
Target Collisions for MD5 and
Colliding X.509 Certificates for Different Identities

version 1.1, 4th November 2006

Marc Stevens1, Arjen Lenstra2, and Benne de Weger1

1 TU Eindhoven, Faculty of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 EPFL IC LACAL and Bell Laboratories
INJ 330 (Bâtiment INJ), Station 14

CH-1015 Lausanne, Switzerland

Abstract. We have shown how, at a cost of about 252 calls to the MD5 compression func-
tion, for any two target messages m1 and m2, values b1 and b2 can be constructed such that
the concatenated values m1‖b1 and m2‖b2 collide under MD5. Although the practical at-
tack potential of this construction of target collisions is limited, it is of greater concern than
random collisions for MD5. In this note we sketch our construction. To illustrate its practi-
cality, we present two MD5 based X.509 certificates with identical signatures but different
public keys and different Distinguished Name fields, whereas our previous construction of
colliding X.509 certificates required identical name fields. We speculate on other possibilities
for abusing target collisions.

Announcement

In March 2005 we showed how Xiaoyun Wang’s ability to quickly construct random collisions for
the MD5 hash function could be used to construct two different valid and unsuspicious X.509
certificates with identical digital signatures (see the announcement [9], more technical information
on the website http://www.win.tue.nl/%7Ebdeweger/CollidingCertificates/, and [10] for a
broader theoretical description). These two colliding certificates differed in their public key values
only. In particular, their Distinguished Name fields containing the identities of the certificate
owners were equal. This was the best we could achieve because

– at the time, Wang’s hash collision construction required identical Intermediate Hash Values
(IHVs);

– the resulting colliding values look like random strings: in an X.509 certificate the public key
field is the only suitable place where such a value can unsuspiciously be hidden.

A natural and often posed question (cf. [6], [3], [1]) is if it would be possible to allow more freedom
in the other fields of the certificates, at a cost lower than 264 calls to the MD5 compression function.
Specifically, it has often been suggested that it would be interesting to be able to select at will
Distinguished Name fields that are different, but non-random and human readable as one would
expect from these fields. This can be realized if two arbitrary messages, resulting in two different
IHVs, can be extended in such a way that the extended messages collide. Such collisions will be
called target collisions. It is exactly the construction of such a target collision which has recently
been completed by the first author. The full details of his work will be reported elsewhere, cf. [14].

In this note we sketch how target collisions for MD5 can be constructed, and we illustrate this by
presenting a method to construct two MD5 based X.509 certificates with different Distinguished
Name fields and identical digital signatures. To show that our methods are indeed practical, we

have constructed an actual pair of such certificates with explicitly targeted Distinguished Name
fields. The certificates are available for download from http://www.win.tue.nl/hashclash/
TargetCollidingCertificates/. Below we describe their contents in full detail, as well as the
way we constructed them.

Target Collisions

The main ingredient of our construction is a method, developed as part of the work on [14],
to construct MD5 collisions starting from two arbitrary IHVs. Given this method one can take
any two targeted messages and construct bitstrings that, when appended to the messages, turn
them into MD5 collisions. We refer to such a collision as a target collision. Their possibility was
mentioned already in [3, Section 4.2 case 1] and, in the context of SHA-1, in [1] and on http://
www.iaik.tugraz.at/research/krypto/collision/. We are aware of the fact that terms similar
to ‘target collision’ have been used before in different hash-related contexts – we are grateful to
Bart Preneel for pointing this out too – but this will not lead to misunderstandings as far as this
note is concerned.

In somewhat more detail, we started with a pair of arbitrarily chosen messages satisfying two
conditions:

– they have equal bitlength,
– the bitlength equals 416 modulo 512 (incomplete last block).

The condition of equal bitlength seems unavoidable, because Merkle-Damg̊ard strengthening, in-
volving the message length, is applied after the last message block has been compressed by MD5.
The second condition (incomplete last block) is not essential, as one can always add additional
random bits to satisfy it, but we keep it for ease of exposition and to allow for shorter RSA moduli.

Given the message pair, we followed a suggestion by Xiaoyun Wang1 to find a pair of 96-bit values
that, when appended to the messages, resulted in a specific form of difference vector between the
IHVs when the MD5 compression function was applied to the completed blocks. Finding this pair
of 96-bit values was done using a birthdaying procedure. The differences between the IHVs were
then removed by appending near-collision blocks. Per pair of blocks this was done by constructing
new differential paths using a semi-automated, improved version of Wang’s original approach.
Due to the specific form of the first difference vector, essentially one triple of bit differences was
removed per near-collision block, thus shortening the overall length of the colliding values. For our
example 8 additional near-collision blocks were needed to remove all differences. Thus, a total of
96 + 8× 512 = 4192 bits were appended to each of the targeted messages to let them collide. The
overall expected complexity of the target collision method for MD5 is estimated at about 252 MD5
compression function calls. Note that this is substantially faster than the trivial birthday attack
which has complexity 264.

In principle it is possible to omit the initial birthdaying step, but as a result finding the proper
differential paths would become harder, and quite a few more additional blocks would be needed. A
different and easier birthdaying procedure could have been used instead, and would have required
about 14 additional blocks. Our approach reflected our desire to minimize the number of additional
blocks using the new differential path construction method. Using a more intricate differential path
construction we should be able to remove more than a single triple of bit differences per block,
thereby further reducing the number of additional blocks. These potential enhancements and
variations, and the full details of the construction as used, will be published shortly in [14]. Further
announcements on this subject will appear on the website http://www.win.tue.nl/hashclash/,
along with the thesis [14].

1 Private communication.

2

The construction of just a single example required, apart from intensive study of the construc-
tion of differential paths, substantial computational efforts. This was done in the “HashClash”
project (see http://www.win.tue.nl/hashclash), in which we needed about 6 months of real
time, during which we employed a high performance cluster of computers at TU/e as well as
a grid of home PCs, sometimes involving up to 1200 machines, using BOINC software (see
http://boinc.berkeley.edu/). The computational work is almost fully parallelizable, and very
well suited for grid computing. Constructing another target collision can probably be done much
faster. Nevertheless, we expect that it will again require a substantial effort, both human and
computational work, say 2 months real time assuming comparable computational resources.

Applications of target collisions

Given two target messages of equal length, we can effectively construct relatively short appendages
in such a way that the extended messages collide under MD5. We mention the following potential
applications of such a construction.

– The example presented here, namely colliding X.509 certificates with different fields before
the appended bitstrings that cause the collision, where those bitstrings are perfectly hidden
inside the RSA moduli. In particular it could be of interest to be able to freely choose the
Distinguished Name fields, which contain the identities of the alleged certificate owners.

– It was suggested to us to keep the different Distinguished Names, but to insist on equal public
keys: someone may be lured to encrypt data for one person, which can then be decrypted
by another. It is unclear to us how realistic this is—or why one would need identical digital
signatures. Nevertheless, if the appendages are not hidden in the public key field, some other
field must be found for them, located before or after the public key field. Such a field may be
specially defined for this purpose, and there is a good chance that the certificate processing
software will not recognize this field and ignore it. However, as the appendages have non-
negligible length, it will be hard to define a field that will not look suspicious to someone who
looks at the certificate at bit level.

– A possible way to realize the above variant is to hide the collision-causing appendages inside
the RSA public exponent. Though the public exponent is commonly taken from a limited set
(3, 17, and 65537 are popular choices), a large, random looking one is in principle possible.
It may even be larger than the modulus, but that may raise suspicion. In any case, the two
certificates can now have identical RSA moduli, making it easy for the owner of one private
key to compute the other one.

– Entirely different abuse scenarios are conceivable. Daum and Lucks [2] (see also Gebhardt, Il-
lies and Schindler [4]) have shown how to construct a pair of Postscript files that collide under
MD5, and that send different messages to output media such as screen or printer. However, in
those constructions both messages had to be hidden in each of the colliding files, which obvi-
ously raises suspicions upon inspection at bit level. With target collisions, this can be avoided.
For example, two different messages can be entered into a document format that allows inser-
tion of color images (such as Microsoft Word), with one message per document. At the last
page of each document a colored layout element will be shown—for instance a company logo
or a nicely colored barcode claiming to be some additional security feature, obviously offering
far greater security than those old-fashioned black and white barcodes—carefully constructed
such that the hashes of the documents collide when their color codes are appended. The im-
ages in Figure 1 below are based on 4192-bit actual collision-causing appendages. In fact, we
just took the collision computed for the certificates and built them into bitmaps to get two
different barcode examples. Each string of 4192 bits leads to one line of 175 pixels, say A and
B, and the barcodes consist of the lines ABBBBB and BBBBBB respectively. Apart from the
96 most significant bits, corresponding to the 4 pixels in the upper left corner, they differ in
only a few bits, so the resulting color differences will be hard to spot for the human eye. As

3

noted above the ‘obvious’ 4 initial pixels can be avoided at the cost of more blocks (thus longer
barcodes), and the barcodes can be shortened again at the cost of more work on differential
path constructions.

Figure 1. A collision built into a bitmap images.

– Mikle [11] and Kaminsky [7] have shown how to abuse existing MD5 collisions to mislead
integrity checking software based on MD5. Similar to the colliding postscript applications, they
also used the differences in the colliding inputs to construct deviating execution flows of some
programs. Here too target collisions allow a more elegant approach, especially since common
operating systems ignore any bitstring that is appended to an executable: the program will
run unaltered. Thus one can imagine two executables: a ‘good’ one (say Microsoft’s Word.exe)
and a bad one (the attacker’s Worse.exe). A target collision for those two executable files is
computed, and the collision-causing bitstrings are appended to them. The resulting altered file
Word.exe, functionally equivalent to the original Word.exe, can then be offered to Microsoft’s
Authenticode signing program and receive an MD5 based digital signature. This signature
will be equally valid for the attacker’s Worse.exe, and the attacker might be able to replace
Word.exe by his Worse.exe (renamed to Word.exe) on the appropriate download site. This
construction affects a common functionality of MD5 hashing and may pose a practical threat,
also because there is no a priori reason why the collision-causing bitstrings could not be hidden
inside the executables.

– More ideas can be found on http://www.iaik.tugraz.at/research/krypto/collision/.

Further study is required to assess the impact of target collisions on these and other applications of
hash functions. Commonly used protocols and message formats such as SSL, S/MIME (CMS) and
XML Signatures should be studied, with special attention to whether random looking data can be
hidden in these protocols and data formats, in such a way that some or all implementations will
not detect them. For instance, it was suggested to us by Pascal Junod to let a ‘proper’ certificate
collide with one that contains executable code in the Distinguished Name field, thereby potentially
triggering a buffer overflow, but we have not seen an actually working example of this idea yet.
It also requires more study to see if there are formats that even allow the much easier random
collision attacks.

In the remainder of this note we concentrate on the first application mentioned above, that of two
X.509 certificates with identical digital signatures but different Distinguished Name fields, where
the collisions are perfectly hidden inside the public key moduli.

Attack scenarios

Though our current X.509 certificates construction, involving different Distinghuished Names,
should have more attack potential than our previous one in [10] (with identical name fields), we
have not been able to find truly convincing attack scenarios yet. Ideally, a realistic attack targets
the core of PKI: provide a relying party with trust, beyond reasonable cryptographic doubt, that
the person indicated by the Distinguished Name field has exclusive control over the private key
corresponding to the public key in the certificate. The attack should also enable the attacker to
cover his trails.

Getting two certificates for the price of one could be economically advantageous in some situations.
Also, such certificates undermine the proof of knowledge of the secret key corresponding to a

4

certified public key. Both these possibilities have been noted before (cf. [9]) and do, in our opinion,
not constitute attacks.

Our construction requires that the two colliding certificates are generated simultaneously. Although
each resulting certificate by itself is completely unsuspicious, the fraud becomes apparent when
the two certificates are put alongside, as may happen during a fraud analysis. An attacker can
generate one of the certificates for a targeted person, the other one for himself, and attempt to
use his own credentials to convince an external and generally trusted CA to sign the second one.
If successful, the attacker can then distribute the first certificate, which will be trusted by relying
parties, e.g. to encrypt messages for the targeted person. The attacker however is in control of the
corresponding private key, and can thus decrypt confidential information embedded in intercepted
messages meant for the targeted person. Or the attacker can masquerade as the targeted person
while signing messages, which will be trusted by anyone trusting the CA. In this scenario it does
not matter whether the two certificates have different public keys (as in our example) or identical
ones (in which case the colliding blocks would have to be hidden somewhere else in the certificate).

A problem is, however, that the CA will register the attacker’s identity. As soon as a dispute arises,
the two certificates will be produced and revealed as colliding, and the attacker will be identified.
Another problem is that the attacker must have sufficient control over the CA to predict all fields
appearing before the public key, such as the serial number and the validity periods. It has frequently
been suggested that this is an effective countermeasure against colliding certificate constructions
in practice, but there is no consensus how hard it is to make accurate predictions. When this
condition of sufficient control over the CA by the attacker is satisfied, colliding certificates based
on target collisions are a bigger threat than those based on random collisions.

Obviously, the attack becomes effectively impossible if the CA adds a sufficient amount of fresh
randomness to the certificate fields before the public key, such as in the serial number (as some
already do, though probably for different reasons). This randomness is to be generated after the
approval of the certification request. On the other hand, in general a relying party cannot verify
this randomness. In our opinion, trustworthiness of certificates should not crucially depend on
such secondary and circumstantial aspects. On the contrary, CAs should use a trustworthy hash
function that meets the design criteria. Unfortunately, this is no longer the case for MD5 or SHA-1.

We stress that our construction (we prefer this wording to ‘attack’) is not a preimage attack.
As far as we know, existing certificates cannot be forged by target collisions if they have not
been especially crafted for that purpose. However, a relying party cannot distinguish any given
trustworthy certificate from a certificate that has been crafted by our method to violate PKI
principles. Therefore we repeat, with more urgency, our recommendation that MD5 is no longer
used in new X.509 certificates. As shown in [1], similar work is in development for the SHA-1 hash
function, so we feel that a renewed assessment of the use of SHA-1 in certificate generation is also
appropriate.

5

Construction outline

The table below outlines the to-be-signed fields of the colliding certificates that were constructed.

field comments value first certificate value second certificate

X.509 version number identical, standard X.509 0x02, indicating version 3

serial number different, chosen by CA 0x010C0001 0x020C0001

signature algorithm identifier identical, standard X.509 md5withRSAEncryption

issuer distinguished name identical, chosen by CA CN = “Hash Collision CA”
L = “Eindhoven”

C = “NL”

not valid before identical, chosen by CA Jan. 1, 2006, 00h00m01s GMT

not valid after identical, chosen by CA Dec. 31, 2007, 23h59m59s GMT

subject distinguished name different, chosen by us CN = “Arjen K. Lenstra” CN = “Marc Stevens”
O = “Collisionairs” O = “Collision Factory”
L = “Eindhoven” L = “Eindhoven”
C = “NL” C = “NL”

public key algorithm identical, standard X.509 rsaEncryption

subject public key info different, see below as specified below as specified below

version 3 extensions identical, standard X.509 see below

Before the collision search is started the exact contents needs to be known of all to-be-signed
fields of the certificate that appear before the modulus. Therefore, to be able to construct the
certificates, sufficient control over the CA is necessary. This was achieved by implementing and
operating this CA ourselves. In fact, we used the CA that had already been set up for [9]. It is
used solely for the purposes of signing colliding certificates.

Below we explain in more detail how each of the fields was determined. For this purpose it is
helpful to know that the Subject Public Key Info was split in the following four parts:

Part 1, the 96 most significant bits of the RSA modulus. This part coincides with the last 96
bits of a 512-bit block of MD5 input during the certificate digital signature generation. This
part is computed by birthdaying and will be ‘entirely’ (i.e., approximately half) different for
the two certificates. The resulting IHVs have only 8 triples of bit differences (these are not
bitwise xor differences but the additive differences of the IHVs, where each IHV is interpreted
as a quadruple of 32-bit unsigned integers).

Part 2, the next 8 × 512 = 4096 bits of the RSA modulus, with each of the eight 512-bit near-
collision blocks computed by a collision finding method: each near-collision block is used to
eliminate one triple of the bit differences in the IHVs, so that at the end of the 8 near-collision
blocks the IHVs are equal, and a complete collision has been constructed. This part of the
moduli is different for the two certificates, but each of the 8 pairs of near-collision blocks has
one bit difference only.

Part 3, the least significant 4000 bits of the RSA modulus, calculated in such a way that the
concatenation of the three parts (for a total of 96 + 4096 + 4000 = 8192 bits) is a hard to
factor RSA modulus. This part is identical for the two certificates.

The public exponent, fixed at 65537 for both certificates.

Construction details

We provide a detailed description of our construction.

1. We first construct a pair of templates for the certificates, in which all fields are filled in, with
the exception of the RSA public key moduli (apart from a first zero byte which is there to
prevent the bitstring from representing a negative integer) and the signature. We can easily
meet the following three requirements:

6

– The data structures must be compliant with the X.509 standard and the ASN.1 DER
encoding rules (see [5], but see also the final section of this note);

– The byte lengths of the moduli and the public exponent (in fact, also the byte lengths of
the entire to-be-signed parts of the certificates) must be fixed in advance, because these
numbers have to be specified as parts of the ASN.1 structure, coming before the modulus;

– The position where the RSA moduli start must be controlled. We chose to have this at an
exact multiple of 64 bytes (512 bits) minus 96 bits, after the beginning of the to-be-signed
fields. This gives convenient space for the results of the birthdaying step (described below).

The third condition can be dealt with by adding dummy information to the subject Distin-
guished Name. This we did in the Organization-field. Note that since the public key exponent
bitlength has to be fixed in advance, it is just as easy to fix the entire public exponent. We
take the usual “Fermat-4” number e = 65537. It is imperative to have the same e for both
certificates, as it comes after the colliding blocks.

2. We apply MD5 to each of the first parts of the two to-be-signed fields, truncated at the last
full block (thus excluding the incomplete blocks whose last 96 bits will consist of the most
significant bits of the RSA moduli under construction), suppressing the padding normally used
in MD5. As output we get a pair of IHVs that we use as input for the next step. These IHVs
will be completely different and have no special properties built in.

3. Using the IHVs and their corresponding incomplete blocks (the ones that still fail their last
96 bits) as input, we complete these blocks by appending 96 appropriately chosen bits to
each. These bits are computed by birthdaying, to satisfy 96 bit conditions on the output IHV
difference. For this purpose each IHV is interpreted as 4 little endian 32-bit integers, and the
difference between the IHVs is defined as the 4-tuple of differences modulo 232 between the
four corresponding 32-bit integers. If we represent this IHV difference as ∆a‖∆b‖∆c‖∆d for
32-bit ∆a,∆b,∆c, ∆d, then the conditions are ∆a = 0 and ∆b = ∆c = ∆d. This approach
was suggested to us by Xiaoyun Wang2, as it facilitates the search for the next near-collision
blocks. Let b′1 and b′2 be the resulting bitstrings of length 96. This completes Part 1 of the
Subject Public Key Info.

4. Using the techniques developed in Marc Stevens’ MSc thesis [14] and as sketched in the Ap-
pendix, we compute two different bitstrings b′′1 and b′′2 , of 4096 bits (8 near-collision blocks)
each, for which the MD5 compression function with the IHVs from the previous step produces
a collision. With b1 = b′1‖b′′1 and b2 = b′2‖b′′2 we now have b1 and b2 that form the leading 4192
bits of the RSA moduli. Note that the two to-be-signed fields up to and including b1 and b2,
respectively, collide under MD5. Therefore, in order not to destroy the collision, everything
that is to be appended from now on must be identical for the two certificates. This completes
Part 2 of the Subject Public Key Info.

5. The next step is to construct two specially crafted but secure RSA moduli from the bitstrings
b1 and b2, respectively, by appending to each the same bitstring b of 4000 bits. This we did in
the same way as for our previous colliding certificates and as described in [9]. In the present
case we have 4192-bit prefixes b1 and b2, and we target 8192-bit moduli. As explained in [10]
this means that we could in principle construct moduli that are products of primes of sizes
roughly 2000 and 6192 bits. In order to speed up the RSA modulus construction process, we
aimed somewhat lower here and settled for products of 1976 and 6216-bit primes. As a result,
computing the moduli took about an hour on a regular laptop. Here is how it goes.
– Generate random 1976-bit primes p1 and p2, such that e is coprime to p1 − 1 and p2 − 1.
– Compute b0 between 0 and p1p2 such that p1|b124000 + b0 and p2|b224000 + b0 (by the

Chinese Remainder Theorem).
– Find a positive integer k for which b = b0 + kp1p2 satisfies the following conditions: both

q1 = (b124000 + b)/p1 and q2 = (b224000 + b)/p2 are primes, and e is coprime to both q1− 1
and q2 − 1:
• use a sieve to eliminate candidates with a small prime divisor; we sieved with the primes

below 228 over an interval of 224 odd numbers k, which resulted in 44601 survivors
(out of 224 ≈ 1.678× 107 candidates);

2 Private communication.

7

• for each of the survivors do a simple Miller-Rabin test (with only 2 as base) on q1

and, if necessary, on q2; the first candidate surviving the q2 test was subjected to more
thorough testing (for both q1 and q2) and turned out to be a satisfying example (we
were lucky, as already the 1374th of the 44601 candidates was successful).

– When primes q1 and q2 have been found, output n1 = b124000 + b and n2 = b224000 + b (as
well as p1, p2, q1, q2), and stop.

– When k becomes too large, i.e., the corresponding q1 or q2 may become too large, start
all over with new random p1 and p2.

This completes Part 3 of the Subject Public Key Info.
It is reasonable to expect, based on the Prime Number Theorem, that this algorithm will
produce in a feasible amount of computation time, two hard to factor RSA moduli n1 = p1q1

and n2 = p2q2. Furthermore, as argued above, when concatenated to their corresponding initial
to-be-signed parts, they will collide under MD5. With p1 and p2 at around 1976 bits our RSA
construction method is usually successful within a few hours of computing time. Theoretically,
it still works for p1 and p2 up to 2000 bits, but the interval in which candidates are to be found
gets shorter the closer one gets to 2000 bits, thereby leading to longer expected runtimes. So,
we left it at 1976 bits.

6. We insert the modulus n1 into the template for the first certificate, thereby completing the to-
be-signed part of the first certificate, and we compute the MD5 hash of the entire to-be-signed
part (including MD5 padding, and using the standard MD5-IHV).

7. We apply standard PKCS#1v1.5-padding (see [12, Section 9.2]), and perform a modular ex-
ponentiation using the issuing Certification Authority’s private key. This gives the signature,
which is added to the certificate. The first certificate is now complete.

8. To obtain the second valid certificate, all we have to do is to put the modulus n2 and the
signature as computed in the previous step at their locations in the template for the second
certificate.

Note that the prime factors of each modulus have rather different sizes, i.e., the RSA moduli are
strongly unbalanced. Although this is unusual for RSA moduli, for the parameter choices we make
(smallest primes of around 1976 bits for a modulus of 8192 bits) we see no reason to believe that
these moduli are less secure than more balanced, regular RSA moduli of the same size, given the
present state of factoring technology. Further note that the corresponding private keys can easily
be computed from the public exponent and the prime factors of the moduli.

Finding the target MD5 collisions is by far the computationally hardest part of the above con-
struction, a remark that is similar to one made in [9]. However, in the meantime the methods for
constructing MD5 collisions with identical initial IHVs have been improved considerably, see [13]
and [8]. Such collisions can now be found within seconds, so the bottleneck in the colliding certifi-
cate scenario of [9] may now have shifted from the collision search to the moduli construction.

Example

Below is an example pair of colliding certificates in full detail (byte dump). The colliding certificates
in binary form, as well as the CA certificate and some additional data, can be downloaded from
http://www.win.tue.nl/hashclash/TargetCollidingCertificates/.

In the left column the exact bytes are presented in a form that clarifies the ASN.1 structure. Black
characters indicate identical bits, underlined blue and red characters indicate different bits.

8

tag length data | comment
=== ====== ================================ | ===
30 820629 | ASN.1 header

--- | ---
30 820511 | to-be-signed part begins here
A0 03 |
02 01 02 | X.509 version 3
02 04 010C0001 020C0001 | serial number
30 0D |
06 09 2A864886F70D010104 | signature algorithm identifier (md5withRSAEncryption)
05 00 |

--- | ---
30 3D | issuer distinguished name starts here
31 1A |
30 18 |
06 03 550403 |
13 11 4861736820436F6C6C6973696F6E2043 | issuer common name (‘‘Hash Collision CA’’)

41 |
31 12 |
30 10 |
06 03 550407 |
13 09 45696E64686F76656E | issuer locality (‘‘Eindhoven’’)
31 0B |
30 09 |
06 03 550406 |
13 02 4E4C | issuer country code (‘‘NL’’)

--- | ---
30 1E |
17 0D 3036303130313030303030315A | not valid before (Jan. 1, 2006, 0h0m1s GMT)
17 0D 3037313233313233353935395A | not valid after (Dec. 31, 2007, 23h59m59s GMT)

--- | ---
30 54 | subject distinguished name starts here
31 19 15 |
30 17 13 |
06 03 550403 |

| subject common name:
13 10 41726A656E204B2E204C656E73747261 | (‘‘Arjen K. Lenstra’’)
13 0C 4D6172632053746576656E73 | (‘‘Marc Stevens’’)
31 16 1A |
30 14 18 |
06 03 55040A |

| subject organization
13 0D 436F6C6C6973696F6E61697273 | (‘‘Collisionairs’’)
13 11 436F6C6C6973696F6E20466163746F72 | (‘‘Collision Factory’’)

79 | (dummy text, used to fill up to convenient byte size)
31 12 |
30 10 |
06 03 550407 |
13 09 45696E64686F76656E | subject locality (‘‘Eindhoven’’)
31 0B |
30 09 |
06 03 550406 |
13 02 4E4C | subject country code (‘‘NL’’)
30 820422 |

--- | ---
30 0D |
06 09 2A864886F70D010101 | public key algorithm (rsaEncryption)
05 00 |
03 82040F 00 | subject public key info
30 82040A |
02 820401 00 | public key modulus (8192 bits, 1025 bytes)

| to-be-signed part until here has a multiple of 64 bytes minus 12 bytes
| different bytes are indicated by colors and underlining
\----------------------------------\

EE73E7D6B3B34FBAA1393D02 1A09B4CB40C7267AAF017F9B | part 1: 96 birthday bits
|

A47425818DC84F86736E907228BBE877 A47425818DC84F86736E907228BBE877 | part 2: 8 near-collision blocks
0203858D8CF1837AFF5E6C2213036AF3 0203858D8CF1837AFF5E6C2213036AF3 |
D95C77E9C2237D608CC4A9FB97308BBF D95C77E9C2237D608CC4A9FB97307BBF | <-- bit difference on this line
9828612F1599E2615BCCDEDA5930532F 9828612F1599E2615BCCDEDA5930532F |
B3DD117278E494401433630E7461C1DC B3DD117278E494401433630E7461C1DC |
9B801B2E552015A513FF7AE7973EF44B 9B801B2E552015A513FF7AE7973EF44B |
8352E4E04979B31EB600654D51F4A381 8352E4E04979B31EB600654D51F4A481 | <-- bit difference on this line
CEBE3F0BD099D130D1456FABE04A3E98 CEBE3F0BD099D130D1456FABE04A3E98 |
85C8C4FB297B86B57752CD6419809FE3 85C8C4FB297B86B57752CD6419809FE3 |
7E6286F07732D1E069A5B4E56670B8BB 7E6286F07732D1E069A5B4E56670B8BB |
BAE5C211742A131D05711CF1FE32AF93 BAE5C211742A131D05711CF1FE22AF93 | <-- bit difference on this line
3F1EEF224762E3AADAC17C40E448CA41 3F1EEF224762E3AADAC17C40E448CA41 |
A879A03D3CF665F239C7F3FE82B384E8 A879A03D3CF665F239C7F3FE82B384E8 |
35E7C9E8BDEE30C268A2121284789DF4 35E7C9E8BDEE30C268A2121284789DF4 |
2F44906F19B79026464436E1DA65FA0C 2F44906F19B79026464436E1DA64FA0C | <-- bit difference on this line
53A377FA0D2B012B7DDC2855DAE5B551 53A377FA0D2B012B7DDC2855DAE5B551 |
51E28034112120B5E79EC5F26A9F69DA 51E28034112120B5E79EC5F26A9F69DA |

9

85D74EF6A97A0B1164EFA25FB1AE26BA 85D74EF6A97A0B1164EFA25FB1AE26BA |
451CCDA7A2E784339C447D562549A60B 451CCDA7A2E784339C447D560549A60B | <-- bit difference on this line
F0676294BF580C919EC457025D3C7860 F0676294BF580C919EC457025D3C7860 |
B98296C0AB9FE5B1D353882E26C1F721 B98296C0AB9FE5B1D353882E26C1F721 |
B41899D972B5A1D5050B684536448010 B41899D972B5A1D5050B684536448010 |
AF8C7AFF7CE8EACCB9B1FBBDD129D4F5 AF8C7AFF7CE8EACCB9B1FBBDC929D4F5 | <-- bit difference on this line
D499FB812924DF302CB3C45023386297 D499FB812924DF302CB3C45023386297 |
9396B3A46CD0FF7F1426711C459297B6 9396B3A46CD0FF7F1426711C459297B6 |
5D1CEF66C18751E094BF08F3B2981C5C 5D1CEF66C18751E094BF08F3B2981C5C |
CE52D963D5A4259A64557E4D1B9EFE2D CE52D963D5A4259A64557E4D1B9EFE0D | <-- bit difference on this line
9A516D1E6EC8BB37066825AEA6361660 9A516D1E6EC8BB37066825AEA6361660 |
2BD7D11625A06A90739B4D0A06EA872A 2BD7D11625A06A90739B4D0A06EA872A |
3AF9EBA12629BED67940561BD9374A89 3AF9EBA12629BED67940561BD9374A89 |
D60F0D722C9FEB6833EC53F0B0FD76AA D60F0D722C9FEB6833EC53F0B0FD76A2 | <-- bit difference on this line
047B66C90FCEB1D2E22CC099B9A4B93E 047B66C90FCEB1D2E22CC099B9A4B93E |

/----------------------------------/ at this point an MD5 collision is reached
0000000F54A895176E4C295A405FAF54 | part 3: identical parts of the modulus
CEE82D043A45CE40B155BE34EBDE7847 |
85A25B7F894D424FA127B157A8A120F9 |
9FE53102C81FA90E0B9BDA1BA775DF75 |
D9152A80257A1ED352DD49E57E068FF3 |
F02CABD4AC97DBBC3FA0205A74302F65 |
C7F49A419E08FD54BFAFC14D78ABAAB3 |
0DDB3FC848E3DF02C5A40EDA248C9FF4 |
7482850CFDFBDD9BC55547B7404F5803 |
C1BB81632173127E1A93B24AFB6E7A80 |
450865DB374676D576BA5296CCC6C130 |
82D1AB36521F1A8AD945466B9EF06AF4 |
3A02D70B7FB8B7DC6D268C3DBA6898F6 |
552FA3FBB33DCBFADA7B33FA75D93AFE |
262BD37AFF75995FD0E9774BA5A26A7C |
443FF34E461502A2CB777E982D007375 |
14B88ED28D61F428E88387DF2BF02230 |
AD17A9D44FF364850A07DB42A7826AC2 |
EE3899CAC3EC274721D476D96658F537 |
16676587F8FF14DB8DE6741AFA2206DB |
A3B11828BA87C6E1E88A022F1AA8DDD0 |
37EAB049B5C7D3053D0A63D7861DEA07 |
B3D8B720DE068CF47E657BB44450B85D |
52F749D59572DF0C0E3433B47C9AA19A |
856F1DC3CDADBAFB143035C85A53AF57 |
22038F765C0D621B66B69FFFFD091D4A |
661A453BF1DAED1A3A2341B37D7F623B |
158F6EC02B49A25364430FCB5861483E |
1E9543ED2EE7E54A4C108A6E64194098 |
0EE60D14AEE559AF30037E75B2309CE0 |
21FFE3109BF2053892AB0AE403516E2A |
B58067F7 |

02 03 010001	public exponent (65537)
A3 1A | version 3 extensions start here
30 18 |
30 09 |
06 03 551D13 | basic constraints
04 02 3000 |
30 0B |
06 03 551D0F | key usage
04 04 |
03 02 05E0 | to-be-signed part ends here

--- | ---
30 0D |
06 09 2A864886F70D010104 | signature algorithm identifier (md5withRSAEncryption)
05 00 |

--- | ---
03 820101 00 | signature (2048 bits, 257 bytes)

86C0876D20682DC897443F97690DDFB2 |
9074CB25C358F09F81234CE265A44333 |
CB6A78B23273291700DCD6BADF55088A |
19A317A51D6092AC3F6FC6243601367A |
6A2FC0969B4E8913BFC2315F5AF35D83 |
FBD03C957839242217BEB9AD8873D442 |
F3A36200CA198F6345BCB76CCB27FCF2 |
DBEA239E50FDDD3CD69304C950E7094A |
FF0A965902B72206D04E3759BAED05AE |
05922D8BE93556C8CACDC3606C56EE37 |
89C3775F767A8909AB444BC1D7EE4A41 |
677302EFDF337B4CEE082D9218FE44AA |
5D68D34EFB796AC43219DCF8DD4C2E6E |
C458EFA482DA7E181C0864177124F0CF |
214B0C5A28EFECA40EC532BB7673FFEA |
9B9BD0A0B1EFE6DB97C518C4DB17B9A5 |

=== ====== ================================ | ===

10

Here are the IHV values for the to-be-signed parts of the certificates (the differences are computed
for 32-bit unsigned integer words):

block | certificate 1 | certificate 2 | difference | note
======= ================================== ================================== == ======

0 | 0123456789ABCDEFFEDCBA9876543210 | 0 | 1)
1 | 488FAE30B8259F77F81AA10709F1667D | 8CD14B34EE2CE093EE1238A70A9449C1 | many |
2 | 3E15562D935DC8950E86F877F650A439 | 7D99D701715647503BDA995E53F9EB07 | many |
3 | A2934A57268FC8FB99270DB2BD42867F | 9756EBE66FC92AD60256345C8EC444A8 | many |
4 | 2D857B4E0479B7259F7662D47771220B | 2D857B4EA419FB613F17A61017126647 | -2^5-2^7-2^13+2^15-2^18-2^22+2^26-2^30 | 2)
5 | E745A14768C24DF4F16EF79A0EE57A77 | E745A147086391F0910F3B97AE85BE73 | -2^5-2^7-2^13+2^15-2^18-2^22+2^26 |
6 | 6900F0DD6880AD3B8A559C5D95807BC7 | 6900F0DD0821F13B2AF6DF5D3521BFC7 | -2^5-2^7-2^13+2^15-2^18-2^22 |
7 | 6F48D9E5989D51D05CA3E94D800AF3F8 | 6F48D9E5383E55D0FC43ED4D20ABF6F8 | -2^5-2^7-2^13+2^15-2^18 |
8 | 80D9AE066685A793F953E15A6EDE318F | 80D9AE060626A79399F4E05A0E7F318F | -2^5-2^7-2^13+2^15 |
9 | 73A70AC0FAA8B2239EAB7BE423EC6388 | 73A70AC09AC9B2233ECC7BE4C30C6488 | -2^5-2^7-2^13 |

10 | DE56FC8A9A091FEB1E6E537D16629AC4 | DE56FC8A3A0A1FEBBE6E537DB6629AC4 | -2^5-2^7 |
11 | DCA82596635B2D4F0EDB818BDEE0D521 | DCA82596835B2D4F2EDB818BFEE0D521 | -2^5 |
12 | 505D9746FAB00B328018DBC34A87DF11 | 0 | 3)
13 | DAC293C410FD4B465B174166617DA963 | 0 |
14 | 524312A4FD34CF77AF144C437EAC0BBF | 0 |
15 | AA6FAC2CFD95D7C22F35ACF82B55B146 | 0 |
16 | 065C03F4E72681A54B874ABF80BC3C3D | 0 |
17 | D4852EBAA84E005A8C82A34146D0AD3A | 0 |
18 | FCABDB3144B842CCD7E3DFE8C94A6729 | 0 |
19 | 80AC53D61C9869AEA32085761A042D0F | 0 |
20 | 0BA6111733324BB09A2227F50C4496E2 | 0 |

final | C6B2FE88912770FC6F2DB71F58C7D251 | 0 | 4)
======= ================================== ================================== == ======

Notes:
1): Initial IHV, according to the MD5 standard.
2): This special difference is the result of birthdaying. Interpreting each IHV as 4 little endian
32-bit integers and defining the difference between the IHVs as the 4-tuple of differences modulo
232, as explained above, the difference between the IHVs can be written as 0‖δ‖δ‖δ with δ =
−25 − 27 − 213 + 215 − 218 − 222 + 226 − 230. At each consecutive near-collision block the highest
2-power of δ in this notation (i.e., using the Non-Adjacent Form) is chipped away, thus removing
three ‘bits’ of the difference per step.
3): Here is the full collision.
4): The final IHV includes MD5 padding and Merkle-Damg̊ard strengthening according to the
MD5 standard. It is the MD5 output, that is subsequently used as input to the RSA signing
operation using the CA private key.

The differences are also made visible in the pictures below.

Figure 2 shows the differences of the IHVs, one at each horizontal line. The colors refer to the
signs of the bit differences.

Figure 2. IHV differences for the colliding certificates.

Figure 3 shows also the differences of the internal states after each round inside the compression
function, and shows the IHV differences between the yellow bars.

11

How to verify

The certificates are valid in the sense that they comply with the relevant
standards (RFC 3280, ASN.1 DER encoding, but see the next section),
and also in the sense that their digital signature can be verified against
the issuing Certification Authority’s certificate. For manual verification
of our claims we have provided the above byte dumps, as well as fur-
ther technical data (such as the prime factors of the moduli and the CA
public key) at the mentioned website. Tools that provide more conve-
nient ways to verify our claims are e.g. Peter Gutmann’s dumpasn1 (see
http://www.cs.auckland.ac.nz/%7Epgut001/), openssl (see http:
//www.openssl.org), and Microsoft’s standard Certificate Viewer as
it comes with e.g. Windows XP. Unfortunately Microsoft’s Certificate
Viewer does not show the certificate’s signature, but dumpasn1 and
openssl do, as the final byte string of length 257. Note that when the
CA certificate is installed in the standard Windows (Internet Explorer)
Certificate Store, the Certificate Viewer will automatically validate the
certificate signatures against the CA certificate.

A small error

The reader who takes a close look at the bits of our certificates will
notice that the second certificate does not have a 8192-bit modulus, but
a 8189-bit one. This is due to the fact that in the result of the birthdaying
computation it turned that one of the bitstrings of 96 bits had the three
most significant bits not set. At the time we should have noticed this and
we should have birthdayed a bit further at almost no additional effort to
find a pair with for both the most significant bit set. Or we could simply
have fixed one more byte. Unfortunately we overlooked this. When we
did notice it, 6 months of hard work had already been based on these
values, and we did not want to wait another few months to redo all the
computations.

As a result we now have one 8192-bit modulus and one 8189-bit one.
The main problem with this is that the DER encoded bitstring in which
this 8189-bit modulus is located, is strictly speaking erroneous, i.e. not
according to the DER encoding rules: the zero byte at the front, needed
to make sure the integer is interpreted as a positive one, should be there
only when the next byte has its most significant bit set. We could however
not leave it out anymore: that would have changed the length values
that occur earlier in the ASN.1 structure, which would have changed the
IHVs, so that the entire collision computation would have to be done
again. This would have meant a delay of several months, so we decided
to leave the error there.

Peter Gutmann’s dumpasn1 program notices this error. The openssl
software does not, and gives the correct modulus bit length of 8189. Mi-
crosoft’s Certificate Viewer also does not notice the error, and moreover
gives the erroneous value 8192 for the modulus bitlength. It could very
well happen that other certificate parsing software will notice the error
and reject the certificate because of it. This however does not under-
mine our method of construction of colliding certificates with different
identities (let alone the method of constructing target collisions). It only

Figure 3.
Internal state
differences.

12

happens to be the case that this specific example has a minor flaw in it, that could have easily
been prevented had we been more alert, and that is not worth anyone’s trouble to repair.

Acknowledgements

We are very grateful to:

– Xiaoyun Wang for her birthdaying suggestion and her further advice and support;
– Yiqun Lisa Yin and Vlastimil Klima for discussions and ideas on MD5 differential path con-

struction;
– Paul Hoffman, Eric Verheul, Pascal Junod and Bart Preneel for discussions, ideas and com-

ments;
– NBV and Gido Schmitz for providing a good environment for Marc to do his MSc Thesis

project;
– many hundreds of BOINC enthousiasts all over the world, mostly completely unknown to us,

who were willing to donate an impressive amount of cycles to the HashClash project running
with BOINC software;

– Jan Hoogma at LogicaCMG for technical discussions and sharing his BOINC knowledge;
– Bas van der Linden at TU/e for making available the Elegast cluster;
– Wil Kortsmit and Vincent Huijgen at TU/e for technical support.

References

1. C. de Cannière and C. Rechberger, Finding SHA-1 Characteristics, AsiaCrypt 2006, to appear.
2. M. Daum and S. Lucks, Attacking Hash Functions by Poisoned Messages, ”The Story of Alice and

her Boss”, June 2005, http://www.cits.rub.de/MD5Collisions/.
3. P. Gauravaram, A. McCullagh and E. Dawson, Collision Attacks on MD5 and SHA-1: Is this the

“Sword of Damocles” for Electronic Commerce?, AusSCERT 2006 R&D Stream, May 2006.
4. M. Gebhardt, G. Illies and W. Schindler, A Note on Practical Value of Single Hash Collisions for

Special File Formats, NIST First Cryptographic Hash Workshop, October/November 2005,
http://csrc.nist.gov/pki/HashWorkshop/2005/Oct31%5FPresentations/Illies%5FNIST%5F05.pdf.

5. R. Housley, W. Polk, W. Ford and D. Solo, Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, IETF RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt.

6. P. Hoffman and B. Schneier, Attacks on Cryptographic Hashes in Internet Protocols, IETF RFC 4270,
November 2005, http://www.ietf.org/rfc/rfc4270.txt.

7. D. Kaminsky, MD5 to be considered harmful someday, December 2004,
http://www.doxpara.com/md5%5Fsomeday.pdf.

8. Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute, Cryptology ePrint
Archive, Report 2006/105, http://eprint.iacr.org/2006/105.

9. A.K. Lenstra, X. Wang and B.M.M. de Weger, Colliding X.509 certificates, Cryptology ePrint Archive,
Report 2005/067, http://eprint.iacr.org/2005/067. An updated version has been published as an
appendix to [10].

10. A.K. Lenstra and B.M.M. de Weger, On the possibility of constructing meaningful hash collisions for
public keys, ACISP 2005, Springer LNCS 3574 (2005), 267–279.

11. O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest, Cryptology ePrint
Archive, Report 2004/356, http://eprint.iacr.org/2004/356.

12. PKCS#1 v2.1, RSA Cryptography Standard, RSA Laboratories, June 2002,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

13. Marc Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive, Report 2006/104,
http://eprint.iacr.org/2006/104.

14. Marc Stevens, TU Eindhoven MSc thesis, in preparation.
15. X. Wang and H. Yu , How to Break MD5 and Other Hash Functions, EuroCrypt 2005, Springer LNCS

3494 (2005), 19–35.

13

Appendix

We sketch the construction of the differential paths that are used to compute the near-collision
blocks. First, to fix notation, we review the MD5 compression function.

MD5 compression function

The input for the MD5 Compression function is a 128-bit intermediate hash value IHV (i−1)

(consisting of four 32-bit values IHV i−1
0 , IHV i−1

1 , IHV i−1
2 , IHV i−1

3) and a 512-bit message
block M (i). There are 64 steps (numbered 0 up to 63) grouped into four rounds. Each step is
based on a non-linear function, modular addition and left rotation. In each step t an Addition
Constant (ACt) and a Rotation Constant (RCt) is used. They are defined as follows:

ACt = babs(sin(t + 1)) · 232c , 0 ≤ t ≤ 63,

{RCt, RCt+1, RCt+2, RCt+3}
= {7, 12, 17, 22} if t = 0, 4, 8, 12;
= {5, 9, 14, 20} if t = 16, 20, 24, 28;
= {4, 11, 16, 23} if t = 32, 36, 40, 44;
= {6, 10, 15, 21} if t = 48, 52, 56, 60.

The message block M (i) is expressed as sixteen 32-bit words M
(i)
0 , . . . ,M

(i)
15 and expanded to 64

words Wt as follows:

Wt =


M

(i)
t for 0 ≤ t ≤ 15;

M
(i)
(1+5t) mod 16 for 16 ≤ t ≤ 31;

M
(i)
(5+3t) mod 16 for 32 ≤ t ≤ 47;

M
(i)
(7t) mod 16 for 48 ≤ t ≤ 63.

The non-linear function ft depends on the round

ft(X, Y, Z) =


F (X, Y, Z) = (X ∧ Y)⊕ (X̄ ∧ Z) for 0 ≤ t ≤ 15;
G(X, Y, Z) = (Z ∧X)⊕ (Z̄ ∧ Y) for 16 ≤ t ≤ 31;
H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t ≤ 47;
I(X, Y, Z) = Y ⊕ (X ∨ Z̄) for 48 ≤ t ≤ 63.

The algorithm has a working register with 4 state words Qt, Qt−1, Qt−2 and Qt−3, which are
initialized for step t = 0 to

Q0 = IHV
(i−1)
1 , Q−1 = IHV

(i−1)
2 , Q−2 = IHV

(i−1)
3 , Q−3 = IHV

(i−1)
0 .

After these initializations the 64 steps are computed as follows for t = 0, . . . , 63:

Ft = ft(Qt, Qt−1, Qt−2);
Tt = Ft + Qt−3 + ACt + Wt;
Rt = RL(Tt, RCt);

Qt+1 = Qt + Rt,

where RL(x, n) denotes bitwise cyclic left-rotation of x over n positions. After all steps are com-
puted, the resulting state values are added to the intermediate hash value and then returned:

IHV
(i)
0 = IHV

(i−1)
0 + Q61, IHV

(i)
1 = IHV

(i−1)
1 + Q64,

IHV
(i)
2 = IHV

(i−1)
2 + Q63, IHV

(i)
3 = IHV

(i−1)
3 + Q62.

14

MD5 differential paths for the computation of near-collision blocks

Construction of the differential paths that were used for the computation of the near-collision
blocks was done in three steps. The first step consisted of constructing a set of lower partial
differential paths, starting with two given IHVs, in a step by step manner for t = 0, . . . , 12. The
second step similarly consisted of constructing a set of upper partial differential paths, starting
with no differences or bitconditions in the working state at t = 34, working backwards in a step
by step manner for t = 34, . . . , 17. The message differences δm11 = ±2b were chosen such that
the differential paths would have no differences in the working state (Qt−3, Qt−2, Qt−1, Qt) for
t = 35, . . . , 61 and such that δQ62 = δQ63 = δQ64 = ±2b+10 mod 32. In the final step combinations
of lower and upper paths are taken and completed, if possible, to a full correct differential path.

Because of the boolean function and bitwise rotation, we need to describe precisely how the additive
difference of each Qt affects each bit. For this we use the binary signed-digit representation (SDR),
where naturally a digit 0 indicates that a bit is unaffected (constant) and digits +1 and -1 indicate
a change in a bit of 0 to 1 and 1 to 0, respectively. Since we aim for the lowest possible number of
bitconditions, we always use SDRs that are close to the Non-Adjacent Form (NAF), which has the
fewest affected bits. All bits that are not affected in the SDR are constant, nevertheless their value
can affect the outcome of the boolean function. Therefore we use bitconditions that specify their
value either directly as 0, 1 or free(0/1) or indirectly as the (inverted) value of some other bit.
Given SDRs and bitconditions for a step t, one can easily find out which outcomes of the boolean
function for each bit are possible: -1, 0, +1. After choosing a preferred outcome one can set extra
bitconditions such that only that preferred outcome is possible. Bitwise rotation of a difference is
handled by rotating the NAF of that difference, since the resulting difference would be one of the
most likely differences after rotation, and is often the most likely one.

When extending a lower differential path over t = 0, .., k− 1 with step t = k we have to deal with
SDRs, bitconditions over Q−3, . . . , Qk−1 and an additive difference δQk. For each interesting SDR
of δQk we do the following. We examine the possible outcomes of the boolean function over all
bits, and for each combination of one possible outcome over all bits, we set extra bitconditions
such that those outcomes are guaranteed. As a result we find an extended lower differential path
with

δQk+1 = δQk + RL(δFk + δQk−3 + δwk, RCk).

Similarly, when extending an upper differential path over t = k + 1, ..., 63 with step t = k we are
dealing with SDRs, bitconditions over Qk−1, ..., Q35 and an additive difference δQk−2. For each
interesting SDR of δQk−2 we do the following. We examine the possible outcomes of the boolean
function over all bits, and for each combination of one possible outcome over all bits, we set extra
bitconditions such that those outcomes are guaranteed. As a result we find an extended upper
differential path with

δQk−3 = RR(δQk+1 − δQk, RCk)− δFk − δwk,

where RR(x, n) denotes bitwise cyclic right-rotation of x over n positions. For a combination of
a lower and an upper differential path we have SDRs, bitconditions over Q−3, ..., Q12 and over
Q15, ..., Q35, and additive differences δQ13 and δQ14. So all additive differences δQi are known,
however steps t = 13, 14, 15, 16 are not handled yet in the differential path. For those steps we can
determine the required

δF̂t = RR(δQt+1 − δQt, RCt)− δQt−3 − δwt.

We exhaustively try all possible SDRs of δQ13 and δQ14 and try to find extra bitconditions such
that δFt = δF̂t for t = 13, 14, 15, 16. This will succeed with sufficiently large probability.

15

