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Abstract

In this paper, we show a general classification of cryptographically
used elliptic and hyperellipti curves which can be attacked by the Weil
descent attack and index calculus algorithms. In particular, we classfy
all the Weil restriction of these curves obtained by (2, ...,2) covering.
Density analysis of these curves are shown. Explicit defintion equa-
tions of such weak curves are also provided.
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1 Introduction

Let ¢ be a power of an odd prime. k:=F, k; :=F 4

We consider in this paper algebraic curves Cy/k, which are supposed to
secure for cryptographic applications, i.e. those of genera go := g(Co) = 1,2
and gg = 3 hyperelliptic curves.

It is known that at present the most powerful attacks to the cryptosys-
tems based on these curves are the so-called double-large-prime variation by
Gaudry-Theriault-Thome and Nagao [12], [20], with complexities 0((]2_%).
In particular for ¢ = 3, the cost is 0(q4/3), a little faster than the square-
root attacks. Hyperelliptic curves of genera 5 to 9 are attacked by these
algorithms more effectively than the square-root attacks.

Recently Diem proposed an attack under which non-hyperelliptic curves
of low degrees and genera greater than or equal to 3 are weaker than hyperel-
liptic curves[6]. In particular, if C' is a non-hyperelliptic curve over k of genus
g > 3, such that deg C' = d,the complexity of Diem’s double-large-prime vari-
ation [6] is 0((]2_61272). When d = g+ 1, it is 0((]2_9%). In particular, genus
3 non-hyperelliptic curves over F, can be attacked in an expected time 0((])

Another generic attack to algebraic curve-based cryptosystem is the so-
called Weil descent attack or cover attack [9] [13][10] [17][5] [15][16] [24][25][7].

To consider the Weil descent attack to Cy/ky, we assume that there is a

covering C'/k of Cy/k, and

dr/ky: C — Oy (1)

such that for
T JO) — J(C) (2)
Re(m.): J(C) — Reg,J(Co) (3)

is an isogeny, here J(C) is the Jacobian variety of C' and Rey, /1 J(Co) its
Weil restriction. Then ¢(C') = dgo.

It is an interesting and important question to see what kind and how many
curves Cy have weak coverings or their Weil restrictions can be attacked by
the above two index calculus algorithms, even they are designed to be secure
over extension fields ky.



The classification and density analysis of these weak curves seemed to be
a nontrivial problem. It is also believed that even if such curves did exist,
they must be very special therefore rare.

In [19] a classification and density analysis is provided for odd character-
istics and genus 1,2,3 elliptic and hyperelliptic curves for extension degree
2,3,5. It is shown that actually the number of these weak curves could be
alarmingly large. e.g. for g = 1,d = 3, if you chosen random elliptic curves
E defined over k3 in the Legandre form, then a half of them are weak and
can not be used in cryptosystems since a 160-bit systems could only have
strength of 107 bits key-length under the proposed attack.

In this paper, we will show a general classification the elliptic and hyper-
ellipti curves which can be attacked by the Weil descent attack and index
calculus algorithms. In particular, we classfy all the Weil restriction of these
curves obtained by (2,...,2) covering. We show that when such coverings
exist, these curves can be attacked effectively by Weil descent attack except
for the case (go,d) = (1,2),(1,3) and C is hyperelliptic. Density analysis of
these curves are shown. Explicit defintion equations of such weak curves are
also provided.

We consider that following curves.

Colka = y* +gla)y = f(z) (4)
such that
Co —= P'(x)/k (5)

is a degree 2 covering. ‘
Then we have a tower of extensions of function fields such that kg(z, {7 y}:)/ka(Co)

n

. Hﬁ .
is a (2,...,2) type extension.

—_——
Correspondingly C'/k is a (2, ...,2) covering of P'(x)/k.

ka(e, {7y ) C/k
kq(Co) Co/ka
|
ka(x) P'(z)/k



Bellow, we assume
Condition (C):
Re(m.):  J(C) — Reg,i(J(Co)) (6)

is an isogeny over k.

Lemma 1. The Condition (C) is equivalent to the following statemant.
dH < cov(C/PY), a subgroup of index 2 such that the Tate module of
J(C) has the following decomposition

o

Vi(J(C) =&iZ Vi(J(O)" " (7)

We will classify all (2, ...,2) coverings of
—_—
(2. .2)
C — Cy — P'(x) (8)

—_———
2

satisfying the Condition (C).
We will make use of classification of representation of G(ky/k) on cov(C/P') ~
Fr.

G(ky/k)=<o> ~ cov(C/P') ~TF} (9)

We show that the following cases are subjected to the Weil descent at-
tacks.
The char(k) # 2 cases:

d n | Hyper/Nonhyper | go #Cy
2 3 Hyper O(q*)
3 2 O(q*°)? go=10K
Hyper 1 O(¢%)
2" —11>3 Nonhyper O(q™=3)7(%)
5 Nonhyper 1 O(q?)

(*) 0 st go+1=2""%

Note: Here “7” means a conjectured density.



For char(k) = 2 case:

2 S Ny, N2
(2m — 1,2 — 1) =1

d n Hyper? | go | Ordin? #C
2 2 Hyper O(q*)
4 3 Hyper O(g*+h)
on _ 1 O(q(n-l—l)(go-l—l)—i%)
Hyper 1 | Ordin O(q")?
e.g. 2 O(q?)
(2m —1)(2" — 1) Nonhyper | 1 | Ordin O(q™tm2=1)?

Note: Here “7” means a conjectured density.

2 Indecomposable cases

2.1 Case 2|d

Then d = 2" and since ¢ is indecomposable, it is in a form of irreducible

Jordan cell

1 1 0
0 1 1
c=1 0 0 1 1 -
1 1
0 0 1

Then we know that
2l <2 =d
Indeed,
(c+1)"=0.
On the other hand, d = 2" is the first integer s.t.
ord(o)=d=2" o =1
Thus, d = 2" is also the first integer s.t.
¥+ 0¥ = T HI=21=0
2l op < 2T

the first inequality is due to that (o + [)zr_l # 0.

6




2.2 Case?2 fd

dj20—1, df2'=1, (1<VI<n-1)

Let ¢ = (4 be a primitive d-th root of 1 in F,.
Let the minimal polynomial of ( over Fy as

n—1
f@) = 2"+ aa', a=1, a; €,
=0

Then

n—1

=) ad

=0

One can take a representation of G/(ky/k) acting on cov(C'/P') ~ F%

n

Yo € cov(C/PY), v = a; v

The number of irreducible representations of such action is

¢(d)

n
In the case d = 2" — 1 =: m, define a k-linear map L of k,,(C)

L: kn(C) — kn(C)

Vh € kn(C), L(h) :=""h+> a; “h
=0
Define a sequence {b; € Fy,i = 0,m — 1} as
bo = bl = ...= bn—l = 1, a, = 1,
n—1
bn—l—l == Zan_in_i. l:(),l,...,m—l—n
=0

Then a homomorphism M of k,,(x)* is defined as
M: kn(x) — ky(a)”

—_

m—

Vh € k()" M(h) = ] ()"

=0

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)



3 Classification

3.1 Case 2|d

We show that in this case, C' is a hyperellpitic curves
In fact,

1 1 0
0 1 1
c=10 0 1 r -
: 1 1
0 1

Then for the ¢ € cov(C/P')
Gk = (10 o 0T

o = ¢
If we consider the degree two covering over k
c -0/
By the Condition (C),
C/p =P

3.2 Case char(k) # 2
When char(k) # 2,
n=d=2
Indeed, by RH,
2dgo — 2 =2"(=2) +2"7'S
here S is the number of fixed points on P!, then
dgo — 1
on—2

Since 2|d, n = 2, which means d = 2 and S = 2¢¢ + 3.
The Cy 1s defined by

Co: y = (z—a)g(e)
a €k \ k, g(x) € klz]

S=4+

(27)

(32)

(33)



4 Indecomposable and 2|d case
By 3.1, we can assume that char(k) = 2. Then

d=2", st. 277l <n<2 (37)

We will use the ramification theory of Galois extension of a complete field
with a discrete valuation.

Assume the characteristic equals p > 0. Consider a Galois extension
K3/ Ky such that G(K,/Ky) is of p-power order. Denote ¢ the uniformizer of
K, and z of K. v: the valuation on K.

Definition 1.

Goc#1, o) =v(t-1) (38)
(1) =o0 (39)

Since G(K3/ K1) has an order of p-power, we know «(o) > 2.

Rou>-1, G, = {oceG(Ky/Ky) | o)>u+1} (40)
Yo = #G, (41)

Then we know

G » G, (42)
G = G0>G1[>G2"‘ (43)

Now we define the function (u),u > 1

l €N, I[<u<l+1 (44)
I
P(u) = %{Z%"’(U_Z)VHI} (45)
and

Gy = GV (46)

It is known that



Theorem 1. [22]

VHaG, Yu, (G/H)"=G'H/H (47)

Theorem 2. (Hasse-Arf)[22]
If G is an abelian group, then

Gy # Guyr = Y(u) € Z (48)
We will apply these results to the case when p = 2 and G(K3/K;) is
(2,2,...,2) type.
4.1 Ordinary cases
Co: y'+gla)y = f(a) (49)
degg(z) = go+1, degf(x)=2g,+2 (50)

By the section 2, we know that C' is hyperelliptic.
Since (' is ordinary,

Vo € cou(C/P'), YP €C, &(P)=P (51)
— vp(d) =2 (52)

C
RN
“Co P'/k
A

P!(z)

The number of ramification points of UiCO/IF’l(:I;) is go + 1, while the
ramification point of P'/k/P'(z) is 0 alone. Therefore, g(x) € k[z].
Apply the Riemann-Hurwitz to the degree two covering C' — P!
2dgo —2=2(-2)+ S (53)
S =2(dgo+ 1) (54)

10



On the other hand,

S = 2" 2¢g
or = 2" % 2gy+2

therefore

2 —dygy < 1, (n>2)

d = 2!
Hence by 2772 < n < 2771,

n = 2,3

d = 2,4

5 Indecomposable non-ordinary and d # 2" —1

cases

dH < cov(C/PY), of index 2, s.t. C/H =P

(61)

First, notice that for the degree two covering with P, () as ramification

points
P — P'(x)
P — B
vp(¢) = 2

and for the degree two covering

Oy — Pl(x)
Q — Qo
1Q st vg(¢) >3

due to non-ordinary assumption.

[ :=<{¢ € cov(C/P"):3IP c P'(x),vp(¢) > 3} >G cov(C'/P")

11

(68)



Then

VH < cov(C[PY), of index 2 (69)
C/H=P' << ICH (70)

Assume that
#1 =2, (1<a<n-—1) (71)

then
#{H < cov(C/P"), ofindex 2, g(C/H)=go} = d
— #{H < cov(C/P"), ofindex2, C/H=P'} = 2"—1-d
But

#{H < cov(C/P"), of index 2, C/H =P'} (72)
= #{H < cov(C/P'), ofindex2, HD [} =2"—1 (73)
Thus
2" = d+2°, (1<a<n-1) (74)
d = 2" a=n-1 (75)
— n = 2,3 (76)
Next, we show that g(x) € k[z].
Assume
g(z) =2"gi(x),  q(0)#0, (a>1) (77)
Then we have
CriLq(:Jc) = z° Uigl(:zj) (78)
From
C
/ \
N P! /k
x on—1
P! (z)
we have
" () = gi(x) (79)



5.1 Defining Equation of (|

Co: y +9($)y = J(2)
flx)
degl(:z;) = 1,2
and deg(l(x) +7 (x))

6 Indecomposable with 2 fd, d # 2" —

In this case, we have

(27 —1), (dj2'=1), 1<I<n—1,

6.1 Case char(k) # 2

= 1,2 ifn=3

n>4)

By RH, denote by S again the number of fixed points over Cy/P*(x)

2gy —2 = 27(—2)+2"7'8

= 5 = 4+

Since n > 4, go is an odd integer, thus

S >2g0+ 3
Then
(2" —d)go < 2771

e 2 n—1_ 9n—2
Therefore

g = 1

d = 14+1x2"7? (< Qng_l)

— d = 1+2"7

since [ = 1.

13

<2

(84)



(14232 = 1) =2(2"24+1)=5 (93)

1+2°7%5  (n>4) (94)
Therefore
n=4, andd=5 S=75 (95)
The defintion equation of Cy is
Co: ¢* = (z—a)(z—a’)(z—a)(z—a”) (96)
a€ks\ k (97)

6.2 Case char(k) =2
6.2.1 Ordinary cases (d < Z:1)

By Riemann-Hurwitz,

2dgo —2 = 2"(=2)+4 5 (98)
S = 2dg+2"—1) (99)
> 2o+ 1+0) (100)
— 2" '—d)gp < 2" (1—¢)—1 (101)
Therefore
c=0, ide g(x)€k[z] (102)

In fact, locally a ramification point F, has 2* fibres and each fibre with
2"~ points. Thus

2 % (277 — 1) x 2% = 2(2% — 2%) > 2" (103)

2a

~(

N,/

14



We now consider two cases:

Case 1

Assume that there exsits a P, such that the points P, i = 1,...,2""! over

it is fixed by ¢:

o) = P

H = <¢> ~ 7 /2L
Then in the covering
C 2 C/H — P'(2)

Py is unramified over C/H — P(a).
Since g(x) € k[z], we have

C/H="P

Then in the following covering diagram,
C
/ X
Co P!
P'(x)

15
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(105)

(106)

(107)

(108)



Co/P'(x) has go + 1 ramification points.
By Riemann-Hurwitz, C'/P" is degree two and for C'/P'(z)

2gy —2 = 2(-2)+S (109)
S = 2dgo+1) (110)

= 271 x 290 + 2 (111)

— 4 = 277! (112)

So such a case does not exists.
Case 2:

Assume that all ramification points VF, has a ramification graph as below

where 0 < a <n — 2.
2(1

N

Then by Riemann-Hurwitz,

2dgy —2 = 2"(—=2)+ S (113)
S = 2(dgo+2"") (114)

> (go+1)(2" —277%) x 2 (115)

— (2" =277 —d)gy < 2" —1 (116)

4 < ? 3_1 (117)

which also does not exists.

16



7 Indecomposable and d=m =2"—1

We use the notation in Section 2.2,

Co : y'+gla)y = f(z)

§ = §m€F2
"= Zaic’

and L defined in Eq.(21) and M in Eq.(26)
7.1 Case char(k) # 2
(i)

Co: y* = f(z)

Yo = (60761,--. 7€n—1) € F;\((L(L 70)
n—1 )

yoz — H <Uzy>
1=0

Since d = 2" — 1,
VH < cov(C/PY), of index 2
g(C/H) = go
Now consider the action of cov(C/P') on {y“},
Vi, Ja e\ (0,0, ,0)
st Ty=9y* mod k,(x)%,
Therefore
Gk /k) ~ {y”} mod k,,(x)*

— Ty = ﬁ <Uiy>ai mod k,,(x)”

=0

— f= ﬁ (7f) " mod (h(e)*)?

17
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(119)

(120)

(121)
(122)

(123)

(124)
(125)

(126)
(127)

(128)

(129)

(130)



(ii) By Riemann-Hurwitz,
dmgy —2 = 2°(—2)+ 218
s = T
Then
go+ 1 [ x 272
S = ml

(iii) The definition equation of Cy:
Assume O the decomposition of [ is

[ =
o € kg,

S A T A

Then

$?
<
I

7.2 Case char(k) =2

hitly+- 41,
k(ozi):kmli

(Li=1)

1 F

N, o (M (2 = 1))

Cot oy = f()
degg(x) = go+1, degf(x)=2g0+2
gla) = LOM{"g()} € kla]

Necessary condition

7.2.1
From d = 2" — 1,
VH < cov(C/PY),
Define
YA
h(x)

Q(C/H) = 9o

(131)
(132)

(133)
(134)

(135)
(136)

(137)

(138)

(139)
(140)

(141)

(142)

(143)

(144)



Then

Co: 722+ g(x)Z = h(x)

Let V = ¢ 'F, 7' Z.
Since Vv € V, the subgroup of cov(C/P') fixing v has index 2,

n—1
— 77 = Zci 7 mod ky[z], Je¢ €T,
=0
n—1 ‘
= 77 =) a7 Z+Ix), Uz)€ kyla]
=0
— Fz)+g(x)l(x) = L(Rh) € k2]
Therefore,
[(x) € kp[x], and degl(x) < deg (%) +go+1
gz
From (147),
n—1 ‘
7= Y a2+ (x), Ux) € k()
=0
n—1 )
otz Z a e [(x) + an—1l(x)
=0
Tr=7 = 24" @)t an 7 (2) +
— 0 = "Tl@)Fan, T () +

Therefore, we define a k-linear map

Then

() — 7 l(a)+ an-1’

ker(L) = L(ky[z])

19
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(146)

(147)

(148)

(149)

(150)

(151)

(152)
(153)
(154)

(155)
(156)

(157)



Indeed, recall that

Ll(2)) =" l(z) + an_y © l(z)+--- (158)
consider the coefficients of every terms in
L-L=0 (159)
one has
#{a:L(a) =0} < g (160)
While from the defintion of L,
#ker(L) = ¢" (161)
Therefore
L(k,) = ker (z km) (162)
O
Thus,

[(z) = L(l(x)), 3F(x)€ kylz], degl(z)<deg (?—i;) + g0+ 1 (163)

From this

Lh+0C+gl) = 0 (164)
~ 2 A

ie. L <<£’> Farr +gz) — 0 degl < deg <9> +go+ 1 (165)
g g

7.2.2 Sufficient condition

Now we assume at first that

Lh+ 0?4+ g0) =0 (166)

Then
0 = L(Z2+9Z+ 1+ g0) (167)
= L(Z+0)?+gL(Z+10) (168)

20



From this

— L(ZM):{E

Assume L(Z + () = g, then since

#lai=1} = 2"
Ly = g

Z Z+§=§y+§]:

@ @

Thus we could assume that L(Z + () = 0.
Therefore

n—1
A Zai 7 mod ky,[]

=0
Next, define a surjective homomorphism

n—1

h: cov(C/P")~F) —» Z]F‘QUiZ mod k,,[]

=0

(y+9)

(169)

(170)
(171)

(172)

(173)

(174)

Since the action of G/(k,,/k) on W is irreducible, either A is an isomorphism

or Z € ky[z].

In the later case,

y € k,,[x] and
Co: y*+gla)y = f(2)

which is the singular case.

7.2.3 On g(x)

(i) Ordinary case

gi(x) = GCD{ CriLq(:Jc)} € k]

g(z)
gi1(x)

92(7)

21
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(176)

(177)
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domg(e) 41 = deagu()+ > Y @)L n, (179

=1 m n—r m
i=1 djm, (27 -1)

b4 € Ziso (180)

The points with z-coordinates as the roots of the common factor g;(x)
are totally ramified. On the other hand, for points with z-coordinates as the
roots of go(x) are not totally ramified.

Assume

gla) = 0 (181)
o= #{@'|0§@'§m—1,92(aq"):0} (182)
Then
# {H < cov(C/P") of index 2, s.t. a ramifies in C'/ H 2 Pl(:zj)}
= (2" —1)— (2" —1), (1<Fr<n—1)

2¢ I

SU

o )

o od-1 //—\ d—1

On the other hand, this order is equals to " x %. Thus

I % % e (183)

(2) As to the factor g,(«) corresponding to each «a,
(a) Whend=m,r=n—1,1=2""

22



R = {i:0<:<m—1, st b=1} (184)

#R = 2! (185)
3, gale) = [ (@=a”) (186)
ie R
We now check the points such that k,,[x, oy, o y| is not normal.
Define
T = {z : gg(ozqi) = 0} (187)
4T = 21 (188)
€ = (€, ,€6,_1) €FY (189)
& = {(1) i;; (190)
and
ARNYAESYA (191)
Then
(U’TU C”T) \ (U’Tn C”T) = o7 (192)
Therefore
et Te= ¢ (193)
Thus, since the action of G(k,,/k) is an isomorphism
p o= (posp1, s pmar) €FY (194)
¢ = “p, J (195)
(b) Conjecture: When d = m,r=n—1, ({ > 2)
Wi=Ul_, 'R (196)
Then the factor of « is
galz) = [J(z = a”) (197)
€W



(c¢) Conjecture : When d # m — 1, d|2" — 1.
Take [,, as

l

Ly = max{ %‘ (2n" — 1) } (198)

Then this case can be treated similarly as the case (b), with [ replaced by [,,
and

W= Uiy R (199)

(ii) Non-ordinary case
This case can be treated in a similar way as the case (i). In particular,
we investigated the cases when n =4,d =5,% = 3.

Notice that in these cases, d f(2' —1),1 <"1 <n — 1.
8 Decomposable case

Assume that as a G/(k;/k)-module, the representation of o is a direct sum of
indecomposable subrepresentations H,.

cov(C/[F’l(:Jc)) = H$---&H, (200)
r>2, fH =2 (201)

Define
Hi = @zl (202)

By the condiction (C),
C/Hi=C/H =P Vi (203)

Ifr >3,

C/(HZ' N H]’) = C/(@l;ﬁi,jHl) =P (204)

24



8.1 Char(k) # 2 case
When char(k) # 2, by (204)

an<2 Vi (205)
— T:2,n1:1,n2—2 dzg,gozl (206)

We have then a Covering as follows.

//// \\\\ E%///’ P
\ A N
SN A

Then P'(¢) = C'/¢ where ¢ is the hyperelliptic involution,

cov(P'(t)/PY(z) 27 ¢ = ( f _bﬁ ) (207)
b = D—p (208)
D = (8-p)(B-p") (209)

and b~ do Tp~ “dodo.
To= o)+ (1) +7 6 (210)

Now consider P!(u) = €/ < °¢ > defined by
u o= 47 (1) (211)
Since under 7 ¢

B3+VD — 28 (212)
BT+ VD1 —s 2(87 £ VD3) (213)
BT £ VDE s 287 (214)

25



Denote

. (a c)
1 () 1 —a

is the solutions of
P! ()

The fixed points of ¢

X?—2aX —¢c=0
Then one has

2a = 2(B+p57)
—c = 4[31""12

or

o = (PN A
P T (B

Co: (y(u—o(u)* = ¥ ((u+ (u))* — dug(u))
= v (2® = 2ud(u))

B B u? — 4[31""12
r = u+olu) = m
2B 487 )u —4pt
uqb(u) - U — 2(ﬁ+ﬁq2)

= 25+ ") — 4T
Thus since the P'(s) is defined by
P'(s): s* = a’+br+e, a,bc ek
One has
Co: * = (az?+ba+c)(x—4(8+ 57 )x +163+7)
= (az® +ba +c)(x — 48)(x — 457)
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(215)

(216)

(217)
(218)

(219)

(220)
(221)

(222)

(223)

(224)

(225)

(226)
(227)



Therefore, we can assume that Cy has the form (a? = 40)
Co: y* = (ax® +bx+c)(z—a)(z—a?) (228)
When (go,d) = (1,3), this curve corresponds to the cases

y' = (v—a)(x—a’)(z—p)x -5 (229)
B = Aa, FJA€GLyk), Tr(A)=0 (230)

8.2 Char(k) =2 case

When Char(k) = 2, by the Theorem 1, we know that C' is ordinary.
Let r > 3, then oo is the only ramification point of the covering ¢ —
P!'(z). Thus r = 2 and go = 1. We have now a covering diagram as follows.

P!(s) Co P'(t)
N

Now we show the explicit equations of C' and Cy. Denote L;,1 = 1,2 as
two k-linear map defined in (21).

G = < {UZAZ}; > (232)
PTos {Ul)\i}1<l< 7 (233)

(G H] = 2 (234)
w = Tt (235

pi = H (i +p) (236)
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then two degree two covering P! (w;)/P'(x),i = 1,2 are defined as

bek, x40 = w(u+p) (= H(51+M))a

nEGT

é = uy(uz +p2) (= H(SQ—I_/“L))

nEG

C' is then defined by

¢ H(52+M)<H(51+/~‘)‘|‘b>:

nEG2 nEGT
1
]:FD 82

\/

Now, redefine

vy = u(ug +p1)
vy = uz(uz + p2)
— 1 —|— bUl = V1V9
Let
w o= R
L1 P2
1 1
— witw = U—;—F—(——I-b)
P1 102
v3 b 1
(viw)’ + v (vw) = S+ Svf + v
1 P2 2
Denote
T
P
U1
r = —
P

(237)

(238)

(239)

(240)
(241)
(242)
(243)

(244)

(245)

(246)

(247)



The definition equation of Cy is

b 1 \?
Co: y2—|—:1;y::1;3—|——2:1;2—|—< ):1; (248)

2 P1P2

When either ny or ny is 1, C' is hyperelliptic.
For an example, (ny,n2) = (2,1),d =3, Ay = py = 1,

Co: v 4oy = 24 brt+cx (249)
Tr(c) = 0, c€ks\k (250)
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9 Lists of classifications

List 1: Classification for chark # 2
g(Co) d,n Co hyper/non #C
1 d=2,n=2 y? = (z — a)g(z) Hyper O(q?)
d=5n=4 Y =(z—a)(z —a?)(z —aT)(z —a?) Non-hyper | O(q¢?)
V= (o= a)e—at)(a— ATz — 67) Ol
d=3,n=2 either a, € ks \ k
or o€ kg\ (kyUks), ﬁ:oﬂ3
Co:Hyper < JA € GLy(k),=A-a,Tr(A) =0 Hyper O(q?%)
d=7,n=3 y2:(x—oe)(x—oﬂ)(x—oﬂz)(w—oﬂr), r=4,5 Nonhyper | O(q*) ?
2 [d=2n=2 y* = (v — a)g(2) Hyper | O(q")
v = (e —a)(z—a) (e - B)(z - B) (- 7)(z -7
d=3,n=3 either o € kg \ k3, 3= oy =al Nonhyper | O(¢%)?
or acke\ (kyUks),B=0a? v=k\k
or a, B,y € ks \ k
3 d=2,n=2 y? = (z — a)g(z) Hyper O(q%)
v’ =(r-a)(z—al)(z—B)(z - )z —v)(z -7
x(z = d)(z — 87)
d=3,n=2 | Either a € ka2 \ (ks Uky), 5 = 04‘13,7 =a?,§=0a? | Nonhyper O(¢*)?
or a€kg\ ks, 8=at ,y=0a? §€ks\ k
or a€kg\ (kyUks),f=0a? v¢€ks\ (kyUks),d =a?
or a€kg\ (kyUks),p=a? 7v,6€ks\k
or a,B,7,6 € ks \ k
P = (- ) — ) — o)z — o)
d=7,n=3 x(z—B)(x— (e —87) (& —57), r=4,5| Nonhyper | O(q'1)?
either a€kig\ (k2 Ukr), 0= ol
a, B €k \ k
T OE— e )= aT)
x(a = @)@ =) (@ - a? ) (@ - at”)
d=15n=4| or =(z — Oé)($ —af)(z — a®)(x — a?) Nonhyper | O(q'%)?
“( - a?)(z — al') (& — ) (s — a")
o € ks \ k
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List 2 : Classification for char(k) =2
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9(Co) d,n Ordinary Co Hyper #Co
1 d= ordinary y? 4+ 2y = 2° + ax? + ba Hyper O(q?%)
n = non-ordin y2 +y= ar® +baxt+cx+d Hyper
al=a#0,004+b#£0o0rc?+c#0
d=14 ordinary yi4+ oy =23 +cx Hyper O(¢®)
n=3 c€ky\kyTr(c)=0
non-ordin y2 +y= ar® +baxt+cx+d Hyper
al=a#0,Trb)=Tr(c)=Tr(d)=0
borcé€ky\ky
d=2"—1 (1) “g(z) =g(x),n > 2 O(¢>1)
"2 V9ol = J(2), L) =0
ordinary The same as above Hyper O(q")?
eg.n=>2
y? 4 2y = 2% + ax? + ba O(q?)
ack,Trb)=0
ordinary (2) “¢g(z) # g(z),d=3,n=2 O(g*)?
g(x) = (z +a?)(z + o), € ks \ k
Tr((e + a)f) = 0
2 d=2 v+ g2y = f(2) Hyper | O(q")
n=2 deg f(z) = 5,deg, g(z) < 2
7f = f+ g%l € k[z],degl = 1,2
v +g(2)y = f(2) O(q°)
d=14 deg f(z) = 5,deg, g(z) < 2 Hyper
n=3 f=F4 1€ kyfa],
degl=1,2,deg({+°1=1,2)
d=2" -1 7g(z) =g(x)
n>2 v’ + 9@y =f(z), L(f) =0 Nonhyper | O(¢>")
3 |d=2n=2 v +g(@)y = flz) (1) Hyper O(¢°)
d=4,n=3 v +g(@)y = fz) (+2) Hyper | O(¢")?
d=2"—1 (1) 7g(x) = g(z)
v +g(@)y=fz), L(f) =0 Nonhyper | O(¢"*+!)
(2) 7g(z) # g(2)
Either g = gy(2)(z 4+ a?)(z 4+ a? ), o0 € k3 \ k
d=23 g1 € k[z],deg gy <2,L((z +a)%f) =0 Nonhyper
Or g=(z+al)(z+a”)?
a€ks\k L((z+a)'f)=0
d=17 g=(r+a")(z+a”)(@+a’)(@+a”),
ordinary r=4,5, a € kr\k, Nonhyper
L((z +a” ) (@ +a”) (@ +a”)2f) =0 (*3)
d=15 ordinary g=(x+a)(z+a)(z+a?)(z+a), Nonhyper

aeks\kL((z+a)2f)=0  (x3)
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(*1) With the same conditions as go = 2,d = n = 2.

(*2) With the same conditions as go =2,d =4,n =3

(*3) Here "=" means = 0 mod L((* + g().

Note: Ordinary nonhyper curves also exist for go = 1,d = (2" — 1)(2"271),
2 < myyng, (21 — 1,27 — 1) =1
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