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Abstract. This paper studies the security of the block ciphers ARIA
and Camellia against impossible differential cryptanalysis. Our work im-
proves the best impossible differential cryptanalysis of ARIA and Camel-
lia known so far. The designers of ARIA expected no impossible differen-
tials exist for 4-round ARIA. However, we found some nontrivial 4-round
impossible differentials, which may lead to a possible attack on 6-round
ARIA. Moreover, we found some nontrivial 8-round impossible differ-
entials for Camellia, whereas only 7-round impossible differentials were
previously known. By using the 8-round impossible differentials, we pre-
sented an attack on 12-round Camellia without FL/FL−1 layers.
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1 Introduction

Both ARIA[1] and Camellia[2] support 128-bit block size and 128-,192-, and 256-
bit key lengths, i.e. the same interface specifications as the Advanced Encryption
Standard(AES). Camellia was jointly developed in 2000 by Nippon Telegraph
and Telephone Corporation (NTT) and Mitsubishi Electric Corporation (Mit-
subishi). It has now been selected as an international standard by ISO/IEC,
and also been adopted by cryptographic evaluation projects such as NESSIE
and CRYPTREC, as well as the standardization activities at IETF. It means
Camellia gradually become one of the most worldwide used block ciphers. There-
fore, a constant evaluation of its security with respect to various cryptanalytic
techniques is required. Camellia was already analyzed in many papers using
various attacks[3-10].

ARIA was designed by a group of Korean experts in 2003. In 2004, ARIA
was established as a Korean Standard block cipher algorithm (KS X 1213) by
the Ministry of Commerce, Industry and Energy. ARIA is a general-purpose in-
volutional SPN block cipher algorithm, optimized for lightweight environments
and hardware implementation. Its security was analyzed initially by the design-
ers internally, and later by the COSIC group of K.U. Leuven, Belgium[11]. They
analyzed the security of ARIA against differential and linear cryptanalysis[12,13],
truncated and higher-order differential[14], impossible differential[15], slide attack[16,17],
Integral attack[18], and other attacks[19−21].



Impossible differential means a differential that holds with probability 0, or
a differential that does not exist. Impossible differential attacks use impossible
differentials to derive the actual values of the keys, which has been used to attack
AES and get very good results[22-25].

In this paper, we examine the security of ARIA and Camellia against im-
possible differential attacks. The initial analysis of the security of Camellia to
impossible differential Cryptanalysis was given in [4]. They presented some non-
trivial 7-round impossible differentials for Camellia. We found some nontrivial
8-round impossible differentials, which may lead to a possible attack of Camellia
reduced to 12 rounds without FL/FL−1, the attack having complexity less than
that of exhaustive search to 12-round Camellia without FL/FL−1 layers.

As for ARIA, the designers expected that there was no impossible differentials
on 4 or more rounds in [1] and [26]. In this paper, we found some 4-round
impossible differentials, which lead to a possible attack of ARIA reduced to 6
rounds. The attack requires 2121 plaintext/ciphertext pairs and 2112 encryptions.

The contents of this paper are as follows: In Section 2 we give a brief descrip-
tion of ARIA and Camellia. In Section 3 we describe some 4-round ARIA im-
possible differentials and the impossible differential attack on 6-round ARIA. In
section 4, we describe some 8-round Camellia impossible differentials and present
the impossible differential attack on 12-round Camellia without FL/FL−1 lay-
ers. Finally, Section 5 summarizes this paper.

2 ARIA and Camellia

Due to space limitation, we only introduce ARIA and Camellia briefly. Details
are shown in [1] and [2].

2.1 Description of ARIA

ARIA is a substitution permutation network(SPN) and uses an involutional bi-
nary 16× 16 matrix in its diffusion layer. The 128-bit plaintexts are treated as
byte matrices of size 4×4 as the following. Every round applies three operations

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

to the state matrix:
Round Key Addition(RKA): This is done by XORing the 128-bit round key.
Substitution Layer(SL): Applying the 8 × 8 S-boxes 16 times in parallel on
each byte. There are two types of substitution layers to be used so as to make
the cipher involution.
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Diffusion Layer(DL): A linear map A : (F 8
2 )16 → (F 8

2 )16 is given by

(x0|x1| . . . |x15) → (y0|y1| . . . |y15),

where
y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,
y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,
y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,
y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,
y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,
y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,
y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,
y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

Note that the Diffusion layer of the last round is replaced by a round key
addition. We shall assume that the 6-round ARIA also has the diffusion layer
replaced by a round key addition.

2.2 Description of Camellia

Camellia is based on the Feistel structure and has 18 rounds (for 128-bit keys)
or 24 rounds (for 192/256-bit keys). The FL/FL−1function layer is inserted at
every 6 rounds. Before the first round and after the last round, there are pre-
and post-whitening layers which use bitwise exclusive-or operations with 128-
bit round subkeys, respectively. In this paper, we will consider camellia without
FL/FL−1function layer and whitening layers.
Let Lr−1 and Rr−1 be the left and the right halves of the rth round input, and kr

be the rth round subkey. Then the Feistel structure of Camellia can be written
as

Lr = Rr−1 ⊕ F (Lr−1, kr),

Rr = Lr−1.

here F is the round function defined below:

F : {0, 1}64 × {0, 1}64 −→ {0, 1}64
(X, kr) −→ Z = P (S(X ⊕ kr)).

where S and P are defined as follows:

S : (F 8
2 )8 −→ (F 8

2 )8

x1|x2|x3|x4|x5|x6|x7|x8 −→ y1|y2|y3|y4|y5|y6|y7|y8

y1 = s1(x1), y2 = s2(x2), y3 = s3(x3), y4 = s4(x4),
y5 = s2(x5), y6 = s3(x6), y7 = s4(x7), y8 = s1(x8).

here s1, s2, s3 and s4 are the 8× 8 boxes.

P : (F 8
2 )8 −→ (F 8

2 )8

y1|y2|y3|y4|y5|y6|y7|y8 −→ z1|z2|z3|z4|z5|z6|z7|z8
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z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8,
z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8, z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8,
z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8, z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8,
z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7, z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7.

The inverse of P is as follows:

P−1 : (F 8
2 )8 −→ (F 8

2 )8

z1|z2|z3|z4|z5|z6|z7|z8 −→ y1|y2|y3|y4|y5|y6|y7|y8

y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8,
y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8, y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8,
y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8, y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,
y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7, y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8.

3 Impossible Differential Cryptanalysis on
Reduced-round ARIA

3.1 Some 4-Round Impossible Differentials

In this subsection, we indicate some impossible differentials on 4-round ARIA
as shown in Fig.1. In this figure, we consider the 4-round impossible differen-
tial which is built in a miss-in-the-middle manner. A 2-round differential with
probability 1 is concatenated to a 2-round differential with probability 1, in the
inverse direction, where the intermediate differences contradict each other. The
4-round impossible differential is

(a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) 4-round−−−−−−→ (0|h|0|0|0|0|0|0|h|h|h|0|0|0|h|0)

where a and h denote any non-zero value.
We use XI

i and XO
i to denote the input and output of round i, while XS

i

denotes the intermediate values after the application of Substitution Layer(SL)
of round i. The first 2-round differential is obtained as follows:
The input difference XI

1 = (a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) is preserved through
the AddRoundKey operation of round 1. This difference is in a single byte,
and thus, the difference after the Substitution Layer(SL) of round 1 is still
in a single byte,i.e., XS

1 = (b|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) where b is an un-
known non-zero byte value. After the Diffusion Layer(DL) this difference be-
comes XI

2 = (0|0|0|b|b|0|b|0|b|b|0|0|0|b|b|0). This difference evolves after Ad-
dRoundKey operation and the Substitution Layer(SL) of round 2 into

XS
2 = (0|0|0|b3|b4|0|b6|0|b8|b9|0|0|0|b13|b14|0),

where b3, b4, b6, b8, b9, b13 and b14 are unknown non-zero byte values. Finally,
after the Diffusion Layer(DL) this difference evolves to

XO
2 = (c0|c1|c2|c3|c4|c5|c6|c7|c8|c9|c10|c11|c12|c13|c14|c15),
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DL
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c1  c5  c9   c13
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c3  c7  c11  c15
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e2  e6  e10 e14

e3  e7  e11 e15 

SL
-1

RKA

d0  d4  d8  d12

d1  d5  d9  d13

d2  d6  d10  d14

d3  d7  d11  d15

e11=0, e14 0,  

Hence d11=0, d14 0,

and  d11 d14

Contradiction!

DL
-1

f0       

f10

f15

SL
-1

RKA

h

h

    h

DL
-1

h

h      h 

       h   h 

zero differnece a, h     non-zero differences 

Fig.1. 4-Round Impossible Differentials of ARIA
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where each byte can be expressed as:

c0 = b3 ⊕ b4 ⊕ b6 ⊕ b8 ⊕ b9 ⊕ b13 ⊕ b14, c8 = b4 ⊕ b13,
c1 = b8 ⊕ b9, c9 = b6 ⊕ b14,
c2 = b4 ⊕ b6, c10 = b3 ⊕ b6 ⊕ b8 ⊕ b13,
c3 = b13 ⊕ b14, c11 = b3 ⊕ b4 ⊕ b9 ⊕ b14,
c4 = b8 ⊕ b14, c12 = b6 ⊕ b9,
c5 = b3 ⊕ b4 ⊕ b9 ⊕ b14, c13 = b3 ⊕ b6 ⊕ b8 ⊕ b13,
c6 = b9 ⊕ b13, c14 = b3 ⊕ b4 ⊕ b9 ⊕ b14,
c7 = b3 ⊕ b6 ⊕ b8 ⊕ b13, c15 = b4 ⊕ b8.

From the above equations, we get

c7 = c10 = c13 = b3 ⊕ b6 ⊕ b8 ⊕ b13,

c11 = c14 = b3 ⊕ b4 ⊕ b9 ⊕ b14.

Hence, the input difference XI
1 = (a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) evolves with

probability one into XO
2 which has same value in bytes 11 and 14, and XO

2 also
has same value in bytes 7, 10, and 13.

The second differential ends after round 4 with difference
XO

4 = (0|h|0|0|0|0|0|0|h|h|h|0|0|0|h|0). When rolling back this difference through
the Diffusion Layer(DL), we get the difference XS

4 = (h|0|0|0|0|0|0|0|0|0|h|0|0|0|0|h).
This difference has non-zero difference in bytes 0,10,and 15, thus the difference
evolves after the inverse of Substitution Layer(SL) and AddRoundKey operation
of round 4 into XI

4 = (f0|0|0|0|0|0|0|0|0|0|f10|0|0|0|0|f15) where f0, f10 and f15

are unknown non-zero byte values. When rolling back this difference through the
Diffusion Layer(DL), we get the difference

XS
3 = (e0|e1|e2|e3|e4|e5|e6|e7|e8|e9|e10|e11|e12|e13|e14|e15),

where each byte can be expressed as:

e0 = 0, e8 = f0 ⊕ f10 ⊕ f15,
e1 = f15, e9 = f0,
e2 = f10 ⊕ f15, e10 = f15,
e3 = f0 ⊕ f10, e11 = 0,
e4 = f0 ⊕ f15, e12 = 0,
e5 = f10 ⊕ f15, e13 = f0 ⊕ f10,
e6 = f0 ⊕ f10, c14 = f0,
e7 = 0, e15 = f10 ⊕ f15.

From the above equations, we know e11 = 0 and e14 = f0 6= 0. Therefore,
When rolling back this difference through the inverse of Substitution Layer(SL)
and AddRoundKey operation of round 3, we get the difference

XI
3 = (d0|d1|d2|d3|d4|d5|d6|d7|d8|d9|d10|d11|d12|d13|d14|d15),
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where d11 = 0 and d14 6= 0.
This difference contradicts the first differential as with probability one c11 =

c14 while the second differential predicts d11 6= d14 with probability 1. This
contradiction is emphasized in Fig.1.

Similarly, we can get other 4-round impossible differentials of ARIA, for
example,

(a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) 4-round−−−−−−→ (0|0|h|0|h|0|0|0|0|0|0|0|h|h|h|0),

(a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) 4-round−−−−−−→ (0|h|0|0|0|0|0|0|0|h|0|0|0|h|h|h),

(a|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0) 4-round−−−−−−→ (0|0|0|0|h|0|0|h|h|0|0|0|h|0|h|0).

3.2 6-Round Impossible Differential Attack

In this subsection, we describe an impossible differential cryptanalysis of ARIA
reduced to six rounds. The attack is based on the above four round impossible
differentials with additional one round at each of the beginning and the end as
in Fig.2. Note that the last round of ARIA does not have the diffusion layer.

    *  * 

       *   * 

    *      * 

*

RKA-k1

SL

   a   a  

a   a

   a       a

a

DL

 a    

*

*      * 

       *   * 

The 4-Round Impossible Differential 

RKA-k7

SL
-1

h

h      h 

       h   h

RKA-k6

       h 

h      h 

       h   h 

Fig.2. 6-Round Impossible Differential Attack to ARIA

The procedure is as follows:
Step 1 Choose structures of 256 plaintexts which differ only at the seven

bytes (3,4,6,8,9,13,14), having all possible values in these bytes. One structure
proposes 256 × 256 × 1

2 = 2111 pairs of plaintexts.
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Step 2 Take 264 structures (2120 plaintexts, 2175 pairs of plaintexts). Choose
pairs whose ciphertext pairs have zero difference at the eleven bytes (0,2,3,4,5,6,7,
11,12,13,15). The expected number of such pairs is about 2175 × 2−88 = 287.

Step 3 Guess the 40-bit value of the last round key k7 at the five bytes(1,8,9,10,14),
and perform the followings:

Step 3.1 For every remaining ciphertext pair (C, C∗), compute C5⊕C∗5 =
SL−1(C⊕k7)⊕SL−1(C∗⊕k7), choose pairs whose difference C5⊕C∗5 are same
at the five bytes (1,8,9,10,14). Since the probability is about p = (2−8)4 = 2−32,
the expected number of the remaining pairs is about 287 × 2−32 = 255.

Step 3.2 For every remaining ciphertext pair (C, C∗) consider the corre-
sponding plaintext pair (P, P ∗), for 56-bit value at the seven bytes (3,4,6,8,9,13,14)
of the subkey k1, calculate SL(P ⊕ k1) ⊕ SL(P ∗ ⊕ k1), and check whether
SL(P ⊕ k1) ⊕ SL(P ∗ ⊕ k1) are same at the seven bytes (3,4,6,8,9,13,14). If
yes, discard the candidate value of the seven bytes of k1 and the five bytes of k7.

Since such a difference is impossible, every key that proposes such a difference
is a wrong key. After analyzing 255 ciphertext pairs, there remain only about
256(1−2−48)2

55 ≈ 256e−27 ≈ 2−128 wrong values of the seven bytes of k1. Unless
the initial assumption on the five bytes of k7 is right, it is expected that we can
detect the whole 56-bit value of k1 for each 40-bit value of k7 since the wrong
value remains with the probability 2−88. Hence if there remains a value of k1,
we can assume the value k7 is right.

The time complexity of the attack is dominated by Step 3. For reducing the
time complexity of Step 3.1, we first compute C(5,1) ⊕C∗(5,1) and C(5,8) ⊕C∗(5,8),
and check whether C(5,1)⊕C∗(5,1) = C(5,8)⊕C∗(5,8), it needs only to guess two key
bytes. If yes, go on computing C(5,9) ⊕C∗(5,9), and so on. Thus Step 3.1 requires
about 4×2103(= 216×287+224×279+232×271+240×263) one round operations.
Step 3.2 requires about 6× 2111(= 240 × (216 × 255 + 224 × 247 + · · ·+ 256 × 215)
one round operations.

Similarly, we can derive the other bytes of k7 by using different impossible
differentials. Consequently, this attack requires about 2121 chosen plaintexts and
2112 encryptions of 6-round ARIA.

4 Impossible Differential Cryptanalysis on
Reduced-round Camellia

4.1 Some 8-Round Impossible Differentials

In [4], the authors show one impossible differential of 7-round Camellia with-
out input/output whitening, FL, or FL−1. In this subsection, we indicate one
impossible differential of 8-round Camellia as shown in Fig.3.

We now show the 8-round differential

(0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) 8-round−−−−−−→ (h|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0)

8



'

0
L =(0|0|0|0|0|0|0|0)

'

0
R =(a|0|0|0|0|0|0|0)

(b|0|0|0|0|0|0|0) 

(b|b|b|0|b|0|0|b) 
'

1
L =(a|0|0|0|0|0|0|0)

(b1|b2|b3|0|b5|0|0|b8)

(c1|c2|c3|c4|c5|c6|c7|c8)'

2
L =(b|b|b|0|b|0|0|b)

'

3L =(c1 a| c2|c3|c4|c5|c6|c7|c8)

X=(c1 a f|c2 f|c3 f|c4|c5 f|c6|c7|c8 f)

P
-1

(X)=( b1 f|b2 a|b3 a|a|b5 a|0|0|b8 a)

d6=d7=0, hence  e2=0.

Contradiction!

 e2 0.

PKS

KS P

KS P

KS P

'

4L =(d1 h| d2|d3|d4|d5|d6|d7|d8) KS P

'

5
L =(f|f|f|0|f|0|0|f) 

(d1|d2|d3|d4|d5|d6|d7|d8)

(e1|e2|e3|0|e5|0|0|e8)

KS P

'

6
L =(h|0|0|0|0|0|0|0)

KS P
(f|f|f|0|f|0|0|f) 

(f|0|0|0|0|0|0|0)

KS P

'

7
L =(0|0|0|0|0|0|0|0)

'

8
L =(h|0|0|0|0|0|0|0)

'

8
R =(0|0|0|0|0|0|0|0)

Fig.3. 8-Round Impossible Differentials of Camellia
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is impossible, where a and h denote any non-zero value.
The first 3-round differential is obtained as follows:
The input difference (L

′
0, R

′
0) = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0) becomes

(L
′
1, R

′
1) = (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0) through the first round transforma-

tion. After the subkey addition and S layer, L
′
1 becomes (b|0|0|0|0|0|0|0) where

b is an unknown non-zero byte value. After the linear transformation P we have
(L

′
2, R

′
2) = (b|b|b|0|b|0|0|b, a|0|0|0|0|0|0|0). This difference evolves after subkey

addition operation and the S-box layer of round 3 into (b1|b2|b3|0|b5|0|0|b8),
where b1, b2, b3, b5 and b8 are unknown non-zero byte values. Further, after the
linear transformation P this difference evolves to (c1|c2|c3|c4|c5|c6|c7|c8). Thus
we get

(L
′
3, R

′
3) = (c1 ⊕ a|c2|c3|c4|c5|c6|c7|c8, b|b|b|0|b|0|0|b).

The second 3-round differential ends with difference (L
′
8, R

′
8) = (h|0|0|0|0|0|0|0,

0|0|0|0|0|0|0|0). When rolling back this difference through 2-round transforma-
tion, we get the difference (L

′
6, R

′
6) = (h|0|0|0|0|0|0|0, f |f |f |0|f |0|0|f), where f is

an unknown non-zero byte value. After the subkey addition and S layer, L
′
5 = R

′
6

becomes (e1|e2|e3|0|e5|0|0|e8), where e1, e2, e3, e5 and e8 are unknown non-zero
byte values. Further, after the linear transformation P this difference evolves to
(d1|d2|d3|d4|d5|d6|d7|d8). Thus we get

(L
′
5, R

′
5) = (f |f |f |0|f |0|0|f, d1 ⊕ h|d2|d3|d4|d5|d6|d7|d8),

where d6 and d7 can be expressed as:

d6 = e2 ⊕ e3 ⊕ e5 ⊕ e8, d7 = e3 ⊕ e5 ⊕ e8.

If the first 3-round differential and second 3-round differential can build up
the 8-round differential, then L3, L5 and R5 must satisfy the following:

L4 = R5, P (S(R5 ⊕ k4)) = L3 ⊕ L5.

Hence we have S(R5 ⊕ k4) = P−1(L3 ⊕ L5). Because P−1 is a linear trans-
formation, we have

P−1(L
′
3 ⊕ L

′
5) = P−1(L

′
3)⊕ P−1(L

′
5)

= P−1(c1 ⊕ a|c2|c3|c4|c5|c6|c7|c8)⊕ P−1(f |f |f |0|f |0|0|f)
= P−1(c1|c2|c3|c4|c5|c6|c7|c8)⊕ P−1(a|0|0|0|0|0|0|0)⊕ P−1(f |f |f |0|f |0|0|f)
= (b1|b2|b3|0|b5|0|0|b8)⊕ (0|a|a|a|a|0|0|a)⊕ (f |0|0|0|0|0|0|0)
= (f ⊕ b1|b2 ⊕ a|b3 ⊕ a|a|b5 ⊕ a|0|0|b8 ⊕ a).

The s−boxes of Camellia are permutations, so we can get the sixth and
seventh byte difference in R

′
5 equal zero,i.e., d6 = d7 = 0. From the expression

of d6 and d7 we have d6 ⊕ d7 = e2. This contradicts with e2 6= 0.
Similarly, we can get other 8-round impossible differentials of Camellia, for

example,

(0|0|0|0|0|0|0|0, 0|a|0|0|0|0|0|0) 8-round−−−−−−→ (0|h|0|0|0|0|0|0, 0|0|0|0|0|0|0|0),

(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|0|0) 8-round−−−−−−→ (0|0|h|0|0|0|0|0, 0|0|0|0|0|0|0|0).
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4.2 12-Round Impossible Differential Attack

In this subsection, we describe an impossible differential attack of Camellia re-
duced to twelve rounds. The attack is based on the above 8-round impossible
differentials with additional three rounds at the beginning and one round at the
end as in Fig.4..

'

0L =P(v1|v2|v3|0|v5|0|0|v8 ) ( w|0|0|0|0|0|0|0) 
'

0R

'

1L =(u|u|u|0|u|0|0|u)

'

3R =(a|0|00|0|0|0|0|0)

'

2L =(a|0|00|0|0|0|0|0)

'

3L =(0| 0|0|0|0|0|0|0) 

PKS

KS P

KS P

'

11L =(h|0|0|0|0|0|0|0) KS P

'

11R =(0|0|0|0|0|0|0|0)

'

12L =(g|g|g|0|g|0|0|g) '

12R =(h|0|0|0|0|0|0|0)

8-round impossible differential 

Fig.4. 12-Round Impossible Differential Attack to Camellia

The procedure is as follows:
Step 1 Choose structure of plaintexts as follows:

L0 = P (x1|x2|x3|α4|x5|α6|α7|x8)⊕ (x|β2|β3|β4|β5|β6|β7|β8),
R0 = (y1|y2|y3|y4|y5|y6|y7|y8).

where xi(i = 1, 2, 3, 5, 8), yi(1 ≤ i ≤ 8), and x take all possible values in F 8
2 ,

αi, and βi are constants in F 8
2 . For each possible value of (x1, x2, x3, x5, x8, x, y1, . . . , y8),

we can get a unique 128-bit string (P (x1|x2|x3|α4|x5|α6|α7|x8)⊕(x|β2|β3|β4|β5|β6|β7|β8),
(y1|y2|y3|y4|y5|y6|y7|y8)). Also, for different value of (x1, x2, x3, x5, x8, x, y1, . . . , y8),
the corresponding 128-bit string is also different. Hence, a structure includes 2112

plaintexts, one structure proposes 2112 × 2112 × 1
2 = 2223 pairs of plaintexts.
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Step 2 Take 28 structures (2120 plaintexts, 2231 pairs of plaintexts). Choose
pairs whose ciphertext difference (L

′
12, R

′
12) satisfy the following:

L
′
12 = (g|g|g|0|g|0|0|g),

R
′
12 = (h|0|0|0|0|0|0|0).

where h and g are unknown non-zero values. There are 216 (L
′
12, R

′
12), so the

probability is about p = 216 × 2−128 = 2−112. Hence, the expected number of
such pairs is 2231 × 2−112 = 2119.

Step 3 Guess the 8-bit value at the first byte of the subkey k12, for every
remaining pair, calculate s1(R12,1 ⊕ k12,1)⊕ s1(R∗12,1 ⊕ k12,1), and choose pairs
which satisfy s1(R12,1 ⊕ k12,1) ⊕ s1(R∗12,1 ⊕ k12,1) = L12,1 ⊕ L∗12,1. Since the
probability is about p = 2−8, the expected number of the remaining pairs is
2119 × 2−8 = 2111.

Step 4 Guess the 64-bit value of the first round key k1, for every remaining
plaintext pair (L0, R0) and (L∗0, R

∗
0),

L0 = P (x1|x2|x3|α4|x5|α6|α7|x8)⊕ (x|β2|β3|β4|β5|β6|β7|β8),
R0 = (y1|y2|y3|y4|y5|y6|y7|y8),
L∗0 = P (x∗1|x∗2|x∗3|α4|x∗5|α6|α7|x∗8)⊕ (x∗|β2|β3|β4|β5|β6|β7|β8),
R∗0 = (y∗1 |y∗2 |y∗3 |y∗4 |y∗5 |y∗6 |y∗7 |y∗8).

Compute (L1, R1) and (L∗1, R
∗
1), and choose pairs whose difference satisfy

L1 ⊕ L∗1 = (u|u|u|0|u|0|0|u) where u is not zero. Since the probability is about
p = 28×2−64 = 2−56, the expected number of the remaining pairs is 2111×2−56 =
255.

Step 5 Guess the 40-bit value of the second round key k2 at the five bytes(1,2,3,5,8),
perform the following:

Step 5.1 For every remaining pair (L0, R0) and (L∗0, R
∗
0), and the corre-

sponding output of the first round (L1, R1) and (L∗1, R
∗
1),

L1 = (z1|z2|z3|γ4|z5|γ6|γ7|z8),
R1 = P (x1|x2|x3|α4|x5|α6|α7|x8)⊕ (x|β2|β3|β4|β5|β6|β7|β8),
L∗1 = (z∗1 |z∗2 |z∗3 |γ4|z∗5 |γ6|γ7|z∗8),
R∗1 = P (x∗1|x∗2|x∗3|α4|x∗5|α6|α7|x∗8)⊕ (x∗|β2|β3|β4|β5|β6|β7|β8).

Compute s1(z1⊕ k2,1)⊕ s1(z∗1 ⊕ k2,1) = v1, s2(z2⊕ k2,2)⊕ s2(z∗2 ⊕ k2,2) = v2,
s3(z3 ⊕ k2,3) ⊕ s3(z∗3 ⊕ k2,3) = v3, s2(z5 ⊕ k2,5) ⊕ s2(z∗5 ⊕ k2,5) = v5, s1(z8 ⊕
k2,8)⊕s1(z∗8⊕k2,8) = v8. Choose pairs whose difference satisfy (v1|v2|v3|v5|v8) =
(x1 ⊕ x∗1|x2 ⊕ x∗2|x3 ⊕ x∗3|x5 ⊕ x∗5|x8 ⊕ x∗8) and x 6= x∗. Since the probability is
about p = 2−40, the expected number of the remaining pairs is 255×2−40 = 215.

Step 5.2 Further guess the 24-bit value of the second round key k2 at the
three bytes (4,6,7), for every remaining plaintext pair, calculate L2,1 and L∗2,1.

Step 6 For 8-bit value at the first byte of the subkey k3, for every remain-
ing plaintext pair, calculate s1(L2,1 ⊕ k3,1)⊕ s1(L∗2,1 ⊕ k3,1), and check whether
s1(L2,1⊕ k3,1)⊕ s1(L∗2,1⊕ k3,1) = L1,1⊕L∗1,1. If yes, discard the candidate value
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of (k1, k2, k3,1, k12,1).

Since such a difference is impossible, every key that proposes such a difference
is a wrong key. After analyzing 215 ciphertext pairs, there remain only about
2144(1−2−8)2

15 ≈ 2144e−27 ≈ 2−50 wrong candidate value of (k1, k2,1, k11,1, k12).
The time complexity of Step 3 requires about 2127 = 28 × 2119 one round

operations. Step 4 requires about 2183 = 264 × 28 × 2111 one round operations.
Step 5.1 requires about 2167 = 28×264×240×255 one round operations. Step 5.2
requires about 2151 = 28 × 264 × 264 × 215 one round operations. Step 6 requires
about 2159 = 272 × 272 × 215 one round operations.

Consequently, this attack requires about 2120 chosen plaintexts and less than
2181 encryptions of 12-round Camellia.

5 Concluding Remarks

In this paper, we examine the security of ARIA and Camellia against impossible
differential attacks. The designers of ARIA expected no impossible differentials
exist on 4-round ARIA. However, we found some nontrivial 4-round impossible
differentials, and then presented an attack to 6-round ARIA with data complex-
ity 2121 and 2112 encryptions. As for Camellia, we found some nontrivial 8-round
impossible differentials for Camellia, whereas only 7-round impossible differen-
tials were previously known. By using the 8-round impossible differential, we
presented an attack on 12-round Camellia with data complexity 2120 and 2181

encryptions, the attack having complexity less than that of exhaustive search to
12-round Camellia without FL/FL−1 layers.

Since ARIA is a new cipher published in 2004, all we know about its security
is limited to the designers’ analysis and that of [11]. Here we only compare
the complexities of our attack with those of previous works on Camellia in the
following table.
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