
Non-Trivial Bla
k-Box Combiners for

Collision-Resistant Hash-Fun
tions don't Exist

Krzysztof Pietrzak

?

D�epartement d'Informatique,

�

E
ole Normale Sup�erieure, Paris

pietrzak�di.ens.fr

Abstra
t. A (k; `)-robust 
ombiner for 
ollision-resistant hash-fun
tions

is a 
onstru
tion whi
h from ` hash-fun
tions 
onstru
ts a hash-fun
tion

whi
h is 
ollision-resistant if at least k of the 
omponents are 
ollision-

resistant. One trivially gets a (k; `)-robust 
ombiner by 
on
atenating

the output of any `� k + 1 of the 
omponents, unfortunately this is not

very pra
ti
al as the length of the output of the 
ombiner is quite large.

We show that this is unavoidable as no bla
k-box (k; `)-robust 
om-

biner whose output is signi�
antly shorter than what 
an be a
hieved

by 
on
atenation exists. This answers a question of Boneh and Boyen

(Crypto'06).

1 Introdu
tion

A fun
tion H : f0; 1g

�

! f0; 1g

v

is a 
ollision-resistant hash-fun
tion (CRHF),

if no eÆ
ient algorithm 
an �nd two inputs M 6= M

0

where H(M) = H(M

0

),

su
h a pair (M;M

0

) is 
alled a 
ollision for H .

1

In the last few years we saw several atta
ks on popular CRHFs previously

believed to be se
ure [17, 18℄. Although provably se
ure

2

hash-fun
tions exist

(see e.g. [3℄ and referen
es therein), they are rather ineÆ
ient and rarely used in

pra
ti
e. As we do not know whi
h of the CRHFs used today will stay se
ure, it

is natural to investigate 
ombiners for CRHFs. In its simplest form the problem

is the following: given to hash-fun
tions

H

1

; H

2

: f0; 1g

�

! f0; 1g

v

;


an we 
onstru
t a new hash-fun
tion whi
h is 
ollision-resistant if either H

1

or

H

2

is? The answer is that of 
ourse we 
an, just 
on
atenate the outputs:

H(X) = H

1

(X)kH

2

(X): (1)

?

Part of this work is supported by the Commission of the European Communities

through the IST program under 
ontra
t IST-2002-507932 ECRYPT.

1

This de�nition is very informal as there are some issues whi
h make it hard to have a

de�nition for 
ollision-resistant hash-fun
tions whi
h is theoreti
ally and pra
ti
ally

satisfying, see [14℄ for re
ent dis
ussion on that topi
.

2

Provably se
ure means that �nding a 
ollision 
an be shown to be at least as hard

as solving some 
on
rete (usually number theoreti
) problem.



As any 
ollision M;M

0

for H is also a 
ollision for H

1

and H

2

, if either H

1

or

H

2

is 
ollision-resistant, so is H . Unfortunately the length of the output of H

is the sum of the output lengths of H

1

and H

2

, this makes the 
ombiner quite

unattra
tive for pra
ti
al purposes.

1.1 The Boneh-Boyen and Our Result

Boneh and Boyen [2℄ ask whether one 
an 
ombine CRHFs su
h that the output

length is (signi�
antly) less than what 
an be a
hieved by 
on
atenation. They

prove a �rst negative result in this dire
tion, namely that there is no bla
k-box


onstru
tion for 
ombining CRHFs in su
h a way that the output is shorter

than what 
an be a
hieved by 
on
atenation under the additional assumption

that this 
ombiner queries ea
h of the 
omponents exa
tly on
e. They ask as

whether a similar impossibility result 
an be obtained in the general 
ase where

the 
ombiner is allowed to query the 
omponents several times. We answer this

question in the aÆrmative: any 
ombiner for ` fun
tions with range f0; 1g

v

must

have output length at least (v � O(log(q)))` bits

3

, where q is the number of

ora
le 
alls mabe by the 
ombiner. Stated in asymptoti
 terms, if q 2 2

o(v)

is

subexponential, then the output length is in (1 � o(1))v`, and if q is 
onstant

the output length is in v`�O(1), this must be 
ompared to v` whi
h is trivially

a
hieved by 
on
atenation.

(k; `)-Robust Combiner.We a
tually 
onsider the more general question whether

se
ure and non-trivial (k; `)-robust 
ombiners for 
ollision-resistant hash-fun
tions

exist. A (k; `)-robust 
ombiner is 
ollision-resistant, if at least k (and not just

one) of the 
omponents used are se
ure. We trivially get a (k; `)-robust 
ombiner

by 
on
atenating any `�k+1 of the 
omponents,

4

whi
h gives an output length

of v(`�k+1). We show that this 
annot be signi�
antly improved as any (k; `)-

robust 
ombiner must have output length at least (v�O(log(q)))(`� k+1)� `.

The main te
hni
al 
ontribution of this paper is Lemma 2, whi
h generalizes

(and as a spe
ial 
ase 
ontains the statement of) Theorem 3 from [2℄. Roughly,

this lemma states that there exist hash-fun
tions and a 
ollision for any 
ombiner

with suÆ
iently short output, su
h that this 
ollision does not trivially lead to


ollisions for all

5

of the hash-fun
tions. The proof of this lemma follows from a

simple appli
ation of the probabilisti
 method, and in parti
ular is mu
h simpler

than the proof of Theorem 3 in [2℄.

1.2 Related Work

Combiners. The idea of 
ombining two or more 
ryptographi
 
omponents in

order to get a system whi
h is se
ure whenever at least one of the underlying

3

In this paper all logarithms are to base 2.

4

We'll look at this 
onstru
tion in more detail in the next se
tion.

5

Or for `� k + 1 of the hash-fun
tions if we 
onsider (k; `)-robust 
ombiners.



primitives is se
ure is quite old.

6

The early results are on symmetri
 en
ryp-

tion s
hemes [1, 6, 11℄. Combiners for asymmetri
 primitives were 
onstru
ted

by Dodis and Katz [5℄ (for CCA se
ure en
ryption s
hemes) and Harnik et al.

[7℄ (for key-agreement). The general notion of a 
ombiner was put forward by

Herzberg [8℄ who 
alls them \tolerant 
ombiners". In re
ent works one often


alls them \robust 
ombiners", a term introdu
ed in [7℄. Combiners have been

generalized in several ways:

(k; `)-Robust Combiners: [7℄ put forward the notion of (k; `)-robust 
ombin-

ers as dis
ussed in the last se
tion. Su
h 
ombiners are only guaranteed to

be se
ure if at least k (and not just one) of the ` 
omponents used is se
ure.

Interestingly, for natural primitives as statisti
ally hiding 
ommitments [8℄

and oblivious transfer [7℄ only 2-3 but no 1-2 
ombiners are known.

Cross-Primitive Combiners: In a 
ross-primitive 
ombiner the 
ombined prim-

itive is di�erent from the 
omponents used, one 
an think of this as simul-

taneously being a redu
tion and a 
ombiner. This notion was introdu
ed by

Meier and Przydatek [12℄ who 
onstru
t a 1-2 private information retrieval

to oblivious transfer 
ross-primitive 
ombiner, whi
h is interesting as normal

1-2 
ombiners for oblivious transfer might not exist [7℄.

Effi
ien
y and Other Parameters: In pra
ti
e the mere existen
e of a


ombiner is not enough, as the parameters of a 
ombiner are important. EÆ-


ien
y is always of 
on
ern, although for some primitives like bit-
ommitments

only very ineÆ
ient 
ombiners are known [8℄, for most primitives where 
om-

biners are known to exist, also eÆ
ient realizations are known [7, 8℄. Besides

eÆ
ien
y, for di�erent primitives also other parameters are important, in

parti
ular this paper is about the output-length of 
ombiners for CRHFs.

Collision Resistan
e. 
ollision-resistant hash-fun
tions are very important

and subtle [14℄ 
ryptographi
 primitives whi
h have attra
ted a lot of resear
h,

even more in the re
ent years as widely used (presumably) 
ollision-resistant

hash-fun
tions as MD5 or SHA-1 have been broken [17, 18℄. Here we only mention

some of the generi
 results on CRHFs.

Simon [16℄ shows that 
ollision-resistant hash-fun
tions 
annot be 
onstru
ted

form one-way fun
tions via a bla
k-box redu
tion. On the positive side, Naor and

Yung [13℄ show that for some appli
ations (in parti
ular for signature s
hemes)


ollision resistan
e is not ne
essary, as universal one-way hash-fun
tions are

enough. Those 
an be 
onstru
ted from one-way fun
tions [10, 15℄.

Merkle and Damg�ard show that by iterating a CRHF with �xed input length,

one gets a CRHF for inputs of arbitrary length. Most CRHFs used today follow

this approa
h. Coron et al. [4℄ show that the Merkle-Damg�ard 
onstru
tion does

not give a random fun
tion if instantiated with a random fun
tion (whi
h was

not the design goal of this 
onstru
tion), but that this 
an be a
hieved with

6

We also see many 
ombiners in the physi
al world, for example one often has several

di�erent lo
ks on a door. This does not to simply in
rease the time a burglar needs

to break the k lo
ks by a fa
tor of k, but there's hope that some parti
ular lo
k

might turn out to be mu
h harder to 
ome by than the others.



some small modi�
ations. Joux [9℄ shows that for iterated hash-fun
tions (like

the Merkle-Damg�ard 
onstru
tion) �nding many values whi
h hash to the same

value is not mu
h harder than �nding an ordinary 
ollision. As a 
onsequen
e


on
atenating the output of su
h hash-fun
tions does not in
rease the se
urity:

let H

1

; H

2

be iterated hash-fun
tions with v bits output, then one 
an �nd a


ollision for H(X) = H

1

(X)kH

2

(X) in time O(v2

v=2

).

2 Combiners For CRHFs

Informally, a (k; `)-robust 
ombiner for CRHFs is a 
onstru
tion (modeled as an

ora
le 
ir
uit C) whi
h, if instantiated with any ` hash-fun
tions H

1

; : : : ; H

`

:

f0; 1g

�

! f0; 1g

v

, is 
ollision-resistant if at least k of the H

i

's are. In order

to show that a 
onstru
tion is a (k; `)-robust 
ombiner, one must provide an

eÆ
ient pro
edure P whi
h given two 
olliding inputs for the 
ombiner, �nds


ollisions for at least ` � k + 1 of the underlying H

i

's. In this paper we only


onsider bla
k-box 
ombiners as de�ned in [7℄, this means that C and P are

only given ora
le a

ess to the H

i

's.

The following de�nition of a (k; `)-robust 
ombiner is a generalization of the

de�nition given in [2℄, where only the 
ase k = 1 was 
onsidered.

De�nition 1 A 
ombiner for ` 
ollision-resistant hash-fun
tions f0; 1g

�

! f0; 1g

v

is a pair (C;P ) where C is an ora
le 
ir
uit and P is an ora
le probabilisti


polynomial-time Turing ma
hine (PPTM)

7

C : f0; 1g

m

! f0; 1g

n

P : f0; 1g

2m

! f0; 1g

�

:

There are ` types of ora
le gates (tapes) in C (P ). With B

H

1

;:::;H

`

(X) (where B

is C or P ) we denote the output of B on input X when the ` types of ora
le gates

are instantiated with fun
tions H

1

; : : : ; H

`

: f0; 1g

�

! f0; 1g

v

respe
tively.

8

We say that P k-su

eeds on M;M

0

2 f0; 1g

�

and ora
les H

1

; : : : ; H

`

if its

output 
ontains 
ollisions for all but at most k � 1 of the H

i

's, i.e. for

P

H

1

;:::;H

`

(M;M

0

)! (U

1

; : : : ; U

`

; U

0

1

; : : : ; U

0

`

)

we have

9J � f1; : : : ; `g; jJ j � `� k + 1 : (U

i

; U

0

i

) is a 
ollision for H

i

:

Let Adv

k

P

[(H

1

; : : : ; H

`

); (M;M

0

)℄ denote the probability (over P 's 
oin tosses)

that P

H

1

;:::;H

`

(M;M

0

) k-su

eeds. Then (C;P ) is an �-se
ure (k; `)-
ombiner,

if for all (
ompatible) H

1

; : : : ; H

`

and all 
ollisions (M;M

0

) on C

H

1

;:::;H

`

we have

Adv

k

P

[(H

1

; : : : ; H

`

); (M;M

0

)℄ > 1� �:

We say that (C;P ) is an (k; `)-robust 
ombiner if it is �-se
ure for a small �.

9

7

The only reason P is de�ned as a Turing ma
hine and not as a 
ir
uit is that we

don't want to put an a priori bound on the output length of P .

8

In [2℄ the ranges of the H

i

's were allowed be di�erent, for the sake of exposition we

drop this generalization.

9

Here \small" usually means negligible in some se
urity parameter.



For example 
onsider the following (k; `)-robust 
ombiner (C;P )

C

H

1

;:::;H

`

(M)! H

1

(M)k : : : kH

`�k+1

(M)

P

H

1

;:::;H

`

(M;M

0

)! (M; : : : ;M); (M

0

; : : : ;M

0

)

As any 
ollision M;M

0

for C

H

1

;:::;H

`

is a 
ollision for H

i

for i = 1; : : : ; `� k+1,

Adv

k

P

[(H

1

; : : : ; H

`

); (M;M

0

)℄ = 1:

So (C;P ) 
an be 
onsidered a se
ure (k; `)-robust 
ombiner, as from any 
ollision

on C

H

1

;:::;H

`

we get from P 
ollisions for all but k � 1 of the H

i

's, thus if k of

the H

i

's are se
ure, also C

H

1

;:::;H

`

must be se
ure. The output length of C is

n = v(`� t+1), by the following theorem this 
annot be signi�
antly improved.

Theorem 1 Let (C;P ) be a (k; `)-robust 
ombiner, where C : f0; 1g

m

! f0; 1g

n

has q

C

ora
le gates and P makes at most q

P

ora
le 
alls. Suppose that

n < (v � 2 log(2q

C

))(`� k + 1)� `� 1 and m > n:

Then there exist M;M

0

2 f0; 1g

m

and fun
tions

^

H

i

: f0; 1g

�

! f0; 1g

v

for

i = 1; : : : ; ` relative to whi
h

Adv

k

P

[(

^

H

1

; : : : ;

^

H

`

); (M;M

0

)℄ �

(q

P

+ q

C

)

2

+ k

2

v

:

For the spe
ial 
ase where k = 1 and C queries ea
h

^

H

i

exa
tly on
e (whi
h are

the 
onstru
tions 
onsidered in [2℄) the bound on n 
an be improved to

n < v`� 1 and m > n

or

n < v` and m� 1 > n:

The last statement slightly improves on the main result from [2℄ where a stronger

n < m � log ` bound was needed in order to get n < v`. Following [2℄, to

prove Theorem 1 it is suÆ
ient to prove that hash-fun
tions H

1

; : : : ; H

`

and a


ollision M;M

0

exists where during the 
omputation of C

H

1

;:::;H

`

on inputs M

andM

0

at least k of the H

i

's are not queried on two distin
t inputs X;X

0

where

H

i

(X) = H

i

(X

0

). Note that this means that one does not trivially get a 
ollision

for those H

i

's when learningM;M

0

. Let J � f1; : : : ; `g; jJ j = k be the indi
es of

these k H

i

's. We prove the existen
e of su
h H

i

's andM;M

0

in Lemma 2 below.

Then, from su
h H

1

; : : : ; H

`

and M;M

0

we 
an get the

^

H

1

; : : : ;

^

H

`

as required

by Theorem 1, by setting

^

H

i

(X) = H

i

(X) for all inputs X whi
h appear as

input to H

i

in the 
omputation of C

H

1

;:::;H

`

(M) or C

H

1

;:::;H

`

(M

0

), and

^

H

i

(X) is

assigned a random value otherwise. ClearlyM;M

0

is also a 
ollision for C

^

H

1

;:::;

^

H

`

,

moreover all

^

H

i

where i 2 J are \very" 
ollision-resistant, as we just randomly

de�ned their outputs, ex
ept on a subset of inputs whi
h itself does not 
ontain

a 
ollision, Lemma 1 below is a formal statement of this intuitive argument.



Proof (of Theorem 1). The theorem follows from Lemmata 1 and 2.

In the lemmata below

10

let

{ W

i

(X) be the set of ora
le queries toH

i

made while evaluatingC

H

1

;:::;H

`

(X).

{ V

i

(X) = fH

i

(W ) :W 2W

i

(X)g be the set of 
orresponding outputs (taken

without repetition).

Lemma 1 Let (C;P ) be a (k; `)-robust 
ombiner, where C has q

C

ora
le gates

and P makes at most q

P

ora
le 
alls. Assume there exist ora
les H

i

: f0; 1g

�

!

f0; 1g

v

; i = 1; : : : ; ` and messages M;M

0

su
h that

{ M 6=M

0

and C

H

1

;:::;H

`

(M) = C

H

1

;:::;H

`

(M

0

).

{ jV

j

(M)[V

j

(M

0

)j = jW

j

(M)[W

j

(M

0

)j for at least k di�erent j 2 f1; : : : ; `g.

Then there exist deterministi


^

H

i

: f0; 1g

�

! f0; 1g

v

; i = 1; : : : ; ` relative to

whi
h

Adv

k

P

[(

^

H

1

; : : : ;

^

H

`

); (M;M

0

)℄ �

(q

P

+ q

C

)

2

+ k

2

v

:

Proof. Let J � f1; : : : ; `g; jJ j = k be the indi
es of the k hash-fun
tions for

whi
h no 
ollision o

urs during the 
omputation of C

H

1

;:::;H

`

on input M and

M

0

, i.e.

8j 2 J : jV

j

(M) [V

j

(M

0

)j = jW

j

(M) [W

j

(M

0

):

For i 62 J we let

^

H

i

:= H

i

, and for ea
h i 2 J let R

i

: f0; 1g

�

! f0; 1g

v

be

uniformly random and

^

H

i

(W ) :=

�

H

i

(W ) if W 2W

i

(M) [W

i

(M

0

)

R

i

(W ) otherwise

Note that C

^

H

1

;:::;

^

H

`

(M) = C

^

H

1

;:::;

^

H

`

(M

0

) as for ea
h i, H

i

(W ) =

^

H

i

(W ) for

inputs W 2W

i

(M) [W

i

(M

0

) whi
h 
ome up on the 
omputation of C

H

1

;:::;H

`

on inputs M;M

0

, let Q denote all those inputs together with the 
orresponding

outputs.

Q =

`

[

i=1

fV

i

(M);W

i

(M);V

i

(M

0

);W

i

(M

0

)g

Let P

0

be the ora
le PPTM whi
h makes at most q

P

ora
le 
alls and maximizes

the probability � de�ned below.

� = Pr

P

0

^

H

1

;:::;

^

H

`

(Q)!fU

1

;:::;U

`

;U

0

1

;:::;U

0

`

g℄

[9i 2 J : U

i

6= U

0

i

^

^

H

i

(U

i

) =

^

H

i

(U

0

i

)℄ (2)

� is an upper bound on Adv

k

P

[(

^

H

1

; : : : ;

^

H

`

); (M;M

0

)℄, as one possibly strategy

for P

0

is to �rst 
ompute M;M

0

, whi
h given Q 
an be done without a

ess

to the

^

H

i

ora
les, and then simulate P

^

H

1

;:::;

^

H

`

(M;M

0

) and output the output

of this simulation.

11

To save on notation let P

�

denote P

0

^

H

1

;:::;

^

H

`

(Q). We say

10

Our Lemma 1 is basi
ally Theorem 2 from [2℄, the only di�eren
e is that we 
onsider

(k; `)-robust 
ombiners whereas [2℄ were only interested in the 
ase k = 1.

11

The reason we give away the full Q is that that M;M

0

will usually leak some in-

formation on Q, and the simplest way to deal with this leakage is to simply assume

that P

0

knows all those values.



that P

�

found a 
ollision if for some

12

^

H

i

; i 2 J it makes an ora
le query

^

H

i

(X)

where either for a previous query X

0

6= X to

^

H

i

we have

^

H

i

(X) =

^

H

i

(X

0

) or

^

H

i

(X) 2 V

i

(M) [V

i

(M

0

) and X 62W

i

(M) [W

i

(M

0

). For i = 1; : : : ; q

P

let C

i

denote the event that P

�

found a 
ollision after the i'th ora
le query is made. If

the i'th ora
le query is to a

^

H

j

where j 62 J or a query whi
h has already been

made we 
annot get a 
ollision, so

Pr[C

i

j:C

i�1

℄ = 0:

So assume that the i'th ora
le query is a new query X to a

^

H

j

where j 2 J . Then

^

H

i

(X) = R

i

(X) is uniformly random and independent of any previous outputs,

thus the probability that it will 
ollide with any of the � i previous queries to

^

H

i

or with one the � 2q

C

values in V

i

(M) [V

i

(M

0

) is at most (2q

C

+ i)=2

v

,

we get

Pr[C

q

P

℄ =

q

P

X

i=1

Pr[C

i

jC

i�1

℄ �

q

P

X

i=1

2q

C

+ i

2

v

�

q

P

(2q

C

+ q

P

)

2

v

�

(q

P

+ q

C

)

2

2

v

:

Even if :C

q

P

, i.e. P

�

does not �nd a 
ollision for some

^

H

i

; i 2 J , there still is a

tiny 
han
e that P

�

guesses U

i

; U

0

i

where

^

H

i

(U

i

) =

^

H

i

(U

0

i

) for some of the i 2 J .

The probability of this is at most jJ j=2

v

� k=2

v

. Taking everything together:

Adv

k

P

[(

^

H

1

; : : : ;

^

H

`

); (M;M

0

)℄ � � � Pr[C

q

P

℄ + k=2

v

�

(q

P

+ q

C

)

2

+ k

2

v

: (3)

We're almost done, ex
ept that in the above inequality, the

^

H

i

's are not deter-

ministi
 as required by the lemma, but randomized (as the R

i

's were 
hosen at

random). We 
an get �xed

^

H

i

's for whi
h (3) holds by 
hoosing the R

i

's so they

minimize the left hand side of (3). ut

Lemma 2 Let C : f0; 1g

m

! f0; 1g

n

be as in the previous lemma. Then when-

ever

n < (v � 2 log(2q

C

))(`� k + 1)� `� 1 and m > n

there exist fun
tions H

1

; : : : ; H

`

and messages M;M

0

su
h that

{ M 6=M

0

and C

H

1

;:::;H

`

(M) = C

H

1

;:::;H

`

(M

0

).

{ jV

j

(M)[V

j

(M

0

)j = jW

j

(M)[W

j

(M

0

)j for at least k di�erent j 2 f1; : : : ; `g.

For the spe
ial 
ase where k = 1 and C queries ea
h H

i

exa
tly on
e (whi
h are

the 
onstru
tions 
onsidered in [2℄) the bounds on n 
an be improved to

n < v`� 1 and m > n

or

n < v` and m� 1 > n:

12

Note that we don't 
are about 
ollision for

^

H

i

; i 62 J as Q 
ontains 
ollisions for

those

^

H

i

's.



Proof. Consider the following random experiment. First ` fun
tionsH

i

: f0; 1g

�

!

f0; 1g

v

are sampled uniformly at random.

13

Then M;M

0

2 f0; 1g

m

are sampled

uniformly at random. We de�ne the events E

1

and E

2

as

E

1

() M 6=M

0

and C

H

1

;:::;H

`

(M) = C

H

1

;:::;H

`

(M

0

)

E

2

() 9J � f1; : : : ; `g; jJ j > `� k

where 8j 2 J : jV

j

(M) [V

j

(M

0

)j 6= jW

j

(M) [W

j

(M

0

)j

We will show that Pr[E

1

℄ > Pr[E

2

℄, whi
h then implies Pr[E

1

^ :E

2

℄ > 0. This

will prove the lemma as it shows that random H

1

; : : : ; H

`

and M;M

0

have the

property as 
laimed by the lemma with non-zero probability, and thusH

1

; : : : ; H

`

and M;M

0

with this property exist.

As Pr[M = M

0

℄ = 2

�m

, Pr[C

H

1

;:::;H

`

(M) = C

H

1

;:::;H

`

(M

0

)℄ � 2

�n

and

m > n we get

Pr[E

1

℄ � 2

�n

� 2

�m

� 2

�n�1

: (4)

Let q

i

denote the number ofH

i

ora
le gates in C, note that

P

`

i=1

q

i

= q

C

. We 
an

upper bound Pr[E

2

℄ by the probability that the best ora
le algorithm A

H

1

;:::;H

`

whi
h 
an query the i'th ora
le H

i

at most 2q

i

times �nds a 
ollision for at least

` � k + 1 of the H

i

's.

14

As the H

i

's are all independent random fun
tions, the

best A 
an do is to query it i'th ora
le on 2q

i

distin
t inputs (whi
h ones is

irrelevant), by the birthday bound

15

the probability of �nding a 
ollision for any

H

i

is at most 2q

i

(2q

i

� 1)=2

v+1

, now

Pr[E

2

℄ � Pr[A

H

1

;:::;H

`

�nds `� k + 1 
ollisions ℄

�

X

J�f1;:::;`g

jJj=`�k+1

Pr[8i 2 J : A

H

1

;:::;H

`

�nds a 
ollision for H

i

℄

�

X

J�f1;:::;`g

jJj=`�k+1

Y

i2J

2q

i

(2q

i

� 1)

2

v+1

<

X

J�f1;:::;`g

jJj=`�k+1

(2q

2

C

)

`�k+1

2

v(`�k+1)

�

�

`� k + 1

`

�

(2q

2

C

)

`�k+1

2

v(`�k+1)

<

2

`

(2q

2

C

)

`�k+1

2

v(`�k+1)

:

13

One 
an't simply sample a H

i

as this would need in�nite randomness, but one 
an

use lazy sampling here, this means that H

i

(X) is only assigned a (random) value

when H

i

is a
tually invoked on input X.

14

This is an upper bound as one possible strategy for A

H

1

;:::;H

`

is to simply evaluate

C

H

1

;:::;H

`

on two random inputs M;M

0

to get su

ess probability exa
tly Pr[E

2

℄.

15

This bound states that when randomly throwing q balls into N bu
kets, some bu
ket

will 
ontain more than one element with probability at most q(q � 1)=2N .



From the above equation, (4) and n < (v� 2 log(2q

C

))(`� k+1)� `� 1 we now

get log(Pr[E

1

℄) > log(Pr[E

2

℄), and thus Pr[E

1

℄ > Pr[E

2

℄, as

log(Pr[E

1

℄) � log(2

�n�1

) = �n� 1 > �(v � 2 log(2q

C

))(`� k + 1) + `

and

log(Pr[E

2

℄) < log

�

2

`

(2q

2

C

)

`�k+1

2

v(`�k+1)

�

= �(v � 2 log(2q

C

))(`� k + 1) + `

Our estimate on Pr[E

2

℄ has some sla
k as to keep the expression simple. For

the spe
ial 
ase k = 1 and q

i

= 1; i = 1; : : : ; ` whi
h 
overs the 
onstru
tions


onsidered in [2℄ we get

Pr[E

2

℄ �

Y

i2f1;:::;`g

2q

i

(2q

i

� 1)

2

v+1

= 2

�v`

whi
h satis�es Pr[E

1

℄ > Pr[E

2

℄ already for n < v`� 1. If we additionally assume

that n < m� 1 (not just n < m) then we 
an strengthen (4) to Pr[E

1

℄ > 2

�n�1

and Pr[E

1

℄ > Pr[E

2

℄ holds for the optimal n < v`. ut
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