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Abstract

The paper cryptanalyses a public-key cryptosystem recently pro-
posed by Grigoriev and Ponomarenko, which encrypts an element from
a fixed finite group defined in terms of generators and relations to
produce a ciphertext from SL(2, Z). The paper presents a heuristic
method for recovering the secret key from the public key, and so this
cryptosystem should not be used in practice.
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1 Introduction

Dima Grigoriev and Ilia Ponomarenko [2] have recently proposed a public
key cryptosystem which takes an arbitrary finite group, given in terms of
generators and relations, as its plaintext space and encrypts to a ciphertext
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space which is a subset of SL(2,Z). The aim of this paper is to show that
this cryptosystem is insecure when used in practice. The material in this
paper is extracted from the PhD thesis of one of the authors [1].

The structure of the rest of this paper is as follows. Section 2 recaps
and recasts some of the material on free groups used by Grigoriev and Po-
momarenko [2], and establishes the notation used in the rest of the paper.
Section 3 describes the cryptosystem itself. This description differs some-
what from that of Grigoriev and Ponomarenko, and is designed to clarify our
cryptanalysis in Section 4 as much as possible. Section 5 contains a brief
conclusion.

2 Free groups

This section (and the remainder of the paper) will use the standard terminol-
ogy of combinatorial group theory; see Lyndon and Schupp [3], for example,
for an introduction to the area.

Let F{a,b} be the free group with free generating set {a, b}. We represent
the elements of F{a,b} (and the elements of any subgroup of F{a,b}) as reduced
words in {a, b}±1.

For i ∈ Z, define ci = a−ibai. Define C = {ci : i ∈ Z}, and let L be the
subgroup generated by C, so L = 〈{ci | i ∈ Z}〉. In fact, L is a free group
of countable (infinite) rank with C as a free generating set, by [3, Page 7,
Proposition 2.5]. There is a simple and efficient algorithm to test whether
an element g ∈ F{a,b} lies in L, and if so to produce the representation of
g as a reduced word in C±1 (which we call the C-representation of g). The
algorithm may be stated as follows.

Algorithm (The C-representation algorithm)

Input: A reduced word g = aα0bβ1aα1 · · · bβuaαu .

If g = 1, output ‘g lies in L, and has C-representation the empty word’,
and stop.

If
∑u

i=0 αi 6= 0, output ‘g does not lie in L’ and stop.
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Define integers σ1, σ2, . . . , σu by σi = −
∑i−1

j=0 αj.

Output ‘g lies in L, and has C-representation cβ1
σ1
· · · cβu

σu
.’

We remark that the condition that g is given in reduced form implies that
αj 6= 0 when 1 ≤ j ≤ u− 1 and that βi 6= 0 for 1 ≤ i ≤ u.

The algorithm is not difficult to justify and we omit the details. Grigoriev
and Ponomarenko give a similar algorithm [2, Lemma 2.3] in their paper, but
for a certain finitely generated subgroup of L.

Let S ⊆ Z. Define CS = {cs : s ∈ S}, and let LS be the subgroup of
F{a,b} generated by CS. It is clear that the C-representation algorithm above
may be used to determine whether g ∈ F{a,b} lies in LS, and to compute a
representation of g as a word in C±1

S (the CS-representation of g) if this is
the case. To see this, first use the C-representation algorithm to compute
a representation of g as a reduced word in C±1. If g 6∈ L, or if g ∈ L but
the word in C±1 involves generators ci where i 6∈ S, then g 6∈ LS. Otherwise
g ∈ LS and we have computed the CS-representation of g.

We close this section by defining a little more notation that we need to
describe the cryptosystem.

Let n be an integer, and suppose that n ≥ 2. Define integer matrices An

and Bn by

An =

(
1 n
0 1

)
and Bn =

(
1 0
n 1

)
.

Let Γn = 〈An, Bn〉. Then Γn is a free subgroup of SL(2,Z), freely generated
by {An, Bn} by [3, Page 168]. Write φn : F{a,b} → Γn for the isomorphism
such that φn(a) = An and φn(b) = Bn. It is clearly easy to compute φn(x) for
an element x ∈ F{a,b} when x and n are given. In fact, though this is a little
less obvious, given n and a matrix X in the image of φn it is not difficult to
compute φ−1

n (X). See [2, Lemma 2.4] for details.

3 The cryptosystem

This section describes the public key cryptosystem due to Grigoriev and
Ponomarenko [2]. We use the notation defined in Section 2 extensively. Our
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notation differs slightly from that used by Grigoriev and Ponomarenko, to
facilitate the description of our cryptanalyis in Section 4 below.

Let H be a fixed finite group, given in terms of generators and relations.
So H = 〈X | R〉 where X = {x1, x2, . . . , xt} is a finite set of generators,
and R is a set of relations. We assume that t ≥ 2. Write FX for the free
group freely generated by the set X , so R ⊆ FX . Define N to be the normal
closure ofR in FX . ThenH = FX/N . We represent elements ofH by reduced
words in FX , so a given element of H will have many representations. The
group H will form the plaintext space of the cryptosystem; both H and the
representation of its elements will remain fixed throughout.

The secret and public keys of the cryptosystem are generated as follows.
Choose distinct integers s1, s2, . . . , st ∈ Z. Let S = {s1, s2, . . . , st}, and let
s = (s1, s2, . . . , st) ∈ Zt. Let ψs : FX → LS be the unique homomorphism
such that ψs(xi) = csi

for i ∈ {1, 2, . . . , t}. (Thus we have identified FX
with the subgroup LS of F{a,b}.) Note that it is easy to compute ψs when
s is known; the same is true for ψ−1

s , since it is easy to compute the CS-
representation of an element in LS. Choose r1, r2, . . . , rt ∈ N . Choose n ∈ Z
such that n ≥ 2. For i ∈ {1, 2, . . . , t}, define a matrix Wi ∈ SL(2,Z) by
Wi = φn ◦ ψs(xiri). The public key of the cipher is X , R together with the
matrices W1,W2, . . . ,Wt. The private key is X , R, n and s.

We remark that Grigoriev and Ponomarenko [2] define the private key
as a different set of parameters. Define matrices X1, X2, . . . , Xt by Xi =
A−si

n BnA
si
n . Grigoriev and Ponomarenko replace s in the private key by the

sequence of matrices X1, X2, . . . , Xt. Note that the two forms of the private
key are equivalent. To see this, firstly note that the matricesXi can obviously
be calculated knowing s and n. But knowing n and the matrices Xi allows
us to compute s easily, since a−sibasi = φ−1

n (Xi), and φn can be efficiently
inverted [2, Lemma 2.4] when n is known.

To encrypt a plaintext h ∈ H, a user represents h in the form h = xN ,
where

x = xδ1
d1
xδ2

d2
· · ·xδu

du

for some di ∈ {1, 2, . . . , t} and some δi ∈ {1,−1}. The user then chooses an
element r ∈ N ; we write

r = xε1
e1
xε2

e2
· · ·xεv

ev

where ei ∈ {1, 2, . . . , t} and εi ∈ {1,−1}. The ciphertext M ∈ SL(2,Z) is
defined by

M = W ε1
e1
W ε2

e2
· · ·W εv

ev
W δ1

d1
W δ2

d2
· · ·W δu

du
.
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We give the following method to decrypt (which differs from that of
Grigoriev and Ponomarenko [2], who base their decryption procedure on
a normal form algorithm tailored to the group of matrices generated by
X1, X2, . . . , Xt). The holder of the private key computes y = ψ−1

s ◦ φ−1
n (M).

This is possible since φn can be efficiently inverted as n is known, and ψs can
be efficiently inverted since s is known. We claim that yN is a representative
of h, and so the plaintext is yN . To see this, note that

M ∈ φn ◦ ψs(x
ε1
e1
xε2

e2
· · ·xεv

ev
xδ1

d1
xδ2

d2
· · ·xδu

du
N) (since Wi ∈ φn ◦ ψs(xiN))

= φn ◦ ψs(x
δ1
d1
xδ2

d2
· · ·xδu

du
N) (since r ∈ N)

= φn ◦ ψs(xN),

and so y ∈ xN and our claim follows.
We end this section with some comments on the complexity of the algo-

rithm.
At several points during key generation and encryption elements are cho-

sen from an infinite set; it is important to specify how this is done and
Grigoriev and Ponomarenko suggest the following. Let k be a parameter
that we use to measure complexity. The integers n and si are chosen to
be random O(k)-bit integers. The random elements ri ∈ N (chosen during
key generation) and r ∈ N (chosen during encryption) are words of length
O(k) in the set R of relations in the presentation of H. (So these elements
are not arbitrary elements of N , but rather are contained in the semigroup
generated by R.) When choices are made in this way, all the computations
above described as efficient are polynomial in k. Note that the presentation
of H does not vary as k varies; in particular t is a constant.

Note that the representative x of the plaintext h ∈ H will in general be
different to the representative y of h which is returned by the decryption pro-
cess. If data is to be transmitted efficiently using the Grigoriev–Ponomarenko
cryptosystem (or any cryptosystem with similar properties) then the prob-
lem of recognising that x and y represent the same piece of data will have
to be confronted. One solution would be to insist that H has an efficiently
soluble word problem.

4 A cryptanalysis

This section shows how the private key of the cryptosystem can be recovered
from the public key. Parts of our argument are heuristic, backed by ex-
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perimental evidence. In describing the cryptosystem above, we phrased the
encryption process as the composition of two maps ψs and φn which depend
on independent parts of the secret key. Of course, a user would not have ac-
cess to the secret key, and so would not encrypt by computing images under
these two maps; rather, this description of the cryptosystem is designed to
suggest a method of cryptanalysis which proceeds in two phases.

In the first phase of our cryptanalysis, we claim that we can recover n
efficiently from the public key. Let K be the kernel of the obvious homo-
morphism from SL(2,Z) to SL(2,Zn). Since An, Bn ∈ K, and all matrices in
the cryptosystem lie in the group Γn generated by An and Bn, we find that
Wi ∈ K for all i ∈ {1, 2, . . . , t}. Now,

K =

{(
a b
c d

)
: a− 1 ≡ b ≡ c ≡ d− 1 ≡ 0 mod n

}
.

Writing Wi = ( wi11 wi12
wi21 wi22 ) we find that n divides n′, where

n′ = gcd

(
t⋃

i=1

{wi11 − 1, wi12, wi21, wi22 − 1}

)
.

Since the integers wijk form part of the public key, we can compute n′ effi-
ciently. We would expect that the bitlength of the integers wijk will grow
faster than the bitlength of n as the complexity parameter k increases, as
each matrix Wi is the image of a product in FX involving O(k) relations.
Thus we expect that the probability that n = n′ will remain large as k →∞
unless the presentation of H has a very unusual form. In our experiments,
we always found that n′/n was very small; in 1000 trials, with k ranging up
to 140, the largest value of n′/n we found was 28. Thus in all cases, it is
reasonable to assume that n can be guessed, since n is of the form n = n′/`,
where ` is small, with very high probability.

The second phase of our cryptanalysis aims to recover s, the remaining
part of the private key. We assume that n is known. Note that since the
presentation of H does not vary as the complexity parameter k varies, it
is sufficient to recover the set S: once S is known, there are at most t!
possibilities for s where t is a constant.

For i ∈ {1, 2, . . . , t}, define wi ∈ F{a,b} by wi = ψs(xiri). Since we are
assuming that n is known, and since wi = φ−1

n (Wi), we are able to compute
w1, w2, . . . , wt efficiently. Note also that wi ∈ LS, since wi ∈ imψs. Using the
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C-representation algorithm from Section 2, we may write each wi as a product
of elements cs. Since we know wi ∈ LS, we find that whenever cs appears in
the C-representation of wi we have that s ∈ S. For i ∈ {1, 2, . . . , t}, define Si

to be the set of integers s such that cs appears in the C-representation of wi.
Define S ′ = ∪t

i=1Si. We know that S ′ ⊆ S. We will now argue that S ′ = S
with probability tending to 1 as k → ∞, provided the following conjecture
is true.

Conjecture 1 Let FX be a free group on the set {x1, x2, . . . , xt}. Let i ∈
{1, 2, . . . , t} be fixed. Let z1, z2, . . . , z` ∈ FX be reduced words, at least one of
which involves xi. Let z be the reduced word formed by taking a product of
k of the words zj, chosen uniformly and independently at random. Then z
involves xi with probability tending to 1 as k →∞.

To see that the conjecture implies that S ′ = S with probability tending
to 1, we argue as follows. Let i ∈ {1, 2, . . . , t} be fixed. We claim that si ∈ S
is contained in S ′ with probability tending to 1. Since H is a finite group,
at least one of the relations in R involves xi, and so the conjecture implies
that the relations r1, r2, . . . , rt involve xi with probability tending to 1. Let
j ∈ {1, 2, . . . , t} \ {i}. Then xjrj involves xi with probability tending to 1,
as xjrj involves xi if and only if rj involves xi. But the definition of ψs now
implies that the C-representation of wj involves csi

with probability tending
to 1; thus si ∈ Sj ⊆ S ′ with probability tending to 1, which establishes our
claim. Thus S ′ = S with probability tending to 1, provided the conjecture
above is true.

There is strong evidence for the truth of the conjecture. The conjecture
seems to be true in all the examples we have examined by computer. More-
over, we can see that the conjecture is true in the ‘generic’ case as follows.
Define the xi-weight wtxi

(z) of a word z to be the sum of the powers of xi

occurring in the word. So, for example,

wtx1(x
2
1x2x4x

−1
1 ) = 2 + (−1) = 1.

We claim that the conjecture is true in the case when at least one of the words
zi has non-zero xi-weight. To see this, note that the map z 7→ wtxi

(z) is a
homomorphism from F{a,b} to the additive group of Z. Thus the xi-weight
of the word z in the conjecture is the result of k steps of a random walk
on Z, with step sizes wtxi

(z1),wtxi
(z2), . . . ,wtxi

(z`) (each taken with equal
probability). It is not difficult to show that wtxi

(z) = 0 with probability
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tending to 0 as k →∞. (One way of proving this is to consider the integers
modulo q, where q is a large prime, and use the Perron–Frobenius theorem
to show that the kth state in an induced random walk on Zq converges to the
uniform distribution as k →∞.) Thus wtxi

(z) 6= 0 with probability tending
to 1; but when wtxi

(z) 6= 0 then clearly z involves xi. So the conjecture is
true in this case. (It is possible that this argument could be generalised to
prove the conjecture in full, using some sort of collection process.)

Finally, we note that if none of the generators xi in the presentation of
H are redundant, then S ′ = S with probability 1. For suppose that si 6∈ S ′.
We will prove that xi is a redundant generator. Our assumption implies in
particular that si 6∈ Si. Thus csi

does not occur in the C-representation of wi;
the definitions of ψs and wi then imply that xiri = z, where z = ψ−1

s (wi) is a
reduced word not involving xi. Since ri ∈ N , we find that xiN = zN , and so
xiN is in the subgroup generated by x1N, x2N, . . . , xi−1N, xi+1N, . . . , xtN .
Thus xi is a redundant generator, as required.

5 Conclusion

We have presented a heuristic argument, backed up by theoretical and ex-
perimental evidence, which shows that the cryptosystem considered in this
paper is insecure: the private key can be derived from the public key. It
might be possible to salvage the security of the cryptosystem if the presenta-
tion of the group H is chosen very carefully. It would be interesting if specific
presentations for groups H which were secure for practical parameter sizes
could be found; however, it is far from obvious how to do this.
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