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Abstract

We provide the first construction of a concurrent and nonlgaale zero knowledge argument for
every language itlNP. We stress that our construction is in the plain model wittcammon random
string, trusted parties, or super-polynomial simulatidhat is, we construct a zero knowledge protocol
IT such that for every polynomial-time adversary that can tidely and concurrently schedule polyno-
mially many executions dfl, and corrupt some of the verifiers and some of the proveresetbessions,
there is a polynomial-time simulator that can simulate agcaipt of the entire execution, along with the
witnesses for all statements proven by a corrupt prover tooaest verifier.

Our security model is the traditional model for concurresrozknowledge, where the statements to
be proven by the honest provers are fixed in advance and doepend on the previous history (but
can be correlated with each other); corrupted provers, ofseg can chose the statements adaptively.
We also prove that there exists some functionaghtya combination of zero knowledge and oblivious
transfer) such that it is impossible to obtain a concurr@m-malleable protocol fofF in this model.
Previous impossibility results for composable protocualed out existence of protocols for a wider class
of functionalities (including zero knowledge!) but onlytlifese protocols were required to remain secure
when executed concurrently with arbitrarily chosen déferprotocols (Lindell, FOCS 2003) or if these
protocols were required to remain secure when the honeségianputs in each execution are chosen
adaptively based on the results of previous executiongl@linTCC 2004).

We obtain anO(n)-round protocol under the assumption that one-to-one caefunctions exist.
This can be improved t6(klogn) rounds under the assumption that there ekisbund statistically
hiding commitment schemes. Our protocol is a black-box kemwledge protocol.

Keywords: Non-malleable protocols, concurrent composition, corantrzero knowledge, non-malleable
zero knowledge
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1 Introduction

In the two decades since their introducti@wvRss], zero-knowledge proofs have played a central role in the
study of cryptographic protocols. Intuitively speakingesio-knowledge proof is an interactive protocol that
allows one party (a “prover”) to convince another party (arifrer”) that some statement is true, without
revealing anything else to the verifier. The zero knowledgp@rty was formalized indmrss| by requiring
that the verifier can efficientlgimulateits view of an interaction with the prover, when given onlhe th
statement as input — i.e., without any knowledge of why theestent is true.

In many settings, however, the above security guaranteatisufficient. Consider a situation in which
Alice is giving a zero-knowledge proof of the statement X twbBand at the same time Bob is trying to give
a zero-knowledge proof of some other statement X' to Cha@lier intuitive definition of zero-knowledge
tells us that Bob should not get any “help” in proving X' to Cleby means of the zero-knowledge proof
that Bob is getting from Alice — i.e. Bob should only be ablepiove X' to Charlie if he could have
done it on his own, without any help from Alice. This propeidycallednon-malleability[ppnai] for zero-
knowledge proofs. It turns out that the standard simulatiefinition of zero knowledge does not imply
non-malleability, and in fact, many known zero-knowledgeqfs are susceptible to this kind of attack. We
note that we can describe non-malleability as security enftlowing scenario: there are two executions
of zero-knowledge proofs, with the adversary corrupting \hrifier in one execution and the prover in the
other.

Another setting considered in the literature is the follogvi Suppose there are many verifiers, all of
which are receiving zero-knowledge proofs from variousvpre at the same time. We would like to guar-
antee that even if many of these verifiers collude, theydditl't learn anything nontrivial from the provers
—i.e., that it is possible to efficiently simulate the viewalf the colluding verifiers interacting with the
provers, given only the statements being proven by the psovEhis property is calledoncurrent zero
knowledgdpnseg rRka9], and here too, the standard definition of zero knowledges dogimply concurrent
zero knowledge.

1.1 Our Results

In this work, we present the first protocol that is provabignultaneouslynon-malleable and concurrent
zero knowledge in the “plain” cryptographic model withouyssetup assumptions. Our protocol allows
provers to prove aniNP statement and is based on standard cryptographic assmspticamely, the ex-
istence of collision-resistant hash functions. The assiamp that we use is the existence of statistically
hiding commitment schemes. Such schemes can be constwitted(n) rounds under one-way permu-
tations Novyeg] and and even regular (and in particular one-to-one) ong+fwactions HHk+os] and in
constant rounds under claw-free permutatiomeHs4] or collision-resistent hash functionsdr9z Hmoe].
Simultaneous non-malleability and concurrency meandtthe setting where there are many verifiers and
provers all interacting concurrently, with schedulingided by the adversary as well, security is preserved
even if the adversary corrupts an arbitrary subsdbaih the provers and the verifiers. The definition of
security is that for any such adversary there exists a patyaletime simulator that, given only the state-
ments proven by the honest parties (and not the witnesses)lases the entire execution, and outputs
along with the simulated transcript a list of withesses esponding to all statements successfully proven
in this transcript by corrupted provers to honest verifiefhis definition is the natural combination of
non-malleable zero knowledgedn9i] and concurrent zero knowledgeNsog rkog|, and is also similar

to the analogous definitions for non-malleable and conatiremmitmentspnei, PrRox]. We note that
the best previous results on zero knowledge either (1) aetiienly concurrent zero knowledge without



non-malleability Rkog, kP01, PRS0}, (2) achieved non-malleability but only with a bounded rngn of
parties presentpn9i, Bar02, PROS], (3) made use of global setup assumptions like a commomerate
strings tLosog or time-delayed messagesLpos|, or (4) used different security frameworks like super-
polynomial simulation$so4 Bsos MMY06].

As in previous works on concurrent zero knowledge and nolkeaiale zero knowledge, our model
assumes that the vector of inputs (statements and witressab parties is fixed according to some pre-
determined distribution (although corrupted parties afrse do not have to use their given inputs and can
choose their inputs and messages adaptively). Howeversamurity proof doesiot extend to the case
of adaptively chosen honest inputs; this is with good reaasrit was shown by Lindell that there n®
concurrent non-malleable zero knowledge protocol for Bbrelaptive inputsijno4]. Indeed, Lindell’s
argument also ruled out many other functionalities, initigcbblivious transfer (OT), in the setting where
the inputs for honest parties can be chosen adaptively msedtputs of previous protocols.

This leads to a natural question: Can we generalize ouriy®sésult on concurrent non-malleable zero
knowledge to obtain a result fany polynomial-time functionality — as long as the inputs to ésinparties
are fixed in advance? We answer this questiegativelyby exhibiting a simple and natural functionality
that is impossible to realize, even in the setting where @tidst inputs are fixed in advance. Our negative
result is also somewhat surprising since in many othemsgitfi.e., UC security in the common reference
string model ELoso4, bounded-concurrent securityifiosa, PRo3 Paso04], super-polynomial simulatiorrgo4
BS05 MMY06], and composition in timing modek[pros]) obtaining composable zero-knowledge protocols
was the key step to obtaining protocols for all functionedit.

Our techniques. Perhaps surprisingly, our protocol does not use non-bbamskiechniques, but rather
only uses black-box concurrent zero knowledge and nonealallk commitments; both tools that have been
around for several years by nowd9s, bpnoi] (although we do require some tweaking of these protocols,
see below and Section 2). We see our main novelty in our priogdaurity.

Essentially all known techniques for achieving concureemb knowledge simulation and non-malleability
in the plain model have relied crucially on proof technigbased on complex “rewinding” argumefitsA
critical component to many results (e.gbN91, PRS02 PRO%, BS0g) has been the development of new proof
techniques to tame the complexity introduced by rewindaitgn through new kinds of hybrid arguments.
At a technical level, we continue in this line and develop meshnigues for dealing with complex rewinding
in security proofs.

Our protocol uses the Prabhakaran-Rosen-Sahai (BRS)] concurrent zero knowledge protocol and
simulation strategy. We also want to make use of non-mdkeatimmitment constructions (e.ggnoy,
PRO=%]) to obtain non-malleability. This gives rise to two mainstéicles: (1) We need to guarantee that the
non-malleability properties of these commitment schene@sain even in the presence of our rewinding.
Note that in general, this should not be true — an adversarg fain-model non-malleable commitment
scheme such a®pnNoa1, PrRos] that can rewind honest parties would always be able to ch&atdevelop
a new hybrid argument that shows that we can guarantee nbeatméty by making specific use of the
properties of the PRS rewinding strategy and a statistiesd knowledge variant of the PRS protocol. (2)
The other major obstacle is that the techniques for noneahility necessarily involve rewinding of their

IWe do believe that the pattern will still hold true here — tbat concurrent non-malleable zero-knowledge protocdl ledld
to protocols for all or large classes of functionalitiest just not according to the same definition of security. In¢baclusions
section, we mention some possible directions.

2\We note that all known non-black-box techniquBs®01, BAR02, Pas03, PR0O3 PROS, PRO5, BS0§ for achieving concurrent
simulation or non-malleability can also be seen as introducomplexities similar to those that arise with rewindifignis is one
of the reasons that natural generalizationsBafj01] has not led to a constant-round concurrent zero-knowlgdgtcol.



own (for extraction). We develop a new proof technigue tosshimat the extraction methods we need can
work “on top of” the PRS rewinding strategy.

For our impossibility result ruling out concurrent non-teable realizations of more general functions,
even when honest party input distributions are fixed, we vamKollows: we start by taking one of the
counterexamples showing that very strongly composableopots (e.g., UC securitychnoi] or security
against “chosen-protocol attack{§ws97z, Linozs]) for, say, zero knowledge, do not exist in the plain model
(where there are no trusted parties or common referenaggs}ri This basically implies that for every
supposedly composable zero-knowledge argurfigtihere exists a protocdl’, depending oil, such that
their concurrent execution is not secure. The main noveltyur work is that in order to get the kind of
result we want, we use a variant of Yao’s garbled circuit méghe [raose] to “compile” the protocolll’ into
a protocol using the oblivious transfer functionality. Bhwe create a scenario where for every protocol
II implementing the combined zero knowledge and obliviouastier functionality (or equivalently, for
every pair of protocoldl; andIlpr each implementing these two functionalities), there’s dveesary
launching a concurrent attack that manages to learn a seithgbrobability close td in the real world, but
no adversary would be able to learn the secret with non-gibtgi probability in the ideal model. Note that,
unlike its typical use, we're using Yao’s technique heredbanegativeresult. (This is somewhat similar in
spirit to [BGI+01].)

1.2 Previous works.

Concurrent zero knowledge. Concurrent zero knowledge (where the adversary corrugpisranly provers
or only verifiers) was defined by Dwork, Naor and Salmaidod and the first construction in the standard
model was given by Richardson and Kiliarkpg]. The number of rounds was improved (flilog n) by
[kPo1, PrRs02 which is optimal forblack-box simulatiofickprod. (A constant round protocol for bounded-
concurrent zero knowledge was given #ado1] using non-black-box simulation.)

Non-malleable zero knowledge. Non-malleable zero knowledge was first defined and consiuby

Dolev, Dwork and Naorjpn9i]. Constant round protocols were given Bago2, Pros]. These latter works
also introduced some more convenient definitions (whichallev) than the ponoi] definition (inspired

by definitions of non-malleableon-interactivezero knowledgedax99)).

Non-malleable and concurrent commitments. By a simple hybrid argument, every commitment scheme
remains secure under concurrent composition if the adwersa corrupt either only senders or only re-
ceivers. Asin the case of zero knowledge, stand-alone rafeainle commitments were defined Impjo1]
and constant-round protocols were givengrrp2, PrRos]. Pass and Rosergos] showed that the commit-
ment scheme fronpRo=] is actuallyconcurrently non-malleabléhus giving arO(1) round concurrent non-
malleable commitment schemdote: In many previous works, progress in commitment schemes anmd z
knowledge went hand in hand, where one could obtain a ZK pob&atisfying security notioX' by plug-
ging a commitment scheme satisfyildg to a standard standalone protocpbf9i, cFo1, CLOS02 Lin03a].
Thus, one might hope that one could obtain in this way a coentmon-malleable ZK protocol from
the [Proz] scheme. However, an important limitation @fRpz] is that security is guaranteed only under
the condition that only theommitprotocol and not theeveal protocol is executed concurrently. For this
reason, such commitment schemes do not automatically iocgatgurrent non-malleable zero knowledge
proofs. In particular, we do not know that if we plug iPRps]'s commitments in one of the well known
constant-round ZK or honest-verifier ZK protocols we wilk geconcurrent non-malleable ZK protocol.



In fact, that would be quite surprising since in particullawill yield the first constant roundoncurrent
zero knowledg@rotocol. We note that our work here does not work in this veang indeed, we can make
use of ‘hon-concurrerit non-malleable commitment protocols like the original fmaol of [ppbNoi], thus
avoiding non-black-box techniques altogether, and redpoiur assumptions to just regular one-way func-
tions. We also don’t know whether it's possible make the psoopler by using concurrently non-malleable
commitments.

Universally composable (UC) security, general and self coposition. In[cano1], Canetti introduced the
notion ofuniversally composabler UC security for cryptographic protocols. This is a vemnpsg notion of
security and in particular a UC secure zero-knowledge podtwill be concurrently non-malleable and in
fact will compose with an environment that contains exengiof arbitrary other protocols as well (see also
[Livoss]). However, this notion, that essentially implies blaakxtstraightline simulation, is in some sense
“too strong”, and it was shown that in the “plain” model, watlt trusted parties, honest majority or setup, it
isimpossiblgo achieve UC-secure zero knowledge and in fact a very widigeraf functionalities including
commitment schemesg4{no1, crFoy, ckLo3]. (See pocwag cano1, cLOS02 BCNP04 for constructions in other
models.)

Self-composition. As mentioned above, Lindell{vno4] showed that for the case ofessage passing func-
tionalities (functionalities allowing to transmit a bit, in particularcluding zero knowledge), security for
concurrent composition of threameprotocolunder adaptive input selectiassentially implies UC security
and hence it is impossible to obtain a zero knowledge protatisfying this notion of self-composition in
the plain model. Adaptive input selection is defined by hgutme inputs supplied by an environment as in
the UC model, but unlike the UC definition, this environmenhot allowed to look at the actuabmmuni-
cation of the executions but only at trmutputsof these executions. In contrast, in our security model the
inputs may be chosen from some distribution but are supjtietivance to all parties, and so, while we
can'’t control the corrupted parties’ behavior, the honestigs do not choose their inputs adaptively based
on previous executions.

Super-polynomial-time simulation. Another sequence of works considered a setting where trad ide
model simulator is allowed to run super-polynomiatime [Pso4 Bsos mmyos]. This allows to bypass the
UC impossibility results and yield protocols for any fulctality that seem to supply adequate security for
many applications. However, the definition is not as inteitatnd mathematically clean as polynomial-time
simulation, and the current constructions do suffer fromdracks such as requiring stronger complexity
assumptions, and a tradeoff between the time of simulatdritze standalone soundness of the protocol.

Security for independent inputs. Garay and MacKenziecjmoo] show a protocol for oblivious transfer
that is concurrently secure if the inputs to the parties icheaxecution is chosen independently and at
random from a known distribution such as the uniform distitn. We note that in this paper we consider
the more standard setting where the inputs are arbitraniyen and in particular may be correlated.

1.3 Preliminaries.

We consider only two party protocols in this paper. Our maslelf m partiesP, ..., P, (not necessarily
aware of one another) that interact in pairs via some two/gadtocolIl. There's some distributio® on
inputsxy, ..., x, and each party’; uses input; in its interaction (by adding more parties if necessary, we



can assume that each party participates in at most onedtiteraf I1). We assume an adversahkgyv that
chooses initially to corrupt a set of parti€®; : i € C'}, and receives the inputs for that set, and completely
controls these parties. The adversary can also scheduteircently and adaptively all the messages in the
network. We assume that all parties in the network have @nidgentities and authenticated communication
(following [DDN91] this can be relaxed somewhat for the positive result). WelsatI1 securely implements
an ideal functionalityF with two inputs and two outputs if for any suédv corrupting a set’ there’s a
simulatorSim that receives the inputs; for ¢ € C, and for every pai(i, j) that interacts vidl with : € C
andj ¢ C, Sim gets one access to the first output of the function- F(z,z;) (we have an analogous
definition if the corrupted party is the second in the pait)e Dutputs obim and the second output should
be computationally indistinguishable from the outputsfdr and the outputs of the honest parties in the
real execution. It can be shown thidtis concurrent non-malleable zero knowledge forMdR-relation

R if and only if it secure implements the ZKPOK functionalify defined as follows:F(z o w) = x iff
(z,w) € RandF(x o w) = L otherwise (this functionality only uses one of its inputs).

2 A concurrent non-malleable zero knowledge protocol

Definition 2.1. A protocol is a Concurrent Non-Malleable Zero Knowledge (@2&K) argument of knowl-
edge for membership in aNP languagel with witness relationR (that is,y € L iff there existsw such
that R(y, w) = 1), if it is an interactive proof system between a prover andréier such that

Completeness:if both the prover and the verifier are honest, then for eyery) such thatR(y, w) = 1,
the verifier will accept the proof, and

Soundness, Zero-Knowledge and Non-Malleability:for every (non-uniform PPT) adversas interact-
ing with proverspP, ..., P, inm, “left sessions” and verifier®y, ..., V,,, in mg “right sessions”
of the protocol (withA4 controlling the scheduling of all the sessions), theretsxdssimulatorS such
that for every set of “left inputsyy, . .., ym,, we haveS(yi, ..., ym,) = (¥, 21, ..., Zmz), Such that

1. v is a simulated view of4: i.e., v is distributed indistinguishably from the view gf (for any
set of witnessegwy, . . ., wy,, ) that Py, ..., P, are provided with§

2. Foralli € {1,...,mg}, ifinthei-th right hand side sessioninthe common input ig; and the
verifier V; accepts the proof, thet is a valid witness to the membershipaafin the language,
except with negligible probabilityz{ = L if V; does not accept.)

Further, we call the protocol a black-box CNMZK if there é@gia universal simulata$gg such that for any
adversaryA, it is the case thaf = Sg}; satisfies the above requirements.

Note that the above security property subsumes both zeyadkdge and proof-of-knowledge proper-
ties. In particular, the second condition reduces to regigand-alone) zero knowledge property when
my, = 1 andmp = 0, and implies regular (stand-alone) proof-of-knowledgeperty whenm; = 0 and
mpg = 1. Furthermore, this condition reduces to concurrent zeoovkedge pnsog Rkogl whenm, = poly
andmp = 0; it reduces to basic (“non-concurrent”) non-malleabifiypnoi] whenm = mp = 1.

This definition resembles the notion of simulation-extabtity used in pros] for concurrent non-
malleable commitments.

3Here, and elsewhere, by the view of a party we mean the seeustits internal states during the execution, including the
messages received and sent by it.



2.1 UC-like definition of CNMZK

We can also write this definition in the language of the UQreavork, to further illustrate the level of
security and composition it gives. We do not get into theittetd modeling the Network, but instead keep
our description at an informal level. For more details of kloty see ¢ano5, Pra05).

The functionality in question ig%¢, the natural zero-knowledge functionality for membershigd.: it
accepts a paify, w) from P and sendsy, R(y, w)) to V, which it outputs.

The nature of the security is essentially described by thd ki environments allowed in the security
definition. We call a PPT environmegt a “CNM environment” if it behaves as follows:

e Z interacts arbitrarily with the adversary, and selects maaiys of partieg P, V'). For each of these
pairs, Z picks (y, w) such thatR(y, w) = 1. It handsy to both P andV, andw to P.

e Then Z initiates each pair to interact with an instancefdf . After this point the environment does
not send any messages to the parties or to the adversary ¢buatinues to receive messages from the
adversaryy.

e Finally Z outputs a bit.

Note that since there will be no automatic composition teeoavailable, the environment already invokes
multiple instances of the functionality. Also note thatréhare no other protocols or functionalities being
invoked, emphasising the fact that we are dealing only wath@mposition.

In the “ideal” execution, when initiated with input, the pas interact withF% . In the “real” execution
the parties use the protocol in question. All schedulingoigtimlled adversarially.

Then the definition of security is that there exists a sinul&sg such that for all adversaried and
any CNM environmeng, the output ofZ in the real execution is indistinguishable from that in tteal
execution.

2.2 Result from [prsod

We adapt the main argument fromr[so3 for use in our protocol. Consider the following protocoyjseent®

1. PRS Commitment: The verifier picks a (sufficiently long) random string and prepare$ - ¢(k)
(wheret(k) is anyw(log k) function) pairs of secret sharé&%,a}j) forl <i <k 1<j<tk)
such that for al(i, j) we haveny; ®«;; = 0. Then it commits ter and(«y);, ;)i using a statistically

binding commitment schem@mpgs.

2. PRS Challenge-Responsethis is followed byt (k) rounds of randonk-bit challenges by the prover.
In response, for eacli, j), if the i-th bit in the j-th challenger;; = b then the verifier opens the
commitment tox?; in that round.

3. On reaching this point the prover considers the preanoldate “concluded.”

“The environment not communicating with honest parties afiiiating the protocol execution corresponds to therietibn
that the inputs to the honest parties are non-adaptive. tAksoestriction that there is no information the adversaneives other
than its initial auxiliary inputs and the protocol messagesaptured by restricting the environment from sendingsagss to the
adversary after the protocols commence. Technically, augstricted environment allows a simulation that involresvinding,”
as in our case.

®In describing all protocols we use the implicit conventibattif a party receives messages which are not as prescribe b
protocol, that party is required to abort the entire session



4. PRS Opening: The verifier opens all the commitments made in the PRS Comenitisiep, and the
prover verifies consistency of the revealed values (i.at, fibr all (7, 5), a% ® ailj evaluates to the
same value).

5. On reaching this point the prover “accepts” the preamble.

There can be other messages in between, as long as the gealigrare picked randomly independent
of previous messages. In particular, as in our case, therbeamessages in the protocol between the prover
concluding the preamble and the verifier opening the comerits

The PRS simulator (for our purposes) is the following prograhich “simulates” multiple (polyno-
mially many in the security parameter) concurrent sessafribe protocol between honest provers and a
combined adversarial verifie¥dprs The simulator gets inputs of all the parties in all the smssi and
it runs the honest provers and the adversarial verifiernatsr® In the end it produces an ordered list of
“threads of execution.” A thread of execution consists @ws of all the parties, such that the following
hold.

e Each thread of execution is a perfect simulation of a prefiaroctual execution.

e The last thread, called thmain thread is a perfect simulation of a complete execution (i.e.,luaiki
the parties terminate); all other threads are cdibett-ahead threads

e Each thread shares a (possibly empty) prefix with the previbread, and is derived by running the
honest parties with fresh randomness after that point.

The aim of the PRS simulator is, for each PRS commitment theimes across in any session in any
thread, to extract the committed valudreferred to as the “PRS secret”) before the preamble ofdbsien
is concludedin that thread. The extraction is achieved by observing thesary’s messages in multiple
previous threads. If it fails to extract the PRS secret in s@gsion in a threadind the execution goes
on to acceptthe preamble of that session in that thread, then the sifonla said to “get stuck.” Hrso}
guarantees that the probability of the PRS simulationmggtituck is negligible.

Lemma 2.2. (Adapted fromprsol) Consider provers,, . . ., P, and an adversarial verifielprsrunning

m sessions of a protocol with the PRS preamble as describedealvcherem is any polynomial in the
security parametek. Then except with negligible probability, in every threddegecution output by the
PRS simulator, if the simulation reaches a point where tlower P; accepts the PRS preamble withas
the secret in the preamble, then at the point when the premmbb concluded, the simulator would have
already recorded the value.’

In fact [Prso03 prove a further refinement of this lemma (that we will neeidstead of the simulator
running each thread exactly as in the original executiorgaith thread (individually) is executed in an
indistinguishable wa,the lemma still holds. (This is what allowsHso3 to show that indistinguishable

Note that the “simulator” as described here is given all tipits to all the parties. Later, after introducing this dabor into
the sequence of hybrids in our proof, we shall show how toidetdfrthese inputs.

"Unlike in [PRS02, in our preamble, the PRS commitment is statistically igd So, except with negligible probability, ¥;
accepts the preamble, there is a well-defined valuie the PRS commitment, and it is this value that the proveepier as the
secret in the preamble. We point out that our case is sligiittypler than the original analysis iRRS02 in that we are interested
in arguments (not proofs), and hence the commitment by thfierecan be statistically binding.

8In our applications, it is enough if this holds when the itidiguishability is statistical; but in fact this refinemémilds even
if the indistinguishability is only computational. Inde@ud[PRS02 the argument is used for computationally indistinguidaab
executions.



simulation is possible.). It is important that here we regjihe indistinguishability requirement only on a
per threadbasis. In particular the joint distribution of the threadshe latter simulation is allowed to be
distinguishable from the joint distribution of the threadshe original simulation.

We shall adapt the PRS simulator to our setting in which aredwy.A is engaged in concurrent left
hand side sessions as the verifier, while concurrently pigghe prover in multiple right hand sessions. We
could build a preliminary simulator (which is provided withputs of all the parties) for this situation by
considering all the right hand verifiers also as part of areeshry.Aprsbefore invoking the PRS simulator.
However there is a minor technicality that needs to be takEndaccount. Ingrso}, since the adversary is
arbitrary, it may very well be assumed to read its entire camdiape up front. Thus in all the threads (all
of which may share a common non-empty prefix) the PRS simuilaf®rso3 uses the same random tape
for the adversary. But it is easy to see that the analysisrrd? works even with probabilistic adversaries
which do not read their entire random tapes initially, andhat case the PRS simulator can use fresh
randomness for the unread parts of the random tape whenadingua new thread. This is important for us
because in our simulation we will need to use fresh randosfeghe right hand side verifiers in different
threads (except during the shared prefixes). So in our used®?RS simulator only the random tape of the
original (arbitrary) adversary is fixed across all the threads while the restdpirs(i.e., the right hand side
verifiers) is given fresh randomness in different threads.

Another equivalent (and in some sense a more natural) wayrmulate this is to consider the right hand
side verifiers as part of the honest prover and, as in thenaliRS simulator, to fix the random tape of the
adversary across all threads. Later in our proof, we wilehavance to refer to this formulation.

2.3 Non-Malleable Commitment

The other ingredient we need is a statistically binding nmileable commitment (not necessarily concur-
rent non-malleable) with an “extractability” property. k&oprecisely, we require an interactive commitment
protocol Comy, between a “sender” (whose input it wants to commit to) anceaéiver” (with no input)
satisfying the following properties.

1. Statistical Binding: The protocol has a determining message from the sender tedbier (typically
the first message from the sender) which is the first messagaicimg information about the value
to be committed. If either the sender or the receiver is hottes determining message is information
theoretically binding except with negligible probability

For clarity in presentation we shall require that the firssgage in the protocol is itself the determin-
ing message. (However see Section 2.5.2.)

2. (Non-concurrent) Non-Malleability: Consider the following two experiments in which an adversar
M patrticipates in one “left session” of the protocol as theensgr, and in one “right session” as the
sender. M picks a valuew and gives it to the left sendd?. In the first experimenf’ commits to
w while in the second experiment it commits to the all-zeraesg We define the value of the
experiment a$r, o), wherer is the output of\/ and« is the value in the determining message of the
right-hand-side commitment. (We say= L if the right-hand-side commitment was not accepted, or
if the determining message did not uniquely determine timercitted value).

The non-malleability property is that the values of the twperiments are distributed computationally
indistinguishably.

For the sake of convenience we state the hiding propertyicithpl though it is implied by the non-
malleability property. The two experiments are defined dsrbgeexcept thafl/ does not participate
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in a right hand execution. Instead, after receiving the cament from P, M produces an output,
which is the value of the experiment. Then the hiding propeztjuires that the values of the two
experiments are computationally indistinguishably disted.

3. (Stand-alone) Extractability: The extractability requirement is that there is an efficiexiractor
such that given an adversary and its view from a random exacof the protocol with an honest
receiver, then, except with negligible probability — thelpability being over the coins of the adversary
and the verifier in the view, as well as that of the extracfdt,i$ randomized — the extractor outputs
the value in the commitment, if according to the view the nareaccepts the commitment.

In fact, we require a slight extension to this by requiringttthe extraction can work on a prefix of
the protocol where the verifier is public-coin. More formyathere is a message from the sender in
the protocol called the “knowledge-determining messag@Nl), such that given an adversary and
its view during a random execution of the protocol till (amdluding) the KDM, the extractor will
output the committed value, if according to the view the figriwas still accepting (i.e., it did not
abort). We require that prior to receiving the KDM the reegidoes not have any private coins.

2.3.1 Available Non-Malleable Commitment Protocols

For simplicity, first we consider a model in which all partiesve distinct identiti€’s and all communication
is over authenticated channels.

Pass-Rosen Commitment: In [PrRos] give a statistically binding commitment protocol, and whihat
their protocol satisfies the non-malleability property wguire (and more).

Though Pros] states their definition without an extraction requiremeémttheir proof they show how
to do extraction as well. But in fact we observe that anotimapke extractor (so that the protocol is clearly
public coin until the knowledge-determining message) cardérived by slightly modifying their proto-
col. Their protocol has the following structure: first theader commits to its input usingny statistically
binding commitment scheme; then it gives a proof of knowedfthe input and randomness used in this
commitment, using a non-malleable ZK protoeelZK;p, wherel D is the identity of the prover. Consider
modifying this protocol by replacing the first message — dgitie statistically binding commitment — by an
interactivestatistically binding commitment, which consists of a fegumon-interactive statistically binding
commitment (which can be based on any 1-1 one-way functmigwed by a ZK proof of knowledge that
it knows the contents of the commitment. Using a ZKPOK of swgomstant rounds we can obtain a deter-
ministic polynomial time extractor. This can be done, fastance, by having a(logk)-round sequential
copies of the basic Hamiltonicity protoca@us?]. (see e.g. ¢oLoi]).

This commitment protocol satisfies all our requirements.

DDN Commitment:  Surprisingly, though we are in a concurrent setting, ouniregnent of non-malleability
on the commitment schen@myy is in the plain non-malleability setting (i.e., one exeonteach on the
left hand and right hand sides). We show that the originatmafeable commitment scheme by Dolev,
Dwork and Naor ppne1] satisfies our requirements, when the initial (statisljchlnding, non-interactive)

This assumption can be removed (as originally doneinNi91]) by letting the honest parties pick a (signing key, verfimat
key)-pair for a signature scheme, and having the entirestrgt of the protocol signed using this key (only the preveeed to
sign). Then the one case excepted from the definition of nalheability is when A copies an entire left execution as a right
execution, by playing a router for the messages.



commitment phase of their protocol is augmented to have a2lKRs above. As we mentioned above this
modification takes care of the extraction requirement, evtetaining the non-malleability property proven
there.

Next we claim that the non-malleability property of the DDKbjmcol implies the non-malleability
property that we require. First vaglaptthe definition from ponoi] as follows:

Definition 2.3. (DDN Non-Malleable Commitment. Adapted from [pbno9i1].) A statistically binding
commitment protocol is said to be DDN-non-malleable if foery (non-uniform PPT) adversatdppn,
there exists a simulatag$ppy such that for all (non-uniform) PPT machin®&sthat take three inputs and
outputs a single bit, the outputs of the following two expents are indistinguishable from each other.

DDN-Experiment 1: Appy first outputs a stringv. Thena is set to bew or the all-zeros string, chosen
unifromly at random. An honest send€rcommits toa to Appn. Meanwhile Appy commits to some
string « to an honest receivar. (« is well-defined, possibly as, because the commitment is statistically
binding). Also at the endippy outputs a plain-textppy. The output of the experiment 8(a, av, Tppn)-

DDN-Experiment 2:  Sppn outputs a stringw anda is set to bew or the all-zeros string, chosen unifromly
at random. Thedppy commits to some string to an honest receivér and outputs a plain-textpn. The
output of the experiment iR (a, v, TopN)-

Here we have simplified the DDN definition by replacing a gahdistribution by a uniform distribution
over a stringw and the all-zeros string. Without loss of generality we assthatw is chosen determinis-
tically (but non-uniformly). Also, we have slightly stretigned the definition to include a plain-text output
7 produced by the adversary as inputRo To see that the protocol impnoi] does satisfy this strength-
ened requirement, note that the proof there first uses a “laulge extractor” to extraet, which could be
modified to outpufr, o) instead.

Now suppose a commitment protocol did not satisfy the nolealaility we require. Then, there is
an adversary4 who gives a valuev, accepts a commitment on the left to eitheror the all-zero string,
and makes a commitment on the right to computationally rdisiishable values on the right, and outputs a
string 7. Let the value committed to on the right be Denote these ag (), o(*)) in the first experiment
(when commitment on the left is ta), and as(7(?), a(?)) in the second experiment (when commitment
on the left is to0). We have a PPT distinguish& which outputs a single bit such thax(r(“), a(®)) %,
D(7) o), In other words|r,, — 7| is not negligible, wherer,, andm stand forPr[D(r(*), a(®)) = 1]
andPr[D (79 () = 1] respectively. Note that this can be true onlyifs not the all-zeros string. Now
defineAppn to be the same a4, but with ppn = (7, w). Define

Rla, o, (r, w)) D(a,T) ifa=w
) ) T? = .
1—D(a,7) otherwise.

Then the probability of the output of DDN-Experiment 1 beln $ (m,, + (1 — 7)) = 3 + 3(mw — m),
where as the probability of DDN-Experiment 2 producing Ei¢sincea = w with probability 3; here
we use the fact thab is not the all-zeros string). Sinde,, — 7| is not negligible, the outputs of the two
experiments are not indistinguishable. Hence we concloaeift the protocol is not non-malleabile in the
form we require, then it is not DDN-non-malleable either.
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2.4 Other Ingredients

The other ingredients we use are
1. A statistically (or perfectly) hiding commitment sche@emgy.

2. A statistical (or perfect) ZK argument of knowledgé<AOK, for proving knowledge of witness for
membership in anNP language.

The statistically hiding commitment scheriemsy can be achieved in a constant-round protocol using
collision-resistant hash functions or claw-free permatet or, at the expense of haviay k) rounds, using
one-way permutationsnpvygg] (see also Section 4.8 ot$Lo1]), and even using only regular one-way
functions by the recent result of Haitnetral [HHK +05]. Given such a commitment scheme, we g AOK
as required with a factap(log k) blow up in the number of rounds, in same manner as our cotistnuc
of a ZKPOK above, using(log k) sequential copies of the Hamiltonicity protocol, but whtre prover’s
commitments in the Hamiltonicity protocol are made using #tatistically hiding commitment scheme
Comgy. ThissZKAOK enjoys a strict polynomial-time extraction procedure widggligible probability of
failure.

We note that all our ingredients are realizable under themagton that regular one-way functions exist
(and in particular under the assumptions that one-to-oeewmy functions exist).

2.5 Our Protocol

Consider anlNP-complete languagé. with a witness relationshi?. The prover and verifier receive a
common inputy and the prover receives a witnegssuch thatR(y,w) = 1. The protocolCNMZK is
described below.

Phase I: PRS preamble from Section 2.2 up to the point where the panmeiudeghe preamble.

Phase II: Prover commits to the all-zero string usiGgmsy. Then it usesZKAOK to prove the knowledge
of the randomness and inputs to this executioQ@hsgy.

Phase Ill: Continue the PRS preamble until the prover accepts the iMeafnet the secret in the preamble
(as revealed by the verifier) lae

Phase IV: Prover commits to the witness usingComp.
Phase V: Prover proves the following statement us#tK AOK: either

e the value committed to in Phase IVissuch thatR(y, w) = 1, or
e the value committed to in Phase llds

It uses the witness corresponding to the first part of thestant.

Theorem 2.4. Protocol CNMZK is a black-box concurrent non-malleable zero knowledgeusrent for
membership in th&P languageL (Defintion 2.1).
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Proof. It is easy to see that the protocol satisifies the complesenesdition. Below we shall build a
simulator-extractor, which outputs a simulated view ofdldeersary’s view along with witnesses for all the
successful right hand side proofs in the simulated viewegsired by the second condition in Defintion 2.1.
We build the simulatoS in stages, via intermediate simulatdrg, fori = 1,...,4. H; outputs a
simulated viewr(®. (S will in addition output a list of witnesses.) We defien random variables

{bg), ag“};;q, Wherebg) is a bit denoting whether according &, V, accepted the proof from the ad-

versary or not, andyé’) is the value contained in the Phase IV commitm€ainyy, received byV, (as
determined by the determining message; if there is no unigluee, then it is defined to he).

Stage 1:H; gets all the inputs td™, ..., P,, as well as the inputs tal. It internally runs the (honest)
programs ofPy, ..., P, , as well the honest program for the verifiéfs ..., V, ., to generated’s view
v(1). The simulation is perfect.

Also one can show that due to the knowledge soundness ofZKAOK scheme used in Phase I
and Phase V, il/, accepts the proof in théth right hand session in the simulated viewthen, except
with negligible probability, the Phase IV commitment (whis statistically binding) in that session indeed
contains a valid witnesg to the statement,. (This follows from a hybrid argument for the  right hand
side sessions.) This is stated in the claim below; a detailedf follows.

Claim 2.5.
v (o) =1) = (Reaf?) =1) (1)
except with negligible probability.

Proof. Fix ¢ € {1,...,mp}. First, from7;, construct a standalone prover which interacts withV/
alone. This is done by including everything simulatedHpyexceptV; as part ofP*, so that an interaction
of P* with an honest verifiel/, is identical to the execution df{;. We need to argue that if, accepts
the proof byP*, then except with negligible probability, the Phase IV coitnment made byP* is a valid
withessz, to the statement,. We consider the following experiment. EngaBé in an execution with
an honest verifiet; which uses a random PRS searetThen, if V, accepts the proof fron#* build two
standalone prover®; and P; as follows. P} is a copy of P* at the point where it began tB@ KAOK in
Phase II.P5 is a copy of P* at the point where it began th@ KAOK in Phase V. Now run the extractor
for sZKAOK on P} and P5. First we observe that from the hiding property@fmpgs it follows that the
probability of the extractor o returning (an opening or explanation Gémsy as a commitment toy

is negligible. Secondly we observe that the computatioimalibg of Comsy implies that the probability of
extractor onP;" returning an opening to something other tiregndthe extractor orP; returning an opening
to o is negligible: this is because, otherwise we obtain twoedght ways to opeQomsy. Finally by the
knowledge extractability property e KAOK we observe that the probability df{ accepting andp; not
returning some opening @omsy is negligible; also that oP; returning neither an opening @bmsy to o
nor an opening of the Phase 8bmy, commitment to a valid witness fat, is negligible. Together these
imply that the probability oft; accepting the proof and the Phase@¥myy, being not to a valid witness
for z, is negligible. O

Stage 2:H5 works just likeH, but it also does the PRS look-aheads and records the PR&sseeecall
that this means that the simulator runs many perfect simuasbf the execution with shared prefixes (but
using fresh randomness in the unshared parts), and re¢m @RS secrets for each preamble concluded in
any thread.H, aborts if the PRS simulation gets stuck. Otherwise it ogtple view of the adversary in
the main thread of this simulation a&. If the simulator did not check for the aborting conditione view
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generated is identically distributed as in the simulatigrify. By Lemma 2.2 we know that the probability
of aborting is negligible. Hence, we have

S0 =@

ve 00, ol g = 0,0l ).

Stage 3: H3 works like Ho, except that in all the simulated left hand side sessiorespthver commits
to the PRS secretm the Phase IIComsy, and follows up with an honest execution QfKAOK for this
commitment. Sinc&omgy is a statistically hiding commitment scheme, aZdKAOK is statistical zero
knowledge we get

2) 3)

2 =

W4 (bf),af),yg) =c (bf’), af’),yg).
Stage 4:H4 works like H3, except that in all the simulated left hand side sessiomsptaver
e commits to the all zeros string in the Phase¥mym, and
e uses th&Comgy commitment as the witness in the Phase2AKAOK instead of the witnessesy.

Claim 2.6.

3) 1)

v® = ol

ve 0,y = 0,0l ).

Here v and {bf‘),af) }of are defined analogously to the caset¢f. We shall prove this claim
shortly, using a carefully designed series of hybrids. Ihithis part of the proof that we shall require the
non-malleability property of the commitment scheffwmy.

Stage 5:Finally we describe the simulator-extract®r First it runsH, to produce a view of the adversary,
v Then it extracts the valuejsf‘), fort=1,...,mg.

For this we take the view that in the PRS simulator all the Bbparties including/, are considered
part of the prover. Then, for ea¢hS will consider, as a standalone adversay making a single com-
mitment to a receiver. The adversady will contain the adversary and all of the honest parties &ited
by H4, except the part of/; in the main thread which receives the Phase IV commitnemtyy. Aj
terminates execution after sending the knowledge-deténgnimessage (KDM) to the external verifier.

Note that some of the PRS look-ahead threads simulatéd,bwill share a prefix with the main thread.
Thus the interaction oft; with the external receiver (which forms part of the main #ltemay define parts
of these look-ahead threads as well. If the KDMAadin the main thread does not occur in the shared prefix
with a look-ahead thread, théiy would have created this thread before reaching the KDM. Eetjcalso
needs to create this thread before terminating. For siinglauch a look-ahead thread which shares some
prefix with the interaction with the external receivel; should be able to internaligontinuea prefix of the
interaction with an external receiver where the prefix dagsertend to the KDM. This is possible because
of our requirement that prior to the KDM the receiverGamy does not use any private coins. So at the
point A; needs to continue this prefix as a look-ahead, there is netsstette of the receiver that it needs
to know. It simply continues the look-ahead thread usingtfreoins for the verifier. Thusl; is indeed
well-defined.
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S constructs the view ofd; (by having kept track of the internals in the run’af;) and invokes the
extractor forComywm, with A7 and this view. The final output &§ is (v, 31, ..., Bm,) Wheres, are the
extracted values. By the extraction guarantee, if accgréns, V; accepted the proof, and in particular
accepted the Phase IV commitment, thign= af) except with negligible probability.

Note that from above displayed relation$?) =. v(!), where the former is the view generated$wnd
the latter is identical to that of the adversadyin an actual execution. Further, we have

W24 <b§4) = 1) = <R(xg,ozg4)) = 1)

except with negligible probability. This follows from Eqien 1, the fact tha(bf‘), a,§4)) =c (bgl),aél)) as
implied by the above displayed relations, and the fact thtatt)ndition(bg) = 1> — (R(xz, a(')) = 1)
can be efficiently checked.

This completes the proof except for the proof of Claim 2.6. O

2.5.1 Proof of Claim 2.6

This is the most delicate part of the proof, which reducesdhecurrent non-malleability of our zero-
knowledge protocol to (hon-concurrent) non-malleabitifyhe commitment schenm@my. The goalis to
show that in moving from the hybrit{5, which uses the real left hand side witnesses in the sinoulato 74
which uses the alternate PRS witnesses and commits torall-g&ings instead of the witnesses, the values
committed to by the adversary do not change adversely. @tunaiéy the difficulty is in separating the effect
of the modifications in the left sessions from those in thhtrggssions. The technical difficulties stem from
the somewhat intricate nature of PRS simulation which cagbange at some point in the simulation to
propagate in subtle ways.

Before proceeding we point out, intuitively, why v@® not require concurrentnon-malleability for
Comp: all we require is that, irt4, for each right hand session, the commitment made UGSy
continues to be a witness, if it used to be a witnesH inwe do notrequire that the entire set of committed
values remain indistinguishable jointly.

We move fromH3 to H4 using a carefully designed series of hybrid simulators. @&scdbe these
hybrids, first we introduce some notation. In the PRS sinmnatonsider numbering (in order) all the
occurrences of first message (FM) in the Phas€vhy) in the left hand side sessions. Note that in a full
PRS execution, due to the look-aheads, we may have multiideing sent by the same left hand side
prover (though only one in each thread). Further, in the kitran, for anyi, the left hand prover sending
FM; is a random variable with support on all; provers: this is because in each thread, the adversary
dynamically schedulethe protocol sessions based on the history of messages tinréfaal (and its random
tape, which we have fixed). We shall denote the index of thénbaid prover sending FMy p(7).

Consider a FM and all threads passing through it (i.e., aflatis which share a prefix containing this
FM). Suppose this FM belongs to a left hand session with préyeln each of the threads, the session with
P; may go on to reach Phases¥ KAOK. We will refer to these instances sf KAOK as “belonging” to
this particular FM.

Now we can describe our intermediate hybrids, and ;... We defineH,., to beH; and letH, be
H .2, WwhereN is an upperbound on the number of FMs in the PRS schedile O((mt(k))?) suffices).
Fori =1,..., N, the simulator§{;.;, andH,. are as follows:

ﬂm: Exactly Iikeﬂi_m, except that for all theZKAOK belonging to FM, the prover will use the corre-
sponding PRS secret as the witness (instead of usjpg). If the PRS secret is not available, then
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A Look-Ahead Thread

Main Thread

Figure 1. A schematic representation of the threads in a RR@ation. Here the segment AB represents
the first thread and AZ the last or main thread (highlightethwdiotted lines). AB, AC, AD, AE are all
look-ahead threads. Also marked are points where the FM$ iffiessages of Phase Gémpyy from A to
the right hand side verifiers) occurred during this simalatiNote the order in which FMs are numbered.

15



the simulator fail&0.

H,.o: Exactly like’H,.;, except that in FMthe prover commits to the all-zeros string (insteadvgf;)) and
continues the execution accordingly.

Fori = 1,..., N we define random variable) and{b"""), a{""}"# andi(:2) and{p{"*, a\"? ymz
analogous toV) and{5}"), a{")}7% . Note that we need to show that
5(0:2) = D(N:Z)
vl (520:2)7 dgozz) ) y@) =c BEN:2)> déNﬂ) > yé)

We do this via the following sequence:

I;(i—l:Z) = I;(i:l) 2)

I;(i:l) = 5(22) (3)

7 (l;éi—lz2)7 dgi—lﬂ) ’ yé) = (l;éizl)’ &ézl) : ye) (4)
ve (B, al M g = (00,6 y) 5)

Proving Equations (2) and (4): These follow from the fact that the PhasesXKAOK remains statisti-
cally indistinguishable when the alternate witness is ustmvever note that in the PRS simulation, indis-
tinguishability does not hold when multiple threads aresidered together. But the only way a thread can
affect subsequent threads is through the availability eRRS secrets at the right points in the simulation.
Recall the refinement mentioned after Lemma 2.2: as the ehiar@duced in each thread is undetectable,
it will still hold that the PRS secrets will be available agu@ed except with negligible probability. Other
than the availability of the PRS secret, each thread is iexdent of other threads. Thus each individual
thread, and in particular the main thread, continues toditésstally indistinguishable in the simulation by
H;_1.2 andH,.;. This in turn implies both equations (2) and (4).

Proving Equations (3) and (5): Equation (3) follows from the hiding property @bmynm. To see this we
create a standalone machihé which is identical tdH;.;, except that on reaching FNt starts interacting
with an external sendd?. First it sendaup(z-) to P, and then receives a commitment frdfnwhich it uses
to interact withA, instead of an honest commitmentitg,;, as’H,.; does. However if? makes an honest
commitment tav,,;) then the(M, P) system is identical té1;.,. However, if P makes a commitment to the
all-zeros string, then th@lZ, P) system is identical té;.. By the hiding property o€omyy the output of
M must be indistinguishable in the two cases, establishingtemn (3).

However to prove equation (5), this is not enough, becauletlom right hand side commitments appear
in the simulated view and not the committed values themsdlwvaich can be distinguishable even when the
commitments themselves are indistinguishable). So nowwild B machineM, which will “expose” the
incoming left hand side commitment frof, ;) and the outgoing right hand side commitmentfo That
is, M, will interact with an external sender and an external reardior these commitments, while internally
simulating the rest. Then we shall use the non-malleahiityperty of Comynm to argue that the values
committed to byM, in two experiments — one in which, ;) commits tow,,;y and another in which to the
all-zeros string — are indistinguishable, and hence sobailhe values committed g by H;.q andH,..

a5 it would have already failed iH.
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4The precise argument is slightly more involved. Considenegating the pair of random variables
(5&“1) 5 1)) and (b(’ D gl 2)) as follows: note that;.; and H,., are described identically until FM
Let us caII this machlnéiz, which we run until reaching FM At this point there are three possibilities:

1 Both (50", a\"™) and (5%, a{"?)) are defined — i.e. théth right-hand-side interaction already
terminated before we reached ENh this case they have identical values.

2 Botha!"" anda!"™® are defined and they have the same vai¢, 5\ andb|"® are not yet
deflned

3 Allof (57, al"™) and(5"?, a{"*) are undefined,

In the latter two cases we continue the executiortef and H,.o separately to fully define the random
variables. It is sufficient to argue that the pairs of rand@mables obtained in these two sub-processes are
indistinguishably distributed.

In the second case this follows from the indistinguishgbitif Compyn. To see this consider a machine
M; initialized toH;, at the point of FM. It starts off by sendingu,;) to an external sendd? and receives
a commitment to eithepr(z-) or to the all zeros string, and uses this commitment instdatieohonest
commitment; then it outputs a bit indicating whetHéraccepted the simulated proof or not, along with
the committed valuétg), which is provided taV/, non-uniformily (as it was already fixed). Depending on
the choice made by, the output is eithe@“ alt 1)) or (b(’ 2 al 2)) SinceM is a (non-uniform) PPT
machine, the hiding property @omy implies that these two outputs must be indistinguishable.

In the third case we consider two sub-cases, depending othartieM,; is in the main thread or not. If
FM; is not in the main thread, then the statistical differenci@main thread is negligible. This is because,
as described in the proof of equations (2) and (4), the only pvavious threads affect the main thread is
on account of whether all the requisite PRS secrets areaf@ibn time during the simulation; but, again
as pointed out above, the refinement of Lemma 2.2 guarariteethe probability of the simulation getting
stuck for want of a PRS secret will remain negligible in both; andH,.o.

Dealing with the remaining sub-case, when Fypears in the main thread, requires the non-malleability
property ofComy. Note that at FMthe first message of the right ha@dmy phase withV; has not yet
started. Then, like before, we construct a machmk’e again initialized tdﬂi at the point of FM, which
starts off by sendingu,;) to an external sende? and receives a commitment to eithey;) or to the all
zeros string, and uses this commitment instead of the haoesthitment. Howevei/; differs from M in
the following ways:

e It does not run any look-ahead threads. (For instance, mr€ig), fori = 1, M/ will not run any look-
ahead threads; far= 6, M, will run all the look-ahead threads except AE.) Note thathat point
FM;, we have that{; would have recorded the PRS secret for all the left hand siglenpbles which
were already concluded and could go on to be accepted. Akdgoreambles which are concluded
after the point FM, if their sessions go on to reach Phaseddmyu, then they will be numbered
FM; for j > 4. So for those sessiortg;.; andH,., do not require the PRS secret to execute the thread.
So there is no need to run any further look-ahead threads.

e The Comyy commitment tol; is “exposed.” That is, the part df, which receives th&€Compym
commitment is not internalized; instedd; expects this to be an outside party.

e For convenience, we will hav&/; output a bit indicating whether in the internal simulatighac-
cepted the proof or not.
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When P chooses to commit to the string sent bf/, the entire execution, with an honest external receiver
for the exposed commitment is a statistical simulation efrain thread execution 6%,.1, and whenP
chooses to commit to the all-zeros string it is a statistialulation of the main thread execution H..
(The only reason for the simulations being not perfect isithd/;, the negligible probability that the PRS
simulation may fail beyond FMs no longer present, whereas it is preseritin and#,.,.) Further, in the
first case the output by/, is Bé“l) and in the Iattef)g“z). Now, the non-malleability condition oGomp
implies equation (5). O

2.5.2 Relaxing the requirement onComyy

We remark that the (natural) requirement we used, that teerfiessage iComyy be the determining
message, can in fact be removed. This will provide the fléiilnf using a protocol based on alternate sta-
tistical binding commitment schemes (like Naor's schemegg] in which the first message in the protocol
is a random string from the receiver to the sender, and iteéssétond message which is the determining
message).

Not having the first message as the determining messagesadiar proof at exactly one poift:at the
very last case analysis in the proof of Claim 2.6, in consingcthe adversani/; we assumed that it can
be initialized to the point at which FMbccurs in the main thread 61;, and only subsequently does it start
interacting with the external receiver, in the exposedisagse., Comyy session with;). However, if the
first message dfomy is not the determining message, the case analyzed sholudénbe possibility that
the commitment to be exposed has already started beforeoEdlirs, but has not reached its determining
message yet. Then we modifyf; to be initialized to the point where either tli®myy session withl;
starts or where FMoccurs in the main thread, whichever occurs first. If the farwccurs firstA/; needs
to carry out the execution of the look-ahead threanll it reaches FM. However since it cannot rewind
the external receiver, in the look-ahead threads it mustriadly simulate the receiver. This is similar to the
situation faced in creating the standalone adversary foaeton in the final stage of building. Indeed,
the condition we used there, namely that the receiver hagivatg coin until the knowledge-determining
message, implies that the receiver has no private coinktbatipoint where the simulation reaches FM
(because it occurs before the determining message, whichriroccurs before the KDM). Hendd; can
carry out the simulation of the look-ahead threads intéynaitil it reaches FM.

3 Impossibility result for concurrent non-malleable geneal functionalities.

In this section we show that it impossibleo extend the result we achieved for zero knowledge for ggner
functionalities. Specifically, we will show that there isns® polynomial-time functionF, such that for
every protocol implementing, there’s a concurrent attack that can be carried in the redefrand cannot
be carried in the ideal mode, even in the case where all hpaesés’ inputs are chosen according to some
(correlated) distribution and fixed in advance.

The function . The functionF will be a combination o(f) string oblivious transfer and zero knowledge
for a particular language. This is a two-party functioryalithere only one party (which we call theceive)
gets any output. Formally, it is defined as follows:

"There is also a notational difference: we defipét) to be the index of the provesendingFM;. Now, depending on whether
FM,; is from the committing party or from the receivex;) will be the index of the prover sendiray receiving FM, respectively.
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The functionality will be parameterized with a security graetern. Let f : {0,1}" — {0,1}" be a
one-way function, define
1 z= f(w)

F. ) = _
zi(wow,z) {O otherwise

Forz,w € {0,1}", and where> denotes concatenation. Thatis x is the ideal zero knowledge function-
ality for theNP-relationRy = {(z,w) : x = f(w)}.
We defineFor as follows
For(xgoxy,b) =xp

Forzg,z1 € {0,1}" andb € {0,1}. That is,For is the functionality for(f) string oblivious transfer,
where the sender has two strings as inpttse; € {0, 1}", the receiver one bii € {0, 1}, the receiver
learnsz;, but notx,_; and the sender learns nothing abbut
We defineF to be the function that allows to compute bdth - and For. Formally, it is defined as
follows:
Frr(zow,x) i=14=0
Fliozxowozgouxy,i oxob) =< For(rgomry,b) i=14 =1
1 otherwiséi #£ i)

(where_L is a value denoting failure).

LetII be a two-party protocol, where we call one party the sendetl@other the receiver. We say that
IT computesF if when both parties follow the protocol’s instructions wihputss andr respectively, the
receiver outputs- (s, r). (To simplify notations, we assume that the valuie used as the security parameter
of the protocolll as well as the input size parameter of the functionality.) pidere the following theorem:

Theorem 3.1. Assume thatf is a one-way functionf and let 7 be defined as above. Lé&L be any
polynomial-time two party protocol computing. Then, there’s a polynomial(-) such that for anyn
there exists a distributioD; ont = ¢(n) input pairs forll, a setting of one party in each o¢fpairs as
corrupt, and a polynomial functioeecrReTthat maps the inputs intf0, 1}", so that the following hold.

e There exists a polynomial-time adversatyhich controls the corrupt parties (including the schedule
and contents of those parties’ messages) such that in a cemtiexecution ot copies ofll, with
the parties receiving inputs chosen from the distribution, the adversaryA outputs the value of
SECRETON the inputs with probability.

e For any polynomial-time adversan} which controls the corrupt parties in an ideal model exemuti
wherein the parties get accessttoopies of the ideal functionalit§, and receive inputs chosen from
the distribution Dy;, the probability thatA outputs the value a§ECRETON the inputs is negligible,
the probability taken ovePy; and the coins ofi.

This is the first result ruling out composable protocols ie giain model for general (possibly non-
black-box) simulation, honest inputs fixed in advance, aridout requiring composability also with other
arbitrary protocols.

This result is somewhat surprising since in many previousngs, (UC-security ¢Losod, bounded
composition [ino03a, Pas04], timing [KLPo5], super-polynomial simulationro4 Bsog) obtaining a compos-
able zero knowledge protocol implied obtaining a compasabbtocol for general functionalities. In fact,
there is a natural candidate for such a protocol in the casblivious transfer: to transform the Naor-Pinkas
OT protocol frod to handle malicious adversaries we only need one apmicatf zero-knowledge proofs,
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and in that application the receiver proves a statemenighatiependent of any messages sent to it by the
prover (and hence can be thought of as secret input that i ifixadvance). Thus, it may seem that com-
bining this protocol with the zero knowledge argument ofteec2 would yield an implementation of.
In fact, it may seem that by combining Naor-Pinkas OT with peno knowledge and Yao’s garbled circuit
protocol [raose], we might get a protocol for computiregny deterministic function assuming that the inputs
are fixed in advance, this is because the compiler to ensaueityeagainst malicious adversaries, no party
ever needs to use zero knowledge to prove statements thettdlep the messages sent by the other party.
Thus, it may seem that we don’t need zero knowledge for addptthosen inputs in this case.

However, it turns out this is not the case. The problem inimgthe security of this particular protocol
is that when performing the simulation and rewinding theoderowledge protocol, we may also rewind
other executions of the OT protocol, which is problematithia case of an honest sender (as the security
of the OT requires that the receiver will only learn one of semder’s inputs). Indeed, by the results of
Lindell [Lino4], no black-boxsimulator can work in this case. Nonetheless, when generaposition with
arbitrary protocols is not required, the fact that the gttiorward black-box simulation does not work does
not mean that there’s no other more clever simulation togthe security of this protocol. The results of
this section will rule out this possibility as well.

The proof of Theorem 3.1 will proceed in two stages:

1 First, (as warm-up) we will prove that for every prototd i for the zero knowledge functionality
(for the relationR?; above), there exists an ideal two-party non-interactierdanistic functionality
Fp (that depends on the protocHl; k) such that a single instance Hf; x executed concurrently
with several ideal calls to copies &t; will not be secure. (In the same sense as Theorem 3.1, that for
inputs chosen from some distribution and fixed in advanceadmersary can learn a secret that she
cannot learn ifll ; 5 was replaced with the ideal zero knowledge functionality.)

Note that the inputs té1; are not adaptively chosen. For the second stage we wouldeegt to be
non-interactive (i.e., nakeactive. If Fi; were allowed to be a reactive functionality or use adaptivel
chosen inputs, then this would be the same setting as thisrésuimpossibility of protocols that
are secure under general composition or the “chosen picatieek.” That is, the results of [vo3s]
(and in fact implicitly earlier works such asAno1, cFoi, ckLo03, ksw97]) imply that for every zero
knowledge protocoll;x, we can find gorotocol P (depending ol k) such that the concurrent
execution ofll ;5 and P is insecure in the above sense. Our main tool in transforrhimgto a non-
interactive functionalityFr; is to use Message Authentication Codes (MACS) to force thveradry
to make calls tdfyy in a certain order, imitating an interactive protocol.

The reason we're not finished is not just becahgds a “less natural” functionality thaft, but also

— and more importantly — because the functign can (and will) depend oll;x in its definition,
its complexity and its input size. To get the negative rethdt we want, we need to go further and
exhibit a functionalityF that cannot be implemented by afly

2 The second conceptual stage is to take this scenario ofrttiecpl I1; 5 and functionality Fi; and
compile this into a scenario where the only thing executethénetwork is one copy of a zero
knowledge protocol and many copies of an OT protocol, with tlonest parties’ inputs for these
copies chosen from a set of predefined distributions. We #rgoe that the previous real-world
attack remains viable in this scenario and (more subth)ithsstill infeasible to perform this attack
if all these copies were replaced by ideal calls to the OT/dictionalities. Sincé is a combination
of these functionalities, the result follows.
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For this stage we will use a variant of Yao’s garbled circathnique Yaose]. Note that unlike its
typical usage, we use here this technique to getgativeresult (this is somewhat similar to what was
done in Bcito1]’'s negative results for software obfuscation).

The overall idea is as follows: We will set up a situation -both the ideal and real worlds — which
could potentially allow for the evaluation of any functiarsing a variant of the garbled circuit tech-
nique and ideal calls to an OT functionality. But, we will sgtthe honest party inputs in such a way
that the only functions that can be evaluated mimic the fonetity F1; described above. So here,
the only functionalities are the ZK and OT functionalitiésit the predetermined honest party inputs
depend on the specific protocdl; . Then, in the real world, the adversary will always succeed i
obtaining a secret, whereas in the ideal world (wHegg¢ is not being executed), no adversary can
succeed.

3.1 Proof of Theorem 3.1: First stage.

We now prove the following lemma (this is the formalizatidntem 1 from above):

Lemma 3.2. Suppose thaf is a one-way function and lét; be theNP-relation {(z,w) : « = f(w)}. Let

I be a stand-alone zero-knowledge proof of knowledge foretaion R ¢ with £ = k(n) prover messages
(wheren denotes both the security parameter and the lefgtlof the statement being proven). Then, there
exists a polynomial-time functiofi = Fi; : {0,1}* x {0,1}* — {0,1}*, a distributionD on ({0, 1}*)¥+1,

a functionsecreT: ({0, 1}*)k*! — {0, 1}" and a polynomial-time adversary such that:

¢ In a concurrent execution scheduled Ayf one copy ofl, with A as verifier, andk ideals calls tof
with A providing the second input and receiving the output, if guis to the honest parties ate
chosen fromD, then A learnsSECRET(d) with probability one.

¢ In any execution ok copies of the ideal calls t¢" and a coponf the ideal functionalitf i, with
honest inputsl chosen fromD, a polynomial time adversaryl will only output SECRET(d) with
negligible probability.

Proof. (Sketch) Before proving the lemma, let us recall why theraalexist (in the plain model) protocols
for zero-knowledge (proof of knowledge) that are securdrsgjaa chosen protocol attack Let IT be a
standalone zero knowledge proof of knowledge protocol.nK luf the following scenario involving four
parties Alice, Bob, Charlie and David: there’s a public eatuand both Alice and David share a secret
valuew such thatr = f(w). We consider two simultaneous executions: in one execitime will prove

to Bob that she knows such a valueusing the ZKPOK protocall. In the second execution Charlie and
David will run the protocolll’ defined as follows: At first Charlie will prove to David that keows such a
valuew using the protocoll.*? Then, if this succeeds, David will sendto Charlie.

It's clear that if Bob and Charlie are coordinating a maliciattack, then they can learn the value
However, if the execution dil was replaced with an ideal call to the functionalfy i, then it does not help
the adversary in executing. In that case, sincH is a proof of knowledge and is a one-way function,
it follows that Charlie would not be able to rui with David, and so will not learn the value. This
is basically the proof that there’s no zero knowledge prddfrmwledge protocoll that is secure under
general composition/chosen protocol attack.

12If the protocolII refers to the identities of the parties, we define that whemating this internal copy dff, Charlie will use
the identity “Alice” and David will use the identity “Bob”. bte that we're free to defind’ to depend ol in an arbitrary way.
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We now want to convertl’ from a protocol intok ideal calls to a functionality® which uses inputs
that are chosen from some distribution and fixed in advané® ratural thing is to simply use fdr the
next message functiaf David's strategy in the protocal’. That is, the inputs will bev, a stringr that is
chosen at random, and on input a transctipt (di, ¢1,ds, ¢, . .., d;, ¢;) of Charlie and David’s messages
in the firsti rounds oflI’, the functionF will output David'si + 1** message in this protocol given that his
input isw, his random coins are and the transcript until that point waslf we use thisF' then certainly in
a coordinated attack, Bob and Charlie can emulate the atamke and learn the value However, it's not
at all clear that this is not possible in the ideal world aslweindeed ifII is a black-box zero knowledge
proof, given the ability to query the next-message funcobdavid one can certainly obtain an accepting
transcript where David is the verifier.

To make the attack infeasible in the ideal model, we add tonghats a keys for a message authentication
(MAC) scheme. Now, given such a transcript (dy, ¢1,ds, co, . . ., d;, ¢;), the functionF’ will request also
a valid tag/signature (with respect to the k§yn the prefix(dy, c1, dz, 2, . . ., d;), and will output not only
d;+1 but also a tag ofidy, ¢1,ds, ca, . .., d;, c;,di+1). I's not hard to see that now, given ontyqueries to
F, it's infeasible for a polynomial-time adversary to obtainwithout essentially interacting withl’ in a
straightline manner (i.e., submittifgqueries of increasing and consistent transcripts). Thuthis ideal
world, the soundness/proof of knowledge propertylamplies that the probability that an adversary outputs
w is negligible. O

3.2 Proof of Theorem 3.1: Second stage.

We will now finish the proof of Theorem 3.1. As mentioned ahav® idea would be to “compile” the
scenario of the first stage into a scenario where, in the redeinthe only protocol executed is the oblivious
transfer protocol (apart from one execution of the ZKPOK@zol I1 ). We do this using a modification
of Yao’s “garbled circuit” method following the intuitionigen above. We note that we will not be using
Lemma 3.2 as a black-box but rather will follow the proof détlemma to prove the theorem.

Yao’s garbled circuit technique. We now sketch Yao's method. As this method is well known wei$oc
on our notations and particular conventions. See4 (whose notations we follow) for a full description of
the method and its analysis. We will have two partiesgiaderand areceiver Letn be a security parameter
(we will use (f) string OT for strings of lengti2n). The sender holds a circult (where|C| is of some
polynomial size, and this size and the topological strctirthe circuit are not secret), and the receiver
holds an input:. The goal is for the receiver to leafi(x) but nothing else about the circuit. For every
wire w in the circuit and bitv € {0,1} we define a valu&g, which is chosen uniformly at random from
{0,1}™. The garbled circuit consists of tables that allow you foy gateg (whereg : {0,1} x {0,1} —
{0, 1}) that takes input wires);, wo and has one output wires, to computeki(f“%) from k7! and k2.
The table is obtained by taking a private-key CPA-secureyption scheme, and having for each gata
table with four rows: for every, 02 € {0,1} we place the encryption d:f?;g"l"’?) o 0" with the keykg)!
and then with the key;2 (whereo denotes concatenatioh).

Typically, for every output wirev of the circuit, one also supplies a way to compatéom £g. That
is, for the tables corresponding to output gates, the val(eppropriately padded) is encrypted instead of
the valuek?,. However, we will do something slightly different: we willOR the output with some secret
string z € {0,1}™ (wherem denotes the number of outputs). That is, we will encrypt gsthtables the

3The reason for padding with zeros is to make sure that whémngttp decrypt with the two keys all rows in the table, the
receiver will know when it found the right row.
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value o & z,,, wherew is the label of that output wire. We will choose the stringo be G(s) where
G :{0,1}" — {0,1}" is a pseudorandom generator and chosen uniformly at random frof®, 1}".

The Yao protocol. The protocol is typically as follows: the sender sends thiblgd circuit over to the
receiver, but keeps to itself the keys corresponding to @fdhe input wires. Then, by performing’
executions of stringﬁ) OT (wherem/’ is the number of input wires), for each input witethe receiver
chooses to get eithét, or k., according to the value in the'” position of its inputz. We will make the
following changes:

1 Instead of sending the garbled circuit to the receiver, Weassume that the garbled circuit is an
input that is given to the receiver. We note that we will alg/énave the receiver as a corrupted party.
Thus, we think of the scenario where the inputs are chosen &dlistribution (not a product distri-
bution), and these inputs are given to both the honest paatid corrupted parties. This distribution
will provide the honest parties with the keys for the inputaesi and the corrupted parties with the
corresponding garbled circuit. Note that this means thateth no issue of trust that the circuit is
indeed garbled correctly.

2 We will selectsy, . . ., s, uniformly at random from{0, 1}" subject to the conditios; © so @ - - - ®
s = s (recall that the “mask” to the outputs is= G(s)). In the OT, for every input wirev, the
sender will use as the two input string$ o s, andk. o s,,. The idea is that before concludirag
the copies of the OT corresponding to this circuit, the nezrewill not get any information about the
output. On the other hand, we note that Byope|] (see [ro4] for details), once a corrupted party
finishes all OT’'s needed to obtain input strings correspumdd its chosen input, it will learn only
the output ofC'(z), and nothing more.

Note that this means that the only interaction between thdeseand receiver is performing the’
copies of the OT.

Our compiler. Let IT be a protocol that implements. We can derive fronil protocolslizx andIlor

for zero-knowledge (for the relatioRR;) and oblivious transfer, respectively, by simply having 8ender
and receiver choose the appropriate valué. dfromIlzg, let ' = Fi,,. be the function obtained from
the proof of Lemma 3.2. Ik is the number of prover messages oz i, andm is the length of the input
to F', we now compile thé: copies ofF’ from the proof of Lemma 3.2 following the procedure above int
km copies of the OT functionality (which is a subfunctionaly F) with inputs as above. Consider an
execution of one copy dfi ;i (with inputsz = f(w) for w chosen at random) concurrently with thése
copies ofllpr (or equivalently, execution dfm + 1 copies oflI) where the corrupt parties are the receivers
in all cases (i.e., the verifier in the zero-knowledge, arerdteiver in the OT). We make the following
claims:

¢ In the real world, there is an adversary which can leamith probability one.

This follows by combining the adversary strategy given ia pgnoof of Lemma 3.2 — in which the
adversary needs accesski@valuations of the” functionality to learmo — with the Yao protocol —
which exactly allows the adversary to evaluate thdéunctionality. Thus, this scenario allows the
adversary to obtain the value with probability one.

23



¢ In the ideal world, no adversary can leasrwith non-negligible probability.

In the ideal world the adversary basically gets one call 04K functionality 7 andkm calls to
the OT functionalityFor (with honest parties’ inputs chosen as described above}e-that since
both parties must agree on how to Useif the adversary tries to usézx more than once, afFpr
km + 1 times, then this will result in the adversary getting thepotitl. . The adversary gains no
information (in an information-theoretic sense) abeutom its one interaction witlf 5. However,
it's more tricky to show that it won't learn anything from tiar calls.

The adversary has accesskta copies ofFor, and we divide these copies to séts ... ., Si, where
|S;| = m for all 4, and contains all copies dfor corresponding to a single garbled circuit. From
the proof of security of Yao’s protocol (seerp4 for details), we can show that the adversary gets
no information (in a complexity-theoretic sense) aboutdineuit except for its value on the outputs
corresponding to the adversaries choice as a receiver i@Thexecutions. Furthermore, because
of the secret-shared “mask” we use, before the adversamegual the copies ofS; she gets no
information about the output of th&" circuit. Assume the setS, ..., S; are ordered according to
the timing of the query to the last copy of the OT in each&etWe can simulate the adversary by
an adversary in the model where all the invocations in the&Ssate replaced with one invocation to
the functionality £ (the simulator will provide random answers until the lastig. However, this is
exactly the model of Lemma 3.2 and so, as in that case, thessadyewill only learnw with negligible
probability.

O

4 Conclusions

In this paper, we show how to construct the first concurrentmalleable zero-knowledge protocol, assum-
ing only that regular one-way functions exist. We also pieva new impossibility result regarding general
functionalities, which together with [no3s, Lin04], gives us a better idea of where the border is between what
is and is not possible in the plain model. An unfortunate egasnce of the impossibility results is that we
must move to alternative definitions of security for genéuattionalities if we want to obtain composable
protocols for broader classes of functionality in the sgttivhere there are no trusted parties or setup. One
such definition was proposed indo4, by allowing super-polynomial time simulation. The maimitation

of this definitional framework concerns functionalities agedefinitionsinvolve cryptographic primitives

(or otherwise rely on computational complexity assumitm be meaningful). For such functionalities,
building on our techniques, one could hope to define and @aglsiecurity in a setting that a polynomial-time
simulator is given extra powers, such as limited rewindifghe ideal model. (Of course, when relaxing
security care must be taken that the definition still prosioeeaningful security guarantees for applications.)
In fact, one may hope for a general clean definition that wputtyide the best of all worlds: for function-
alities such as zero-knowledge provide full self compositifor functionalities where this is not possible
provide some relaxed notions of security, and perhaps fastionalities that take as extra inputs a common
reference string or input for a hard problem provide UC sgcor quasi-polynomial security. That is, there

is hope for a clean meta-theorem from which one could deasalts such asf 0soz Bsog and our current
result by just plugging in the appropriate functionality.
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