
On Probabilistic versus Deterministic Provers

in the De�nition of Proofs Of Knowledge

Mihir Bellare

Department Computer Science & Engineering

University of California at San Diego

9500 Gilman Drive, La Jolla, CA92093, USA.

mihir@cs.ucsd.edu.

Oded Goldreich

�

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

October 22, 2006

Abstract

This note points out a gap between two natural formulations of the concept of a proof of

knowledge, and shows that in all natural cases (e.g., NP-statements) this gap can be closed.

The aforementioned formulations di�er by whether they refer to (all possible) probabilistic or

deterministic prover strategies. Unlike in the rest of cryptography, in the current context, the

obvious transformation of probabilistic strategies to deterministic strategies does not seem to

su�ce per se.

Keywords: Proof of Knowledge, Probabilistic Proof Systems, Probabilism versus Determinism,

Expected Running Time.

�

Partially supported by the Israel Science Foundation (grant No. 460/05).

1 Introduction

The concept of a \proof of knowledge" was informally introduced by Goldwasser, Micali and Rack-

o� [4], and plays an important role in the design of cryptographic schemes and protocols (see,

e.g., [2, 3]). This note refers to the common formulation of the aforementioned concept, which was

given in [1].

Loosely speaking, the de�nition of a proof of knowledge requires the existence of a \knowledge

extractor" that, when given access to any strategy, outputs the relevant information within (ex-

pected) time that inversely proportional to the probability that the given strategy convinces the

knowledge veri�er. Schematically, the de�nition of a proof of knowledge requires something with

respect to any strategy.

The issue addressed in this note is the following. Usually, in de�nitions of the aforementioned

type, it does not matter whether one quanti�es over all probabilistic strategies or over all determin-

istic strategies. The reason is that, usually, satisfying the more restricted de�nition (which refers

only to all deterministic strategies) immediately implies satisfying the general de�nition (which

refers to all probabilistic strategies). Unfortunately, this does not seem to be the case in the

current setting (of the de�nition of proofs of knowledge).

1.1 The source of trouble

In this subsection we provide a high-level description of the technical problem addressed in this work.

We re-iterate this explanation, using more precise style after presenting the relevant de�nitions (in

Section 2).

To clarify the source of trouble, let us �rst consider one of the usual settings (in which the

problem does not arise): speci�cally, we consider the setting of zero-knowledge. In this case, the

ability to simulate (in a black-box manner) any deterministic veri�er strategy, implies the ability

to simulate any probabilistic veri�er strategy. The same holds also when we restrict attention

to strategies that can be implemented by polynomial-size circuits. The reason is that given any

probabilistic strategy, we may consider all residual deterministic strategies (obtained by all possible

�xing of the strategy's coins), and obtain the desired simulation (for the probabilistic strategy) by

combining all the corresponding simulations (i.e., of the residual deterministic strategies).

This simple argument (per se) fails when applied in the current context (of proofs of knowl-

edge). Indeed, we can consider all residual deterministic prover strategies that emerge from a given

probabilistic prover strategy, and we can combine the corresponding extraction procedures, but the

combined procedure does not necessarily run in time that is inversely proportional to the probabil-

ity that this prover convinces the veri�er. For example, suppose that on input x, with probability

1

2

(over the choice of the prover's coins), the residual prover convinces the veri�er with probability

2

�jxj

(where the probability here is over the veri�er's moves), and otherwise the residual prover

convinces the veri�er with probability 1. Then, in the �rst case extraction may run in (expected)

time related to 2

jxj

, whereas in the second case it runs for polynomial-time. It follows that the

extraction for the original probabilistic prover strategy runs in (expected) time that is related to

1

2

� 2

jxj

. But this probabilistic prover strategy convinces the veri�er with probability exceeding

1

2

.

(Thus, this extractor does not run in time that is inversely proportional to the success probability

of the probabilistic prover strategy.)

1

1.2 On the importance of relating the two de�nitions

Needless to say, when faced with two natural de�nitions we wish to know whether they are equiv-

alent. Furthermore, we note that the two di�erent de�nitions have appeared in the literature: For

example, the de�nition in [1] refers to any probabilistic prover strategy, while the de�nition in [2,

Sec. 4.7] only refers to (arbitrary) deterministic strategies (see further discussion in Section 2).

Thus, equating the two de�nitions (which appear in two central texts on this subject) becomes

even more important (as it aims at eliminating a source of confusion in the current literature).

In addition to the foregoing abstract motivation, there is also a concrete motivation to our

study. It is typically easier to deal with deterministic strategies than with probabilistic ones, and

thus relating the two de�nitions yields a useful methodology (i.e., demonstrating the \proof of

knowledge" property with respect to deterministic strategies and deriving it for free with respect

to probabilistic strategies). For example, we note that in [1, Apdx E] the \proof of knowledge"

property (of the Graph Isomorphism protocol) is only demonstrated with respect to deterministic

strategies, and this demonstration does not seem to extend to probabilistic strategies.

1

Let us stress that in many applications the relevant prover strategies are in fact probabilistic.

This is the case whenever proof-of-knowledge are the end goal (or close to it as in identi�cation

schemes), because in these cases the prover strategy represents an arbitrary adversarial behavior.

2

2 Formal Setting

Let us start by recalling the de�nitional schema that underlies the two de�nitions that we study.

Generalizing the treatment in [1] and [2, Sec. 4.7.1], we shall refer to an arbitrary class of potential

(prover) strategies, denoted S. Indeed, the treatment of [1] is obtained by letting S be the class of

all (probabilistic) strategies, whereas the treatment of [2, Sec. 4.7.1] is obtained by letting S be the

class of all deterministic strategies.

2.1 Preliminaries

Loosely speaking, deterministic strategies are functions that specify the next message to be sent by

a party, based on its private input (which is hardwired in them) and as a function of the messages

it has received so far. General (probabilistic) strategies are similar, except that the next message

may also depend on a random input that is presented to these strategies. Formally, a (probabilistic)

strategy � is a function from f0; 1g

�

�f0; 1g

�

to f0; 1g

�

such that �(!;
) denotes the message to be

sent by the corresponding party given that its random input equals !, and the sequence of messages

received so far equals
. Note that the strategy depends also on private inputs of the corresponding

party, to which the outside world has no direct access. (These private inputs are hardwired in �

and do not appear explicitly in our notation.)

For a probabilistic strategy �, we often consider residual deterministic strategies of the form

�

!

= �(!) obtained by �xing the value of the random input to ! (i.e., �

!

(
) = �(!;
)).

1

It seems that the authors of [1] overlooked this point. They either did not notice that the argument is restricted

to deterministic strategies or assumed that the demonstration can be easily extended to probabilistic strategies. We

note that the argument presented in [1, Apdx E] applies to any three-move Arthur-Merlin protocol for NP that has

the following strong soundness property: given any two accepting transcripts (for the same input) that start with the

same Merlin message but di�er on Arthur's message, one can e�ciently �nd a corresponding NP-witness.

2

In contrast, in other applications, where proofs-of-knowledge are used as a tool (and the corresponding knowledge-

extractor is used by some simulator), it su�ces to consider deterministic prover strategies (because these are derived

from residual deterministic strategies that are derived in the course of the security analysis).

2

Strategies will be used both as oracles and as specifying the actions of interactive machines.

Speci�cally, we mean the following:

� When we discuss the interaction between parties on a common input, we incorporate this

common input in each of the two strategies. The interaction of a strategy � with a strategy

�

0

is the sequence of messages exchanged between the residual deterministic strategies �

!

and

�

0

!

0

, where ! and !

0

are uniformly distributed. This sequence equals �

1

; �

1

; �

2

; �

2

; ::: such

that �

i+1

= �(!; (�

1

; :::; �

i

)) and �

i

= �

0

(!

0

; (�

1

; :::; �

i

)).

� When using � as an oracle, the oracle machine may issue arbitrary queries, which need not

be consistent with the way that � interact with any interactive machine. In particular, these

queries may relate to di�erent values of random input !, all chosen at the discretion of the

oracle machine.

The second item represents a relaxation of the common interpretation of the de�nition of using

a probabilistic strategy as an oracle oracle, and thus a short discussion is in place. The common

interpretation of this notion is that the user (i.e., the oracle machines) is given oracle access to

a (single) residual deterministic strategy (i.e., �

!

) that is obtained from � by �xing a uniformly

distributed !. In fact, all prior constructions of knowledge extractors used this interpretation. We

believe, however, that the more liberal interpration suggested above (i.e., by which the user is given

oracle access to � itself) is consistent with the simulation paradigm and is adequate in all reasonable

applications. Actually, the knowledge extractor constructed in this work refers to an intermediate

interpretation (of using a probabilistic strategy � as an oracle). By this interpretation the oracle

machine may is given access to several residual deterministic strategies (i.e., several �

!

's), which

are derived from the same probabilistic strategy by the selection of independently and uniformly

distributed values of the random input !.

The relevant knoweledge. We capture the relevant knowledge by a binary relation R �

f0; 1g

�

� f0; 1g

�

such that, on common input x, the \claimed knowledge" refers to knowledge

of a string in R(x)

def

= fy : (x; y)2Rg. The archetypical case is of NP-relations; that is, relations

R that are polynomially bounded (i.e., (x; y)2R implies jyj � poly(jxj)) and are polynomial time

recognizable (i.e., there exists a polynomial-time algorithm A such that A(x; y) = 1 if and only if

(x; y) 2R). We denote by L

R

the set of strings for which a \claim of knowledge" is not bluntly

wrong; that is, L

R

def

= fx : R(x) 6= ;g.

2.2 The actual de�nitions

Our focus will be on the validity condition of the following de�nition, but for sake of completeness

we state also the non-triviality condition.

De�nition 1 (schema for de�ning proofs of knowledge): Let R be a binary relation, and � :

f0; 1g

�

! [0; 1]. We say that an interactive machine V is a knowledge veri�er for the relation R with

respect to a class of strategies S (and knowledge error �) if the following two conditions hold.

Non-triviality: For every x 2 L

R

, there exists a strategy � 2 S such that the veri�er V always

accepts when interacting with � on common input x.

Validity (with error �): There exists a probabilistic oracle machine K and a polynomial q such that,

for every strategy � 2 S and every x, machine K satis�es the following condition:

3

If when interacting with �, on common input x, the veri�er V accepts with proba-

bility p

x

> �(x), then on input x when given oracle access to � machine K outputs

a string in R(x) within an expected number of steps upper-bounded by

q(jxj)

p

x

� �(x)

:

(1)

Note that the probability p

x

depends on V , the strategy �, and the common input

x. The corresponding probability space is of all possible coin tosses of the strategies

V and �. Likewise, the probability space underlying Eq. (1) consists of all possible

coin tosses of the machine K and the strategy �.

The oracle machine K is called a (universal) knowledge extractor, and � is called the knowledge

error function.

In particular, it follows that x 62 L

R

implies p

x

� �(x). We stress that, on input x and when given

oracle access to a strategy � that convinces V to accept x with probability exceeding �(x), the

knowledge extractor always outputs a string in R(x); that is, in this case, Pr[K

�

(x) 62 R(x)] = 0.

However, when the said probability does not exceed �(x), all bets are o�. Nevertheless, if R is an

NP-relation then we may assume, without loss of generality, that for every x and every � it holds

that Pr[K

�

(x) 62 R(x) [f?g] = 0, where ? indicates halting without output. We now turn to the

de�nitions studied in this note.

De�nition 2 (the two de�nitions):

Following De�nition 3.1 in [1]: We say that V is a knowledge veri�er for the relation R with knowl-

edge error � if De�nition 1 holds with S being the set of all possible (probabilistic) strategies.

Following De�nition 4.7.2 in [2]: We say that V is a restricted knowledge veri�er for the relation R

with knowledge error � if De�nition 1 holds with S being the set of all possible deterministic

strategies.

The two de�nitions di�er only in the scope of strategies considered: [1, Def. 3.1] refers to all possible

(probabilistic) strategies, whereas [2, Def. 4.7.2] refers only to all possible deterministic strategies.

3

Nevertheless, we show that in all natural cases (e.g., NP-relations) the restricted de�nition implies

the general one.

2.3 Our result

Before stating this result formally, let us point out why it is not as obvious as analogous results

regarding related de�nitions.

4

Suppose that V is a restricted knowledge-veri�er (with knowledge

error � = 0) and let K be the corresponding knowledge extractor. Given a probabilistic strategy

�, the straightforward attempt to extract knowledge from � consists of invoking K while giving it

3

Unfortunately, these facts are not perfectly clear in the original texts: The formulation of [1, Def. 3.1] refers to

all possible \interactive functions", yet the latter are de�ned in [1, Def. 2.1] as arbitrary probabilistic strategies. The

formulation of [2, Def. 4.7.2] refers to all residual deterministic strategies that can be obtained by �xing the random

input of some probabilistic strategy, but in retrospect the latter condition is a red herring (and does not help in

extending this de�nition to the general case of [1, Def. 3.1]).

4

Recall that simulation-security with respect to arbitrary (polynomial-size) deterministic adversaries typically

implies simulation-security with respect to arbitrary probabilistic (polynomial-time) adversaries.

4

with oracle access to the residual deterministic strategy �

!

, where ! is uniformly distributed. The

problem is that the probability that �

!

convinces V , denoted p(!), may deviate arbitrarily from

the probability that � convinces V , denoted p. That is, the non-negative random variable p(!)

may behave arbitrarily subject (only) to the condition p = E

!

[p(!)]. This, in turn, implies that the

expected running-time of K

�

!

(taken also over the random choice of !) is not necessarily inversely

proportional to p. For example, it may be that Pr[p(!) = 2

�n

] = 1=2 and Pr

!

[p(!) = 1] = 1=2,

and in this case the expected running-time of K

�

!

may be 2

n

while E

!

[p(!)] > 1=2.

Theorem 3 Let V be a restricted knowledge veri�er for R with knowledge error �, where the length

of the binary expansion of �(x) is polynomial in jxj. Suppose that the corresponding knowledge

extractor, K, never outputs a wrong answer; that is, for every x and �, it holds that Pr[K

�

(x) 62

R(x) [f?g] = 0, where ? indicates halting without output. Then V is a knowledge veri�er for R

with knowledge error �.

Theorem 3 asserts that, under the additional assumptions regarding � and K, the restricted de�-

nition (i.e., [2, Def. 4.7.2]) implies the general de�nition (i.e., [1, Def. 3.1]). As illustrated by the

forgoing discussion, the corresponding knowledge extractor (for [1, Def. 3.1]) is not K (or the minor

modi�cation of K discussed above). We note that the two additional assumptions (regarding � and

K) can be easily met in case that R is an NP-relation. Details follows.

Recall that if R is an NP-relation then we can ckeck the output of K, and thus (on input

x) we can always avoid outputting a string that is not in R(x). This eliminates the additional

assumption regarding K. As for the additional condition regarding �, it can always be enforced

by possiblly increasing � a little; that is, by resetting �(x) to d2

q(jxj)

� �(x)e=2

q(jxj)

, where q is an

arbitrary polynomial. Furthermore, in the case that R is an NP-relation, we may reset �(x) to

�

0

(x)

def

= b2

q(jxj)

� �(x)c=2

q(jxj)

, for a su�ciently large polynomial q (by taking advantage of the fact

that, for any x 2 L

R

, a string in R(x) can be found in time exp(q(jxj))).

5

3 Proof of Theorem 3

Recall that the source of trouble is that for a uniformly distributed value of the random input, the

success probability of the corresponding residual deterministic strategy (w.r.t convincing V) may

be very di�erent from the success probability of the original probabilistic strategy. This may lead to

overwhelmingly long runs of the knowledge extractor (i.e., runs that contribute to the total expected

running-time more than we can allow). The basic idea is to truncate such overwhelmingly long runs,

and rely on the existence (in su�cient probability measure) of runs that are not overwhelmingly

long.

Let us illustrate this idea by referring to the foregoing example, where Pr[p(!) = 2

�n

] = 1=2

and Pr[p(!) = 1] = 1=2 (and � = 0).

6

In this case, p = E

!

[p(!)] > 1=2, and so our extraction

procedure should run in expected polynomial-time. Thus, we invoke K providing it with oracle

5

This fact allows for handing the case that the probability that � convinces V to accept x (i.e., p

x

) is very close to

�(x) in the sense that p

x

��

0

(x) is signi�cantly larger than p

x

��(x). We �rst note that in this case p

x

< �(x)+2

�q(jxj)

(as otherwise p

x

� �(x) � 2

�q(jxj)

and p

x

� �

0

(x) < p

x

� �(x) + 2

�q(jxj)

� 2 � (p

x

� �(x))). Thus, in this case (where

(p

x

� �(x))

�1

< 2

q(jxj)

), we can a�ord running the standard search algorithm (which runs in time 2

q(jxj)

) in parallel

to the given knowledge extractor. (We also use the fact that p

x

> �

0

(x) implies p

x

> �(x), which follows by the

fact that (without loss of generality) the probability space underlying p

x

is f0; 1g

q(jxj)

(and thus p

x

> �

0

(x) implies

p

x

� �

0

(x)+2

�q(jxj)

> �(x)).) On the other hand, if p

x

��

0

(x) = O(p

x

��(x)) then (p

x

��(x))

�1

= O((p

x

��

0

(x))

�1

).

Thus, given an knowledge extractor of error �, we obtain a knowledge extractor of error �

0

.

6

Throughout the text, n denotes the length of the common input x, which we often omit from the notation.

5

access to �

!

, where ! is uniformly distributed among all possible random inputs, and truncate

the execution after a polynomial number of steps has elapsed. If an output was obtained in this

execution attempt then we output it, otherwise we repeat the experiment again. Note that, with

probability 1=2, the residual strategy �

!

satis�es p(!) = 1, in which case K

�

!

is expected to halt in

polynomial-time with the desired output. Otherwise (i.e., p(!) = 2

�n

), the (truncated) execution

of K

�

!

may be useless, but it will not cause much harm (since it is suspended after a polynomial

number of steps).

In the foregoing example we relied on a good a priori knowledge of the distribution of p(!),

which may not be available in general. Thus, in general, we shall employ a somewhat more sophis-

ticated argument. Following is a rough sketch of the general argument, where we still assume for

simplicity that � = 0. One key observation is that there exists an index i such that Pr

!

[p(!) � 2

�i

]

is linearly related to 2

i

� p (where p = E

!

[p(!)]). We do not know this i and so we run, in parallel,

numerous processes one per each of the relevant values of i. In the i

th

process (i.e., the one related

to the value i), we repeatedly attempt extraction with deterministic residual provers (derived by

random �xings of !), but truncate each attempt after poly(n) �2

i

steps. Thus, for the correct value

of i, the i

th

relevant process will succeed in extraction within the allowed expected number of steps

(i.e., it is expected to make poly(n)=(2

i

� p) attempts, each running for poly(n) � 2

i

steps, and thus

the total expected running time is poly(n)=p).

We now turn to a rigorous description of the actual knowledge extractor for probabilistic strate-

gies. We �x an arbitrary x 2 L

R

, but omit it from most subsequent notations. Fixing an arbitrary

randomized strategy �, we consider an arbitrary choice of the strategy's coins, !, and denote the

residual strategy by �

!

. In the rest, we will refer to selecting such !'s and providing oracle access

to the corresponding �

!

, but we need not select these !'s ourselves; it su�ces to have the ability of

providing oracle access to numerous random and independent \incarnations" of � that correspond

to such choices of !'s.

Let p(!) denote the probability that veri�er accepts when interacting with �

!

, on common input

x. By the hypothesis, if p(!) > �(x) then the knowledge extractor K, given oracle to �

!

, outputs

a string in R(x) in expected time q(jxj)=(p(!) � �(x)), where q is a �xed (universal) polynomial.

As before, we let p = E

!

[p(!)], and assume, without loss of generality, that p > �(x) (because

otherwise noting is required). In addition, let � = �(x) and let ` = poly(jxj) denote an upper-

bound on the length of the random input used by V on common input x. It follows that for every

choice of ! (which determines a residual strategy �

!

) it holds that 2

`

� p(!) is an integer (because

the relevant probability space is uniformly distributed over 2

`

possibilities). Recalling that � has

a binary expansion of length poly(jxj), we assume, without loss of generality, that 2

`

� � is also an

integer. It follows that if p(!) � �+ 2

�`�1

then p(!) � �.

We consider a partition of (� + 2

�`�1

; � + 1] into ` + 1 intervals such that the i

th

interval is

I

i

= (�+ 2

�i

; �+ 2

�i+1

]. We claim that there exists i 2 [`+ 1] such that

Pr

!

[p(!) 2 I

i

] �

2

i

� (p� �)

4(`+ 1)

:

(2)

This claim follows, because otherwise we derive a contradiction as follows (where in the �rst in-

equality we use the fact that p(!) � �+ 2

�`�1

implies p(!) � �):

E

!

[p(!)] � Pr

!

[p(!) � �+ 2

�`�1

] � �+

`+1

X

i=1

Pr

!

[p(!) 2 I

i

] � (�+ 2

�i+1

)

= �+

`+1

X

i=1

Pr

!

[p(!) 2 I

i

] � 2

�i+1

6

< �+

`+1

X

i=1

2

i

� (p� �)

4(`+ 1)

� 2

�i+1

= �+

p� �

2

which, combined with the de�nition p (i.e., p = E

!

[p(!)]) contradicts the hypothesis p > �.

The new extraction procedure consists of running ` + 1 processes in parallel. The i

th

process

successively invokes time-bounded executions of the knowledge extractor K, providing each such

invocation with oracle access to a random and independent incarnation of � (i.e., residual strategies

�

!

for uniformly and independently ditrsibuted values of !). The time-bound used in the i

th

process

is 2 � q(jxj) � 2

i

, where the q is the polynomial guaranteed for K. Thus, if p(!) � �+ 2

i

then, with

probability at least 1=2, it holds that K

�

!

(x) halts in 2 � q(jxj) � 2

i

steps (because the expected

number of steps is q(jxj) � 2

i

). Once any of these `+ 1 processes outputs some string y, the entire

parallel-process terminates and y is used as output.

Recall that by the theorem's hypothesis, whenever K outputs a string y it is the case that

y 2 R(x). Thus, we con�ne ourselves to analyzing the expected running-time of the foregoing

extraction process. Considering an arbitrary value i that satis�es Eq. (2), we observe that the i

th

process succeed after making an expected number of 2 �

�

2

i

�(p��)

4(`+1)

�

�1

trials. Thus, the overall time

spent by the new extractor has expectation

(`+ 1) �

2 � 4(`+ 1)

2

i

� (p� �)

� (2 � q(jxj) � 2

i

) =

O(`

2

� q(jxj))

p� �

=

poly(jxj)

p� �

and the theorem follows.

4 Concluding Remarks

We have established the equivalence of [1, Def. 3.1] and [2, Def. 4.7.2] while relying on the following

three (reasonable) conventions (or assumptions):

1. We assumed that the pharse \given oracle access to a probabilistic strategy �" means ability

to query several (rather than one) residual deterministic strategies of the form �

!

, where the

!'s are uniformly and independently distributed.

2. We assumed that the knowledge-extractor never outputs a wrong string (i.e., a string not in

R(x)), regardless of which input x and which strategy � it is given access to.

3. We assumed that the knowledge error function � is nice in the sense that, for every x, the

binary expansion of �(x) has length polynomial in jxj.

We believe that these assumptions do not impair the applicability of our result. Still we wonder

whether (some of) these assumptions can be eliminated.

References

[1] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-

Verlag Lecture Notes in Computer Science (Vol. 740), pages 390{420.

7

[2] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press,

2001.

[3] O. Goldreich. Foundation of Cryptography { Basic Applications. Cambridge University

Press, 2004.

[4] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof

Systems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version

in 17th STOC, 1985.

8

