x€nvun>)
0, whenu;=u; andu; # 0
(1= Pa;(0,us)) * otherwise
szzl,k;éui(l — P, (K, ui)*
(1= 320 (P, (3,0)))))

The total number of multiplications needed to construcs tiiobal
constraint isO(mn™"!), namelymn multiplications for each of the
n" tuples. A public constraint for this problem is:

0,
L

whenu;=u; andu; # 0
otherwise

Do({Tey, u1), ooy (Teyy, Un)) def {

DisCSPs [4, 38, 18, 44, 11, 23] are a very active research Brea
vacy has been recently stressed in [2, 12, 39, 10, 43] as aoriiam
goal in designing algorithms for solving DisCSPs.

In this article we have investigated how versions of an oldl fan
mous problem, the stable marriages problem [13, 37], canlbed
such that the privacy of the participants is guaranteedpoewhat
is leaked by the selected solution. Techniques for thislprokare
currently applied to college admissions and medical itessign-
ments in US. Our technique uses secure simulations of agtthm
circuit evaluations.

We note that the stable marriages problems can be modelad wit
existing distributed constraint satisfaction framewoiist not very
efficiently. We have therefore stressed the advantageseofPC-
DisCSP distributed constraint satisfaction frameworl taa model
such problems with the same search space size as the classilc
ized CSP models. Fan participants in the stable matching prob-
lem, the size of the search space in the DisCSP model achigtied
MPC-DisCSP isD((m,/2)™/?) while the previous framework with
private constraints yields DisCSP instances with a sizé@kearch
space 0i9(m7”2m3 ). In certain existing secure algorithms for solv-
ing DisCSPs, the number of exchanged messages is fix andlylirec
proportional to the search space size. In other algoritimasytim-
ber of rounds is constant but the size of the messages is iyl
to the search space. This explains the importance of theo§ittes
search space in an obtained CSP model. Both mentioned tjpes o
cure algorithms offering requested t-privacy make thigpprty of a
problem instance particularly relevant.

A more efficient solution (but selecting solutions with non-
uniform randomness) is proposed with an arithmetic cirsimitulat-
ing the Gale-Shapley algorithm on a shuffled version of ttoblgm.
Its complexity isO(n?).
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