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Abstract

It is well understood that passwords must be very
long and complex to have sufficient entropy for secu-
rity purposes. Unfortunately, these passwords tend to
be hard to memorize, and so alternatives are sought.
Smart Cards, Biometrics, and Reverse Turing Tests
(human-only solvable puzzles) are options, but an-
other option is to use pass-phrases.

This paper explores methods for making pass-
phrases suitable for use with password-based authen-
tication and key-exchange (PAKE) protocols, and
in particular, with schemes resilient to server-file
compromise. In particular, the Q-method of Gen-
try, MacKenzie and Ramzan, is combined with the
Bellovin-Merritt protocol to provide mutual authen-
tication (in the random oracle model (Canetti, Gol-
dreich & Halevi 2004, Bellare, Boldyreva & Palacio
2004, Maurer, Renner & Holenstein 2004)). Further-
more, since common password-related problems are
typographical errors, and the CAPSLOCK key, we
show how a dictionary can be used with the Damerau-
Levenshtein string-edit distance metric to construct a
case-insensitive pass-phrase system that can tolerate
zero, one, or two spelling-errors per word, with no
loss in security. Furthermore, we show that the sys-
tem can be made to accept pass-phrases that have
been arbitrarily reordered, with a security cost that
can be calculated.

While a pass-phrase space of 2128 is not achieved
by this scheme, sizes in the range of 2°2 to 22 result
from various selections of parameter sizes. An at-
tacker who has acquired the server-file must exhaust
over this space, while an attacker without the server-
file cannot succeed with non-negligible probability.

Keywords: Passwords, Password-Based Authen-
tication and Key Exchange (PAKE), Damerau-
Levenshtein String-Edit Distance Metric, Usable Se-
curity.

1 Introduction

The purpose of this paper is to create a scheme
whereby a short list of words, from a natural
alphabet-based language (such as English), can
serve as a measurably secure password for use in
a password-based authentication or key-exchange
scheme. In particular, the pass-phrase will consist
of about 4 to 7 words chosen from a list of 2!3 to
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216 words, and will be tolerant of zero, one, or two

spelling errors per word, any arbitrary reordering of
the words, and any choice of capitalizations. Pass-
phrases must contain words from a large dictionary
to be secure, and so may contain many unfamiliar
or bizarre words, including ones that users may find
hard to spell correctly. The error-corrections which
bring about these tolerances are designed to make
pass-phrases less irritating to the common user. Since
these pass-phrases are entirely machine generated, a
very high entropy is achievable, and security param-
eters can be chosen to make the scheme resistant to
dictionary-based attacks.

In Section we discuss the need for a large pass-
word space in the presence of adversaries who can
achieve server-file compromise. In Section we
introduce the Damerau-Levenshtein distance metric,
and provide further details in Appendix [A] We de-
scribe the intended implementation in Section [2.3|and
give the details of the protocol in Section |3} We de-
scribe how the spelling-error correction is done in Sec-
tion[d] correction of reordering in Section[6.1]and how
to build the dictionary in Section [5] We show how to
select correct parameter sizes in Section [6] and de-
scribe a scheme for giving the user more choice in the
pass-phrase selection in Section We mention an
option for “duress” words in Section to protect
users who are forced to log-in by physical adversaries.
We conclude with an additional application (a “pass-
word bank”) in Section

1.1 Motivation

Recently, the classical problem of password-based au-
thentication has received a great deal of attention,
both in the cryptographic community and the se-
curity world in general (Jablon 1996, Jablon 1997,
Lucks 1997, Boyko, MacKenzie & Patel 2000, Bel-
lare, Pointcheval & Rogaway 2000, MacKenzie, Pa-
tel & Swaminathan 2000, Katz, Ostrovsky & Yung
2001, Goldreich & Lindell 2001, Canetti, Halevi,
Katz, Lindell & MacKenzie 2005). There are now
several protocols available that deliver distinct ser-
vices in various security models, including (Bellovin
& Merritt 1992, Gong, Lomas, Needham & Saltzer
1993, Gong 1995, Ford & B. Kaliski 2000, Kaufmann
& Perlman 2001, Kwon 2001, MacKenzie 2001, Jiang
& Gong 2004, Zhang 2004, Nguyen & Vadhan 2004,
Katz, MacKenzie, Taban & Gligor 2005, Gentry,
MacKenzie & Ramzan 2000). Most schemes involve a
server, to which the client must prove his/her identity,
by providing a password. Many provide for mutual
authentication as does this paper. However, all of
these schemes share a common limiting factor.

The server must store some information for each
user in order to engage in authentication, particularly
if users are not to be permitted to log in as each other.
This information, whether in one file or several, will



be called the server-file. Sometimes the server-file is
public (as in UNIX), and sometimes private (as in
Bellovin-Merritt (Bellovin & Merritt 1992)). How-
ever, the capture or unauthorized release of this file
can occur in practice, and so it is desirable to design
systems resilient to server-file compromise.

In the event of a server-file compromise, the at-
tacker is always able to faithfully simulate both
parties of the client-server authentication protocol,
and guess all the possible passwords (Narayanan
& Shmatikov 2005). Therefore the security of the
scheme is lower-bounded by the size of the password-
space, in the case of server-file compromise. This
bound is tight, as achieved by (Gentry, MacKenzie
& Ramzan 2006, Bellovin & Merritt 1993, Jablon
1997, Wu 1998, Kwon 2001), who show that no attack
faster than this exists. Of course, there exist other
schemes which are completely insecure in the event
of server-file compromise. Alternatively, a threshold-
based approach is also possible (DiRaimondo &
Gennaro 2003, Jablon 2001, MacKenzie, Shrimpton
& Jakobsson 2006).

The April 2006 NIST recommendations (Burr,
Dodson & Polk 2006) state that current user pass-
word choices “in the real world” have entropy between
18-30 bits, guaranteeing a successful brute-force at-
tack by a PC in a short time (see also (Burr n.d.)%.
Likewise the survey (Patrick n.d.) states that 26%
of passwords (47,642) out of 186,126 found stored in
a particular cache could be guessed by a password-
guessing tool. That survey also notes that the av-
erage password reset occurs once every four or five
months, or that a corporation of 100,000 users should
anticipate 20,000-25,000 password resets per month.

Typical remedies are to add complexity via more
complex passwords, or switch to pass-phrases, bio-
metrics, or Reverse Turing Tests (RTT’s), such
as human-only solvable puzzles (Canetti, Halevi &
Steiner 2006, Pinkas & Sander 2002). While biomet-
rics and RTT’s have advantages, they are not always
possible. Long and complex passwords involving sym-
bols, numbers, and so forth, are rarely chosen by users
(Adams & Sasse. 1999, Wu 1999), and it is hoped that
the pass-phrases created by the scheme in this paper
will be more palatable for the user.

Another important factor are alarm levels. It is
considered a proper security practice to lock an ac-
count after 3—5 bad password guesses, and this is ef-
fective at preventing dictionary attacks in the absence
of server file compromise. Nonetheless, as password
systems get more complicated, making three typo-
graphical errors in three entries is quite a possibility,
even in the absence of forgetfulness. For this reason,
spelling correction is desirable.

It should be noted that error-correcting passwords
were proposed by Dodis, Reyzin and Smith in 2004
(Dodis, Reyzin & Smith 2004), in the context of
fuzzy-extractors. However, their scheme requires very
large entropy domains (256+ bits in some cases), and
human-readable English phrases would need to be
quite long to provide for that (about 14 words in
length).

2 Preliminaries

2.1 The Damerau-Levenshtein Distance Met-
ric

The Damerau-Levenshtein distance metric arose from
research by Damerau and Levenshtein on spelling-
errors (Damerau 1964, Levenshtein 1966).

The Damerau-Levenshtein distance metric is a
function, from finite strings drawn from an alphabet,
to the integers. It is a distance metric in the sense

that given strings s, s2, s3, the following conditions
apply.

e Non-negativity: d(s1,s2) > 0.

e Non-degeneracy: d(si,s2) = 0if and only if s; =
S9.

e Symmetry: d(s1,s2) = d(s2,s1).

e Triangle Inequality: d(s1,s2) + d(s2,s3) >

d(s1,83)-

The distance d(si,s2) is defined as follows. One
“operation” can be inserting a character, deleting a
character, substituting one character for another in
one location, or transposing two adjacent characters.
There may be many combinations of these four oper-
ations that can convert the string s; to so, but the
length of the shortest sequence is the distance be-
tween the two strings. It should be noted that the
four operations can be given weights other than one,
but we do not consider that here. Damerau showed
that 80% of typographical errors are distance 1 in this
model (Damerau 1964).

A highly related-metric is the Levenshtein met-
ric (Levenshtein 1966), which excludes the trans-
position, and is frequently used in spelling check-
ers. Note that a transposition can be thought of
as an insertion followed by a deletion, and so trans-
position errors are still covered by the Levenshtein
metric. The Levenshtein metric is much easier to
compute, where d(a,b) can be computed in time
O(Jal[b]), with several techniques available (Wagner
& Fisher 1974, Ukkonen 1985) for acceleration in the
case of calculating many d(a,b) for the same a and
all b in a dictionary (as would be the case in this
paper’s scheme). However, since transposition er-
rors are probably very likely in entering a password,
we elect to use the Damerau-Levenshtein metric in-
stead. The complexity of computing this metric is
O(lal|blmax(|al,|b|)) with the naive algorithm, and
O(|al||b]) with the algorithm of Lowrance and Wer

Al

(Lowrance & Wagner 1975), given in Appendix

We prove the four metric properties in the Ap-
pendix %L and discuss the algorithms used to com-
pute the distance and their complexities. Also in Ap-
pendix [A-3]are some empirical tricks to accelerate cal-
culation in the special case of this problem.

2.2 Notation

The pass-phrases will consist of n words from a dic-
tionary D of size |D| = 2¢, where ¢ is some positive
integer approximately near to 14. Using the notation
of the Q-method (Gentry et al. 2006), the function
H'(z) is a hash function with the additional property
of behaving as a random oracle (and therefore is also
a one-way function). The function H(z) must also
behave like a random oracle, but must have output-
length equal to cn, which is much shorter than typical
hash function output lengths. Therefore, H(x) is rec-
ommended to be a truncation of H'(z) to the length
of c¢n bits. The functions Ej(m) and Ej (m) are given
by

Ek(m) =
Ejy(m)

H(k)em
H(k) & m||H'(m)

Furthermore, observe that Ejy(m) is essentially a one-
time pad, since H (k) is a random oracle, and E} (m)
is a slight modification to render the scheme non-
malleable. Therefore, it is pivotal that a single k is
used at most once, namely by using one call to Ey(m),
and never using k for any other purpose.



2.3 Implementation

First, create a dictionary of selected words from the
Englislﬂ (or any other) language, augmented by per-
sonal names and place names. We discuss how to
build such a dictionary in Section[f] Each user would
receive, in person, a short list of n ~ 5 words from
the dictionary, which they must memorize and then
destroy in the presence of the system administrator,
preferably after some trial log-ins. This list of words
will be their pass-phrase.

The user is not permitted to choose his/her own
pass-phrase, as it would be hard to make entropy
guarantees in that case. However, we present a
scheme whereby a user could choose from among a
list of 4, 8, or 16 randomly chosen pass-phrases (See

Section .

The Tog-in protocol will handle a potential pass-
phrase entry as follows. First, spelling-error and re-
ordering repairs will be applied (to be explained in
Sections M| and . If any word of the potential
phrase is still found not to be in the dictionary, the at-
tempt is rejected. Otherwise, the phrase is converted
to a binary string either with a hash function, or the
function ¢ in the next section. Next, the Bellovin
and Merritt protocol is applied, which provides for
mutual authentication. Finally, this is amplified by
the Q-method from Gentry, MacKenzie, and Ramzan
(Gentry et al. 2006), which provides for resilience in
the event of server-file compromise.

Alternatively, this scheme can be used to protect
a password-bank, where all the user’s passwords are
stored (much like modern web browsers do). This is
explained further in Appendix Bellovin and Mer-
ritt also give an application of PAKE to secure public
encrypted phones (Bellovin & Merritt 1992).

Note that since all calculations are done on words,
and not on characters (except the metric which we
consider as a black-box), the system can be case-
insensitive and there are no capitalization considera-
tions, and therefore we will not mention capitalization
again.

3 Overview

Knowing a secret string of uniformly generated ran-
dom bits, of length cn is equivalent to knowing n
strings, in some specific order, of length ¢ bits, pro-
vided all the strings are again uniformly randomly
generated. Consider a dictionary D of words of the
English (or any other) language, of size |D| = 2¢.
One could number the words from 0 to 2¢ — 1, and
create bijections f and g such that f(7) is the ith word
in the dictionary, and g(w;) = ¢ when w; is the ith
word. Since bijections preserve entropy according to
the data-processing inequality, knowing n such words,
in some specific order, is equivalent to knowing a cn
bit secret key.

This pass-phrase issuing protocol is given in Ta-
ble Steps 6, 7, and 8, are from the (-method
(Gentry et al. 2006). The public-private key men-
tioned in Step 7 is for the signature scheme used in
the pass-phrase verification algorithm, Steps 12 and
13, as given in Table

The dictionary D is public, thus the attacker can
always make guesses that use correct spelling, and
use words only from the dictionary. Therefore, any
spelling-error correction would only aid the attacker
if it could transform one dictionary word into another.
We will show this is impossible in our scheme. Errors

1t should be noted that highly agglutinative languages such
as Finnish, Estonian and Hungarian are problematic with these
metrics, as every possible declination of every noun must be con-
sidered a distinct word, giving rise to tens of millions of words in
the dictionary (Schulz & Mihov 2002).

User enters username u.

Randomly generate z < {0,1}" c.

Divide z into z1]||zsa]| - - |-

Let w; = f(x;).

Display (wy [[wa]] - - - [[wy, ).

Let h = H(w1||lwa|| - - - ||wp)-

Generate a public-private key pair (pk, sk).
Store (u, h, pk, Ey(sk)).

OO Ut W

Table 1: Pass-Phrase Issuing Protocol

made by reordering of the words will be dealt with in

Section [6.1]

4 Error Correction

As mentioned earlier, the dictionary will consist of
2¢ words from the English (or any other) language,
with the additional requirement that any two distinct
words from the dictionary must be distance five or
greater in the Damerau-Levenshtein distance metric.
We will discuss how to construct such a dictionary in
Section [l

The user will input n words. For each of these
words, either there exists a word in the dictionary
which is distance two or less away, or there does not
exist such a word. If no such word exists, then the
log-in is rejected immediately. If such a word exists,
we claim it is unique.

Suppose the user entered the word e and the dis-
tinct words wq,ws were both distance two or fewer
from e. Since d(w1,e) < 2 and d(ws,e) < 2, then we
know

d(wn,e) + d(e,wy) <4

but from the triangle inequality, we know that

d(wy,e) + d(e,ws) > d(wy,ws)

and therefore d(wy,ws) < 4. It is a rule of our dictio-
nary that no two distinct words are closer than dis-
tance five. This is a contradiction. Therefore, no two
dictionary words can both be distance two or closer
to some user-entered string. Alternatively, this means
if one dictionary word is distance two or less from an
entered string, all the other words must be distance
three or greater away. Finally, this means that so long
as only zero, one, or two errors are made per word,
the errors can be corrected to their unique closest dic-
tionary member.

A last note is that since only corrections of dis-
tance zero, one, or two are made, it is impossible
to change one dictionary word into another, as that
would require distance five. This meets the require-
ments as specified in Section

The protocol that this forms, when coupled with
the Q-method, is given in Table Step 5 is op-
tional (for correcting reorders), and is explained in
Section Steps 8...13 are from the Q-method. In
Step 8, note E and E’ are distinct encryption schemes
defined in (Gentry et al. 2006). The phrase “execute
key agreement” can indicate either Bellovin-Merritt
(Bellovin & Merritt 1992), PAK (MacKenzie 2002),
or any other secure password-based symmetric mu-
tual authentication. The Q-protocol surrounding it
adds the resilience to server compromise.

The need for Step 7 is explained in (Gentry
et al. 2006), but essentially K" is the key generated
for future communications between the two parties,
whereas K’ is used to finish the protocol. In short, if
one key were used for both, the one-time pad proper-
ties of £ would be compromised. Also note that the
server never stores sk, but rather E’ (sk). Instead, sk



1 User enters username u.
2 User enters pass-phrase wi, ..., w),.
3 Capitalize the w’s.
4 For each w] do
4a If 3w € D such that d(w},w) <2
4b Then w] = w.
4c Else abort.
5  (Optional) Alphabetize wy,...,wl.
6 Fori=1...n,letz; = g(w).
7 Let 2’ = ai|asl] - - [l
8  Execute key agreement with
h = H(w:[[wel[ - - [lwn),

obtain key K.
9 Let K’ = H(K) and K" = H(H(K)).
10  Server challenges with ¢ = Ex/(E., (sk)).
11 Let sk = D.,(Dg (c)).
12 Let s = Signg(Transcript).
13 Server checks that Verify,;(Transcript, ).

Table 2: The Pass-Phrase Verification Protocol.

is destroyed after the pass-phrase issuing protocol is
run, and pk is used to verify any signatures generated
by sk. It is this feature that makes the (2-method
immune to server-file compromise.

5 Constructing the Dictionary

Consider a word corpus W, consisting of all words of
a particular language, including every possible conju-
gation and declination. In our case, this list would be
augmented by city names and personal names. Find-
ing the largest subset of words D, such that each word
in D is at least distance 5 apart from every other word
in D, is difficult. In particular, if W forms the ver-
tices of a graph, we can draw an edge between two
words if and only if they are distance 4 or closer in
the metric. The dictionary D would then be a max-
imum independent set, or set of vertices such that
there is no edge between them. Unfortunately, this
is an NP-Complete problem (Karp 1972), and it is
known that an approximation algorithm (which guar-
antees to find an independent set at least 0 < ¢ < 1
times the size of the maximal one) can only exist if
P = NP (Garey & Johnson 1979). We do not claim
the dictionary building problem is NP-Complete how-
ever, as a faster method may exist, compared to the
graph-theoretic independent set problem.

Hoping to find a dictionary of size
|ID| ~ 23 = 8192, we attempted the fol-
lowing very naive approach. Using the file
/usr/share/dict/linux.words from Fedora
Linux 5.0, which has 479,625 words, we read one
word at a time, and added it to D if and only if it was
distance five away from all the current members of D
(checked by exhaustion) and free of non-alphabetic
characters. = This method produced a dictionary
of size 34,538 > 2!% which is more than ample.
However, some of these words are uncommon, like
“abarticular,” “draughtmanship”, and “galaxiidae.”
The calculation took several hours on a desktop PC.

6 Selecting Security Parameters

While a dictionary of size 216 was achieved, many of
these words are unfamiliar. Intersecting this dictio-
nary with a codex from a major newspaper or some
other method may produce a smaller dictionary, with
the requisite properties, of size > 2'3, but with fewer
bizarre words. With dictionaries of size 2'3 to 216,
and between 4 and 9 words per pass-phrase, it is easy
to calculate the effective size of the pass-phrase space

Re-ordering Not Used

Dictionary Size 2% 21 215 216
4 Words 252 956 260 265
5 Words 205 970 275 280
6 Words 278 984 990 996
7 Words 291 298 2105 2112
8 Words 2104 2112 2120 2128
9 Words 2117 2126 2135 2144

Re-ordering Used

Dictionary Size 2'3 214 915 916

4 Words 9474 9511  955.1  959.1

5 Words 958.1 963.1 968.1 9731

6 Words 9685 9745  980.5  986.5

7 Words 9787 985.7 9927  999.7

8 Words 9887 996.7 91047 9112.7
9 Words 9985 9107.5 91165 9125.5

Table 3: Effective Pass-Phrase Spaces for various Pa-
rameter Values.

if reordering is not used. If it is used, one must adjust
as explained below. The results are listed in Table
Note, that n = 9 or even n = 8 is not recommended
as this may be too long, except perhaps for super-user
passwords.

The famous paper (Miller 1956), showed that sets
of 5, 7, or 9 objects are particularly easier for human
beings to memorize than any other sizes, giving rise
to the “rules of thumb” 7+ 2. In particular, breaking
a set of 7 into a set of 3 and a set of 4 is particularly
effective, and for these reasons, phone numbers in the
USA were accordingly designed, first with 5 and later
with 7 digits.

Finally, note that a 4, 5, or 6, digit PIN could be
used to augment the pass-phrase, adding 13.3, 16.6,
or 19.9 bits of security. Some users might prefer a 4
word pass-phrase augmented by a 4 digit PIN over a
5 word pass-phrase.

6.1 Dealing with Word Re-orderings

Normally, typing the words of a pass-phrase out of
order is considered an incorrect log-in. But, on the
other hand, if one alphabetizes the words of the pass-
phrase after error-correction is applied, but before
hashing, then any reordering of the words by the user
will have no effect. This unfortunately reduces the
size of the pass-phrase space. Since there are n! ways
to order n words, the security lost is log,(n!). How-
ever, the gain to the user is easier memorization, or
lower probability of error. Perhaps high-security sys-
tems will prefer to omit alphabetization, while sys-
tems with more inexperienced users will prefer to use
it.

6.2 Giving the User a Choice of Several

If the user is enabled to select their own pass-phrase,
it becomes very difficult to guarantee the entropy of
these selections. However, computer-generated pass-
words will almost certainly be harder to memorize. To
mitigate this, the password generation protocol may,
for example, generate u = 4 or u = 8 pass-phrases,
and enable the user to pick one of these.

The security lost by this flexibility is difficult to
calculate. Suppose that there is a subset S such that
if a pass-phrase from S is displayed, that the user



will always choose the pass-phrase from this “easy
subset.” If |S| is small, then it is easy to search but
phrases from it will not frequently occur, and if |S|
is large, it is likely to occur, but hard to search. If
the attacker searches by exhausting S first, then the
rest of D™, one can calculate the expected number of
guesses. If the phrase is in 9, it is |S|/2, otherwise if
not, then |S|+ (|D|™ — |S])/2. The probability of a
pass-phrase from S appearing is 1 — (1 — %)“, and
so the expected number of guesses required to recover
a pass-phrase in general is

st = (- (- )

D" — 5] ERS
<S|+2 1 Dl

To clarify, let ¢ = |S|/|D|™, or the fraction of the
available pass-phrases which are in S. Substitution
yields

Blguesses) = 21 (6.4 (1 - 9)")

Taking the first derivative with respect to ¢ yields,

dE[guesses] D" Cuet
loressed] D (- ut -9

For the value u = 4, F[guesses] has a global minimum
at ¢ = 0.3700. This implies an expected number of
guesses equal to 0.2638|D|", or a loss of security of
0.922 bits (compared to the usual 0.5|D|™).

For the value u = 8, there is a global minimum
at ¢ = 0.2570. This implies an expected number of
guesses equal to 0.1749|D|", or a loss of security of
1.52 bits.

Even for the value u = 16, there is a global min-
imum at ¢ = 0.1688, an expected number of guesses
equal to 0.1104|D|™, or a loss of security of 2.18 bits.

Therefore under the very generous definition of an
“easy-subset” of S, unless the user is given very many
choices, these choices do not adversely affect security
by a significant margin. This is not meant to be a
realistic model of user behavior in the presence of a
choice of u options, but rather, a pessimistic model
to establish a security lower bound, which is not far
from the security in the absence of choice.

6.3 Duress Words

For certain security systems, it may be desirable to
offer a duress word, which can be used in the event
that the user is forced to log-in under threat of force.
Since the user may be under grave stress at that time,
the scheme should be as simple as possible. We pro-
pose issuing each user an n 4 1th word, which can be
substituted for any of the n words and still result in a
successful log-in, while raising a silent alarm of some
sort. This requires n + 1 entries in the database per
user, n of which are marked for alarm, and 1 of which
is not.

If the use of a duress word causes the computer
to, for example, pretend to crash, then the adver-
sary gains nothing by finding one, and security is un-
affected. If instead, the log-in proceeds as normal,
but perhaps turns on some cameras, then log, n bits
are lost, which would be between 2 and 3 bits for
4 < n <8, a negligible cost.

7 Conclusions

The concept of pass-phrases is not new, and the idea
of spelling-error correction of passwords has been pro-
posed before (Dodis et al. 2004). However, heretofore
that correction was performed by fuzzy extractors,
which are far less efficient than the scheme proposed
here. The author also believes that this is the first
use of the Damerau-Levenshtein distance method in
authentication.

While pass-phrases can be very hard to guess, and
easier to remember than complex passwords involving
symbols and numerals, errors can be made in their en-
try. In particular, we have shown that the Damerau-
Levenshtein distance metric can be used to create an
error-correcting code over the space of words of the
English language. We have shown that giving each
user a five-word to seven-word subset of a dictionary
of particular structure results in a measurably secure
password-space, with concrete security guarantees in
the event of server compromise, and higher guarantees
in the absence of that event. Of course this is only
possible because the user is forbidden from choos-
ing their own password—a requirement which some
would view as a disadvantage.

To remedy that disadvantage, we show that allow-
ing the user to choose one pass-phrase out of a list
of 16 choices results in a negligible security loss. We
also show that the system can be made tolerant of
the reordering of pass-phrases also with negligible se-
curity loss. Moreover, we also introduce methods for
allowing a “duress” word.

Appendix B contains an outline of using this sys-
tem as the control for a password-bank, that would al-
low distinct, very secure and complex passwords (too
difficult for any human to remember) to be used on all
systems. The human would not be asked to remem-
ber these passwords, which would be recovered from
a pass-phrase locked database of passwords. This also
provides for backwards compatibility with legacy sys-
tems in the obvious way.

It should be noted that we have not performed a
usability study, and several parameters of this algo-
rithm could be adjusted based on such a survey. It
should be also noted that different sets of users might
have different tolerances for word-length, pass-phrase
length, and distinct special needs (reordering toler-
ance or duress words, for example).
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A More About the Damerau-Levenshtein
Distance Metric

A.1 Proof of Metric Properties

Damerau (Damerau 1964) identified the four string-
edit operations, but did not construct a metric. Lev-
enshtein (Levenshtein 1966) constructed and proved
a metric for the three operations excluding transposi-
tion. While it is well-known that one still has a metric
when the fourth operation is used, neither paper dis-
cusses this and the proof is very short, so we include
it here.

First, observe that for any sequence of string-
edit operations, the number of operations is a non-
negative integer. Given a set of sequences of opera-
tions that each transform the word w; into ws, one
can assign an integer to each, equal to the number of
operations in it. Since this is a set of non-negative
integers, it always has a unique least member in the
set. Therefore the metric is well-defined. The non-
negativity property also follows from this.

It is also clear that zero operations will transform
w1 to wy if and only if w; and ws are identical strings,

and so non-degeneracy is true. Each of these opera-
tions can be reversed with one operation, and so its
clear that d(wq,ws) = d(we,w;), and d(,) is thus
symmetric. The triangle inequality also follows, for
the following reason.

Suppose d(a,b) + d(b,c) < d(a,c), with d(a,b) =
dy, d(b,c) = dg and d(a,c) = d3. Substitution yields
dy + do < d3z. Suppose further that the optimal se-
quence of operations s; transforms a into b, while
s transforms @ into ¢, also optimally. (This means
|s1| = di and |s3] = d3). Observe that the sequence
of operations of s; followed by s is a sequence of
operations which transforms a into ¢, and has length
dy 4 ds. Since the length of the shortest series of op-
erations to transform a into c¢ is dz, it must be the
case that di + do > d3. But this is a contradiction.
Therefore no such a, b, c can exist, and the triangle
inequality holds.

A.2 Algorithms for Computation

The code in Figure 1 calculates the metric, and is
in the C language. It is based on an implementa-
tion from (Lowrance & Wagner 1975). The constant
ALPHA is the size of the alphabet. The characters
themselves are represented by the integers 1,2,...,26
for the English language. The integer arrays si,
s2 are the strings being compared and are of maxi-
mum length MAXLEN. The data structure “thematrix”
is a MAXLEN x MAXLEN matrix. Finally, the function
minimumFour returns the least of its four integer in-
puts. The four COST constants are the costs of each
Damerau-Levenshtein metric operation. The authors
used 1 for each cost, as is convention.

A.3 Decoding Time

One observation is that if the first, third, and fifth let-
ters of two words are each unequal (which only costs
three comparisons to check), then no two Damerau-
Levenshtein operations will change one word into the
other. Therefore, the distance need not be calculated
during decoding of an entered user pass-phrase word,
as distances of 3 or larger “are effectively infinite.”

To take advantage of this, one can create 3 x |A|
buckets, where A is the alphabet of the language. For
each letter of the alphabet, there is a bucket with all
words that contain that letter as its first letter, and
also one for the third and fifth. To check if a word
has a dictionary entry that is distance two or less
away requires only checking 3 buckets, rather than
the entire dictionary. Naturally, one can also stop
when one finds the correct word (as it is unique), and
unless the first letter was damaged by error, this will
be rather fast. Finally, note that because

d(a,b) > | fa| —1[0] |

it follows that if ||a| — |b|| > 2 then no two Damerau-
Levenshtein operations will equate a and b. Checking
the length of two strings is very quick, and this guar-
antees that d(a,b) need only be calculated for a few
words when doing pass-phrase decoding. Using these
methods, decoding was essentially instantaneous on
an author’s laptop.

B A Password Bank

Several commercial products consist of a database of
user-passwords, either stored remotely or locally (e.g.
Firefox), to reduce the mental burden of remembering
passwords. These are often protected by one master
password, or a pass-phrase. With this in mind, note
that the current suite of password-based protocols, in-
cluding the PAK-Z (MacKenzie 2001) and Q-method



int d(int s1[], int s2[], int lengthl,
int length2) {
int 1i,j,d, i1, j1, DB;
int DA[ALPHA+3];

for (i=0; i<=lengthl; i++) {
thematrix[i+1] [1]=i*COST_DEL;
thematrix[i+1] [0]=INF;

}

for (j=1; j<=length2; j++) {
thematrix[1] [j+1]=j*COST_INS;
thematrix [0] [j+1]=INF;

}

for (d=1; d<=ALPHA; d++) {
DA[d]=0;

}

for (i=1; i<=lengthl; i++) {
DB=0;

for (j=1; j<=length2; j++) {
i1=DA[s2[j-111;
j1=DB;

d = (s1l[i-1]==s2[j-11) 7 0 : COST_CHG;

if (s1[i-1]==s2[j-1]) DB=j;

thematrix[i+1] [j+1] = minimumFour (
thematrix[i] [j]+d,
thematrix[i+1] [j]+COST_INS,
thematrix[i] [j+1]+COST_DEL,

thematrix[i1] [j1]+

(i-i1-1)*COST_DEL+

COST_SUB +

(j-j1-1)*COST_INS);
}

DA[s1[i-1]11=1i;

return thematrix[lengthl+1] [length2+1];
}

Figure 1: C Code to calculate the Damerau-
Levenshtein Distance Metric

(Gentry et al. 2006), prevent any feasible attack if
the server file is not compromised. In the event it is
compromised, the fastest attack is to exhaust the dic-
tionary, which would take around 2%° to 2''2 guesses
if c=16 and n = 5 or n = 7, and reordering is not
used. Since this is very difficult, it is reasonable to
implement the following password-consolidation pol-
icy.
Users are often told not to use the same password
on multiple systems. This prevents the compromise of
one password on one system from causing problems
elsewhere. Unfortunately, users find this irritating.
But if all the user’s passwords were stored on in a
password bank, which could only be accessed via an
SSL/TLS link, and if this link required an authentica-
tion via the scheme in this paper, then the user is free
to have a distinct password on every system, with-
out memorizing any of them (except the pass-phrase).
Furthermore, this would allow the user to have very
secure (uniformly generated printable ASCII) pass-
words on systems that do not permit pass-phrases.
Only the bank master-password for each user would
have to be modified to use this scheme.

It should be noted that such a password bank
should require a re-entry of the pass-phrase for each
query, so that the SSL/TLS link cannot be used by
an adversary if the user walks away from the terminal
while still logged in to the password bank.
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