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Abstract. The current work considers the problem of obtaining a hierarchical identity-based encryp-
tion (HIBE) protocol which is secure against adaptive key extraction and decryption queries. Such a
protocol is obtained by modifying an earlier protocol by Chatterjee and Sarkar (which, in turn, is based
on a protocol due to Waters) which is secure only against adaptive key extraction queries. The setting is
quite general in the sense that random oracles are not used and security is based on the hardness of the
decisional bilinear Diffie-Hellman (DBDH) problem. In this setting, the new construction provides the
most efficient (H)IBE protocol known till date. The technique for answering decryption queries in the
proof is based on earlier work by Boyen, Mei and Waters. Ciphertext validity testing is done indirectly
through a symmetric authentication algorithm in a manner similar to the Kurosawa-Desmedt public
key encryption protocol. Additionally, we perform symmetric encryption and authentication by a single
authenticated encryption algorithm3.
Keywords: hierarchical identity-based encryption, adaptive attacks, security against cho-

sen ciphertext attacks, decisional bilinear Diffie-Hellman problem.

1 Introduction

Identity-based encryption [33, 9] is a kind of public key encryption where the public key can be
the identity of the receiver. The secret key corresponding to the identity is generated by a private
key generator (PKG) and is securely provided to the relevant user. The notion of IBE simplifies
the issues of certificate management in public key infrastructure. The PKG issues the private key
associated with an identity. The notion of hierarchical IBE (HIBE) [24, 22] was introduced to reduce
the workload of the PKG. The identity of any entity in a HIBE structure is a tuple (v1, . . . , vj).
The private key corresponding to such an identity can be generated by the entity whose identity
is (v1, . . . , vj−1) and which possesses the private key corresponding to this identity. The security
model for IBE was extended to that of HIBE in [24, 22].

The first construction of an IBE which can be proved to be secure in the full model without
the random oracle heuristic was given by Boneh and Boyen in [6]. Later, Waters [36] presented
an efficient construction of an IBE which is secure in the same setting. An extension of Waters’
construction has been independently described in [14] and [30]. This leads to a controllable trade-off
between the size of the public parameters and the efficiency of the protocol (see [14] for details).

3 A previous abridged version of this paper appears as [32].



A construction of a HIBE secure in the full model without using the random oracle heuristic
was outlined in [36]. A recent work [16], describes a HIBE which builds on [36] by reducing the
number of public parameters. The constructed HIBE is secure against chosen plaintext attacks
(CPA-secure).

The Problem: We consider the problem of constructing a (H)IBE under the following conditions.

1. Security is against adversaries which can make both decryption and key extraction queries in
an adaptive manner.

2. The reduction is from the decisional bilinear Diffie-Hellman (DBDH) problem.

3. The security proof does not use the random oracle heuristic.

Security against adversaries mentioned in Item 1 above is called CCA-security. If the adversary
is not allowed to make decryption queries, then the corresponding security notion is called CPA-
security. Note that by the problem definition, we exclude protocols which use random oracles (e.g. [9,
22]); protocols whose security is based on stronger versions of the DBDH assumption (e.g. [7, 21,
28]); and protocols which are secure in weaker security models (e.g. [5, 15]). The principle is to base
security on as few and as weak assumptions as possible.

1.1 Our Contributions

The IBE protocol by Waters [36] and its extensions [14, 30] are the most efficient CPA-secure
protocols for the above problem. In the context of HIBE protocols, the protocol in [16] extending
the protocol in [36] is the most efficient CPA-secure protocol for the above problem.

We augment the protocol in [16] (which subsumes the IBE protocol in [14]) to obtain a CCA-
secure HIBE protocol for the above problem. The idea for this augmentation is based on the
techniques of Boyen, Mei and Waters [10] and algebraic ideas from the construction of IBE given by
Boneh and Boyen [5]. In addition, we make use of two new things. First, we incorporate information
about the length of the identity into the ciphertext. Second, we use symmetric key authentication
to verify ciphertext well formedness. We also show that the two tasks of symmetric key encryption
and authentication can be combined by using an authenticated encryption (AE) protocol.

The idea of using symmetric authentication technique to verify the well formedness of the
ciphertext is based on the hybrid PKE protocol due to Kurosawa-Desmedt (KD) [29]. To the best
of our knowledge, this technique has not been earlier applied to the (H)IBE setting.

The new HIBE protocol can be specialized to obtain a PKE and an IBE. With some natu-
ral simplifications, the PKE turns out to be the key encapsulation mechanism (KEM) proposed
by BMW [10] composed with a one-time secure data encapsulation mechanism (DEM). On the
other hand, the IBE is different from previous work. Kiltz-Galindo [27] had proposed an IB-KEM.
Composed with a suitable symmetric encryption algorithm, this provides an IBE. The decryption
algorithm of our IBE is faster than the IBE obtained from the KEM given in [27].

Our construction has a security degradation of approximately qh (where q is the number of
queries and h is the number of levels). This is better than a degradation of qh+1 which is what one
would obtain by a straightforward application of the known techniques.

Another advantage is that by instantiating the AE protocol with a single pass algorithm [31,
25, 23, 13], it is possible to obtain a speed-up by a factor of two for both encryption and decryption
of the symmetric part of the hybrid encryption. Also, by using the authentication aspect of the AE



Table 1. Comparison of CCA-secure (without random oracle) IBE schemes assuming n-bit identities divided into l
blocks. Cost of symmetric key operations are not shown. We assume a pairing function e : G1 ×G1 → G2. The entries
in the row on public parameters denote only the number of elements of G1; additionally, each protocol requires an
element of G2. The other notation are as follows: [SM]: cost of one scalar multiplication in G1; [P]: cost of one pairing
operation; [VP]: cost of one pairing verification of the type e(Q1, Q2) = e(R1, R2); [e]: cost of one exponentiation in
G2; [Hn,l]: cost of one invocation of (modified) Waters hash (see Equation 2).

parameters KG [27] (exp rej) KG [27] (imp rej) KV [28] this work

assumption DBDH DBDH mBDDH DBDH

reject invalid ciphertext yes no yes yes

public parameters (l + 4, 1) (l + 4, 1) (l + 3, 1) (l + 4, 1)

secret key size 2 2 3 2

key generation 2[SM]+1[Hn,l] 2[SM]+1[Hn,l] 3[SM]+1[Hn,l] 2[SM]+1[Hn,l]

encryption 4[SM]+1[e]+1[Hn,l] 4[SM]+1[e]+1[Hn,l] 3[SM]+1[e]+1[Hn,l] 4[SM]+1[e]+1[Hn,l]

decryption 1[SM]+2[VP]+2[P] 5[SM]+3[P] 1[SM]+2[P] 1[SM]+1[VP]+2[P]

protocol for verifying the well formedness of the ciphertext we can avoid a number of pairing based
verifications. This leads to a faster decryption algorithm.

In a work subsequent to the conference version of this paper, Kiltz and Vahlis [28] use symmetric
authentication techniques (akin to the techniques used here) and a different hardness assumption to
obtain an IBE having improved efficiency of encryption and decryption. The assumption they use is
the one used in [7, 17, 26] tailored to work for IBE: given P, aP, bP, b2P, cP and Z, determine whether
Z is equal to e(P,P )abc or whether Z is random. This is called the mBDDH assumption in [28]. In
comparison to the more usual DBDH assumption, in this case, the extra element b2P is provided.
The more general version of this assumption was introduced in [7] where biP for several more values
of i are provided as part of the problem instance. Coming back to the mBDDH assumption, the
extra element b2P allows the proof of the protocol in [28] to simulate the generation of an extra
element as part of the secret key. Due to this reason (and also because of the use of symmetric
authentication) the efficiency of encryption and decryption is improved. This, however, comes at a
cost. For one thing, the underlying assumption is stronger; secondly, the number of group elements
in the private key is more than that used in the current protocol and the KG-IBE. Also, the key
generation time is more, though this is of less significance, since key generation is a less frequent
activity.

A comparison of the parameters of the KG-IBE, KV and the IBE protocol of the current work is
given in Table 1. See Section 4 for more details about the explicit and implicit rejection versions of
the KG protocol. We do not include the protocol due to Gentry [21] and its modification in [28]. The
reason being that these two protocols use an assumption which is much stronger than the DBDH
assumption. Combing back to Table 1, we see that with the DBDH assumption, the protocol
described in this work is the most efficient. Using a stronger assumption (the mBDDH assumption)
it is possible to improve the efficiency of encryption and decryption at a cost of increasing the size
of the secret key and the time for key generation.

We make a few remarks on the proof. Since the new protocol is obtained by augmenting the
protocol in [16], the proof of the new protocol is also obtained by augmenting the proof in [16] (which
is actually based on the construction and proof in [36]). We do not repeat the aspects of the proof
that already appear in [16]. Incorporating the length of the identity in the ciphertext is required
to avoid certain attacks as we discuss later. Verifying ciphertext well formedness using symmetric



authentication requires us to adapt the proof technique (especially the method of deferred analysis)
of [2] to the identity-based setting. The combination of different techniques introduces several
subtleties in the proof.

1.2 Related Work

The construction in [22] is based on the random oracle assumption and does not constitute a
solution to the problem considered in this paper. Generic techniques [12, 8] convert an (h+ 1)-level
CPA-secure HIBE protocol into an h-level CCA-secure HIBE protocol while preserving the other
features (security model, with/without random oracle, hardness assumption) of the original CPA-
secure protocol. Being generic, application of the technique to [16] leads to a less efficient protocol
compared to what is reported in the present work.

The BMW paper [10] provided a method of constructing a PKE from an IBE. They also
mentioned that the technique can be used for constructing (H)IBE. Later work by Kiltz-Galindo [27]
built on the BMW paper and described an efficient CCA-secure IB-KEM. The KG paper suggested
a method for extending their IB-KEM to a HIB-KEM. Details were provided in [4]. Our work also
uses the BMW technique, but introduces several other ideas to obtain a more efficient (H)IBE
compared to what is described in [27, 4].

In an interesting paper, Boneh-Boyen-Goh [7] have shown how to construct a constant size
ciphertext (H)IBE based on the weak decisional bilinear Diffie-Hellman exponent problem which is
a variant of the DBDH problem. Their protocol is CPA-secure in the selective-ID model. Using the
technique of Waters, this protocol can be made CPA-secure in the full model. Further, using the
BMW techniques this can be converted into a CCA-secure protocol. For details of this conversion
and also for a protocol secure in a different model see [17]. The work [26] also considers the same
problem.

The main difference between the current work and that of [17, 26] is that the hardness assump-
tions are different. This makes a direct comparison difficult. We, however, note that the ciphertext
expansion in the later is constant while in the former it increases linearly with the number of com-
ponents in the identity. This is due to the fact that the assumption used in [17, 26] is tailored to
ensure constant size ciphertext. On the other hand, the number of public parameters in the current
construction is significantly less than the number of public parameters in [17, 26]. This is due to
the fact that the current protocol is built using the protocol in [16] which significantly reduces the
number of public parameters.

On Security Degradation of HIBE Protocols: All known HIBE protocols which are secure
against adaptive-ID attacks have a security degradation which is exponential in the depth of the
HIBE. This is true, even if the random oracle heuristic is used in the security proof. In view of
this, all such protocols can be considered to have a valid security bound only for a small number
of levels. Currently, the most important open problem in the construction of HIBE protocols is to
avoid (or reduce) this exponential security decay.



2 Preliminaries

2.1 HIBE Protocol

Following [24, 22], a hierarchical identity-based encryption (HIBE) scheme is specified by four al-
gorithms: Setup, KeyGen, Encrypt and Decrypt. For a HIBE of height h (henceforth denoted as
h-HIBE) any identity v is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.

– HIBE.Setup: Takes as input a security parameter and outputs (pk, sk), where pk is the public
parameter of the PKG and sk is the master secret of the PKG. It also defines the domains of
identities, messages and ciphertexts.

– HIBE.KeyGen(v, dv|j−1
, pk): Takes as input a j-level identity v, the secret dv|j−1

corresponding
to its (j − 1)-level prefix and pk and returns as output dv, the secret key corresponding to v. In
case j = 1, dv|j−1

is equal to sk, the master secret of the PKG.

– HIBE.Encrypt(v,M, pk): Takes as input v, the message M and pk, and returns C, the ciphertext
obtained by encrypting M under v and pk.

– HIBE.Decrypt(v, dv, C, pk): Takes as input v, the secret key dv corresponding to v, a ciphertext
C and pk. Returns either bad or M , the message which is the decryption of C.

As usual, for soundness, we require that HIBE.Decrypt(v, dv, C, pk) = M must hold for all v, dv, C,
pk, sk and M associated by the above four algorithms.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversary A is allowed to query two oracles –
a decryption oracle and a key-extraction oracle. At the initiation, it is provided with the public
parameters of the PKG. The game has two query phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries where each query is addressed either
to the decryption oracle or to the key-extraction oracle. In a query to the decryption oracle it
provides a ciphertext as well as the identity under which it wants the decryption. It gets back the
corresponding message or bad if the ciphertext is invalid. Similarly, in a query to the key-extraction
oracle, it asks for the private key of the identity it provides and gets back this private key. Further,
A is allowed to make these queries adaptively, i.e., any query may depend on the previous queries
as well as their answers. The adversary is not allowed to make any useless queries, i.e., queries for
which it can compute the answer itself. For example, the adversary is not allowed to ask for the
decryption of a message under an identity if it has already obtained a private key corresponding to
the identity.

Challenge: At this stage, A outputs an identity v∗ = (v∗1, . . . , v
∗
j ) for 1 ≤ j ≤ h, and a pair of

messages M0 and M1. There is the natural restriction on the adversary, that it cannot query the
key extraction oracle on v∗ or any of its proper prefixes in either of the phases 1 or 2. A random
bit δ is chosen and the adversary is provided with C∗ which is an encryption of Mδ under v∗.

Query Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restrictions
that it cannot ask the decryption oracle for the decryption of C∗ under v∗, nor the key-extraction
oracle for the private key of v∗ or any of its prefixes.



Guess: A outputs a guess δ′ of δ.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(δ = δ′)] − 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the maximum is taken over

all adversaries running in time at most t and making at most qC queries to the decryption oracle and
at most qID queries to the key-extraction oracle. A HIBE protocol is said to be (ǫ, t, qID, qC)-CCA
secure if AdvHIBE(t, qID, qC) ≤ ǫ.

In the above game, we can disallow the adversary A from querying the decryption oracle.
AdvHIBE(t, q) in this context denotes the maximum advantage where the maximum is taken over all
adversaries running in time at most t and making at most q queries to the key-extraction oracle.
A HIBE protocol is said to be (t, q, ǫ)-CPA secure if AdvHIBE(t, q) ≤ ǫ.

2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉, where we write G1

additively and G2 multiplicatively. A mapping e : G1 × G1 → G2 is called a cryptographic bilinear
map if it satisfies the following properties.

– Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P,P )〉.
– Computability : There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Since e(aP, bP ) = e(P,P )ab = e(bP, aP ), e() also satisfies the symmetry property. The modified
Weil pairing [9] and Tate pairing [3, 20] are examples of cryptographic bilinear maps.

Known examples of e() have G1 to be a group of Elliptic Curve (EC) points and G2 to be a
subgroup of a multiplicative group of a finite field. Hence, in papers on pairing implementations
[3, 20], it is customary to write G1 additively and G2 multiplicatively. On the other hand, some
“pure” protocol papers such as [6, 36] write both G1 and G2 multiplicatively though this is not true
of the initial protocol papers [9, 22]. Here we follow the first convention as it is closer to the known
examples.

2.4 Hardness Assumption

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [9] is as follows: Given a
tuple 〈P, aP, bP, cP,Z〉, where Z ∈ G2, decide whether Z = e(P,P )abc (which we denote as Z is
real) or Z is random. The advantage of a probabilistic algorithm B, which takes as input a tuple
〈P, aP, bP, cP,Z〉 and outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP,Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP,Z) = 1| Z is random]| (1)

where the probability is calculated over the random choices of a, b, c ∈ ZZp as well as the random
bits used by B. The quantity AdvDBDH(t) denotes the maximum of AdvDBDH

B where the maximum
is taken over all adversaries B running in time at most t. By the (ǫ, t)-DBDH assumption we mean
AdvDBDH(t) ≤ ǫ.



2.5 Components (AE, KDF, UOWHF)

We briefly introduce and state the security notions for AE, KDF and UOWHF.

An AE protocol consists of two deterministic algorithms – Encrypt and Decrypt. Both of these
use a common secret key k. The Encryptk algorithm takes as input a nonce IV and a message M
and returns (C, tag), where C is the ciphertext corresponding to M (and is usually of the same
length as M). The Decryptk algorithm takes as input IV and a pair (C, tag) and returns either the
message M or ⊥ (indicating invalid ciphertext).

An AE algorithm possesses two security properties – privacy and authenticity. For privacy, the
adversarial game is the following. The adversary A is given access to an oracle which is either the
encryption oracle instantiated with a random key k or is an oracle which simply returns random
strings of length equal to its input. After interacting with the oracle the adversary ultimately
outputs a bit. The advantage of A is defined to be

|Prob[A = 1|real oracle] − Prob[A = 1|random oracle]|.

In the above game, the adversary is assumed to be nonce-respecting, in that it does not repeat a
nonce. The requirement that IV is a nonce can be replaced by the requirement that IV is chosen
randomly. This leads to an additive quadratic degradation in the advantage.

The security notion defined above is that of pseudorandom permutation. This provides the
privacy of an AE protocol. In particular, it implies the following notion of one-time security. The
adversary submits two equal length messages M0 and M1. A random (IV∗, k∗) pair is chosen and a
random bit δ is chosen. The adversary is given (C∗, tag∗) which is the encryption of Mδ using IV∗

and k∗. The adversary then outputs δ′ and its advantage is

∣∣∣∣Prob[δ = δ′] −
1

2

∣∣∣∣ .

We say that an AE protocol satisfies (ǫ, t) one-time encryption security if the maximum advantage
of any adversary running in time t in the above game is ǫ.

The authenticity property of an AE protocol is defined through the following game. A nonce
respecting adversary A is given access to an encryption oracle instantiated by a secret key k. It
submits messages to the oracle and receives as output ciphertext-tag pairs. Finally, it outputs a
“new” ciphertext-tag pair and a nonce, which can be equal to a previous nonce. The advantage
of A in this game is the probability that the forgery is valid, i.e., it will be accepted as a valid
ciphertext.

As before, we can replace the requirement that IV be a nonce by the requirement that IV is
random without significant loss of security. By an (ǫ, t)-secure authentication of an AE protocol we
mean that the maximum advantage of any adversary running in time t in the above game is ǫ.

A KDF is a function KDF() which takes an input K and produces (IV, dk) as output. The security
notion for KDF is the following. For a randomly chosen K, the adversary has to distinguish between
KDF(K) from a randomly chosen (IV, dk).

A function family {Hk}k∈K is said to be a universal one-way hash family if the following adver-
sarial task is difficult. The adversary outputs an x; is then given a randomly chosen k ∈ K and has
to find x′ 6= x such that Hk(x) = Hk(x

′). We say that the family is (ǫ, t)-secure if the maximum
advantage (probability) of an adversary running in time t and winning the above game is ǫ.



3 CCA-Secure HIBE Protocol

In this section, we modify the CPA-secure HIBE protocol in [16] to obtain a CCA-secure HIBE
protocol. We provide an explicit hybrid protocol. This allows us to improve the decryption efficiency
as we explain later. The modification consists of certain additions to the set-up procedure as well
as modifications of the encryption and the decryption algorithms. No changes are required in the

key generation algorithm.

The additions are based on the technique used by Boyen-Mei-Waters [10] and are also based
on the IBE construction by Boneh-Boyen [5] (BB-IBE). Some new ideas – incorporating length of
the identity into the ciphertext and using symmetric key authentication to verify ciphertext well
formedness – are introduced. Also, an AE protocol is used to combine the two tasks of symmetric
key encryption and authentication.

A Useful Notation: Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string (where l divides n) and
is considered to be an element of ZZ2n/l . For 1 ≤ k ≤ h we define,

Vk(v) = U ′
k +

l∑

i=1

viUi. (2)

The modularity introduced by this notation allows an easier understanding of the protocol, since
one does not need to bother about the exact value of l. When v is clear from the context, we will
write Vk instead of Vk(v).

The case n = l was proposed by Waters [36] and is usually referred to in the literature as Waters
hash. The more general form given in (2) was independently proposed in [14] and [30]. We call this
the (modified) Waters hash and use the notation [Hn,l]to denote the cost of computing (2).

In the protocol, we will be dealing with identities of the form v = (v1, . . . , vj) with j ∈ {1, . . . , h}

and vk = (v
(k)
1 , . . . , v

(k)
l ) and v

(k)
i is an (n/l)-bit string. In this context, Vk(vk) is obtained by

replacing vk for v in (2).

The description of the construction is given in Figure 1. The bold portions of Figure 1 provide
the additional points required over the CPA-secure HIBE construction from [16]. We provide some
intuition of how decryption queries are answered. (Key extraction can be answered using the tech-
nique from [16] which is built on the work of Waters [36].) First, let us consider what happens if
we attempt to simulate decryption queries by key extraction queries. The idea is that we use a key
extraction query to derive the private key of the identity which is provided as part of the decryption
query. Then this private key is used to decrypt the ciphertext. This idea works fine except for the
situation where a decryption query is made on a prefix of the challenge identity. Since, it is not
allowed to query the key extraction oracle on prefixes of the challenge identity, the above simulation
technique will not work. We need an additional mechanism to answer such decryption queries.

The mechanism that we have used is primarily based on the BMW technique. The parameter
W along with P and P1 define an instance of a BB-IBE protocol. During encryption, an “identity”
γ = Hs(j, C1) for this protocol is generated from the randomizer C1 = tP and the length j of
the identity tuple. Using this identity, a separate encapsulation of the key e(P1, P2)

t is made. This
encapsulation consists of the element C2 (and C1). In the security proof, if a decryption query is
made on the challenge identity, then this encapsulation is used to obtain the private key of γ and
answer the decryption query.



Fig. 1. CCA-secure HIBE.

1. Maximum depth of the HIBE is h.
2. Identities are of the form v = (v1, . . . , vj), j ∈ {1, . . . , h}, vk = (v

(k)
1 , . . . , v

(k)
l ) and v

(k)
i is an (n/l)-bit string.

3. 〈G1, G2, e〉 is as defined in Section 2.3.
4. The notation Vk() is given in (2).
5. The standard way to avoid the computation of e(P1, P2) in HIBE.Encrypt is to replace P2 with e(P1, P2) in the

public parameters.
6. Key generation is essentially the same as in [36, 16].

HIBE.SetUp

1. Choose α randomly from ZZp.
2. Set P1 = αP .
3. Choose P2, U

′
1, . . . , U

′
h, U1, . . . , Ul randomly from G1.

4. Choose W randomly from G1.
5. Let Hs : {1, . . . ,h} × G1 → ZZp be chosen from a UOWHF

and made public.

6. Public parameters:
P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Ul and W.

7. Master secret key: αP2.

HIBE.KeyGen: Identity v = (v1, . . . , vj).

1. Choose r1, . . . , rj randomly from ZZp.

2. d0 = αP2 +
∑j

k=1
rkVk(vk).

3. dk = rkP for k = 1, . . . , j.
4. Output dv = (d0, d1, . . . , dj).

(Key delegation, i.e., generating dv from
dv|j−1

can be done in the standard manner as

shown in [36, 16].)

HIBE.Encrypt: Identity v = (v1, . . . , vj); message M .

1. Choose t randomly from ZZp.
2. C1 = tP , B1 = tV1(v1), . . . , Bj = tVj(vj).
3. K = e(P1, P2)

t.
4. (IV, dk) = KDF(K).
5. (cpr, tag) = AE.Encryptdk(IV, M).
6. γ = Hs(j,C1); Wγ = W + γP1; C2 = tWγ .
7. Output (C1,C2, B1, . . . , Bj , cpr, tag).

HIBE.Decrypt: Identity v = (v1, . . . , vj);

ciphertext (C1,C2, B1, . . . , Bj , cpr, tag);
decryption key dv = (d0, d1, . . . , dj).

1. γ = Hs(j,C1); Wγ = W + γP1.
2. If e(C1,Wγ) 6= e(P,C2) return ⊥.

3. K = e(d0, C1) ×
∏j

k=1
e(Bk,−dk).

4. (IV, dk) = KDF(K).
5. M = AE.Decryptdk(IV, C, tag).

(This may abort and return ⊥).
6. Output M .

Fig. 2. Cost of different operations. The variable j refers to the number of components in the input identity tuple.
Cost of symmetric key operations are not shown. The notation are as follows: [SM]: cost of one scalar multiplication
in G1; [P]: cost of one pairing operation; [VP]: cost of one pairing verification of the type e(Q1, Q2) = e(R1, R2); [e]:
cost of one exponentiation in G2; [Hn,l]: cost of one invocation of (modified) Waters hash (see Equation 2).

No. of public parameters (3 + h + l) elements of G1 and one element of G2

Secret key size j + 1 elements of G1

Cost of key generation 2j[SM]+j[Hn,l]

Cost of encryption (j + 3)[SM]+j[Hn,l]+1[e]

Cost of decryption 1[SM]+1[VP]+(j + 1)[P]



The use of the function H() is different from its use in [10]. In [10], the function H() maps G1

to ZZp. On the other hand, in the HIBE protocol in Figure 1, H() maps {1, . . . , h} × G1 to ZZp.
Our aim is to include information about the length of the identity into the output of H(). Without
this information, an encryption for a (j + 1)-level identity can be converted to an encryption for
its j-level prefix by simply dropping the term corresponding to the last component in the identity.
(This was pointed out by a reviewer of an earlier version of this work, who, however, did not provide
the solution described here.)

The other aspect is that of checking for the well formedness of the ciphertext. A well formed
ciphertext requires verifying that C1 = tP , C2 = tWγ and B1 = tV1(v1), . . . , Bj = tVj(vj). In other
words, we need to verify the following.

logP C1 = logWγ
C2 and logP C1 = logV1(v1) B1 = · · · = logVj(vj) Bj .

In Figure 1, the first equality is explicitly verified, whereas the second equality is not. The idea
is that if the second equality does not hold, then the key K that will be reconstructed will be
improper and indistinguishable from random (to the adversary). Correspondingly, the quantities
(IV, dk) will also be indistinguishable from random and symmetric authentication with this pair
will fail (otherwise the adversary has broken the authentication of the AE protocol). Thus, instead
of using j pairings for verifying the second equality, we use symmetric authentication to reject
invalid ciphertext. This leads to a more efficient decryption algorithm. Note that the use of hybrid
encryption is very crucial in the current context. This is similar to the Kurosawa-Desmedt PKE,
which provides improved efficiency over the Cramer-Shoup protocol for hybrid encryption.

The additional requirements of group elements and operations for attaining CCA-security com-
pared to the protocol in [16] consists of the following.

1. One extra group element in the public parameters.

2. Two additional scalar multiplications during encryption.

3. One additional scalar multiplication and one pairing based verification during decryption.

3.1 Security Statement

The security statement for the new protocol is given below.

Theorem 1. The HIBE protocol described in Figure 1 is (ǫhibe, t, qID, qC)-CCA secure assuming

that the (t′, ǫdbdh)-DBDH assumption holds in 〈G1, G2, e〉; Hs is an (ǫuowhf , t)-UOWHF; KDF is

(ǫkdf , t)-secure; and the AE protocol possesses (ǫauth, t)-authorization security and (ǫenc, t) one-time

encryption security; where

ǫhibe ≤ 2ǫuowhf +
ǫdbdh

λ
+ 4ǫkdf + 2ǫenc + 2hqCǫauth. (3)

where t′ = t + O(τq) + χ(ǫhibe) and

χ(ǫ) = O(τq + O(ǫ−2 ln(ǫ−1)λ−1 ln(λ−1)));
τ is the time required for one scalar multiplication in G1;

λ = 1/(2h(2σ(µl + 1))h) with µl = l(2n/l − 1), σ = max(2q, 2n/l) and q = qID + qC .

We further assume 2σ(1 + µl) < p.



The proof of the Theorem is given in Section A. The statement of Theorem 1 is almost the same
as that of Theorem 1 in [16] with the following differences.

1. The above theorem states CCA-security where as [16] proves CPA-security.
2. The value of λ is equal to 1/(2h(2σ(µl + 1))h) in the above statement where as it is equal to

1/(2(2σ(µl + 1))h) in [16], i.e., there is an additional degradation by a factor of h.
3. The value of q in the expression for σ is the sum of qID and qC whereas in [16] it is only qID.

The reason for having qC as part of q is that it may be required to simulate decryption queries
using key extraction queries.

For 2q ≥ 2n/l (typically l would be chosen to ensure this), we have

ǫhibe ≤ 2ǫuowhf + 2h(4lq2n/l)hǫdbdh + 4ǫkdf + 2ǫenc + 2hqCǫauth.

The corresponding bound on ǫdbdh in [16] is 2(4lqID2n/l)hǫdbdh. Thus, we get an additional security
degradation of ǫdbdh by a factor of h while attaining CCA-security. Since h is the maximum number
of levels in the HIBE, its value is small and the degradation is not significant. Also, q in the present
case includes both key extraction and decryption queries.

The statement of Theorem 1 is a little complicated. The complexity is inherited from the
corresponding security statement in [16]. These arise from the requirement of tackling key extraction
queries and providing challenge ciphertexts. In particular, λ is a lower bound on the probability of
not abort by the simulator and O(ǫ−2 ln(ǫ−1)λ−1 ln(λ−1)) is the extra runtime introduced due to
the artificial abort requirement. In [16], the security degradation is worked out in more details and
much of these also hold for Theorem 1. Hence, we do not repeat the analysis in this paper.

The technique for showing security against chosen plaintext attacks is taken from [16] and
is based on the works of Waters [36] and Boneh-Boyen [5]. Since these details are already given
in [16], we do not repeat them in the proof of Theorem 1. The proof technique for answering
decryption queries is based on the work of Boyen-Mei-Waters [10]. Also relevant is the work of Kiltz-
Galindo [27]. The basic idea of using symmetric authentication to verify ciphertext well formedness
is taken from the paper by Kurosawa-Desmedt [29]. A proof of the KD protocol using the so called
method of “deferred analysis” is given in [2]. This proof is in the PKE setting which we had to
adapt to fit the (H)IBE framework. The proof of Theorem 1 is given in Section A.

4 Comparison to Previous Work

The construction in Figure 1 can be specialized to obtain CCA-secure PKE and IBE as special cases.
We show that when specialized to PKE, the protocol in Figure 1 simplifies to yield the BMW
construction. On the other hand, when specialized to IBE, we obtain a more efficient (actually
the decryption algorithm is more efficient) IBE protocol compared to the previously best known
construction of Kiltz-Galindo [27].

Public Key Encryption. In this case there are no identities and no PKG. It is possible to make
the following simplifications.

SetUp:
1. The elements U ′

1, . . . , U
′
h, U1, . . . , Ul are no longer required.

2. The UOWHF Hs can be replaced by an injective embedding from G1 to ZZp.



3. A random w in ZZp is chosen and W is set to be equal to wP .

4. The secret key is set to be equal to (αP2, α,w).

5. The AE protocol can be replaced with a one-time secure data encapsulation mechanism
(DEM).

KeyGen: This is not required at all.

Encrypt:

1. The elements B1, . . . , Bj are not required.

2. Encryption with a DEM will not produce a tag.

Decrypt:

1. The purpose of the pairing verification e(C1,Wγ) = e(P,C2) is to ensure that C1 = tP and
C2 = tWγ , where Wγ = W + γP1. With the knowledge of w and α, this can be done as
follows. Compute w′ = w + γα and verify whether w′C1 = C2. This requires only one scalar
multiplication as opposed to one pairing verification.

2. The value of K is reconstructed as K = e(C1, αP2).

3. Since the AE protocol is replaced with a DEM, symmetric authentication will not be done.

With these simplifications, the protocol becomes the BMW protocol.

Identity-Based Encryption. In this case h = 1. The protocol in Figure 1 remains unchanged
except for one simplification. In a HIBE, the length of the identity tuple can vary from 1 to h. For
an IBE, the length is always one. Hence, in this case, we can restrict the domain of Hs to be G1.
Since, G1 has cardinality p, the domain and range of Hs are the same and we can also take Hs to
be an injective embedding from G1 to ZZp as has been done in the BMW construction.

Let us now compare the resulting IBE construction with the previous construction of Kiltz-
Galindo [27]. In both cases, the public key portion of the ciphertext is of the form (C1, C2, B1).
During decryption, KG protocol verifies that C1 = tP , C2 = tWγ and B1 = tV1(v1). This requires
two pairing based verifications of the type e(P,C2) = e(C1,Wγ) and e(P,B1) = e(C1, V1(v1)). The
cost of one such verification is less than the cost of two pairing operations. By [V P ] we denote the
cost of one such verification. Also, let [P ], [SM ], [m] and [i] respectively denote the costs of one
pairing operation, one scalar multiplication in G1, one multiplication in G2 and one inversion in
G1. The total cost of decryption in the KG protocol with the pairing based verification technique
is 1[SM ] + 2[V P ] + 2[P ] + 1[i].

Implicit Rejection: KG [27] suggests a method of implicit rejection. This provides a KEM which
cannot explicitly reject a ciphertext. More precisely, the notion of KEM used by KG [27] is the
following. In the adversarial game, the adversary queries the decryption oracle. If the query is
valid, then the adversary gets the corresponding secret key, while if the query is invalid, then the
adversary gets a random value for the secret key. In particular, the adversary is not told whether
the decryption failed.

First, we would like to point out that this is a restricted notion of KEM. The original notion
of KEM as conceived by Shoup [35] allows the simulator to inform the adversary whether the
decryption failed. We quote from [35, Page 15, Lines 5–6] (the bold font appears in the cited
reference).

“if the decryption algorithm fails, then this information is given to the adversary”



In view of this, we consider the notion of KEM used by KG to be restricted-KEM. Apart from
the difference mentioned above, such a restricted-KEM is not really sufficient for constructing
a complete encryption protocol. When combined with a one-time secure DEM (as envisaged by
Shoup [35] and later used by many authors), a restricted-KEM provides an encryption protocol
which cannot reject invalid ciphertexts. Clearly, such an encryption protocol is also more restricted
compared to the currently accepted notion. (On the other hand, we do note that the notion of
restricted-KEM may be sufficient for some applications.)

In the identity-based setting, KG [27] suggests a method of implicit rejection leading to a
restricted-KEM. The idea is the following. The pairing based verifications are not done; instead
two random elements r1 and r2 are chosen and K is computed as

e(C1, d0 + r1Wγ + r2V1(v1))

e(B1, d1 + r2P )e(r1P,C2)
.

If the ciphertext is proper, then the proper K is computed, while if the ciphertext is improper, then a
random K is computed. Note that an invalid ciphertext is not explicitly rejected and combining such

a KEM with a one-time secure DEM will result in a IBE which cannot reject invalid ciphertexts.

The cost of decryption with implicit rejection is 5[SM ] + 3[P ].

In contrast, the cost of verification in our case is 1[SM ]+1[V P ]+2[P ]. The costs of decryption
using our algorithm and also that of KG algorithm (for both explicit and implicit rejections) are
shown in Table 1 (in Section 1.1). This is significantly lower than the KG protocol with explicit
pairing based verification. Compared to the implicit rejection technique, our cost will be lower when
1[V P ] < 1[P ]+4[SM ]. Based on the current status of efficient pairing based algorithms, this seems
to be a reasonable condition.

The reason for obtaining this lower cost is that we do not verify e(P,B1) = e(C1, V1(v1)) either
explicitly or implicitly. In other words, we do not verify whether logP C1 = logV1(v1) B1. If this
does not hold, then an incorrect session key will be generated and ultimately the authentication
of the AE protocol will fail. In a sense, this is also an implicit verification, but the verification is
done using the symmetric component which reduces the total cost of decryption. Also, an invalid
ciphertext will always be rejected.

In summary, the IBE version of the protocol in Figure 1 is the currently known most efficient
CCA-secure IBE protocol in the full model without the random oracle heuristic and based on the
DBDH assumption.

Table 2. Comparison of efficiency of decryption algorithms of KG-HIBE and Figure 1. The quantity j below refers
to the number of components in the identity tuple.

Protocol Decryption Cost Reject Invalid Ciphertexts

KG (explicit rej.) 1[SM]+(j + 1)[VP]+(j + 1)[P] Yes

KG (implicit rej.) (2j + 3)[SM]+(j + 2)[P] No

This work 1[SM]+1[VP]+(j + 1)[P] Yes

Hierarchical Identity-Based Encryption. Based on the work by BMW [10], the KG paper [27]
sketches a construction of a HIBE. The details are worked out in [4]. Compared to this approach,



there are several advantages of our protocol. First, the ciphertext verification procedure in this
approach requires the verification of logP C1 = logV1(v1) B1 = · · · = logVj(vj) Bj either explicitly
using pairing based verifications or implicitly (but, without being able to reject invalid ciphertexts)
as suggested by Kiltz-Galindo. On the other hand, our approach does not require these verifications.
If any of these equalities do not hold, then an improper value of K will be obtained and as a result
the authentication of the AE protocol will fail. This significantly reduces the cost of the decryption
algorithm. Second, we use an AE algorithm to perform simultaneous encryption and authentication
which can be twice as fast as separate encryption and authentication. Table 2 shows the costs
of decryption algorithms for our method and that of the KG method with explicit and implicit
rejection.

An earlier work [12, 8] showed a generic construction for converting an (h+1)-level CPA-secure
HIBE into an h-level CCA-secure HIBE. The construction used one-time signatures, which make
it quite inefficient. It was suggested (without details) in [12] that a MAC based construction can
be used to remove the inefficiency of the one-time signature based approach. Also, the efficiency of
the resulting protocol is less than that of Figure 1.

The currently known techniques (both generic and non-generic) for converting a CPA-secure
HIBE protocol to a CCA-secure HIBE protocol, starts with an (h+ 1)-level CPA-secure HIBE and
then converts it to an h-level CCA-secure HIBE. The security degradation thus correspond to the
(h+1)-level HIBE. If we apply this technique to the protocol in [16], then the security degradation
for the obtained h-level CCA-secure HIBE will be 2(4lq2n/l)h+1. Compared to this, the security
degradation given by Theorem 1 is 2h(4lq2n/l)h. In other words, we have managed to reduce the
exponent from (h + 1) to h and have introduced a multiplicative factor of h. From the viewpoint
of concrete security analysis, a typical value of q is 230. Assuming this value of q, we are able to
prevent approximately a 30-bit security degradation compared to previous work.

5 Wildcard Identity-Based Encryption (WIBE)

A WIBE extends the notion of HIBE. This primitive was introduced in [1]. Recently, Birkett et
al [4] provided a construction of a CCA-secure WIBE by modifying the KG-HIBE. Recall that the
KG-HIBE makes several pairing based verifications to check the well-formedness of the ciphertext.
The construction given in the current work removes these pairings and performs well-formedness
check using symmetric authentication. The conversion from KG-HIBE to WIBE described in [4]
can be applied to the HIBE described in this work to obtain a different WIBE whose decryption
algorithm is more efficient than what has been reported in [4]. The details of the construction and
the proof are fairly straightforward from the description given in [4] and the current work.

6 Concluding Remarks

In this paper, we have provided a construction of a hybrid HIBE protocol. The protocol is secure
against adaptive adversaries (making both key extraction and decryption queries) without using
the random oracle hypothesis. Security is reduced from the computational hardness of the DBDH
problem. To the best of our knowledge, in this setting, the (H)IBE protocol described in this paper
is the currently known most efficient construction.
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Appendix

A Proof of Theorem 1

The construction of CCA-secure HIBE in Figure 1 is built on the construction of CPA-secure HIBE
given in [16]. The proof in [16] shows how to set-up the protocol, answer key-extraction queries and
generate the challenge ciphertext. The proof of Theorem 1 incorporates these aspects of the proof
in [16]. Additionally, we have the following considerations.

1. Definition of W during set-up.
2. Generation of C2 during challenge generation as well as generation of a proper ciphertext using

the AE protocol.
3. Properly answering decryption queries.

The proof of Theorem 1 is given as a sequence of games. In each game a bit δ is chosen randomly
and the adversary makes a guess δ′. By Xi we denote the event that δ = δ′ in the ith game.



Game 0: This is the usual adversarial game for defining CCA-security of HIBE protocols. We
assume that the adversary’s runtime is t, it makes qID key-extraction queries and qC decryption
queries. Also, we assume that the adversary maximizes the advantage among all adversaries with
similar resources. Thus, we have

ǫhibe =

∣∣∣∣Pr[X0] −
1

2

∣∣∣∣ .

The group element C∗
1 provided to the adversary during the challenge generation does not depend

on the adversary’s input. We will assume that this is randomly chosen during setup. Also, we will
assume that during set-up an integer jθ is chosen uniformly at random from {1, . . . , h}. The signif-
icance of jθ will become clear later. We will denote the quantities corresponding to the challenge
by a superscript ∗.

Game 1: This is the same as Game 0, with the following change. If the adversary ever submits a
decryption query of the form (C1, C2, B1, . . . , Bj) with (j, C1) 6= (jθ, C

∗
1 ) and H(j, C1) = H(jθ, C

∗
1 ),

then the simulator rejects the query. Let F1 be the event that a decryption query is rejected only
by this check. It is easy to see that Pr[F1] ≤ ǫuowhf . If F1 does not occur, then Game 0 and Game 1
are identical. Using the difference lemma (as named in [34]), we obtain

|Pr[X0] − Pr[X1]| ≤ Pr[F1] ≤ ǫuowhf .

Game 2: This game is the main non-trivial game of the proof. The protocol is setup from a tuple
(P,P1 = aP, P2 = bP, P3 = cP,Z = e(P,P )abc), where we assume that a, b and c are known
to the simulator. There are four parts to this game – setup; simulation of key-extraction queries;
simulation of decryption queries; and challenge generation.

For certain queries as well as for certain challenge identities, the simulator is unable to answer
without using the values of a, b or c. In such cases, it sets a flag flg to 1 (which is initially set
to 0). However, it always answers the adversary’s queries properly and hence the adversary’s view
remains unchanged from the previous game. Thus, we have Pr[X1] = Pr[X2].

Set-Up: Set P1 = aP and P2 = bP . The secret key is bP2 = abP . Also, set C∗
1 = cP and jθ is

chosen during set-up as mentioned in Game 0.

The public parameters (U ′
1, . . . , U

′
h, U1, . . . , Ul) are required to handle key extraction queries.

The proper construction of these parameters are given in [16].

The parameter W is required for answering decryption queries (and is not present in [16]).
We show how to define W . Compute γ = H(jθ, P3); choose β randomly from ZZp and define
W = −γP1 + βP . The choice of jθ corresponds to the fact that at this point we are guessing the
length of the challenge identity.

Key Extraction Query: The technique for answering such queries is described in details in [16].
Here we only note that answering certain queries require the use of the values a or b. In all such
cases, the simulator sets flg to one.

Decryption Query: Suppose C = (C1, C2, B1, . . . , Bj) is a decryption query for the identity v =
(v1, . . . , vj). There are several cases to consider.



Case (v1, . . . , vj) is not a prefix of (v∗1, . . . , v
∗
jθ

): In this case, a private key dv for v is obtained using
the technique for simulating key extraction query. This dv is used to decrypt the ciphertext. In the
process of key extraction, the variable flg might have to be set to one.

Case (v1, . . . , vj) is a prefix of (v∗1, . . . , v
∗
jθ

): If either j < jθ or C1 6= C∗
1 , then by Game 1, we

can assume that H(j, C1) 6= H(jθ, C
∗
1 ). So suppose that (j, C1) = (jθ, C

∗
1 ). We assume that this

happens only in Phase 2. (In Phase 1, the randomly chosen C∗
1 is not available to the adversary

and hence the event C1 = C∗
1 can occur only with negligible probability of q/p.) Using j = jθ,

we have (v1, . . . , vj) = (v∗1, . . . , v
∗
jθ

). This and C1 = C∗
1 implies that (B1, . . . , Bj) = (B∗

1 , . . . , B∗
j ).

Otherwise the query is invalid and will be rejected. Also, using (j, C1) = (jθ, C
∗
1 ) it is easy to

verify that C2 = C∗
2 . Thus, we have (C1, C2, B1, . . . , Bj) = (C∗

1 , C∗
2 , B∗

1 , . . . , B∗
j ). In other words,

the decryption query is on the challenge ciphertext, which is not allowed in the game. Hence, we
cannot have (j, C1) = (jθ, C

∗
1 ) and so H(j, C1) 6= H(jθ, C

∗
1 ).

Let γ′ = H(j, C1) and Wγ′ = W + γ′P1. The simulator verifies whether e(C1,W
′
γ) = e(P,C2)

proceeds if the test succeeds. If the test fails, it returns ⊥ to A. Note that, at this point, since we
have verified that e(C1,W

′
γ) = e(P,C2), we can write C1 = tP and C2 = tWγ′ for some t in ZZp.

Choose r randomly from ZZp and compute Eγ′ and dγ′ in the following manner. Recall that
γ = H(jθ, P3) = H(jθ, cP ) and W = −γP1 +βP . Since, γ′ = H(j, C1) 6= H(jθ, C

∗
1 ) = γ, the inverse

of (γ′ − γ) exists.

Eγ′ = −β
γ′−γ P2 + r((γ′ − γ)P1 + βP )

= aP2 +
(
r − b

γ′−γ

)
(γ′P1 + W )

= aP2 + r̃Wγ′

dγ′ = rP − 1
γ′−γ P2

= r̃P.






(4)

This technique is essentially based on [10] which is in turn based on the technique of [5]. The
verification of the above computation is quite routine – in particular the second equality can be
easily seen by substituting W = −γP1 + βP and noting that P2 = bP .

The decryption can now be performed as follows.

e(Eγ′ , C1)

e(dγ′ , C2)
=

e(aP2 + r̃Wγ′ , tP )

e(r̃P, tWγ′)
= e(P1, P2)

t.

Note that any such decryption query can be answered without using the values of a, b or c. Thus,
flg is never set to 1 during this step.

The simulation of the decryption query makes the role of W clear. The protocol uses K =
e(P1, P2)

t to be the secret key and creates two encapsulations of it. The first encapsulation is
using the HIBE protocol of [16], where as the second encapsulation is using the BB-IBE protocol
from [5]. In the actual protocol, the second encapsulation is never used (apart from verifying its
correctness). It is used in the simulation to obtain K and answer a decryption query if the identity
of the decryption query is a prefix of the challenge identity. The advantage is that the BB-IBE
protocol is only required to be selective-ID secure and hence the “challenge identity” γ for the
BB-IBE protocol can be generated during set-up.



Challenge: The adversary submits equal length messages M0 and M1 and a challenge identity
(v∗1, . . . , v

∗
j∗). The challenge ciphertext is of the form (C∗

1 , C∗
2 , B∗

1 , . . . , B∗
j ), where we have already

chosen C∗
1 = cP during set-up. The components B∗

1 to B∗
j are generated as in [16].

The component C∗
2 is new to this protocol and we show how to generate it. If j∗ 6= jθ, then set

flg to 1, i.e., the random guess of the length of the challenge identity during the set-up turns out
to be incorrect. In this case, the simulator uses a, b and c to generate the challenge and answer the
adversary. Otherwise, set C2 = βP3. This C2 is properly formed since C2 = cWγ′ = c(γ′P1 + W ) =
c(γ′P1 − γP1 + βP ) = cβP = βP3. We use γ′ = H(jθ, C1) = H(j∗, cP ) = γ.

Choose a random bit δ. Set K∗ = Z and then apply the rest of the encryption procedure to
complete the encryption for the message Mδ.

Game 3: This game is the same as Game 2, with the only difference that the Z in Game 2 is now
replaced by a random element of G2. The difference in the two games can be used to obtain an
algorithm to solve DBDH problem. The basic idea is the following.

Suppose we are given a tuple (P, aP, bP, cP,Z) where Z is either e(P,P )abc or Z is random. The
algorithm for solving DBDH can be described as follows. We play an adversarial game based on the
given tuple as described above. If Z = e(P,P )abc, then we are playing Game 2 and if Z is random,
then we are playing Game 3. The problem is that in certain cases in these two games, we need to
use the values of a, b or c, which are of course not known to us when we are trying to solve the
DBDH problem. In all such cases, flg is set to one. If flg is set to one, then the algorithm to solve
DBDH aborts and outputs a random bit. Details of how to obtain a DBDH solver from the two
games are given in [16]. Also, a detailed analysis of the probability that flg remains 0 throughout
the game has been carried out in [16]. The technique and the proof is based on the work of Waters
and Boneh-Boyen. This analysis also hold for the current proof. The only new abort condition is
during challenge generation, when j∗ 6= jθ. Since 1 ≤ j∗, jθ ≤ h and jθ is chosen randomly from
{1, . . . , h}, the probability of this new abort is 1/h.

With this small change, the analysis of [16] shows that

|Pr[X2] − Pr[X3]| ≤
ǫdbdh

2λ
+

ǫhibe

2
(5)

where λ = 1/(2h(2σ(µl + 1))h). The factor 1/h in this expression is due to the new kind of abort.

Game 4: At this point, we have K∗ to be random. Since we are assuming that a, b and c are
known to the simulator, we can also assume that u′

j and ui are known to the simulator such that
U ′

j = u′
jP and Ui = uiP . (This follows easily from the definition of Ui and U ′

j given in [16].) This
does not disturb adversary’s view of the game. On the other hand, with this knowledge, we can
assume that for any Vi, the simulator is able to compute wi such that Vi = wiP . The adversary
may submit a decryption query with C1 = tP and for some i, Bi = t1Vi with t 6= t1. The knowledge
of wi allows the simulator to test for this in the following manner: If e(C1, Vi) 6= e(wiC1, P ), then
t1 6= t and the query is malformed. The simulator can now detect and reject such a query. Note that
this checking is not done in the actual protocol. So, we would like to be assured that the chance
of getting to this checking stage is small. In other words, we would like to be assured that if the
query is malformed as above and the protocol does not reject it, then the adversary has broken the
authentication property of the AE protocol.

Let Rejection Rule 0 be the rule whereby a ciphertext is rejected based on the failure of the
authentication property of the AE protocol. Let Rejection Rule 1 be the rejection rule mentioned



above. Let F4 be the event that a malformed query is rejected by Rule 1 but not by Rule 0. Our
aim is to show that the chance of this happening is low. Note that if no query is rejected by Rule 1,
then Games 3 and 4 are identical.

From this point onwards, we will only be considering decryption queries. The adversary makes
a total of qC decryption queries. We will use the superscript () to denote the quantities related
to the th decryption query. For example, K() denotes the input to KDF() in the th decryption
query.

We now employ a “plug and pray” technique used in [2] and assume that the ıth component of

the th query is malformed, i.e., C
()
1 = tP and B

()
ı = t1P with t 6= t1. Note that the “plug and

pray” here also extends over the levels of the HIBE, a feature which is not required in [2]. Let F ′
4

be the event that the query is not rejected by Rule 0 but the ıth component of the th query fails
Rule 1. Then Pr[F4] ≤ h × qC × Pr[F ′

4] and we have

|Pr[X3] − Pr[X4]| ≤ Pr[F4] ≤ h × qC × Pr[F ′
4]. (6)

We would like to upper bound Pr[F ′
4]. For this we use the deferred analysis technique of [2]. Also,

since we have done a “plug and pray” over the levels of the HIBE, henceforth we will assume that
there is only one level in the HIBE, i.e., we are considering an IBE protocol. This will simplify the
notation as this will result in only one B which is of the form tV .

Game 5: We modify Game 4 in the following manner. If the th decryption query is detected to
be malformed using Rule 1, then we set K() to be a random element of G2. We now have to argue
that this does not change the adversary’s point of view. In effect, we are setting both K∗ and K()

to be independent random elements and have to argue that this is what the adversary can expect
to see.

A similar argument is also required in [2]. This is done by initially having some extra randomness
in the setup and later adjusting the setup parameters such that these randomness can be transferred
to the challenge ciphertext and the malformed query. The situation in the identity-based setting
is different. In the identity-based setting, the adversary can ask for the private key corresponding
to an identity; such a thing is not possible in the public key encryption setting. On the other
hand, the on line probabilistic generation of the secret key for an identity allows an extra source of
randomness.

Let us now analyze the relationship between the identity v∗ for the challenge ciphertext and
the identity v() for the malformed query. There are two cases to consider.

Case v∗ = v(): In this case, the adversary cannot ask for the private key of v(). Let the secret key
corresponding to v() be (aP2 + rV (), rP ), where r is a random element of ZZp. Then the adversary
expects K() of the malformed query to be

K() =
e(aP2 + rV (), tP )

e(t1V (), rP )
= e(P1, P2)

t × e(P,P )rw(t−t1).

Since t 6= t1 (as the query is malformed) and r is random, K() is also random. On the other hand,
the adversary expects K∗ to be e(P1, P2)

t∗ where t∗ is random. Hence, the adversary expects K∗

to be random. Further, the randomness of K() and K∗ depends on the randomness of r and t∗

which are independent. Hence, the adversary also expects K() and K∗ to be independent random
quantities as provided to the adversary.



Case v∗ 6= v(): In this case, the adversary can ask for the secret key for v() but not before making
the malformed decryption query. If the adversary knows the secret key for v(), then he can decrypt
any ciphertext encrypted using v(). Thus, it is useless for him to query the decryption oracle using
v() after obtaining the secret key for v(). Recall that we had disallowed such useless queries.

The adversary can first ask for the decryption of a malformed query and then ask for the
private key for the same identity. We have to ensure that the answers to the decryption and private
key queries are consistent. (This situation does not arise in public key encryption scheme.) By
consistency we mean the following. Suppose the adversary makes a decryption query with v() and
later a private key extraction query on v(). With the private key d

v() returned to him, the adversary
can decrypt his own earlier decryption query. Consistency requires that the output given to him
on his decryption query should be equal to what he computes for himself. The next modification
ensures this consistency. Note that in this case, we do not have to bother about the independence
of K∗ and K(), since this will be easily ensured.

Let the th query be of the form (t()P, t
()
1 V ). Suppose the simulator returns K() = e(P1, P2)

t
()
2 .

On a later private key query on v(), the simulator has to return (aP2+r()V, r()P ) for some random
r() ∈ ZZp. The consistency requirement is satisfied if

K() =
e(aP2 + r()V, t()P )

e(t
()
1 V, r()P )

.

As mentioned before, the simulator can compute a w such that V = wP for some w ∈ ZZp. Also
P1 = aP and P2 = bP , where we assume at this point that the quantities a and b are known to the
simulator. The above consistency condition can be written as

t
()
2 = t() +

wr()(t() − t
()
1 )

ab
.

Note that the simulator does not know t() and t
()
1 .

The th malformed query is answered in the following manner. The simulator chooses an r()

(required for answering a possible future key extraction query on v()) randomly. It then computes

A = e(P, abt()P ) = e(P,P )abt() . This can be done since the simulator knows a, b, P and t()P . It
then computes

B =
e(t()P, r()V ())

e(t
()
1 V (), r()P )

= e(P,P )r
()w(t()−t

()
1 ).

Note that both numerator and denominator is computable from what is known to the simulator.
Then the simulator computes

K() = (A × B)1/(ab) = e(P1, P2)
t
()
2 .

This value K() is returned to the adversary. Since r() is random, so is t
()
2 and hence K() is random.

Later if the adversary asks for the private key for v(), then the simulator uses r() to construct the
private key and answer the adversary.

Define F ′
5 in a manner similar to F ′

4. Then we have

Pr[X4] = Pr[X5] and Pr[F ′
4] = Pr[F ′

5]. (7)



Game 6: This is obtained from Game 5 by the following modification. In Game 5, the keys
(IV,∗ dk∗) and (IV(), dk()) are obtained by applying KDF to K∗ and K() respectively. In Game 6,
these are generated randomly. Define F ′

6 in a manner similar to that of F ′
4. Then we have

|Pr[X5] − Pr[X6]| ≤ 2ǫkdf and |Pr[F ′
5] = Pr[F ′

6]|. (8)

The factor of two comes due to the fact that the adversary can break one out of these two invocations
of KDF.

In Game 6, the secret K∗ (and also (IV, dk)) is random and independent of the elements
C∗

1 , C∗
2 , B∗

1 , . . . , B∗
j∗ . The message Mδ is encrypted using the random (IV∗, dk∗). If the adversary

is able to correctly guess δ, then the one-time security of the AE protocol is broken. Hence,
|Pr[X6] − 1/2| ≤ ǫenc.

Now, we turn to bounding the probability of the event F ′
6. Recall that the occurrence of the

event F ′
6 implies that the query has passed the authentication of the underlying AE protocol. At

this point, we have K to be random and hence using the security of KDF (IV, dk) is also random
(and unknown to the adversary). Thus, the adversary has been able to obtain a forgery for the
AE protocol under a random unknown key. This violates the authentication property of the AE
protocol and hence Pr[F ′

6] ≤ ǫauth. Finally, combining all the inequalities, we obtain

ǫhibe =

∣∣∣∣Pr[X0] −
1

2

∣∣∣∣

≤ |Pr[X0] − Pr[X1]| + |Pr[X2] − Pr[X3]| + |Pr[X3] − Pr[X4]|

+|Pr[X5] − Pr[X6]| + |Pr[X6] − 1/2|

≤ ǫuowhf +
ǫdbdh

2λ
+

ǫhibe

2
+ hqCǫauth + 2ǫkdf + ǫenc

≤ ǫuowhf +
ǫdbdh

2λ
+

ǫhibe

2
+ hqǫauth + 2ǫkdf + ǫenc.

Rearranging the inequality gives the desired relationship. ⊓⊔


