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Abstra
t. Rewinding te
hniques form the essen
e of many se
urity redu
tions in
luding proofs for

identi�
ation and signature s
hemes. We propose a simple and modular approa
h for the 
onstru
-

tion of su
h proofs. Straightforward appli
ations of our 
entral result in
lude, but are not limited

to, the se
urity of identi�
ation s
hemes, generi
 signatures and ring signatures. These results are

well known, however, we generalise them in su
h a way that our te
hnique 
an be used o�-the-shelf

for future appli
ations. We note that less is more: as a side-e�e
t of our less 
omplex analysis, all

our proofs are more pre
ise; for example, we get a new proof of the forking lemma that is 2

15

times

more pre
ise than the original result by Point
heval and Stern. Finally, we give the �rst pre
ise

se
urity analysis of Blum's 
oin 
ipping proto
ol with k-bit strings, as yet another example of the

strength of our results.
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1 Introdu
tion

Many se
urity proofs in
orporate 
ompli
ated bla
k-box rewinding te
hniques to for
e 
ertain

behaviour from the adversarial algorithm. Most notably, rewinding is the 
ore part of proto
ol

soundness proofs, for example, it is used to prove the se
urity of many signature s
hemes. Here,

the task is to somehow for
e the adversary to reveal the se
ret key, thus showing that nobody


an 
reate a valid signature without knowing the se
ret. In this paper, our goal is to 
larify

di�erent bla
k-box rewinding te
hniques and provide simple and exa
t proofs. We provide a

universal approa
h together with sharp bounds on running times and su

ess probabilities of

rewinding algorithms. Our main 
ontribution is a straightforward o�-the-shelf te
hnique that is

appli
able in many 
ontexts.

To provide a gentle introdu
tion, we �rst explain our approa
h on simple examples and then

gradually generalise until we have 
overed all target rewinding s
enarios. As an introdu
tory

example, we 
onsider the se
urity of S
hnorr identi�
ation proto
ol [S
h91℄.

Then, we move on to more sophisti
ated rewinding te
hniques and prove the se
urity

of generi
 signature s
hemes. The 
orresponding result is already known as the forking

lemma [PS00℄; on the other hand, our approa
h provides a straightforward and natural proof

with better time bounds. We prove one 
entral result (Theorem 3) that allows us to immediately


on
lude se
urity results for generi
 signatures and generi
 ring signatures. We avoid both the


omplex transform from stri
t non-uniform time to expe
ted uniform time, and the use of impre-


ise auxiliary 
ombinatorial results su
h as the so-
alled \splitting lemma". Although eÆ
ien
y

gain is not the main advantage of our approa
h, it is worth noting that our results are nearly

?
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optimal for the best known redu
tion te
hnique (forking): a more spe
ialised algorithm 
an be

less than two times faster. Thus, we sa
ri�
e almost no eÆ
ien
y for the sake of simpli
ity.

In the se
ond part of this paper, we address the issue of soundness versus se
urity. Namely,

the results obtained so far 
onsider the se
urity of a proto
ol w.r.t. a �xed key. In this 
ontext

it is not possible to obtain a true redu
tion to the underlying hard problem, say, the dis
rete

logarithm problem, sin
e su
h problems are known to be hard only on average. We resolve this

issue by proving the se
ond 
entral result (Theorem 8) whi
h quanti�es the su

ess probability of

the rewinding algorithm, taken over the random 
hoi
e of the se
ret. Our result allows trade-o�s

between the running time and the su

ess probability " of the adversary; for the best trade-o�

point, the time-su

ess ratio of our redu
tion is a fa
tor

p

" better than previous results.

Finally, we show the strength of our results by applying them in a 
ompletely di�erent 
on-

text. Our �nal target is the se
urity analysis of Blum's 
oin 
ipping proto
ol [Blu81℄, whi
h plays

a 
entral role in many zero-knowledge proofs: it allows to guard honest-veri�er zero-knowledge

proto
ols against mali
ious veri�ers. The proto
ol uses 
omputationally se
ure string 
ommit-

ments to guarantee the randomness of the proto
ol output. However, se
urity properties of

Blum's proto
ol are not dire
tly implied by 
lassi
 de�nitions of binding and hiding if k-bit string


ommitments are used instead of bit 
ommitments. We again use rewinding te
hniques to redu
e

the randomness guarantee on the proto
ol output to the binding property of the 
ommitment

s
heme. To sum up, we remark that similar 
ollision �nding problems arise in di�erent areas in-


luding timestamping [BS04,BL06℄ and manual authenti
ation proto
ols [Vau05b,PV06,LN06℄.

Road Map. In Se
t. 2, we introdu
e basi
 notions needed to analyse the se
urity of generi


signature s
hemes. Se
t. 3 is devoted to rewinding te
hniques. Our starting point is the se
urity

of S
hnorr identi�
ation proto
ol (Se
t. 3.1). In Se
t. 3.2, we prove our �rst main result (Thm. 3)

and in the next subse
tion, we give two examples on how to apply the theorem to spe
i�


proto
ols su
h as signature s
hemes. We then make an intermediate summary of our results. In

Se
t. 4, we �ll the gap between soundness and se
urity and provide means to redu
e the se
urity

of the proto
ol to the underlying hard problem (Thm. 8). As an additional treat, we apply the

result to prove the se
urity of Blum's 
oin 
ipping proto
ol. Finally, Se
t. 5 dis
usses some open

problems. Many te
hni
al results are in
luded as appendi
es, sin
e they are straightforward but

tedious to prove. We en
ourage to read them, as they give formal proofs to many intuitively

understandable 
laims.

2 Preliminaries

Notation. For a positive integer i, let [i℄ = f1; : : : ; ig. For an (s+ 1)-dimensional array A, let

A(!

0

; : : : ; !

s

) denote its 
orresponding element. Let ℄S be the 
ardinality of set S. Finally, to

avoid 
ommon 
onfusion about 
onvex and 
on
ave fun
tions, we 
all a fun
tion f 
onvex-
up

if f(

x+y

2

) �

f(x)+f(y)

2

and 
onvex-
ap if f(

x+y

2

) �

f(x)+f(y)

2

.

S
hnorr Identi�
ation Proto
ol. In the S
hnorr identi�
ation proto
ol, a user P proves to

a veri�er V that she knows the dis
rete logarithm of a publi
 key y = g

x

where g is a generator

of a q-element group G . The 
orresponding proto
ol is the following: P 
hooses a  Z

q

and

sends � = g

a

to V. Veri�er V sends a 
hallenge �  Z

q

and P replies with 
 = a+�x (mod q).

Veri�er V a

epts the trans
ript if g




= g

a+�x

= � � y

�

.

Spe
ial Soundness and Knowledge Extra
tion. The se
urity of a proto
ol is proved by

showing that if a prover 
an provide a

epting trans
ripts, then she indeed knows the se
ret
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x. In the 
ase of S
hnorr identi�
ation, it is straightforward to show that given two a

epting

trans
ripts (�; �

1

; 


1

) and (�; �

2

; 


2

) with �

1

6= �

2

, we 
an 
ompute x = (�

2

� �

1

)

�1

(


2

� 


1

)

(mod q). In general, su
h a property is known as spe
ial soundness. If a prover P su

eeds

with probability higher than 1=q, then the 
omplete listing of all proto
ol trans
ripts 
ontains

su
h 
olliding triples and these 
ollisions 
an be found eÆ
iently by rewinding P with di�erent


hallenges �; this sear
h is one example of knowledge extra
tion te
hniques.

Fiat-Shamir Heuristi
 and S
hnorr Signatures. The intera
tive 
hallenge-response iden-

ti�
ation proto
ol des
ribed above 
an be 
onverted into a non-intera
tive signature s
heme

using the so-
alled Fiat-Shamir heuristi
 [FS86℄: the prover 
omputes the random 
hallenge of

the veri�er herself by means of a one-way hash fun
tion h. In parti
ular, S
hnorr signatures

are quadruples (m;�; �; 
) where � = h(m;�) and (�; �; 
) is an a

epting trans
ript of the


orresponding identi�
ation s
heme with publi
 key pk = y and se
ret key sk = x. Heuristi
ally,

if the hash fun
tion is \
ryptographi
ally strong", then substituting � with h(m;�) should not

signi�
antly de
rease se
urity.

Generi
 Signature S
hemes and the Random Ora
le Model. Many important signature

s
hemes 
an be formalised similarly; the 
orresponding generalisation is known as a generi


signature s
heme. Namely, a generi
 signature is a tuple (m;�; �; 
), where m 2 M is the

signed message, � is a random non
e 
hosen uniformly from some set D, � = h(m;�) 2 T for

some �xed fun
tion h, and 
 is a veri�
ation value that is 
omputed from m, � and h using the

se
ret key sk. Veri�
ation 
onsists of two steps: (a) the validity of 
 is veri�ed by evaluating a

pk-dependent predi
ate Verify

pk

(m;�; �; 
); (b) the 
onne
tion between the signature and the

message is assured by testing that �=

?

h(m;�). However, a more formal se
urity analysis is

a

essible only in the random ora
le model [BR93℄, where h is modelled as a bla
k-box fun
tion


hosen uniformly from the set of all fun
tions h :M�D ! T . To 
ompute h(m;�), one has to

make expli
it ora
le 
alls.

Se
urity of Signature S
hemes. A signature s
heme is se
ure, if it is infeasible to obtain

a signature without knowledge of the se
ret key (a forgery). It is important to distinguish

existential and universal forgeries. In the 
ase of universal forgery, an adversary must produ
e a

valid signature for a given message m, whereas for existential forgery, it is suÆ
ient to produ
e

a single but new valid signature. A signature s
heme is (t; ")-se
ure against existential forgeries

if any t-time adversary su

eeds in existential forgery with probability less than ", where the

probability is taken over the 
oin tosses of all relevant algorithms in
luding the key generation

algorithm.

Generi
 Ring Signature S
hemes. In a ring signature s
heme, any user belonging to a ring


an 
ompute a signature on behalf of the entire ring, using only her private key and the publi


keys of other members. An example of su
h a s
heme is an extension of the single-user S
hnorr

signature s
heme [HS03℄. However, we omit here the details how ring signatures are 
onstru
ted

and only des
ribe the generi
 model. A generi
 ring signature in a ring of n members is a tuple

(m;�;�; 
), where � = (�

1

; : : : ; �

n

) su
h that �

i

6= �

j

for i 6= j; and � = (�

1

; : : : ; �

n

) su
h

that �

i

= h(m;�

i

). The spe
ial soundness property of ring signatures then translates to the

following: given two valid signatures (m;�;�; 
), (m;�;�

0

; 


0

) su
h that �

i

6= �

0

i

for exa
tly one

index i 2 [n℄, we 
an 
ompute the se
ret key of one ring member. S
hnorr ring signatures are

spe
ially sound.
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3 Bla
k-Box Knowledge Extra
tion

It is 
ommon to model knowledge extra
tion as a randomised sear
h. In this se
tion, we propose

a relatively simple randomised algorithm Rewind (Alg. 1 and 2) that provides solutions to many

knowledge extra
tion tasks. Re
all that the idea behind knowledge extra
tion is to �nd related

proto
ol trans
ripts that reveal the se
ret. Thus, we abstra
t away from proto
ol details as mu
h

as possible and simply label proto
ol trans
ripts in su
h a way that two random trans
ripts with


oin
iding labels allow to extra
t the se
ret with high probability. Moreover, as a trans
ript is


ompletely determined by the random 
hoi
es of the adversarial prover A and the veri�er V,

we may identify ea
h trans
ript with the underlying randomness. Throughout this paper, we

denote by ! the randomness used in the proto
ol, and by A(!) the label on the 
orresponding

trans
ript.

For example, in the 
ase of S
hnorr identi�
ation s
heme, ! = (r; 
) represents the random


hoi
es of the adversarial prover and the veri�er, respe
tively. We set A(!) = 1 if the tran-

s
ript is a

epting and A(!) = 0 otherwise, so A is simply a binary matrix. Then we 
an skip

implementation details and we are left with the problem of �nding two ones in the same row

of matrix A. In the general 
ase, we allow an arbitrary set of labels, but we always reserve the

label 0 to denote failure. Then, if A a
hieves advantage ", an "-fra
tion of trans
ripts ! have

nonzero labels A(!) 6= 0.

Rewinding. In a nutshell, knowledge extra
tion te
hniques 
onsidered in this paper run the

adversarial prover multiple times with di�erent 
hallenges from the veri�er; or experiment with

di�erent random ora
les in the non-intera
tive 
ase. More formally, let ! = (!

0

; : : : ; !

s

) denote

the random variables as they are requested in the proto
ol. Then, rewinding is a sear
h strategy

where !

0

; : : : ; !

i�1

are �xed but the remaining values are altered; index i is the 
orresponding

rewinding point. The 
ru
ial observation is that if we �x !

0

; : : : ; !

i�1

, then all proto
ol messages

sent before some parti
ipant requests !

i

are the same, regardless of the values of !

i

; : : : ; !

s

. Ob-

viously, di�erent knowledge extra
tion problems require di�erent labelling, sear
h and rewinding


riteria. Therefore, the general form of Rewind is quite 
omplex for the reader that does not

know enough 
ontext. Hen
e, we derive the 
orresponding algorithm gradually starting from

simple examples and introdu
e new ideas until we rea
h the �nal form.

3.1 Se
urity of the S
hnorr Identi�
ation Proto
ol

In order to familiarise the reader with our 
on
ept, we start by proving the se
urity of S
hnorr

identi�
ation proto
ol. The result itself is not novel, but it helps us to introdu
e the notation.

Re
all that the se
urity of S
hnorr identi�
ation proto
ol hinges on the spe
ial soundness prop-

erty: given two a

epting trans
ripts (�; �

1

; 


1

) and (�; �

2

; 


2

) with �

1

6= �

2

, we 
an eÆ
iently

derive the se
ret key x. Now, let A be a � -time adversary that a
hieves advantage " against the

s
heme, i.e., A a
ting as a prover manages to 
reate �; 
 so that an honest veri�er V a

epts

the trans
ript with probability ". Let r be the randomness used by A and let 
 = � be the

randomness used by V. Then we 
an label all proto
ol trans
ripts by 0 if V does not a

ept

and 1 otherwise. Let A be the 
orresponding matrix with entries A(r; 
). W.l.o.g. we 
an assume

that r 2 [m℄ and 
 2 [n℄ are uniformly distributed. Then it is trivial to note that for �xed r, A
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Algorithm Rewind-Basi
(A):

1. Probe random entries A(r; 
) until A(r; 
) 6= 0. Store ! = (r; 
).

2. Fix the row r. Probe random entries A(r; 


0

) in that row until A(r; 


0

) 6= 0. Store !

0

= (r; 


0

).

3. Try to extra
t the se
ret from !, !

0

.

{ If the extra
tion is su

essful return the se
ret x else return ?.

Algorithm Rewind-Basi
-Exp(A):

� Repeat Rewind-Basi
(A) until it su

eeds and returns x.

Algorithm 1: Rewinding algorithm Rewind-Basi
 and its extension Rewind-Basi
-Exp.

always outputs the same message � and we have to �nd two di�erent non-zero entries A(r; 
),

A(r; 


0

) in the same row

1

. The most obvious way to sear
h su
h elements is the following:

{ Probe random entries of A(r; 
) until A(r; 
) = 1.

{ Probe random entries A(r; 


0

) in the same row until A(r; 


0

) = 1.

{ Extra
t se
ret x using r; 
; 


0

if possible.

By random probing we mean that r 2 [m℄ and 
 2 [n℄ are 
hosen uniformly. In parti
ular,

we do not require 
 6= 


0

for otherwise this algorithm would never �nish if it stumbled upon a

row with only one a

epting trans
ript. This implies that the basi
 algorithm always has failure

probability p

fail

> 0, so we may have to repeat the pro
ess.

The two algorithms are formalised as Algorithms Rewind-Basi
 and Rewind-Basi
-Exp (see

Alg. 1). Probing one entry in matrix A 
orresponds to a single exe
ution of the proto
ol. To

probe a se
ond entry in the same row, we have to rewind A to the point where it re
eives �.

Let probes

1

and probes

2

denote the number of probed elements during Step 1 and Step 2. First,

we 
ompute the expe
ted running time of Rewind-Basi
. Note that by 
onstru
tion, " denotes

the su

ess probability of A.

Lemma 1. For any matrix A with an "-fra
tion of nonzero entries, Rewind-Basi
 makes on

average E[probes

1

℄ = 1=" probes in the �rst and E[probes

2

℄ � 1=" probes in the se
ond step.

Proof. Let A be an m � n matrix and let nz(r) be the number of nonzero entries in its rth

row, so "mn = nz(1) + � � � + nz(m). Sin
e Step 1 and Step 2 sample elements until the �rst

su

ess (i.e., a

ording to a binary distribution), we get E[probes

1

℄ = 1=" and for any row r

with nz(r) > 0, E[probes

2

jr℄ = n=nz(r). Thus,

E[probes

2

℄ =

X

r:nz(r)>0

Pr [r℄ � E[probes

2

jr℄ =

X

r:nz(r)>0

nz(r)

"mn

�

n

nz(r)

=

1

"

�

℄ fr : nz(r) > 0g

m

�

1

"

:

ut

1

We 
ould try to �nd 
olliding trans
ripts for di�erent rows but then our 
han
es are signi�
antly smaller. In

fa
t, the adversary A may output a di�erent � for ea
h row. Therefore, the sear
h 
riterion is optimal for

bla
k-box redu
tions, as the sear
h 
riterion must be independent of A.
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Failure probability and knowledge error. Although the trans
ripts found by Rewind-Basi


are a

epting by 
onstru
tion, we sometimes 
annot extra
t the se
ret, for example if !

1

= !

0

1

.

While this is the only possible 
ause of failure for the S
hnorr proto
ol, in general there 
ould be

other failing tuples. Let bad(!) = bad(r; 
) denote the number of ve
tors !

0

= (r; 


0

) that lead

to failure and let nz(!) = nz(r; 
) = ℄ f


0

: A(r; 


0

) 6= 0g be the number of a

epting trans
ripts

in a given row r. For the S
hnorr proto
ol, bad(!) = 1, as extra
tion fails only if 
 = 


0

, but

nz(!) depends on the adversary. Now, it is straightforward to 
ompute the failure probability

of Rewind-Basi


p

fail

(") =

X

A(!)6=0

Pr [! = (r; 
)℄ � Pr [Rewind-Basi
 = ?j!℄ =

1

"mn

�

X

A(!)6=0

bad(!)

nz(!)

;

as the �rst tuple (r; 
) is 
hosen uniformly among the nonzero entries of A. Let us de�ne

� =

1

mn

�max

A

X

A(!)6=0

bad(!)

nz(!)

; (1)

where the maximum is taken over all possible matri
es for any ". Then we get an upper bound

on the failure probability p

fail

� �=". For the S
hnorr proto
ol, bad(!) = 1 and thus

� =

1

mn

�max

A

X

A(!)=1

1

nz(!)

=

1

n

;

as the last sum 
ounts the number of rows with nonzero entries. Observe that a lower bound

on � is determined by the maximal fra
tion �

0

of non-zero elements in A su
h that extra
tion

always fails, i.e., there exists an adversary with su

ess probability �

0

that does not \know" the

se
ret. For many problems, �

0

= � and thus it is appropriate to 
all � a knowledge error. Given

�, we 
an now estimate the average running-time of Rewind-Basi
-Exp.

Theorem 1. For any matrix A with an "-fra
tion of nonzero entries and for knowledge error

�, Rewind-Exp makes on average E[probes℄ � 2=(" � �) if � < ". Asymptoti
ally, the expe
ted

number of probes behaves E[probes℄ � (2 + o(1))=" in the pro
ess "=�!1.

Proof. As all runs of Rewind-Basi
 are independent and the su

ess probability of a single

�nished run is 1 � p

fail

("), we get E[probes℄ � (2=")=(1 � p

fail

(")) = 2=(" � �). As 2=(" � �) =

2 � (1 + �=(" � �))=", the se
ond 
laim follows. ut

If the 
hallenge spa
e of S
hnorr identi�
ation proto
ol has size n = q, then we say that

k = log

2

q is the se
urity parameter of the proto
ol. We 
on
lude the following result.

Corollary 1. Consider S
hnorr identi�
ation proto
ol with se
urity parameter k. Let A be a

� -time forger whose input 
onsists only of publi
 data. If A produ
es an a

epting trans
ript

with probability " > 2

�k

, then there exists a knowledge extra
tor whi
h extra
ts the se
ret in

expe
ted time t � 2�=(" � 2

�k

).
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Lower bounds on average running-time. Note that Rewind-Exp dis
ards some information

as it 
an probe some entries more than on
e. Still, the next theorem shows that the expe
ted

number of probes, a
hieved by Rewind-Exp, is almost optimal when " is reasonably large. Already

for " > 3�, Rewind is less than a fa
tor of 2 away from the optimal time bound.

Theorem 2. For any bla
k-box sear
hing strategy S, there exists a status matrix A with "mn

nonzero entries su
h that S makes E[probes℄ � 2(mn+ 1)=("mn+ 1) = 2(1 � o(1))=" probes.

Proof. See App. A.

3.2 Rewinding in the General Case

In the previous example, the rewinding strategy was straightforward. In general, knowledge

extra
tion 
an be more 
omplex if there are many possible rewinding points and some 
hoi
es

lead to the exe
ution of di�erent sub-proto
ols. As an illustrative toy example, we 
onsider

an extension of S
hnorr identi�
ation proto
ol where the prover has d 
han
es to 
onvin
e the

veri�er, i.e., d proto
ol instan
es are run sequentially and the veri�er a

epts if at least one

sub-proto
ol leads to a

eptan
e. Su
h a setting is 
losely 
onne
ted to S
hnorr signatures but

is somewhat easier to grasp. Now, the proto
ol trans
ript is a tuple (�

1

; �

1

; 


1

; : : : ; �

d

; �

d

; 


d

)

and we have to �nd two a

epting sub-trans
ripts (�

i

; �

i

; 


i

) and (�

i

; �

0

i

; 


0

i

) su
h that �

i

6= �

0

i

for some i 2 f1; : : : ; dg.

Let ! = (!

0

; !

1

; : : : ; !

d

), where !

0

is the randomness used by the mali
ious prover A and !

i

is the ith 
hallenge �

i

. Clearly, it makes sense to group a

epting trans
ripts into equivalen
e


lasses. Let A(!) = i if the ith sub-trans
ript is the �rst a

epting trans
ript and A(!) = 0

if no trans
ripts are a

epting. To �nd suitable trans
ripts (�

i

; �

i

; 


i

) and (�

i

; �

0

i

; 


0

i

) we have

to �x all random 
oins that are used before �

i

is queried. The latter leads us to the following

simple algorithm:

{ Probe random entries of A(!) until A(!) 6= 0. Set i = A(!).

{ Probe random entries A(!

0

) with !

0

= !

0

0

; : : : ; !

i�1

= !

0

i�1

until A(!) = A(!

0

).

{ Restore proto
ol trans
ripts and extra
t se
ret x using ! and !

0

.

Moreover, the above algorithm 
an be generalised to any proto
ol that satis�es the following

two requirements:

1. Trans
ripts 
an be labelled in su
h a way that two random trans
ripts with 
oin
iding labels

allow to extra
t the se
ret with high probability.

2. For all trans
ripts with the same label the set of reasonable rewinding points is the same.

Indeed, as we shall see in several examples, �nding a proper labelling is the 
ru
ial point in

proving the desired result. The formalisation of the above idea is given as Alg. 2. Note that all

proofs trivially generalise to the 
ase where the the rewinding point is 
hosen at random from a

set of reasonable 
andidates. For our example proto
ol, the rewinding point 
oin
ides with the

label: f(a) = a. We also emphasize that all proofs go through if the adversary halts with su

ess

or failure before re
eiving all d 
hallenges; or if the number of random bits she queries at any

time is unknown ahead of time. In this 
ase, A is not an array, rather it is just a tree whi
h is

not ne
essarily balan
ed; su
h a generalisation is 
onsidered in [Vau05a, p. 270℄. Nevertheless,
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Algorithm Rewind(A):

1. Probe random entries A(!) until A(!) 6= 0.

Store the 
orresponding label a = A(!). Fix the rewinding point i = f(a).

Set r = (!

0

; : : : ; !

i�1

) and 
 = (!

i

; : : : ; !

d

).

2. Probe random entries A(!

0

) = A(r; 


0

) until labels 
oin
ide A(!

0

) = A(!).

3. Try to extra
t the se
ret from ! = (!

0

; : : : ; !

i�1

; !

i

; : : : ; !

d

) and !

0

= (!

0

; : : : ; !

i�1

; !

0

i

; : : : ; !

0

d

).

{ If re
onstru
tion is su

essful return the se
ret x else return ?.

Algorithm Rewind-Exp(A):

� repeat Rewind(A) until su

eeds and returns x.

Algorithm 2: Rewinding algorithm Rewind and its extension Rewind-Exp.

we 
an (a) �x the length of the queries by �lling the gaps with random bits

2

; and (b) 
omplete

the tree with random values so that it is balan
ed. We are now ba
k at the original situation.

Lemma 2. Let f0; : : : ; dg be the set of labels. For any array A with an "-fra
tion of nonzero

entries, Rewind takes on average E[probes℄ � (d+ 1)=" probes.

Proof. Fix a label a > 0 and 
onsider Step 2 under the 
onstraint A(!) = a. As ! is 
hosen

uniformly from a

epting trans
ripts, then ! is 
hosen uniformly under the 
ondition A(!) = a

and the algorithm behaves exa
tly like Rewind-Basi
 on the matrix where all entries A(!) 6= a

are set to zeroes. Hen
e, Lemma 1 yields E[probes

2

jA(!) = a℄ � 1="

a

where "

a

is the fra
tion

of a-labelled entries in A and

E[probes

2

℄ =

d

X

a=1

Pr [A(!) = a℄ � E[probes

2

jA(!) = a℄ �

d

X

a=1

"

a

"

�

1

"

a

=

d

"

:

As E[probes

1

℄ = 1=", the 
laim follows. ut

Aggregated knowledge error. The failure probability p

fail

(") of Rewind is also averaged over

di�erent labels. Let p

a

fail

("

a

) denote the failure probability of Rewind-Basi
 in the matrix where

there are "

a

-fra
tion of nonzero entries and the rewinding point is 
hosen as f(a). Let �

a

be the


orresponding knowledge error. Then the summary failure probability of Rewind is

p

fail

(") = max

"

1

+���+"

d

="

(

d

X

a=1

"

a

"

� p

a

fail

("

a

)

)

�

d

X

a=1

"

a

"

�

�

a

"

a

�

�

1

+ � � � + �

d

"

:

In other words, we 
an de
ompose the 
omplex analysis of initial failure probabilities into simple

sub-
ases. Let � = �

1

+ � � �+ �

d

be the aggregated knowledge error. Now we 
an state the �rst


entral theorem for knowledge extra
tion.

Theorem 3 (Dynami
 Sear
h). Let f0; : : : ; dg be the set of labels and let � be the aggregated

knowledge error. For any array A with an "-fra
tion of nonzero entries, Rewind-Exp makes on

average E[probes℄ � (d+ 1)=(" � �) probes if " > �.

2

If there is no other bound, the number of random bits queried is 
ertainly bounded by the running time of the

adversary.
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Proof. The proof 
oin
ides with the proof of Thm. 1. ut

We 
on
lude this subse
tion by showing how to 
ompute the aggregated knowledge error in

the simple 
ase where all trans
ripts !, !

0

su
h that A(!) = A(!

0

) and !

i

6= !

0

i

(where i is

the rewinding point) allow to extra
t the se
ret. For this, we need to 
ompute the knowledge

error �

a

for ea
h submatrix with only a-labelled nonzero entries. Let !

0

2 [m℄ and !

i

2 [2

k

℄ for

1 � i � d. For ! = (!

0

; : : : ; !

d

) with rewinding point f(a) = i, extra
tion fails only if !

0

i

= !

i

,

so we get bad(!) = ℄

�

!

0

= (!

0

; : : : ; !

i�1

; !

i

; !

0

i+1

: : : ; !

0

d

)

	

= 2

(d�i)k

, so

�

a

=

1

m2

dk

�max

A

X

A(!)=a

bad(!)

nz(!)

=

2

(d�i)k

m2

nk

�max

A

X

A(!)=a

1

nz(!)

= 2

�k

;

as the last sum 
ounts rows with a-labelled entries and there are m2

(i�1)k

rows. Hen
e, the

aggregated knowledge error is

� = �

1

+ : : :+ �

d

= d � 2

�k

: (2)

3.3 Universal Proofs for Forking-Lemma Type Knowledge Extra
tors

Se
urity of Generi
 Signature S
hemes. Next, we turn our attention to signature s
hemes.

Our results from the previous se
tion allow us to obtain a straightforward proof of the infamous

forking lemma [PS00℄ that provides the se
urity of generi
 signature s
hemes in the random

ora
le model. We are going to (re)prove the strongest result, namely, se
urity against existential

forgery. That is, we show that there exists no eÆ
ient adversary who is 
apable of produ
ing

a valid new signature on any message m of her 
hoi
e without knowing the se
ret x. Let A

be an adversary that tries to output a forged signature. To do so, she is allowed to query q

h

hash queries h(m

i

; �

i

) from the random ora
le before outputting a signature

3

(m;�; �; 
). The

goal of the knowledge extra
tor is then to rewind A to produ
e two valid signatures (m;�; �; 
)

and (m;�; �

0

; 


0

) su
h that � 6= �

0

, sin
e this allows to extra
t the se
ret x. Analogously to

identi�
ation s
hemes, we say that k is the se
urity parameter of the s
heme if k = log

2

jT j

quanti�es the size of the hash fun
tion tag spa
e T . The following theorem bounds the expe
ted

running time of the knowledge extra
tor.

Theorem 4 (Forking Lemma). Consider a generi
 signature s
heme with se
urity parameter

k. Let A be a � -time forger whose input 
onsists only of publi
 data. Let q

h

be the number of

queries that A 
an ask from the random ora
le. If A produ
es a valid signature with probability

at least " > �, then there exists a knowledge extra
tor whi
h extra
ts the se
ret key in expe
ted

time t � �(q

h

+ 1)=(" � �), where � = (q

h

+ 1) � 2

�k

is the knowledge error.

Proof. Let ! = (!

0

; !

1

; : : : ; !

q

h

) be the used randomness, where !

0

is the publi
 input of A and

!

i

is the ora
le's reply to the ith query h(m

i

; �

i

). Let A(!) = i if A outputs a valid signature

on the ith query (m

i

; �

i

) and let A(!) = 0 otherwise. Noti
e that we set A(!) = 0 also if

A outputs a valid signature without querying the 
orresponding hash value, so the fra
tion of

nonzero entries in A is "

0

< ". Now, we 
an set the rewinding point to f(a) = a for a 6= 0

3

We assume that A never queries the same hash value twi
e. The assumption is perfe
tly reasonable as A gets

no additional knowledge from repeating queries.
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and apply the rewinding strategy of Alg. 2. In order to apply Thm. 3, we need to 
ompute "

0

and �. Noti
e that due to the randomness of ora
le outputs, the probability that A outputs

a valid signature (m;�; �; 
) without querying h(m;�) is at most 2

�k

, i.e., the probability of

guessing the hash h(m;�) at random

4

. Thus, the fra
tion of entries with nonzero labels A(!) is

"

0

� "� 2

�k

. From (2), we get � = q

h

� 2

�k

. We now have everything we need to apply Thm. 3,

so we 
on
lude

t � � �

q

h

+ 1

"

0

� q

h

2

�k

� � �

q

h

+ 1

"� (q

h

+ 1)2

�k

:

ut

Se
urity of Generi
 Ring Signature S
hemes. Re
all that a ring signature is a tuple

(m;�;�; 
) and given two signatures (m;�;�; 
), (m;�

0

;�

0

; 
) su
h that �

i

6= �

0

i

for exa
tly

one index i, it is possible to extra
t the se
ret x

i

of ring member i. As in the 
ase of single-signer

signatures, we allow the adversary A to ask q

h

queries from the random ora
le and 
onstru
t

from A a knowledge extra
tor that 
omputes two suitably related signatures that reveal the

se
ret of some member. Apart from a more 
lever labelling and rewinding fun
tion f , the proof

is similar to that of Thm. 4 and quite straightforward, so we omit some details.

Theorem 5 (Forking Lemma for Ring Signatures). Consider a generi
 ring signature

s
heme with n ring members and se
urity parameter k. Let A be a � -time forger whose input


onsists only of publi
 data. Let q

h

� n be the number of queries that A 
an ask from the

random ora
le. If A produ
es a valid ring signature with probability at least " > �, then there

exists a knowledge extra
tor whi
h extra
ts the se
ret of some ring member in expe
ted time

t � �(V (q

h

; n) + 1)=(" � �), where V (q

h

; n) = q

h

(q

h

� 1) � � � (q

h

� n + 1) is the number of

n-permutations of q

h

elements and � = (V (q

h

; n) + n) � 2

�k

is the knowledge error.

Proof. As above, let ! = (!

0

; !

1

; : : : ; !

q

h

) be the used randomness, where !

0

is the publi
 input

of A and !

i

is the ora
le's reply to the ith query h(m

i

; �

i

). Let A(!) = a = (a

1

; : : : ; a

n

) if

A outputs a valid signature (m;�

1

; : : : ; �

n

; �

1

; : : : ; �

n

; 
) su
h that she queried (m;�

j

) as the

a

j

th query; and let A(!) = 0 otherwise. The number of di�erent labels is then V (q

h

; n) =

q(q � 1) � � � (q � n+ 1). For A(!) 6= 0, set the rewinding point to i = f(a

1

; : : : ; a

n

) = max

j

fa

j

g

and apply the rewinding strategy of Alg. 2. Then the adversary indeed queries all (m;�

j

) again,

as her view is un
hanged before making the last query (m;�

i

). The probability that A outputs

a valid signature without querying even one of the hashes h(m;�

j

) is at most n � 2

�k

by the

union bound, so the fra
tion of trans
ripts with nonzero labels A(!) 6= 0 is "

0

� " � n � 2

�k

.

Equation (2) again helps to �nd the aggregated knowledge error � = V (q

h

; n) � 2

�k

and Thm. 3

gives the 
laimed bound. ut

3.4 From Average-Case Complexity to Stri
t Time-Bounds

Theorems 1 and 3 only bound the average running-time of the knowledge extra
tor. Conversely,

most se
urity de�nitions are stated using stri
t time-bounds. Therefore, we use a standard

methodology to get knowledge extra
tors that run in stri
t time with negligible failure prob-

ability � > 0. Our 
onstru
tion is again uniform, i.e., the user does not need to spe
ify the a

priori unknown su

ess probability ", see Alg. 3.

4

We may formalise this as follows: if A indeed outputs a signature (m;�; �; 
) su
h that h(m;�) was never

queried, the veri�er 
an query the ora
le himself and reje
t immediately if the ora
le replies h(m;�) 6= �.
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Rewind-Uni(A; �):

for i = 1; 2; 3; : : : do

repeat at most dlog

2

1

�

e times

Exe
ute Rewind-Exp(A) and stop if it exe
utes more 2

i

probes.

if Rewind-Exp(A) su

eeds in extra
ting the se
ret x halt with the output x.


ontinue


ontinue

Algorithm 3: Rewinding algorithm Rewind-Uni.

Theorem 6 (Uniform Knowledge Extra
tion in Stri
t Time). Let f0; 1; : : : ; dg be the

set of labels. For any array A with an "-fra
tion of nonzero entries and aggregated knowledge

error �, the algorithm Rewind-Uni(A; �) fails in the �rst 8(d+ 1)(log

2

(1=�) + 1)=(" � �) probes

with probability less than �.

Proof. Note that if 2

i

� 2(d + 1)=(" � �) = 2 � E[probes℄ then Markov inequality Pr [X > �℄ �

E[X℄=� assures that Rewind-Exp outputs a 
ollision with probability at least 1=2 in the repeat


y
le. For i

0

= dlog

2

(2(d+1)=("��))e, the single repeat 
y
le makes at most 4(d+1)(log

2

(1=�)+

1)=("��) probes and fails with probability less than �. As the number of probes in the ith repeat


y
le is 2

i

, the total 
omplexity of the �rst i

0

invo
ations is at most 8(d+1)(log

2

(1=�)+1)=("��).

ut

3.5 Signi�
an
e of Our Results

Spe
ially sound proofs of knowledge. The se
urity of spe
ially sound proofs of knowledge

like S
hnorr identi�
ation s
heme is relatively well studied [S
h91,DF02,OO98℄. Yet, we are

the �rst to provide a knowledge-extra
tion algorithm that runs for all adversaries for whom

knowledge extra
tion is possible at all. That is, we remove the arti�
ial 
onstraints " > 
� for

some 
onstant 
 and prove the result for all " > �. The expe
ted running-time of our algorithm

2=(" � �) is approximately equal to the true lower bound when " � �. Previous analyses have

used so 
alled \heavy row" te
hniques to obtain the results and are thus inherently impre
ise.

In [DF02℄, the \heavy row" te
hniques lead to the bound E[probes℄ � 56=" when " � 4�,

whereas we get the bound E[probes℄ � 8=(3 � "). The main reason behind the fa
tor 21 drop in

this estimate is the simpler form of the new algorithm, whi
h allows for a pre
ise analysis.

Forking lemmata. Originally, forking lemma was derived in [PS00℄, where the authors

managed to analyse the 
ase where " � 7q � 2

�k

and proved that their algorithm requires

E[probes℄ � 84480 � q=" probes on average. Our analysis gives a bound E[probes℄ � 2:8 � q=" that

is several orders of magnitude better. However, the main advantage is the 
on
eptual simpli
ity.

The forking lemma itself is a simple 
on
lusion of Thm. 3 where the only non-trivial steps are

the 
hoi
e of labels and the 
omputation of aggregate knowledge error. The proof of Thm. 3

itself is straightforward 
ompared to the original treatment in [PS00℄ that uses an auxiliary

\splitting lemma". Moreover, Thm. 3 itself is a universal result, therefore, we do not need to

repeat the same te
hni
al steps to prove slightly di�erent results. Rather, we only have to 
hoose

proper labelling and estimate the aggregate knowledge error, whi
h is in many 
ases a simple

fun
tion of the s
heme se
urity parameters and the number of labels. Therefore, we believe that

our approa
h provides a 
exible and universal solution to many, not to say to all, knowledge
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extra
tion problems that require rewinding. For example, Thm. 3 
an also be applied to prove

the se
urity of multi-signatures [BN06℄.

Finally, we explain why we have not 
onsidered se
urity against an adversary that is also

allowed to make signature queries. This is not be
ause our approa
h does not allow for su
h

proofs; on the 
ontrary, existing results 
an be used to �ll the gap easily and obtain new

and sharper bounds. We have omitted the details mainly be
ause the missing step deals with

simulation and does not shed any new light to the rewinding problem.

Stri
t Time Bounds. Authors of the previous redu
tions always follow the same path: �rst,

they 
onstru
t a non-uniform knowledge extra
tor that runs in some stri
t time with �xed


onstant su

ess probability. Then, they apply a 
omplex transform to get a uniform knowl-

edge extra
tor with bounded expe
ted running-time. We, on the other hand, take a di�erent

approa
h and immediately 
onstru
t a uniform expe
ted-time algorithm. We 
an then apply

a simple transform to a
hieve a uniform knowledge extra
tor with stri
t running time for any

desired su

ess probability. Of 
ourse, su
h a transform is possible also for the previous uni-

form knowledge extra
tors, but ea
h additional transform 
omes at a 
ost of degradation in the

pre
ision of bounds.

4 From Soundness to Se
urity

The forking lemma and its 
ounterparts provide strong soundness guarantees: if somebody 
an

generate signatures with non-negligible probability, then she must know the se
ret key. However,

this result alone does not prove that the 
orresponding signature s
heme is se
ure, as it might

be easy to �nd the se
ret key from publi
 parameters. Of 
ourse, we 
annot 
hoose the publi


parameters to atta
k the sub-primitive, e.g. the publi
 key of the S
hnorr signature is generated

only on
e and we 
annot resample it. The underlying hard problem for S
hnorr signatures is the

dis
rete logarithm problem, whi
h is hard only on average. Thus, we want to show se
urity for a

key 
hosen at random. To 
lose the gap, we must show that if there exists an eÆ
ient algorithm

A that 
an forge signatures with probability ", then there exists an eÆ
ient algorithm B that


an solve dis
rete logarithm with high enough su

ess probability. More pre
isely, if G = hgi

is a (�; "

0

)-se
ure DL-group, then we need to 
onstru
t for any suÆ
iently su

essful adversary

A, a � -time adversary B that atta
ks the dis
rete logarithm problem with su

ess probability

Pr [x Z

q

; y  g

x

: B(g; y) = x℄ > "

0

.

Many authors [BP02,BN06℄ have addressed this problem by 
onstru
ting from a t-time

adversary A another adversary B that runs in time 2t; the 
orresponding result is known as

the reset lemma [BP02, p. 168℄. In what follows, we give a large variety of similar knowledge

extra
tion te
hniques that provide tradeo�s in terms of required se
urity parameters (�; "

0

) from

the DL-group. For the best trade-o� point, our redu
tion is a fa
tor of

p

" sharper than the

reset lemma. Moreover, our redu
tion is appli
able in di�erent areas in
luding time-stamping

s
hemes [BS04,BL06℄ and data-authenti
ation [Vau05b,LN06℄.

In the formal se
urity proof, one de�nes a su

ess matrix A similarly to previous examples

so that two 
oin
iding labels A(!) = A(!

0

) allow to extra
t the se
ret x with high probability.

In parti
ular, we want to �nd a 
ollision fast: approximately in ` = o

�

1

"��

�

probes. For su
h

a small number of probes, we 
annot use our results for Rewind-Uni, so we have to start from

s
rat
h. Also, the probability of �nding even one nonzero element is o(1), so we derive bounds

only for Rewind-Basi
 and Rewind.
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As before, we start with the simple 
ase where A(r; 
) is a zero-one matrix. Let probes

1

and

probes

2

denote the number of probes in Step 1 and Step 2 of Rewind-Basi
. Then the distribution

of probes

1

depends only on the fra
tion of nonzero entries ". However, the distribution of probes

2

depends on how the nonzero elements are distributed. Let p

r

denote the probability of probing

a nonzero element in the rth row. Although p

r

2 f

0

n

; : : : ;

n

n

g, we 
onsider relaxed 
on�gurations

where p

r

2 [0; 1℄. We assume only that the probability of getting a nonzero element in the

rth row is p

r

and that p

1

+ � � � + p

m

= "m. Intuitively, if p

r

varies over rows, then rows with

high p

r

are sele
ted more likely. Hen
e, on average, the suitable nonzero element is found faster


ompared to the uniform 
on�guration p

r

= " for all rows. Indeed, the 
on�guration p

r

= "

maximizes the failure probability after the �rst ` � 1=" probes.

Lemma 3. Let " 2 (0; 1℄ and ` � 1="�1. Then Step 2 of algorithm Rewind-Basi
 fails to �nish

in ` steps with probability at most Pr [probes

2

> `℄ � (1� ")

`

.

Proof. To prove the 
laim, we have to show that Pr [probes

2

> `℄ as a fun
tion of p = (p

1

; : : : ; p

m

)

is maximised at p

Æ

= ("; : : : ; "). The proof itself is straightforward but te
hni
al and thus the


omplete proof is given in Appendix B. ut

Thm. 7 quanti�es the probability that Rewind-Basi
 is su

essful, provided that a mali
ious

adversary a
hieves advantage " and we 
an freely 
hoose the rows.

Theorem 7. Let " 2 (0; 1℄ and let Pr [probes � ` ^ su

ess℄ denote the probability that

Rewind-Basi
 returns the se
ret in ` steps. Let � be the knowledge error. If ` � 1=" then

Pr [probes � ` ^ su

ess℄ �

1

6

`(` � 1)"(" � �). If ` � 1=", then Pr [probes � ` ^ su

ess℄ �

1

4

(1� �=").

Proof. Consider the failure probability of the Rewind-Basi
 algorithm after the �rst ` probes.

There are `+1 disjoint events that 
an 
ause failure: either we �nd A(r; 
) 6= 0 at the ith probe

and then fail to reveal the se
ond A(r; 


0

), or we 
annot �nd the �rst nonzero element at all.

Thus,

Pr [probes > `℄ =

`

X

i=1

Pr [probes

1

= i℄ Pr [probes

2

> `� i℄ + Pr [probes

1

> `℄ :

Note that probing in Step 1 is uniform and ea
h probe is su

essful with probability ". For

` � 1=", `� i � `� 1 � 1=" � 1 and Lemma 3 assures that

Pr [probes > `℄ �

`

X

i=1

(1� ")

i�1

"(1 � ")

`�i

+ (1� ")

`

= `"(1 � ")

`�1

+ (1� ")

`

:

A lower bound based on the third order Taylor expansion gives 1�Pr [probes > `℄ �

1

6

`(`�1)"

2

;

see Appendix D and Lemma 5 for the 
orresponding proof. If ` � 1=" then observe a new relaxed


on�guration p

0

r

=

1

`"

� p

r

. Then the 
orresponding average "

0

= 1=` and Rewind 
hooses the

rows r with the same probabilities as before. Sin
e failure probabilities Pr [probes

1

> `j"

0

℄ and

Pr [probes

2

> `jr; p

0

r

℄ only in
rease, we have obtained

Pr [probes � `j"℄ � Pr

�

probes � `j"

0

�

� 1�

�

1�

1

`

�

`

�

�

1�

1

`

�

`�1

=: g(`) ;
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as Lemma 3 holds for "

0

. Sin
e (1�

1

`

)

2`�1

� e

�2

, or equivalently, 2 + (2`� 1) ln(1�

1

`

) � 0, we

get g

0

(`) = �(1 �

1

`

)

`

=(` � 1) � ((2` � 1) ln(1�

1

`

) + 2) � 0 and Pr [probes � `℄ � g(2) = 1=4 for

` � 1=". As p

fail

(") � "=�, the inequalities about su

ess probabilities follow. ut

Now, we have a non-trivial bound for the su

ess probability of the rewinding algorithm for

a small number of steps. The next theorem provides an adequate solution for redu
tions that

take into a

ount the average advantage over the publi
 key. Namely, in the following, let �

i

denote the advantage of A for a given publi
 key g

i

, and let � be the averaged advantage over

all keys.

Theorem 8. Let A

1

; : : : ;A

u

be a 
olle
tion of m � n matri
es and let "

i

be the fra
tion of

nonzero entries in A

i

. Let � be the knowledge error and let " =

1

u

� ("

1

+ � � �+ "

u

) be the average

fra
tion of nonzero elements. If 2 � ` � 1=" then for randomly 
hosen i 2 [u℄, Rewind-Basi
(A

i

)

su

eeds with probability Pr [i [u℄ : probes � ` ^ su

ess℄ � ("� �) �min

�

1

8

;

1

6

� `(`� 1)"

	

.

Proof. To prove the 
laim, we �nd the 
on�guration of "

i

that minimises the average su

ess

probability Adv = Pr [i [u℄ : probes � ` ^ su

ess℄. More pre
isely, we use Thm. 7 to �nd a

lower bound for ea
h "

i

. As usual, we allow relaxed matrix 
on�gurations, sin
e this 
an only

de
rease the lower bounds.

For a �xed `, there are three types of matri
es. If "

i

� � then Thm. 7 provides no guarantees.

If "

i

> 1=` then the lower bound to su

ess given in Thm. 7 is 
onvex-
ap and for remaining


ases the lower bound is 
onvex-
up w.r.t. "

i

. Let I

a

= fi : "

i

< �g, I

b

= fi : � � "

i

< 1=`g,

I




= fi : "

i

= 1=`g and I

d

= fi : "

i

> 1=`g be the 
orresponding index sets. Sin
e the bounds

of Thm. 7 are in
reasing w.r.t. "

i

, we may assume that I

a

= ;, for otherwise we 
ould de
rease

the lower bound by in�nitesimally in
reasing "

i

for i 2 I

a

. Se
ondly, for the index set I




[ I

d

,

the lower bound

1

4

(1�

�

"

i

) is 
onvex-
ap and it is straightforward to verify that the minimising


on�guration for I




[ I

d


onsists of t




values "

i

= 1=`, t

d

values of "

i

= 1 and possibly from

a single value "

i

�

2 (1=`; 1). If we relax 
onstraints and allow also fra
tional 
ounts for t




and

t

d

, then in the optimal 
on�guration, "

i

< 1=` with probability p

b

, "

i

= 1=` with probability p




and "

i

= 1 with probability p

d

. Finally, as "(" � �) is 
onvex-
up w.r.t. ", Jensen's inequality

together with Thm. 7 gives

Pr ["

i

� 1=` ^ probes � ` ^ su

ess℄ �

(p

b

+ p




)`(`� 1)"

2

("

2

� �)

6

;

where "

2

� 1=` is the weighted average of the "

i

� 1=`. As a result, the minimising 
on�guration


onsists of p

1

= p

d

fra
tion of values "

i

= 1 and p

2

= p

b

+ p




fra
tion of values "

i

= "

2

, so the

lower bound for Adv 
an be found as a minimising task f(p

1

; p

2

; "

2

) =

1

4

p

1

(1 � �) +

1

6

p

2

`(` �

1)"

2

("

2

� �) ! min w.r.t. p

1

+ p

2

= 1, p

1

+ p

2

"

2

= ", � � "

2

� 1=`, p

1

; p

2

� 0. By applying

Lemma 4 with 
 =

2`(`�1)

3(1��)

and "

Æ

=

1

`

� ", we get the desired result

Adv �

1

4

(1� �) �min f

1

2(1��)

; 
"(" � �)g = ("� �) �min

�

1

8

;

1

6

� `(`� 1)"

	

:

ut

Note 1. One 
an verify that bounds derived in Lemmata 4 and 5 are at most three times away

from the true bounds and Thm. 8 underestimates the worst 
ase probability at most three times.

Also, the Reset Lemma is a spe
ial 
ase of Thm. 8 with ` = 2.
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It is now relatively straightforward to generalise the result from the basi
 algorithm to

algorithm Rewind with multiple labels

5

.

Corollary 2. Let f0; 1; : : : ; dg be the set of labels. Let A

1

; : : : ;A

u

be a 
olle
tion of arrays

and let "

i

be the fra
tion of nonzero entries in A

i

. Let � be the maximal knowledge er-

ror over labels and let " =

1

u

� ("

1

+ � � � + "

u

) be the average fra
tion of nonzero elements.

If 2 � ` � 1=" then for randomly 
hosen i 2 [u℄, Rewind(A

i

) su

eeds with probability

Pr [i [u℄ : probes � ` ^ su

ess℄ � (

"

d

� �) �min

�

1

8

;

1

6

� `(`� 1)

"

d

	

.

Proof. First, note that we 
an 
onsider doubly indexed zero-one arrays A

i;a

where A

i;a

(!) = 1

i� A

i

(!) = a. For �xed i, Rewind 
hooses matrix A

i;a

with probability

"

i;a

"

i

where "

i;a

is the

fra
tion of a labels in A

i

. When Rewind has 
hosen the A

i;a

it behaves exa
tly like Rewind-Basi
.

Sin
e the dynami
 
hange of the rewinding point does not 
hange the analysis of Thm. 8 and

we know that for all A

i;a

the 
orresponding knowledge error is smaller than �, we 
an apply

Thm. 8 for the 
olle
tion of arrays fA

i;a

g. However, we need to re
al
ulate the average su

ess

probability for the 
olle
tion fA

i;a

g

"

0

= E("

i;a

) =

1

u

�

u

X

i=1

d

X

a=1

"

2

i;a

"

i

�

1

u

�

u

X

i=1

"

i

d

=

"

d

as

d

P

a=1

"

2

i;a

� "

2

i

=d by Jensen's inequality. The 
laim follows, if we substitute " with "

0

in Thm. 8.

ut

Appli
ation to S
hnorr Identi�
ation S
heme. To show the strength of Thm. 8, we

again 
onsider the exa
t se
urity of the S
hnorr identi�
ation s
heme. More pre
isely, let A be

an adversary that a
hieves " average advantage against the proto
ol, where the publi
 key is


hosen randomly, i.e., y = g

x

for x Z

q

.

Theorem 9. Let A be a t-time adversary that a
hieves average advantage " against the S
hnorr

identi�
ation s
heme over a q-element group G . Then there exists a � -time algorithm B that


omputes dis
rete logarithm with su

ess probability "

0

where

(

� = `t;

"

0

= ("� �) �min

�

1

8

;

1

6

`(`� 1)"

	

;

2 � ` � 1=" :

Proof. Let "

i

be the advantage of adversary A against the publi
 key y = g

i

. By the 
onstru
tion

we know that " =

1

q

("

0

+ � � �+"

q�1

) and �

0

= : : : = �

q�1

= 1=q = 2

�k

. Dire
tly applying Thm. 8

gives

Pr [x Z

g

; y = g

x

: B(g; y) = x℄ � ("� 2

�k

) �min

�

1

8

;

1

6

`(`� 1)"

�

where B runs Rewind-Basi
 for ` probes to restore x. Note that the running-time of B is `t and

the 
laim follows. ut

5

A more 
areful analysis would allow to obtain a redu
tion that loses a fa
tor d instead of d

2

. However, this

would require reproving Thm. 8 with all its auxiliary results.
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Optimal time-su

ess ratio. Thm. 9 shows that for ` �

1

p

"

, the worst 
ase su

ess probability

grows slowly and that redu
tions with ` 2 [2;

1

p

"

℄ are reasonable. Let " > 2� = 2

�k+1

. If we have

a (t; ")-atta
k against the S
hnorr identi�
ation proto
ol then we must have (t`; 2 � `

2

"

2

)-se
ure

DL-group G . In order to 
ompare su
h redu
tions, we 
an observe the 
hange in the time-su

ess

ratio � =

t

"

. The time-su

ess ratio 
hara
terises the average number of 
omputational steps an

adversary must do to break the primitive, if he is allowed to restart the atta
k, i.e, y is resampled.

Let �

0

be the best time-su

ess ratio for �nding the dis
rete logarithm in G and let � be the

time-su

ess ratio of an atta
k on the proto
ol. Then, Thm. 9 gives

�

�

0

� 0:5 � `" � O(

p

") and

the number of probes really makes a di�eren
e. For example, let the desired su

ess bound be

" = 2

�80

. Then for the Resetting Lemma where ` = 2 the average guarantee for breaking time

de
reases by 2

80

, whereas for the optimal 
hoi
e ` =

p

" the average breaking time de
reases

only 2

41

times. Nevertheless, observe that the de
rease O(

p

") is always quite signi�
ant. Hen
e,

su
h redu
tion te
hniques should be avoided if possible.

And Now For Something Completely Di�erent. . . Fair Coin-Flipping. In order to

show the power of Thm. 8, we look at a 
ompletely di�erent appli
ation. Namely, we analyse

the se
urity of Blum's 
oin 
ipping proto
ol [Blu81℄ for k-bit string 
ommitments. The proto
ol


onsists of four steps: (a) a trusted party uses a probabilisti
 algorithm Gen to �x the publi


parameters pk of the 
ommitment s
heme; (b) Ali
e 
hooses a random k-bit string x and sends

a 
ommitment Com

pk

(x) to Bob; (
) Bob sends a random b-bit string y to Ali
e; (d) Ali
e opens

the 
ommitment to x and both 
ompute z = x� y.

It is intuitively 
lear that Bob 
annot 
ontrol the value of z if the 
ommitment is hiding and

Ali
e 
annot 
ontrol z if the 
ommitment is binding. However, there is an important quantitative

di�eren
e. Redu
tion to hiding is straightforward, whereas redu
tion to the binding property

is more 
omplex. The pre
ise 
omplexity of the latter redu
tion has been studied only for the


ase of 1-bit strings. Re
all that a 
ommitment is (t; ")-binding if any t-time adversary B 
an

generate a 
ommitment 
 and then open it to two di�erent values with probability less than ",

where the probability is taken over the random 
oins of B and Gen. Hen
e, we have to somehow

extra
t a double opening from mali
ious Ali
e.

Theorem 10. Let Z be an s-element subset of f0; 1g

k

with an eÆ
ient membership test and let

the 
ommitment s
heme be (t

1

; "

1

)-binding. If Bob is honest, then a � -time mali
ious Ali
e 
an

for
e out
ome z 2 Z with probability "

2

� s � 2

�k

+max

�

8"

1

;

p

6"

1

`�1

	

, where ` =

t

�

. In parti
ular,

if � = �(t

p

"

1

), then "

2

� s � 2

�k

+ 8"

1

.

Proof. Assume for the sake of 
ontradi
tion that a � -time Ali
e 
an for
e z 2 Z with probability

"

2

> s � 2

�k

+maxf8"

1

;

p

6"

1

=(`� 1)g. Let i 2 [u℄ be the randomness used by the Gen algorithm

and let A

i

(r; 
) be the status matrix 
orresponding to pk

i

, where r is the randomness of Ali
e and


 = y is the reply of Bob. Let A

i

(r; 
) = 0 if Ali
e fails to open the 
ommitment after re
eiving

y so that x� y 2 Z, and let A(r; 
) = 1 otherwise. Note that � = s � 2

�k

, as for di�erent values

of y, x � y 2 Z must be di�erent. Now, applying Thm. 8, we get that Rewind-Basi
 reveals a

double opening with probability at least

�

"

2

� s � 2

�k

�

�min

�

1

8

;

1

6

`(`� 1)"

2

	

> "

1

after the �rst

` probes. The result follows. ut

Re
ent manual authenti
ation s
hemes [Vau05b,PV06,LN06℄ that use Blum's 
oin 
ipping

proto
ol as a sub-primitive indeed require su
h a property. A partial 
ontrol over z su
h that
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z 2 Z allows to bypass se
urity tests so that the proto
ol be
omes inse
ure. Moreover, as all

�

0

-time distinguishers D naturally de�ne a set Z = fz : D(z) = 1g, we have obtained that the

proto
ol out
ome is (�

0

; "

2

)-pseudorandom|an expe
ted result with pre
ise se
urity guarantees.

Similar redu
tions are done in [BS04℄ to prove the se
urity of timestamping s
hemes. The

authors gave only a polynomial redu
tion for ` = 2. Our results allow to quantify the exa
t

se
urity of a wide range of redu
tions. In parti
ular, 
hoosing ` = �

�

1

p

"

�

signi�
antly de
reases

the drop in the time-su

ess ratio.

5 Open Questions

We derived bounds on bla
k-box knowledge extra
tion, assuming that all "-fra
tional 
on�gu-

rations are a
hievable. However, it is relatively straightforward to verify that � -time adversaries


annot generate all possible matrix 
on�gurations, as there exist matrix 
on�gurations with

Kolmogorov 
omplexity mn. Sin
e the adversarial 
ode must be shorter than � � mn, we get

that only a negligible fra
tion of possible 
on�gurations are realisable. It might be possible to

exploit this in knowledge extra
tion algorithms. Whether this is possible and what the biggest

possible gain in running-time 
an be, are theoreti
ally very intriguing questions. Another inter-

esting question is whether white-box knowledge extra
tion, where one 
an exploit knowledge

about the internal stru
ture of an adversarial algorithm, 
an a
hieve results that are dramati-


ally more eÆ
ient, e.g., possibly bypassing the quadrati
 
omputational blow-up in the 
ase of

generi
 signatures.
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A Proof of Optimality (Theorem 2)

Proof. Consider a simpler task: �nd two nonzero entries in the matrix and let S be a 
orre-

sponding deterministi
 probing strategy. Now, lets 
ompute the average 
ase probe 
omplexity

of S over matri
es with "mn nonzero entries. W.l.o.g. we assume that S probes always new

entries. As S is deterministi
 and matrix 
hosen randomly, we 
an show that any new 
hoi
e

of a new matrix entry is equivalent to random probing of A. In the following, we show that

random probing without repetition requires at least 2(mn + 1)=("mn + 1) probes on average.

Hen
e, the average 
ase bound must hold also for all probabilisti
 algorithms. As the worst 
ase


omplexity is always as large as the average, then for some matrix A

S

the bound holds.

More pre
isely, we show that if entries are probed randomly without resampling then the

expe
ted number of probes that reveal two nonzero entries from a u-element list that 
ontains v

nonzero entries is E[probes℄ = 2(u+1)=(v+1) = (2�o(1)) �u=v. Really, let probes be the number

of probes until two nonzero entries are revealed. Then by a simple 
ombinatorial argument,

Pr [probes > `℄ =

(u� v) � � � (u� v � `+ 1)

u � � � (u� `+ 1)

+ ` �

v(u� v) � � � (u� v � `+ 2)

u � � � (u� `+ 1)

=

�

u� `

v

�

.

�

u

v

�

+ ` �

�

u� `

v � 1

�

.

�

u

v

�

;
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p

1

p

m

0 " p

�

2p

�

1

p

f(p)

Fig. 1. Suboptimal matrix 
on�guration aligned with f(p) = p(1� p)

`

as there are two mutually ex
lusive options: either the �rst ` entries are equal to 0, or there is

exa
tly one nonzero element among them. Hen
e, the average number of probes 
an be 
omputed

E[probes℄ =

1

X

`=1

Pr [probes � `℄ =

u+ 1

v + 1

+

u+ 1

v + 1

=

2(u+ 1)

v + 1

= (2� o(1)) �

u

v

;

using standard 
ombinatorial equalities. ut

B The Worst Matrix Con�guration

Lemma 2. Let " 2 [0; 1℄ and ` � 1=" � 1. Then the relaxed 
on�guration p

r

= " for all rows

r 2 [m℄ maximises the failure probability Pr [probes

2

> `℄ for Rewind-Basi
.

Proof. For a �xed 
on�guration p = (p

1

; : : : ; p

m

), express Pr [probes

2

> `℄ as

F

`

(p) =

m

X

r=1

Pr [R = r℄ � Pr [probes

2

> `jR = r℄ =

1

"m

�

m

X

r=1

p

r

(1� p

r

)

`

:

A tight upper bound on Pr [probes

2

> `℄ 
an be found by maximising F

`

(p) with relaxed 
on-

straints p

i

2 [0; 1℄ and p

1

+� � �+p

m

= "m. We 
all su
h points feasible. A feasible point ismaximal

if F

`

(p) is maximal among all feasible points. Now, 
onsider a fun
tion f(p) = p(1� p)

`

. From

f

0

(p) = (1 � p)

`�1

(1 � `p� p) and f

00

(p) = `(1 � p)

`�2

(`p+ p� 2), it is easy to see that f has

one lo
al maximum point p

�

= 1=(` + 1) in the interesting region [0; 1℄. Also, f is 
onvex-
ap

in [0; 2p

�

℄ and 
onvex-
up in [2p

�

; 1℄. The restri
tion ` � 1=" � 1 then implies " � p

�

. Let

p = (p

1

; p

2

; : : : ; p

m

) be a maximal feasible point. W.l.o.g., assume that p

1

� p

2

� � � � � p

m

.

Assume that p

m

is in the 
onvex-
up region, i.e., p

m

2 [2p

�

; 1℄. Then, from p

m

> p

�

� "

and

P

m

i=1

p

i

= "m, we get that p

1

< ". Let Æ = min f"� p

1

; p

m

� "g > 0. Taking a feasible

p

Æ

= (p

1

+ Æ; p

2

; : : : ; p

m�1

; p

m

� Æ) gives F

`

(p

Æ

) > F

`

(p), a 
ontradi
tion with the maximality of

p (See Fig. 1 as an illustrative example). Thus, all 
oordinates p

1

; p

2

; : : : ; p

m

of maximal feasible

points lie in [0; 2p

�

℄. Sin
e f is 
onvex-
ap in [0; 2p

�

℄ Jensen's inequality implies that there is a

unique maximum p

1

= � � � = p

m

= ". ut
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C Analyti
al Optimisation Problem

The proof of Thm. 8 requires on analyti
al solution to the following optimisation task

f(p

1

; p

2

; "

2

) = p

1

+ 
"

2

("

2

� �)! min (F )

(

p

1

+ p

2

= 1; p

1

+ p

2

"

2

= ";

� � "

2

� "

Æ

; p

1

; p

2

� 0

(
)

for " � "

Æ

and 
 = 
(`) growing as a fun
tion of probes `.

Lemma 4. For any 
 > 0 and " � �, the minimisation task (F ) { (
) has a solution

min




f(p

1

; p

2

; "

2

) =

8

>

<

>

:

"��

1��

if

1




2 (0; � � �

2

) ;

1� 
(1� ")(2 � �� 2

p

1� �� 1=
) if

1




2 [�� �

2

; 2" � "

2

� �℄ ;


"(" � �) if

1




2 (2"� "

2

� �;1) :

In parti
ular, min




f(p

1

; p

2

; "

2

) � ("� �)min f
";

1

2(1��)

g.

Proof. First, note that "

2

= ("+ p

2

� 1)=p

2

and thus we have to minimise

f(p

2

) = 1� 
(1� ")(2 � �) +


(1 � ")2

p

2

+ 


�

1� ��

1




�

p

2

where

1�"

1��

� p

2

� 1. Note that g(x) = a=x+ bx for a; b > 0 has a single minimum x

�

=

p

a=b

in the region x � 0 and g(x

�

) = 2

p

ab and no minimum if a and b have di�erent signs. Hen
e,

if 1� �� 1=
 > 0, the minimum is a
hieved in the point p

�

2

=

1�"

p

1���1=


. Note that p

�

2

is in the

feasible region if ���

2

� 1=
 � 2"�"

2

�� and then f(p

�

2

) = 1�
(1�")(2���2

p

1� �� 1=
).

Otherwise f(p

2

) is minimised at the endpoints, i.e, f(p

2

) � min f("� �)=(1 � �); 
"(" � �)g. As

(" � �)=(1 � �) � 
"(" � �) if

1




� " � "� and � � �

2

� " � �" � 2" � "

2

� � � 1 � � the �rst

equation follows. Sin
e at the limiting point of linear growth 1=
 = 2"� "

2

� � the ratio

min




f(p

1

; p

2

; "

2

)(1 � �)

"� �

=

"(1� �)

2"� "

2

� �

�

1

2

and min




f(p

1

; p

2

; "

2

) is obviously growing if 
 is growing, we get min




f(p

1

; p

2

; "

2

) �

"��

2(1��)

if

1




< 2"� "

2

� �. The se
ond 
laim follows. See Fig. 2 as an illustration. ut

D Useful Approximation Formulas

The famous Taylor's Theorem states that f(x) = f(0)+

f

0

(0)

1!

�x+ � � �+

f

(n)

(0)

n!

�x

n

+

f

(n+1)

(�)

(n+1)!

�x

n+1

for some � 2 [0; x℄ if f

(n+1)

(x) is 
ontinuous in the interval [0; x℄. We use this fa
t to derive

some inequalities.

Lemma 5 (Third order Taylor expansion). For any " 2 [0; 1℄ and integer ` � 1=", the

following inequality 1� (1� ")

`

� `"(1� ")

`�1

�

1

2

`(`� 1)"

2

�

1

3

`(`� 1)(`� 2)"

3

�

1

6

`(`� 1)"

2

holds.

Proof. Let f(") = 1�(1�")

`

�`"(1�")

`�1

. By straightforward 
omputation, f(0) = 0, f

0

(0) = 0,

f

(2)

(0) = `(`� 1), f

(3)

(0) = �2`(`� 1)(`� 2) and f

(4)

(�) = `(`� 1)(`� 2)(`� 3)(1� �)

`�5

(3�

�`+ �) � 0 for � 2 [0; 1=`℄. The 
laim follows from Taylor's Theorem. ut
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1
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2

1

2"�"

2

��

1

"�"�

"��

1��

0




y

Lower bound

min




f

Fig. 2. Behaviour of min




f(p

1

; p2; "

2

) and the 
orresponding lower bound


