
Public Key Encryption with Keyword Search
based on K-Resilient IBE

Dalia Khader 1

University of Bath, Department of Computer Science,
ddk20@bath.ac.uk

Abstract. An encrypted email is sent from Bob to Alice. A gateway
wants to check whether a certain keyword exists in an email or not for
some reason (e.g. routing). Nevertheless Alice does not want the email
to be decrypted by anyone except her including the gateway itself. This
is a scenario where public key encryption with keyword search (PEKS)
is needed. In this paper we construct a new scheme (KR-PEKS) the K-
Resilient Public Key Encryption with Keyword Search. The new scheme
is secure under a chosen keyword attack without the random oracle. The
ability of constructing a Public Key Encryption with Keyword Search
from an Identity Based Encryption was used in the construction of the
KR-PEKS. The security of the new scheme was proved by showing that
the used IBE has a notion of key privacy. The scheme was then modified
in two different ways in order to fulfill each of the following: the first
modification was done to enable multiple keyword search and the other
was done to remove the need of secure channels.

1 Introduction

Bob wants to send Alice confidential emails and in order to ensure that no one
except her can read it, he encrypts the emails before sending them so that Alice,
and her alone, will possess the capability of decrypting it. Consider the scenario
where Alice would like to download only the urgent emails to her mobile, leaving
the rest to check later from her computer. Alice requires access to the email server
(gateway) so that she can search her emails for the keyword “urgent” prior
to downloading them. The server should facilitate the search for this keyword
without being able to decrypt Alice’s private emails.
This scenario was first introduced in Boneh et al.’s paper [3]. They presented a
general scheme called PEKS where Alice gives trapdoors for the words she wants
the gateway to search for. The trapdoors come in the form of some kind of data
that is used to test the existence of keywords within an email without revealing
any other information(Section 3).
In [3] the authors constructed several schemes based on different security models
but these schemes either had some limitation on the number of keywords to
search for or were not secure enough (ie. were proven secure in random oracle).
In [1] the authors pointed out two important features that were not covered
in [3]. The first one was the ability to search for multiple keywords. The second

characteristic, put forwards in Section 3.1 of this paper, was elimination of the
requirement of secure channels, for sending trapdoors. These two new features
issues are explained in details in the paper and new schemes to facilitate them
will be introduced in this report paper(Section 3.6 and 3.7).
The ability of constructing IBE from PEKS was explored in [3]. IBE is a public
key encryption where the public key is a direct product of the identity of the
user [11] [4]. Building a PEKS from an IBE needs the latter to have some extra
properties such as the notion of key privacy. Key privacy is a security property
that implies that an adversary should not be able to guess which ID from a set
of ID’s was used in encrypting some email(Section 3.3).
Heng and Kurosawain [9] proposed a scheme called K-resilient IBE, this scheme
does not lead to breach of privacy (Appendix A). The basic K-resilient IBE was
used to construct a PEKS that is fully secure (Section 3.4).
The next Section entails some important concepts that form the foundation
for our work. Following that, Section 3 explains the PEKS scheme, its security
notions, the relation with IBE, and last but not least the construction of a new
PEKS scheme using the K-Resilient IBE was introduced. The last Section in this
paper concludes the results of our work.

2 Preliminaries

In this Section we will go through some definitions that will be used further in
this document.

2.1 Decisional Diffie-Hellman

The Decisional Diffie Hellman (DDH) Problem [6] is the ability to distinguish
between 〈g, ga, gb, gab〉 and 〈g, ga, gb, T 〉 where a, b, c ∈ Zq ,g ∈ Gq, Gq is a group
of prime order q, and T is a random element that belongs to Gq.
The quadruple 〈g, ga, gb, gab〉 is called the real quadruple and the quadruple
〈g, ga, gb, T 〉 is called the random quadruple. So if we have an adversary D that
takes X, Y, T ∈ Gq and returns a bit d ∈ {0, 1}, consider the following two
experiments.
For both experiments X ← gx; Y ← gy

•Expddh−real
Gq,D •Expddh−rand

Gq,D

T ← gxy A random T ∈ Gq

d← D(q, g,X, Y, T) d← D(q, g,X, Y, T)
Return d Return d

The advantage of the adversary D in solving the Diffie-Hellman is defined as
follows:-

Advddh
Gq,D = Pr[Expddh−real

Gq,D = 1]− Pr[Expddh−rand
Gq,D = 1]

If this advantage is negligible for any adversary D then we say DDH is hard to
solve. The DDH was used in PEKS Section 3.4.

2.2 Hash Functions

A family of hash functions H = (G;H) is defined by two algorithms [8]. G is a
probabilistic generator algorithm that takes the security parameter k as input
and returns a key K. H is a deterministic evaluation algorithm that takes the
key K and a string M ∈ {0, 1}∗ and returns a string Hk(M) ∈ {0, 1}k−1.

Definition Let H = (G;H) be a family of hash functions and let C be an
adversary [8]. We consider the following experiment:
Experiment Expcr

H,C(k)
K ← G(k); (x0;x1)← C(K)
if ((x0 6= x1) ∧ (HK(x0) = HK(x1))) then return 1 else return 0.
We define the advantage of C via Advcr

H,C(k) = Pr[Expcr
H,C(k) = 1] :

The family of hash functions H is collision-resistant if the advantage of C is
negligible for every algorithm C whose time-complexity is polynomial in k.

3 Public Key Encryption with Keyword Search

An encrypted email is sent from Bob to Alice [3]. The gateway wants to check
whether a certain keyword exists in an email or not for some reason (for example
routing). Nevertheless Alice does not want the email to be decrypted by anyone
except her, not even the gateway itself. This is a scenario where public key
encryption with keyword search (PEKS) is needed. PEKS encrypts the keywords
in a different manner than the rest of the email. The gateway is given “trapdoors”
corresponding to particular keywords. Using the PEKS of a word and trapdoor
of a keyword, the gateway can test whether the encrypted word is the particular
keyword or not.

General scheme According to [3] a PEKS consists of four algorithms as described
below :

– KeyGen(s): Take a security parameter s and generate two keys a public key
Apub and private key Apriv

– PEKS(Apub,W): It produces a searchable encryption for a keyword W using
a public key Apub

– Trapdoor(Apriv,W): Produce a trapdoor for a certain word using the pri-
vate key.

– Test(Apub, S, Tw): Given the public key Apub, some searchable encryption
S where S = PEKS(Apub,W

′), and the trapdoor Tw to a keyword W .
Determine whether or not the word we are looking for W and the word
encrypted W ′ are equal.

So Bob sends Alice through the gateway the following:

[E(Apub,M), PEKS(Apub,W1), PEKS(Apub,W2), ..., PEKS(Apub,Wm)]

where PEKS(Apub,Wi) is a searchable encryption of the keywords and E(Apub,M)
is a standard public key encryption of the rest of the message M .

3.1 Security Notions Related to PEKS

Security under a Chosen Keyword Attack (CKA) For a PEKS to be
considered secure we need to guarantee that no information about a keyword
is revealed unless the trapdoor of that word is available [3]. To define security
against an active adversary A we use the following game between A and chal-
lenger.

– CKA-Setup: The challenger runs the key generation algorithm and gives the
Apub to adversary A and keeps Apriv to itself.

– CKA-Phase 1: A asks the challenger for trapdoors corresponding to keywords
of its choice.

– CKA-Challenge: The adversary decides when phase 1 ends. Then it chooses
two words W0,W1 to be challenged on. The two words should not be among
those for which A obtained a trapdoor in phase 1. The challenger picks a
random bit b ∈ {0, 1} and gives attacker. C = PEKS(Apub,Wb).

– CKA-Phase 2: A asks for more trapdoors like in phase 1 for any word of its
choice except for the W0,W1.

– CKA-Guess: A outputs its guess of b′ and if b′ = b that means A guessed the
encrypted message and the adversary wins.

We say that the scheme is secure against a chosen keyword attack (CKA) if A
has a low advantage of guessing the right word being encrypted.

Secure Channels: In the PEKS scheme in [3] there is a need to have a secure
channel between Alice and the server, so that an eavesdropper (Eve) can not get
hold of the trapdoors sent. No one but the server should be capable of testing
emails for certain keywords. This is one of the drawback that the authors of [1]
tried to solve by generating a public and a private key that belong to the server.
The PEKS algorithm was modified to encrypt keywords using both Alice’s and
the server’s public key, while the testing algorithm needs the server’s private key
as an input. In this way the scheme is secure channel free (SCF-PEKS) because
Eve can not obtain the server’s private key, therefore can not test.
The SCF-PEKS is said to be IND-SCF-CKA secure when it ensures that the
server that has obtained the trapdoors for given keywords cannot tell a PEKS
ciphertext is the result of encrypting which keyword, and an outsider adversary
that did not get the server’s private key cannot distinguish the PEKS ciphertexts,
even if it gets all the trapdoors for the keywords that it queries

3.2 Handling Multiple Keywords

Multiple Keyword search in a PEKS is the capability of searching for more
than one word either disjunctively or conjunctively. In PEKS [3] the only way
to do this is to search for each word separately and then do the disjunctive or
conjunctive operations on the result of the testing algorithm. This technique is
impractical when it comes to a large number of keywords in one conjunctive

search request, because every email is searched for every single keyword. In [7]
a new scheme was suggested for conjunctive search called PECK. The scheme
substitutes the PEKS algorithm with a PECK algorithm that encrypts a query
of keywords. The testing is done with a trapdoor for each query instead of each
word. So Bob sends Alice the following:

[E(Apub,M), PECK(Apub, (W1,W2, ...,Wm))]

We say that the scheme is secure against a chosen keyword attack (CKA) if an
adversary has a low advantage in guessing the right query of keywords being
encrypted.

3.3 The Strong Relation between IBE and PEKS

In [3] the authors showed how the algorithms used in IBE can be used for
constructing a PEKS. They showed how with the four algorithms in an IBE
Setup, Extract, Encrypt, and Decrypt [11] [4] could be used for to achieve the
purpose of a PEKS scheme. So if keyword was used in place of an ID in the IBE
scheme. The Setup algorithm will be equivalent to the KeyGen algorithm in a
PEKS. Extracting the private key in the IBE will be in replace of generating
trapdoors for keywords in PEKS scheme. Now if the Encryption algorithm in
the IBE was used to encrypt some zero string of a certain length, the result
will be a PEKS ciphertext that could later be tested by using the Decryption
algorithm in an IBE and checking whether the result is the same string of zeros.
The problem is that the ciphertext could expose the public key (W) used to
create it. So we need to derive a notion of key privacy [2] for IBE to ensure that
the PEKS is secure under a chosen keyword attack. Key privacy is a security
notion first introduced in [2]. If an adversary can not guess which ID of a set of
ID’s in an IBE scheme was used in encrypting a particular ciphertext then that
IBE scheme does not lead to breach the privacy of its keys. This could be under
chosen plaintext attack(IK-CPA) or chosen ciphertext attack(IK-CCA).

3.4 Construction of a PEKS From the K-Resilient IBE (KRPEKS)

Since the K-resilient IBE scheme suggested in [9] is said to be IK-CCA se-
cure(Appendix A) it was tempting to construct a PEKS using that scheme. As
any other PEKS scheme there are four algorithms, summarized in the following.

– KRPEKS-KeyGen
Step 1: Choose a group G of order q and two generators g1, g2

Step 2: Choose 6 random k degree polynomials where the polynomials are
chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′0 + a′1x + a′2x

2 + ... + a′kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk

Step 3: For 0 ≤ t ≤ k; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2

Step 4: Choose a random collision resistant hash function H (Section 2.2)
Step 5: Choose a random collision resistant hash function H ′ (Section 2.2)
Step 6: Assign Apriv = 〈F1, F2, h1, h2, P1, P2〉

Apub = 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk,H, H ′〉
– KRPEKS

Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2

Step 3: Calculate for each keyword w
Aw ← Πk

t=0A
wt

t ; Bw ← Πk
t=0B

wt

t ; Dw ← Πk
t=0D

wt

t

Step 4: s← Dr1
w

Step 5: Using the -exclusive or- operation calculate e← (0k)⊗H ′(s)
Step 6: α← H(u1, u2, e)
Step 7: vw ← (Aw)r1 .(Bw)r1α

Step 8: C ← 〈u1, u2, e, vw〉
– KRPEKS-Trapdoor

Run Extract of the IBE and the output is the trapdoor
Tw = 〈F1(w), F2(w), h1(w), h2(w), P1(w), P2(w)〉.

– KRPEKS-Test
Step 1: α← H(u1, u2, e)
Step 2: Test if vw 6= (u1)F1(w)+h1(w)α.(u2)F2(w)+h2(w)α

then Halt else go to Step 3.
Step 3: s← (u1)P1(w).(u2)P2(w)

Step 4: m← e⊗H ′(s)
Step 5: If the resulting plaintext is a 0k conclude

that C is an encryption of w.

The security of this scheme relies on DDH and the collision resistant hash
function as shown in the next Section 3.5.

3.5 Security of KRPEKS against CKA

The K-Resilient IBE scheme [9] is an identity based encryption that is based on
the Decisional Diffie Hellman problem (DDH). The security of such scheme is
based on the difficulty of solving DDH and whether the hash functions used are
collision resistant or not. In (Appendix A), the following theorem was proved.

Theorem Let G be a group of prime order q. If DDH is hard in G then KRIBE
is said to be IK-CCA secure. So for any adversary A attacking the anonymity of
KRIBE under a chosen ciphertext attack and making in total a qd(.) decryption
oracle queries, there exist a distinguisher DA for DDH and an adversary C
attacking the collision resistance of H such that

AdvIK−CCA
KRIBE,A(K) ≤ 2AdvDDH

G,DA
(K) + 2AdvCR

H,C(K) + (qd(K) + 2)/(2k−3)

Since KRIBE is IK-CCA secure(Appendix A). Therefore if an adversary
knows two IDs ID0, ID1 and is given a ciphertext encrypted using one of the

IDs. The adversary would not to be able to guess which one was used unless the
DDH is not hard or the hash function is not collision resistant. In this Section
we show that since the PEKS was built from the KRIBE and KRIBE has key
privacy notions then PEKS should logically be proved to be secure under a CKA.
Now if we compare both schemes the KRIBE in [9] and the KRPEKS we would
notice that the key generation algorithm in the latter is the same as the setup
in the former. The trapdoor is created the same way a secret key is created for
an ID in the IBE scheme but instead of the IDs we have words. The encryption
of IBE is equivalent to it for the PEKS but instead of a message, a k length
zero string 0k is encrypted. The testing of the existence of a keyword is done by
using the same decryption algorithm of the IBE and checking whether the result
is equal to 0k. In other words if an adversary can not tell the difference between
which ID was used to encrypt a given ciphertext. Then the same adversary would
not know which word was used in creating ciphertext C = PEKS(Apub,Wb).
The only difference between the two security notions is that instead of having
a decryption oracle in proving IK-CCA in KRIBE we have a trapdoor oracle
in the new PEKS. So someone can conclude that the advantage of guessing the
right word depends on the DDH problem, the collision resistance of the hash
function and Qt where Qt is the maximum number of trapdoor queries issued
by the adversary.

3.6 Constructing K-Resilient SCF-PEKS scheme

In [1] the authors constructed a SCF-PEKS using the same methodology used
in the PEKS in [3]. In this Section we will try to build a SCF-PEKS using the
KR-PEKS described in 3.4.

– SCF −KRPEKS − CPG (Common Parameter Generator) :
Step 1: Choose a group G and two generators g1, g2

Step 2: Choose random k
Step 3: Choose a random collision resistant hash function H (Section 2.2).
Step 4: Calculate the common parameter cp = 〈G, g1, g2,H, k〉

– SCF −KRPEKS − SKG(cp) (Server Key Generator) :
Step 1: Choose 6 random k degree polynomials, chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′0 + a′1x + a′2x

2 + ... + a′kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk

Step 2: For 0 ≤ t ≤ K; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2

Step 3: Assign Aprivs
= 〈F1, F2, h1, h2, P1, P2〉

Apubs
= 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk,H〉

– SCF −KRPEKS −RKG(cp) (Reciever Key Generator) :
Step 1: Choose 6 random k degree polynomials, chosen over Zq

P̂1(x) = d̂0 + d̂1x + d̂2x
2 + ... + d̂kxk ; P̂2(x) = d̂′0 + d̂′1x + d̂′2x

2 + ... + d̂′kxk

F̂1(x) = â0 + â1x + â2x
2 + ... + âkxk ; F̂2(x) = â′0 + â′1x + â′2x

2 + ... + â′kxk

ĥ1(x) = b̂0 + b̂1x + b̂2x
2 + ... + b̂kxk ; ĥ2(x) = b̂′0 + b̂′1x + b̂′2x

2 + ... + b̂′kxk

Step 2: For 0 ≤ t ≤ K; Compute Ât = gât
1 g

â′
t

2 , B̂t = gb̂t
1 g

b̂′
t

2 , D̂t = gd̂t
1 g

d̂′
t

2

Step 3: Choose a random collision resistant hash function H ′ (Section 2.2).
Step 4: Assign Aprivr = 〈F̂1, F̂2, ĥ1, ĥ2, P̂1, P̂2〉

Apubr
= 〈g1, g2, Â0, ..., Âk, B̂0, ..., B̂k, D̂0, ..., D̂k,H, H ′〉

– SCF −KRPEKS
Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2

Step 3: Calculate Aw ← Πk
t=0A

wt

t ; Bw ← Πk
t=0B

wt

t ; Dw ← Πk
t=0D

wt

t

Âw ← Πk
t=0Ât

wt

; B̂w ← Πk
t=0B̂t

wt

; D̂w ← Πk
t=0D̂t

wt

Step 4: s← Dr1
w D̂r1

w

Step 5: e← (0k)⊗H ′(s)
Step 6: α← H(u1, u2, e)
Step 7: vw ← ((Aw)(Âw))r1 .((Bw)(B̂w))r1α

Step 8: C ← 〈u1, u2, e, vw〉
– SCF −KRPEKS − TG (Trapdoor Generator) :

Calculate: Tw = 〈F̂1(W), F̂2(W), ĥ1(W), ĥ2(W), P̂1(W), P̂2(W)〉
– SCF −KRPEKS − T (Testing Algorithm) :

Step 1: α← H(u1, u2, e)
Step 2: Test if vw 6= (u1)F1(w)+h1(w)α+F̂1(w)+ĥ1(w)α.(u2)F2(w)+h2(w)α+F̂2(w)+ĥ2(w)α

then halt else go to next step
Step 3: s← (u1)P1(w)+ ˆP1(w).(u2)P2(w)+P̂2(w)

Step 4: m← e⊗H ′(s)
Step 5: If the resulting plaintext is a 0k conclude that C is the encryption
of w.

Notice that the testing part can not be done except by the server. Therefore,
the trapdoor could be sent via public channels.

3.7 Constructing a K-resilient PECK

In [7] [10] the authors constructed a PECK by adopting ideas from the PEKS
in [3]. In this paper we will try to build a PECK scheme by adopting ideas
from the KR-PEKS. The four algorithms that form this scheme are described as
follows.

– KRPECK-KeyGen:
Step 1: Choose a group G of order q and two generators g1, g2

Step 2: Choose 6 random k degree polynomials, chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′0 + a′1x + a′2x

2 + ... + a′kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk

Step 2: For 0 ≤ t ≤ k; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2

Step 3: Choose two random numbers s0, s1 ∈ Zq

Step 4: Calculate S = gs0
1 .gs1

2

Step 5: Choose a random collision resistant hash function H (Section 2.2).

Step 6: Calculate: Apriv = 〈F1, F2, h1, h2, P1, P2, s0, s1〉
Apub = 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk, S,H〉

– KRPECK:
Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2

Step 3: Calculate for every Wi where 1 ≤ i ≤ m

Awi
← Πk

t=0A
wt

i
t ; Bwi

← Πk
t=0B

wt
i

t ; Dwi
← Πk

t=0D
wt

i
t

Step 4: Calculate ei where 1 ≤ i ≤ m and ei ← Dr1
wi

Step 5: Calculate αi where 1 ≤ i ≤ m and αi ← H(u1, u2, ei)
Step 6: vwi ← (Awi)

r1 .(Bwi)
r1αi

Step 7: C ← 〈u1, u2, e1, ..., em, vw1 , ..., vwm
, Sr1〉

– KRPECK-Trapdoors:
Step 1: Choose Ω1, ..., Ωt where t is the number of keywords you want to
search for and Ωi is the keyword in position Ii

Step 2: T1 = P1(Ω1) + P1(Ω2) + ... + P1(Ωt) + s0

Step 3: T2 = P2(Ω1) + P2(Ω2) + ... + P2(Ωt) + s1

Step 4: For 1 ≤ j ≤ t Compute αj ← H(u1, u2, eIj
)

Step 5: T3 = F1(Ω1) + ... + F1(Ωt) + h1(Ω1)α1 + ... + h1(Ωt)αt

Step 6: T4 = F2(Ω1) + ... + F2(Ωt) + h2(Ω1)α1 + ... + h2(Ωt)αt

Step 7: TQ = 〈T1, T2, T3, T4, I1, ..., It〉
– KRPECK-Test:

Step 1: Test if vwI1
.vwI2

...vwIt
6= uT3

1 .uT4
2 then halt else do Step 2

Step 2: If Sr1 .eI1 .eI2 .eI3 ...eIt
= uT1

1 .uT2
2

then output “True” otherwise output false

If all the words exist, then definitely the condition of the if-statement in Step
2 in the testing algorithm will be true.

4 Conclusion

The main aim of this research was to have a PEKS that is secure under a stan-
dard model rather than the random oracle model only. To do so, the first step
was finding an IBE scheme that has key privacy notions. Use of IBE with Weil
pairing to build a PEKS was demonstrated in [4] and the scheme was secure
under a chosen keyword attack but under the random oracle only. The IBE sug-
gested by Boneh and Boyenin in [5] also was not useful in constructing a PEKS
as shown in [1]. It was tempting to try to prove the K-resilient IBE(Appendix
A) to have a notion of key privacy because it was shown in [2] that the Cramer-
Shoup encryption is secure. The KRIBE adopted a lot of techniques from this
encryption scheme and KRIBE was proved to be secure(Appendix A).
The new PEKS scheme was then used to construct a public key encryption with
conjunctive keyword search and a public key encryption that does not need a
secure channel.
However, the new PEKS scheme still has some drawbacks because of the lim-
itations of the KRIBE scheme itself, where the number of malicious users is

restricted to some value K. That is the number of trapdoors generated in the
PEKS is limited to at most K. Nevertheless, that is not a serious problem where
we could use a reasonably large K for email searching applications.
An additional concern lies in the basic formulation of the PEKS system. The
idea of the sender, Bob having the sole power to decide which words to consider
as keywords for the recipient, Alice, may not be as convenient in reality. In fact,
Alice should have all influence on the email sorting and one solution would be
for her to cache a set of criteria in form of queries. In that way, the emails cat-
egorized as ‘urgent’ would have greater possibility of being what she considers
imperative to read.

Acknowledgement I would like to express my sincere gratitude to my su-
pervisor Dr John Malone Lee for the immeasurable amount of support, and
constructive advices. His efforts on my behalf have helped me to become a bet-
ter scholar and writer. I would also like to thank Dr Bradford and Dr O’Neill in
the University of Bath for encouraging me to finish this work. I am especially
grateful to my parents for their love was the real strength behind all my work.

References

1. J. Baek, R. Naini, and W. Susilo. Public key encryption with keyword search
revisited. Cryptology ePrint Archive, Report 2005/191, 2005. http://eprint.

iacr.org/.
2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key

cryptography. In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of
Lecture Notes in Computer Science, pages 566–582. Springer-Verlag, 2001.

3. D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public-key encryption
with keyword search. In C. Cachin, editor, Proceedings of Eurocrypt 2004, 2004.
citeseer.ist.psu.edu/boneh04public.html.

4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

5. Dan Boneh and Xavier Boyen. Short signatures without random oracles. Cryptol-
ogy ePrint Archive, Report 2004/171, 2004. http://eprint.iacr.org/.

6. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology - CRYPTO
’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer-
Verlag, 1998.

7. J. Cha D. Park and P. Lee. Searchable keyword-based encryption. Cryptology
ePrint Archive, Report 2005/367, 2005. http://eprint.iacr.org/.

8. R. Hayashi and K. Tanaka. Elgamal and cramer shoup variants with anonymity
using different groups extended abstract. C-200, 2004. http://www.is.titech.

ac.jp/research/research-report/C/.
9. S. Heng and K. Kurosawa. K-resilient identity-based encryption in the stan-

dard model. In Topics in Cryptology CT-RSA 2004, volume 2964, pages 67–80.
Springer-Verlag, 2004.

10. D. Park, K. Kim, and P. Lee. Public key encryption with conjunctive field keyword
search. Lecture Notes in Computer Science, 3325:73–86, 2005.

11. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO ’84, volume 0193 of Lecture Notes in Computer Science,
pages 47–53. Springer-Verlag, 1984.

A K-Resilient IBE scheme in the Standard Model is
IK-CCA Secure

In [2] the authors proved Cramer-Shoup to be IK-CCA secure. In this paper
the same idea of the proof is used in showing that the K-Resilient IBE (KRIBE)
scheme [9] is also IK-CCA secure. The main goal is to try to relate the probability
of being able to distinguish between IDs to the ability to solve the DDH and the
collision resistance property of hash functions used in KRIBE scheme.

Theorem Let G be a prime order group generator. If DDH is hard in G then
KRIBE is said to be IK-CCA secure. So for any adversary A attacking the
anonymity of KRIBE under a chosen ciphertext attack and making in total de-
cryption oracle queries, there exist a distinguisher DA for DDH and an adversary
C attacking the collision resistance of H such that

AdvIK−CCA
KRIBE,A(K) ≤ 2AdvDDH

G,DA
(K) + 2AdvCR

H,C(K) + (qd(K) + 2)/(2k−3)

The Theorem aboves follows from the next two claims :

Claim 1 : For any K

Pr[ExpDDH−Real
G,DA

(K) = 1] = 1/2 + (1/2)(AdvIK−CCA
KRIBE,A(K))

Claim 2 : For every K

Pr[ExpDDH−Rand
G,DA

(K) = 1] ≤ 1/2 + (qd(K) + 2)/(2K−2) + AdvCR
H,C(K)

Proving Claim 1 In claim 1 the goal is to show that under some distinguisher
DA the view of the adversary A is exactly like in the real decisional Diffie-
Hellman experiment. The first step in the proof is to build that distinguisher as
shown bellow.

Adversary DA(q, g,X, Y, T)

K ←−R GH(k)

g1 ← 1 ; g2 ← X ; u1,0 ← Y ; u2,0 ← T

w0 ←−R Zq ; w1 ←−R Zq

u1,1 ← Y W0 .gW1
1 ; u2,1 ← TW0 .gW1

2

Choose Six Random Polynomials as the following; Where the polynomials are
chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + djx

j

P2(x) = d′0 + d′1x + d′2x
2 + ... + d′jx

j

F1(x) = a0 + a1x + a2x
2 + ... + ajx

j

F2(x) = a′0 + a′1x + a′2x
2 + ... + a′jx

j

h1(x) = b0 + b1x + b2x
2 + ... + bjx

j

h2(x) = b′0 + b′1x + b′2x
2 + ... + b′jx

j

After Choosing the random polynomials calculate

At = gat
1 .g

a′
t

2 ; Bt = gbt
1 .g

b′
t

2 ; Dt = gdt
1 .g

d′
t

2

Choose two random IDs from a set of IDs

ID0 ; ID1 ∈ {0, 1}∗

sk0 ← (P1(ID0);P2(ID0);h1(ID0);h2(ID0);F1(ID0);F2(ID0))

sk1 ← (P1(ID1);P2(ID1);h1(ID1);h2(ID1);F1(ID1);F2(ID1))

Params← (g1; g2;A1; ...;Aj ;B1; ...;Bj ;D1; ...;Dj ;K)

PK0 ← ID0

PK1 ← ID1

b←R {0, 1}

Run Adversary A

(M, s)← A(find, PK0, PK1, Params)

e← (u1,b)P1(IDb).(u2,b)P2(IDb).M

α← εHk(u1,b, u2,b, e)

v ← (u1,b)F1(IDb)+h1(IDb)α(u2,b)F2(IDb)+h2(IDb)α

d← A(guess, u1,b, u2,b, e, v, s)

If b=d then return 1 else return 0

The replying to A’s decryption oracle is as follows

A makes a query C’to one of the oracles Dsk0 , Dsk1 where C’is (u′1, u
′
2, e

′, v′)

α′ ← εH(u′1, u
′
2, e

′)

If u
′F1(IDi)+h1(IDi)α
1 .u

′F2(IDi)+h2(IDi)α
2 = v′

m← e′/(u′1)
P1(IDi).(u′2)

P2(IDi)

else m is invalid
Now after constructing an adversary we need to show the similarity between

it and the KRIBE scheme and that will lead us to claim 1. The input of DA is
(q, g, gr1 , gr2 , gr1r2) which is equivalent to (q, g1, g2, g

r2
1 , gr2

2)
The challenge triple and the computed triple are valid Diffie-Hellman.

– Challenge Triple (g2, u1,0, u2,0)
g2 = gr1 , u1,0 = gr2 , u2,0 = gr1r2

– Computed Triple (g2, u1,1, u2,1)
g2 = gr1 , u1,1 = gw1+r2w0 , u2,0 = g(w1+r2w0)r1

The challenge triple are independently distributed because they are exactly
like the actual experiment and the computed triple are independently distributed
because w0, w1 are random from Zq. Now show the similarity between the DA

and the KRIBE scheme above.

– Both the DA and the KRIBE scheme create six random polynomials of
degree j

– At, Bt and Dt are calculated the same way
– The DA chooses two IDs for challenging and two secret keys are extracted

the same way it’s done in the KRIBE by the PKG.
– Params are calculated in the same matter in both schemes
– Calculating e in the DA and KRIBE gives same result as shown :

Let pos be a variable that stands for power of something so

if u1,b = gpos
1 then u2,b = gpos

2 hence

e← u
P1(IDb)
1,b .u

P2(IDb)
2,b .M

e← (gpos
1)P1(IDb).(gpos

2)P2(IDb).M

e← (gpos
1)d0+d1IDb+d2ID2

b+...+djIDj
b .(gpos

2)d′
0+d′

1IDb+d′
2ID2

b+...+d′
jIDj

b .M

e← ((gd0
1 g

d′
0

2).(gd1IDb
1 gd1IDb

2).(gd2ID2
b

1 g
d′
2ID2

b
2)...(gdjIDj

b
1 g

d′
jIDj

b

2))pos.M

e← (D0.D
IDb
1 .D

ID2
b

2 ...D
IDj

b
j)pos.M

e← (Πk
t=0D

wt

t)pos.M

– Calculating α in both schemes are in the same matter
– Calculating v gives same result in both schemes as shown in the following

v ← (u1,b)F1(IDb)+h1(IDb)α.(u2,b)F2(IDb)+h2(IDb)α

v ← (gpos
1)F1(IDb)+h1(IDb)α.(gpos

2)F2(IDb)+h2(IDb)α

v ← (gpos
1)(a0+...+ajIDj

b)+(b0+...+bjIDj
b)α.(gpos

2)(a
′
0+...+a′

jIDj
b)+(b′

0+...+b′
jIDj

b)α

v ← (((ga0
1).(ga′

0
2)...(gajIDj

b
1).(g

a′
jIDj

b

2))((gb0
1).(gb′

0
2)...(gbjIDj

b
1).(g

b′
jIDj

b

2))α)pos

vID ← (AID)pos.(BID)posα

– Responding to the queries in the decryption oracle is done exactly like the
decryption in the KRIBE

Now that it is obvious that the view of the adversary A is exactly like in the
real experiment some one could conclude that the advantage of the adversary
guessing the right bit whether it is equal to zero or one is equal to the probability
of DDH-Real as shown bellow.

Pr[Expddh−real
G,DA

(k) = 1] = (1/2)(Pr[ExpIK−CCA−1
KRIBE,A])+(1/2)(1−Pr[ExpIK−CCA−0

KRIBE,A])

Pr[Expddh−real
G,DA

(k) = 1] = (1/2) + (1/2)AdvIK−CCA
KRIBE,A(k)

Proving Claim 2 When the adversary A makes a query c=〈u′1, u′2, e′, v′〉 to
the decryption oracle . The ciphertext is invalid if logg1u

′
1 = logg2u

′
2. The reason

why the ciphertext is invalid is it will be as if g1 is raised to a random number
to create u′1 and g2 is raised to a different random number to create u′2.

Events associated with DA

– NR is true if r2 = r1 or g2 = 1
– INV is true when the adversary A submits an invalid ciphertext to the de-

cryption oracle and the respond is not “invalid”

To proof Claim 2 there are three other claims that will be introduced.

Claim 3 :

Pr[NR] ≤ 1/2k−2

Claim 4 :

Pr[Expddh−real
G,DA

(K) = 1|b = 0 ∧ ¬NR ∧ ¬INV] = 1/2

Pr[Expddh−real
G,DA

(K) = 1|b = 1 ∧ ¬NR ∧ ¬INV] = 1/2

Claim 5 : There exist a polynomial-time adversary C such that for any k

Pr[INV |¬NR] ≤ (qd(k)/2k−2) + Advcr
H,C(k)

If the three above claims are true then using the mathmatical rule Pr[x] ≤
Pr[x|¬Y] + Pr[Y] and by conditioning we get

Pr[ExpDDH−Real
G,DA

= 1]

= (1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 0] + (1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 1]

≤ (1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 0 ∧ ¬NR ∧ ¬INV]

+(1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 1 ∧ ¬NR ∧ ¬INV] + Pr[NR] + Pr[INV]

≤ (1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 0 ∧ ¬NR ∧ ¬INV]

+(1/2)Pr[ExpDDH−Real
G,DA

= 1|b = 1∧¬NR∧¬INV]+2Pr[NR]+Pr[INV |¬NR]

≤ (1/2) + (qd(k))/(2k−2) + AdvCR
H,C(K)

Proof Claim 3 Claim 3 is easy to proof since r1 and r2 are two random elements
that belong to Zq and 2k−1 ≤ q ≤ 2k. Therefore the claim is true.

Proof Claim 4 To proof claim 4 we define a sample S which has the random
values in Expddh−rand

G,DA
(K). So an element in S will be denoted as follows :

s = (P1(ID0);P2(ID0);F1(ID0);F2(ID0);h1(ID0);h2(ID0);

P1(ID1);P2(ID1);F1(ID1);F2(ID1);h1(ID1);h2(ID1))

If VIEW is a function with S as a domain and associates to any s ∈ S the
view of an adversary A in the Expddh−rand

G,DA
(K) when the random choices on

that experiment are those given in s. In other words assuming the adversary
is deterministic the view is all the inputs in both stages and the answers to all
its queries to the decryption oracle. The adversary’s output is a deterministic
function of its view. Now we need another Claim to continue with the proof.

Claim 6 : Fix a specific view v̂ of the adversary A simulated by DA . Assume
that the events ¬NR ∧ ¬INV is true for this view. Then Pr[view = v̂|b = 0] =
Pr[view = v̂|b = 1] From that Claim we can conclude that if ¬NR ∧ ¬INV is
true then A can guess b correctly with a probability 1/2. This results with Claim
4. So the rest of the proof in this Section will be to show that claim 6 holds.

Let the view be equal to the following

V̂ = (ĝ1, ĝ2, ˆID0, ˆID1, Â1, ..., Âj , B̂1, ..., B̂j , D̂1, ..., D̂j , û1, û2, ê, v̂)

For i ∈ {0, 1} define an Ei as the set of all s ∈ S such that s gives rise to b=i
and view(s) = V̂ and ¬NR is true when the random choices in the experiment
are s . Then

Pr[V = V̂ ∧ b = 0] = |E0|/|S| = |E0|/(2q19)

Now formulas 1-13 are introduced to get the value of |E0|

b = 0 (1)
g1 = ĝ1 (2)
g2 = ĝ2 (3)

P1(ID0) + ω̂P2(ID0) = ˆβD,0 + ID0
ˆβD,1 + ID2

0
ˆβD,2 + ... + IDj

0
ˆβD,j (4)

h1(ID0) + ω̂h2(ID0) = ˆβB,0 + ID0
ˆβB,1 + ID2

0
ˆβB,2 + ... + IDj

0
ˆβB,j (5)

F1(ID0) + ω̂F2(ID0) = ˆβA,0 + ID0
ˆβA,1 + ID2

0
ˆβA,2 + ... + IDj

0
ˆβA,j (6)

P1(ID1) + ω̂P2(ID1) = ˆβD,0 + ID1
ˆβD,1 + ID2

1
ˆβD,2 + ... + IDj

1
ˆβD,j (7)

h1(ID1) + ω̂h2(ID1) = ˆβB,0 + ID1
ˆβB,1 + ID2

1
ˆβB,2 + ... + IDj

1
ˆβB,j (8)

F1(ID1) + ω̂F2(ID1) = ˆβA,0 + ID1
ˆβA,1 + ID2

1
ˆβA,2 + ... + IDj

1
ˆβA,j (9)

u1 = û1 (10)
u2 = û2 (11)
P1(ID0)r̂1 + P2(ID0)ω̂r̂2 = logg1(ê/M) (12)
r̂1F1(ID0) + r̂1αh1(ID0) + r̂2ω̂F2(ID0) + αr̂2ω̂h2(ID0) = logg1 v̂ (13)

Note that ω̂ = logg1 ĝ2 , r̂1 = logĝ1 ˆu1,0 , r̂2 = logĝ2 ˆu2,0 , α̂ = εHk(ˆu1,0, ˆu2,0, ê)
ˆβA,j = logĝ1Âj , ˆβB,j = logĝ1B̂j , ˆβD,j = logĝ1D̂j

The following matrices A,B,C, and D are used to construct a main big matrix
to resemble the above functions. So A,B,C, and D are described as follows

A=
1 ω̂ 0 0
0 0 1 ω̂
r′1 r′2ω̂ r̂1α̂ r̂2ω̂α̂

B=
1 ω̂
r̂1 ω̂r̂2

C=
1 ω̂ 0 0 0 0
0 0 1 ω̂ 0 0
0 0 0 0 1 ω̂

d=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Now the formulas from 1-13 could be written with matrices such that F13×19 ×
X19 = B13 as shown bellow.

1 0 0 0 0 0 0
0 A 0 0 0 0 0
0 0 B 0 0 0 0
0 0 0 C 0 0 0
0 0 0 0 D 0 0

×

b
P1(ID0)
P2(ID0)
F1(ID0)
F2(ID0)
h1(ID0)
h2(ID0)
P1(ID1)
P2(ID1)
F1(ID1)
F2(ID1)
h1(ID1)
h2(ID1)

g1

g2

u1,0

u2,0

u1,1

u2,1

=

0
ˆβD,0 + ID0

ˆβD,1 + ID2
0

ˆβD,2 + ... + IDj
0

ˆβD,j

ˆβB,0 + ID0
ˆβB,1 + ID2

0
ˆβB,2 + ... + IDj

0
ˆβB,j

logg1 V̂
ˆβA,0 + ID0

ˆβA,1 + ID2
0

ˆβA,2 + ... + IDj
0

ˆβA,j

logg1(e/M)
ĝ1

ĝ2

ˆu1,0

ˆu2,0

Now it is shown in [2] that F has a full rank 1and therefore the number of so-
lutions for this system,“and which is |E0|”is q19−13 =q6. |E1| is calculated the
same way |E0| is calculated with changing formulas 12, 13 to 14, 15 respectively
where 14 and 15 are shown bellow.

P1(ID1)r̂1 + P2(ID1)ω̂r̂2 = logg1(ê/M) (14)
r̂1F1(ID1) + r̂1αh1(ID1) + r̂2ω̂F2(ID1) + αr̂2ω̂h2(ID1) = logg1 v̂ (15)

Now by symmetry of view and the systems equations corresponding to E0 and
E1 with respect to the random bit b |E0| = |E1| and therefore

1 Full Rank is proved if each row in the matrix has a leading entry after appplying
gaussian elimination

Pr[view = v̂|b = 0] = Pr[view = v̂|b = 1]

Proof Claim 5 Assume adversary A does submit an invalid ciphertext to Dski .
The submitted ciphertext must not equal the challenged ciphertext (u′1, u

′
2, e

′, v′) 6=
(u1, u2, e, v) Consider the following events:

A′ : (u′1, u
′
2, e

′) = (u1,b, u2,b, e)

B′ : (u′1, u
′
2, e

′) 6= (u1,b, u2,b, e);α′ = αb

C ′ : (u′1, u
′
2, e

′) 6= (u1,b, u2,b, e);α′ 6= αb

Claim: There exist a polynomial time adversary C such that

Pr[INV |¬NR] = Pr[INV |A′ ∧ ¬NR].P r[A′] + Pr[INV |B′ ∧ ¬NR].P r[B′]

+Pr[INV |C ′ ∧ ¬NR].P r[C ′]

≤ 0 + Pr[B′] + Pr[INV |C ′ ∧ ¬NR]

≤ 0 + AdvCR
H,C + Pr[INV |C ′ ∧ ¬NR]........(a)

1. What makes (a) true

– Now in case of A′,v′ 6= v so the oracle will reject it.
– Now in case of B′ we can construct the adversary C which attacks the

collision resistance H .

2. What is Pr[INV |C ′ ∧ ¬NR] value? A ciphertext (u′1, u
′
2, e

′, v′) is accepted
when submitting it to Dski

when

– (u′1)
F1(ID0)+h1(ID0)α

′
+ (u′2)

F2(ID0)+h2(ID0)α
′
= v′;Fori = 0......(b)

– (u′1)
F1(ID1)+h1(ID1)α

′
+ (u′2)

F2(ID1)+h2(ID1)α
′
= v′;Fori = 1......(c)

Consider two more events

– Invi,j is the case when adversary A during the ith query submits an invalid
ciphertext subject to the conditions of C’ to the decryption oracle and does
not get an invalid where i ∈ {1, ..., qd} ; j ∈ 0, 1

– EINV
i is a set {s : s ∈ S and s gives rises to a corresponding equation b or

c,¬NR} and the conditions from C’.

We first consider a simulation of Dsk0 . To submit a ciphertext that would not be
rejected the adversary should come up with the coefficients of equation b which
is consistent with its view and which can contain a hidden bit b=0 or b=1 with
an equal opportunity. So

Pr[Inv1,0,¬NR] = (1/2)Pr[EInv
0 |E0] + (1/2)Pr[EInv

0 |E1]

≤ (Pr[Einv
0 ∧ E0])/(2Pr[E0]) + Pr[Einv

0 ∧ E1])/(2Pr[E1])

= (|Einv
0 ∧ E0|.|S|)/(2|E0|.|S|) + (|Einv

0 ∧ E1|.|S|)/(2|E1|.|S|)
= (|Einv

0 ∧ E0|)/(2q6) + (|Einv
0 ∧ E1|)/(2q6).....(d)

So the number of solutions for equations 1-13 plus the equation b is equal to
|EInv

0 ∧ E0| while |EInv
0 ∧ E1|is the number of solutions for equations 1-11, 14,

15, and c. Assuming ¬NR in both of them .

To solve the system and get |EInv
0 ∧ E0| we will have to add equation b to

the system. So we let u′1 = g
r′
1

1 , u′2 = g
r′
2

2 = g
ωr′

2
1 And matrix A becomes as

follows

A=

1 ω̂ 0 0
0 0 1 ω̂
r̂1 r̂2ω̂ r̂1α̂ r̂2ω̂α̂
r1
′ r2

′ω̂ r1
′α′ r′2ω̂α′

As shown in the paper [2] F is still a full rank that means that the number of
solutions now is q5

To solve the system and get |EInv
0 ∧ E1| we will have to add equation c to the

system. So we let So we let u′1 = g
r′
1

1 , u′2 = g
r′
2

2 = g
ωr′

2
1

Now since the challenge ciphertext corresponds to pk1

– Matrix A becomes as follows

A=
1 ω̂ 0 0
0 0 1 ω̂

r1
′ r2

′ω̂ r1
′α′ r′2ω̂α′

– Matrix C becomes as follows

C=

1 ω̂ 0 0 0 0
0 0 1 ω̂ 0 0
0 0 0 0 1 ω̂
r̂1 r̂2ω̂ r̂1α̂ r̂2ω̂α̂ 0 0

As shown in the paper F still has a full rank that means that the number of
solutions now is also q5 Combining the results in equation “d”we get

Pr[Inv1,0|¬NR] ≤ (1/q)

Now by symmetry Pr[Inv1,0|¬NR] = Pr[Inv1,1|¬NR], each time an invalid ci-
phertext is rejected set of next possible decryption oracle queries at most by one.
Therefore

Pr[Inv|¬NR∧C ′] ≤ Σ
qd(k)
i=1 Pr[Invi,0|¬NR] ≤ Σ

qd(k)
i=1 (1)/(q−i+1) ≤ (qd(k))/(q−

qd(k) + 1) ≤ (qd(k))/(2k−2)

So with this claim 5 is proved to be right.

