
A Latency-Free Election Scheme

Kristian Gjøsteen

October 24, 2006

Abstract

We motivate and describe the problem of finding protocols for mul-
tiparty computations that only use a single broadcast round per com-
putation (latency-free computations). We show that solutions exists
for one multiparty computation problem, that of elections, and more
generally, addition in certain groups. The protocol construction is
based on an interesting pseudo-random function family with a novel
property.

1 Introduction

Consider a small cluster of stars, separated from each other by distances of
between one and four light-years. Being in a civilised part of the universe,
the cluster has a general assembly for discussing questions of importance for
the cluster. Due to the inconvenience of gathering for this assembly, it has
been decided that twice every decade, they shall have a vote on whether to
convene the assembly or not.

The communication channel can easily be established with radio tele-
scopes broadcasting a signal to every planet, but there is general agreement
about a need for privacy, so some kind of secure election scheme must be
used.

Most secure election schemes without a central authority (see for exam-
ple [2]) that operate over a broadcast channel require two rounds of com-
munication, typically one round to publish encrypted votes and one round
to decrypt the result. Unfortunately, due to the speed of light, each extra
round will require up to four years to complete, which is clearly too much.
Therefore we need an election scheme that can produce a result in a single
round.

An election scheme is just one example of a multiparty computation
problem. In general, we can consider an environment where a group of users

1

want to perform some type of multiparty computation many times. If they
are communicating over high-latency channels, there is a clear incentive to
minimise the number of rounds. That raises the natural question: Can we
do multiparty computations with just a single round of communication? Of
course, some kind of setup will always be necessary, but can we hope to do
one computation per additional round, after the setup?

Sometimes it is possible to interleave independent protocol runs, to get
essentially one computation result per round. But if we consider situations
where the multiparty computations may happen in parallel, interleaving be-
comes impossible. We propose a solution for one multiparty computation
problem (elections) where, after some initial setup, every communication
round performs one multiparty group operation, and all communication
rounds are essentially independent (any number of new rounds can start
before the already started rounds complete).

Franklin and Yung [6] investigated how the communication complexity
of multiparty computations could be reduced by performing computations
in parallel. This work was in an information-theoretic setting. Our solution
does in a certain sense show how to achieve optimal asymptotic commu-
nication complexity for certain repeated multiparty group operations: The
amount of information broadcast by the user in a single round is equal to
the amount of information he inputs into the computation. We emphasise
that our results are achieved in the random oracle model (though we discuss
how they could be achieved in the common reference string model).

Our main technical contribution in this paper is a very interesting con-
struction for pseudo-random function families with a useful algebraic struc-
ture, on which our constructions rely. While the specific construction in
Sect. 3.1 has previously appeared in the literature [3] (independent our con-
struction, which first appeared in [7]), the algebraic structure has not been
noted before. Theorem 4 is new. These constructions also have interesting
applications outside of the current problem domain.

The secondary contribution is the idea that our construction can be used
for a certain multiparty computation, specifically elections.

This paper is structured as follows: Sect. 2 contains basic material on
pseudo-random function families. Sect. 3 describes two pseudo-random func-
tion families with a useful algebraic structure, several useful tools for these
function families, and some concrete examples. Sect. 4 discusses require-
ments for single-round election schemes in general, and describes our pro-
posed election scheme. Finally, in Sect. 5 we make some concluding remarks.

2

1.1 Notation

For any distribution D and algorithm A, we denote by A(D) the output
distribution we get when we sample x from D and run A with input x.

For any set S, x
r← S denotes that x is sampled from the uniform

distribution on S. Following the above notation, we denote by A(S) the
output distribution we get when we sample x from the uniform distribution
on S and run A with input x.

2 Pseudo-Random Function

Definition 1. Let S1 and S2 be sets. A pseudo-random function family
(PRF) F from S1 to S2 is a subset of Map(S1, S2) indexed by a key set K:
F = {fk : S1 → S2 | k ∈ K}.

A l-distinguisher A for F is an algorithm that is allowed to query a
function chosen either uniformly at random from F or uniformly at random
from Map(S1, S2) in at most l points of its choosing, and then output 0 or 1.
The advantage of A in distinguishing functions in F from random functions
is defined to be

AdvA = |Pr[Af = 1 | f r← F]− Pr[Af = 1 | f r← Map(S1, S2)]|,

where Af denotes that A is run with oracle access to the function f . We say
that F is (t, ε, l)-secure if no l-distinguisher with advantage at least ε and
run-time at most t exists.

A weak l-distinguisher A for F is an algorithm that is allowed to see a
function chosen either uniformly at random from F or uniformly at random
from Map(S1, S2) evaluated in l points chosen uniformly at random from
S1, and then output 0 or 1. The advantage of A in distinguishing functions
in F from random functions is defined to be

AdvA = |Pr[A((xi, f(xi))L−1
i=0) = 1 | xi

r← S1, f
r← F]

− Pr[A((xi, f(xi))L−1
i=0) = 1 | xi

r← S1, f
r← Map(S1, S2)]|.

We say that F is weakly (t, ε, l)-secure if no weak l-distinguisher with ad-
vantage at least ε and run-time at most t exists.

In the random oracle model, we can construct a secure PRF from S0 to
S2 using a weakly secure PRF from S1 to S2. This result is well-known and
we include the proof for completeness.

3

Theorem 2. Let F be a pseudo-random function family from S1 to S2, let
h : S0 → S1 be a function chosen uniformly at random from Map(S1, S2),
and let F ′ = {h ◦ fk | fk ∈ F}. For any l-distinguisher A for F ′ in the
random oracle model making at most L queries to the random oracle h,
there exists a weak L + l-distinguisher for F with the same advantage.

Proof. Let A be an l-distinguisher for F ′ in the random oracle model. This
algorithm expects access to two oracles, one for the random function h :
S0 → S1, and one for the function f to be analysed.

We may assume that before A queries its f oracle with some value, it
always queries the h oracle with the same value. We may also assume that
all queries to the h oracle are distinct.

The weak L + l-distinguisher A′ gets as input (xi, fk(xi))L+l−1
i=0 . It then

runs A, and will simulate its oracles. Upon the ith query yi to the h oracle,
(yi, i) is stored in a lookup table and xi is returned. If yi is later queried to
the f oracle, fk(xi) is returned. When A stops and outputs b ∈ {0, 1}, A′

stops and outputs b.
It is clear that A′ simulates the random oracle h perfectly, since the

sequence (xi)L−1
i=0 is by assumption independent and uniformly distributed

on S1. Likewise, if fk ∈ F , then f = h◦fk ∈ F ′, so A′ simulates the f oracle
perfectly.

The run time of A′ is the same as A, except for the time needed to deal
with the lookup table for hash queries. This is essentially O((L+l) log(L+l))
work.

We also need a minor extension of this notion, where we only consider
the indistinguishability of part of the function value. Consider a pseudo-
random function family F from S1 to G, where G is a group that has a
subgroup J . Consider the set of functions F̃ = {x 7→ f0(x)f1(x) | f0 ∈
F, f1 ∈ Map(S1, J)}. We note that if J = G, then F̃ = Map(S1, G), and the
following notions coincide with the above notions.

An l-J-distinguisher for F is an algorithm that is allowed to query a
function chosen uniformly at random from either F or F̃ in at most l points
of its choosing, and then output 0 or 1. The advantage of the distinguisher
is defined as above.

A weak l-J-distinguisher for F is an algorithm that is allowed to see a
function chosen either uniformly at random from F or uniformly at random
from F̃ evaluated in l points chosen uniformly at random from S1, and then
output 0 or 1. The advantage of the distinguisher is defined as above, but

4

can also be expressed as

AdvA = |Pr[A((xi, f(xi))l−1
i=0) = 1 | xi

r← S1, f
r← F]

− Pr[A((xi, f(xi)ri)l−1
i=0) = 1 | xi

r← S1, ri
r← J, f

r← F]|.

3 The PRF Construction

We can construct a practical pseudo-random function family as follows: Let
G be a cyclic group of order n (which may be prime or composite, known
or unknown). Let F = Hom(G, G) = {x 7→ xk | k ∈ Zn} ⊆ Map(G, G). The
interesting thing about this is that even after we apply the construction in
the previous section, the pseudo-random function family F ′ still has a group
structure, namely that of Hom(G, G). As we shall see, this property is very
useful.

When n is not prime, a random element of G may not be a generator.
But if n has no small prime factors, the probability φ(n)/n that an element
sampled uniformly at random from G is a generator is very close to 1.

If the group order n is unknown, but we know a reasonable bound on n,
say 2N−1 < n < 2N for some N , we can still efficiently sample 2−t-close to
uniformly from G if we have a generator g, simply by sampling k uniformly
from {0, 1, . . . , 2N+t − 1} and computing gk. The cost of this is at most
2(N + t) group operations using a simple square-and-multiply algorithm,
compared to 2N group operations if the order n is known.

Likewise, we can sample 2−t-uniformly from Hom(G, G) by sampling
uniformly from {0, 1, . . . , 2n+t − 1}. Evaluating such a function costs at
most 2(N + t) group operations, compared to 2N group operations if the
order n is known.

In the interest of simplicity, we shall in the following ignore the sampling
error that comes from sampling not uniformly, but almost uniformly.

3.1 Security Based on DDH

The Decision Diffie-Hellman problem for the group G is to distinguish tuples
of the form (g, gx, gy, gxy) from tuples of the form (g, gx, gy, gxy+z), where g
is a generator for the group G and x, y, z are chosen uniformly at random
from Zn. The advantage of a DDH distinguisher A is defined to be

AdvA = |Pr[A(g, gx, gy, gxy) = 1 | x, y
r← Zn]

− Pr[A(g, gx, gy, gxy+z) = 1 | x, y, z
r← Zn]|

5

Any DDH adversary for G with advantage ε can trivially be turned into
a weak 2-distinguisher for F with advantage ε.

Conversely, any weak distinguisher for F can be turned into a DDH
distinguisher with essentially the same strength.

Theorem 3. Let A be a weak L-distinguisher for F with advantage ε. Then
there exists a DDH distinguisher A′ for G with advantage ε− (1− φ(n)/n).
The run time of A′ is the run time of A plus 4L exponentiations and L
multiplications in the group.

Proof. The algorithm A′ takes the tuple (g, u, v, w) as input and runs A
with the input {(ri, si)} = {(gaivci , uaiwci)}Li=1, where ai, ci are sampled
uniformly at random from Zn. When A stops and outputs b, A′ stops and
outputs b.

The work done by A′ is running A and generating its input. The latter
requires 4L exponentiations and L multiplications.

Let x, y, z be such that (g, u, v, w) = (g, gx, gy, gxy+z).
If z = 0, we get that (ri, si) = (gai+ciy, (gx)ai+ciy), or (ri, f(ri)) with

f(ri) = rx
i and ri uniformly distributed in G. Then the input given to A

exactly matches the case where the function is chosen from F . This means
that

Pr[A′(g, gx, gy, gxy) = 1 | x, y
r← Zn]

= Pr[A({(ri, f(ri))}) = 1 | ri
r← G, f

r← F].

Now suppose z 6= 0. If z ∈ Z∗
n, then

(ri, si) = (gai+ciy, (gx)ai+ciygzci).

Note that for any pair (r, s), there exists a and c such that (r, s) = (ga+cy, (gx)a+cygzc)
(set a′ = a + cy and b′ = x(a + cy) + zc, and remember that z is invertible
modulo n). Therefore the input given to A exactly matches the case where
the function is chosen uniformly at random from Map(G, G). We get that

Pr[A′(g, gx, gy, gxy+z) = 1 | x, y
r← Zn, z

r← Z∗
n]

= Pr[A({(ri, f(ri))}) = 1 | ri
r← G, f

r← Map(G, G)].

6

We compute the advantage of A′ as

ε′ = |Pr[A′(g, gx, gy, gxy) = 1 | x, y, z
r← Zn]−

Pr[A′(g, gx, gy, gxy+z) = 1 | x, y, z
r← Zn]|

≤ |Pr[A({(ri, f(ri))}) = 1 | ri
r← G, f

r← F]−
Pr[A({(ri, f(ri))}) = 1 | ri

r← G, f
r← Map(G, G)]| − (1− φ(n)/n)

= ε− (1− φ(n)/n),

which concludes the proof.

If the group order of G is divisible by small primes, then the above the-
orem is no longer useful. However, in many cases a useful theorem can be
recovered under reasonable assumptions, such as generators being indistin-
guishable from small powers of generators.

3.2 Security Based on Subgroup Membership

If G has a proper, non-trivial subgroup H, the subgroup membership prob-
lem for G and H is to distinguish elements of H from elements of G \ H.
The advantage of a distinguisher A for the subgroup membership problem
is defined to be

AdvA = |Pr[A(H) = 1]− Pr[A(G \H)]|.

Now suppose G also has a proper, non-trivial subgroup J of order n′

such that J ∩H = {1} and G = HJ . We let F = Hom(H,H), but consider
F to be a pseudo-random function family from the subgroup H to G.

Any subgroup distinguisher with advantage ε can trivially be turned into
a weak 1-distinguisher for F with advantage ε(n′−1)/n′, since the output of
F will always be in the subgroup H. Conversely, we can use a J-distinguisher
for F to construct a distinguisher for the subgroup membership problem for
G and H.

Theorem 4. Suppose G has two disjoint subgroups H and J , such that
G = HJ , and let A be a weak L-J-distinguisher for F with advantage ε.
Then there exists a distinguisher for the subgroup membership problem for
G and H with advantage at least ε/(2L)− (1− φ(n′)/n′). The run time of
A′ is the run time of A plus at most L− 1 samples from H, L samples from
J , L exponentiations and multiplications in G.

7

Proof. Any function in Hom(G, G) can be considered a function in F by
restriction. If f is sampled uniformly at random from Hom(G, G), its re-
striction will be uniformly distributed in F .

Let Dj be the distribution on L pairs induced by the function (xi, f(xi)ri),
where xi are sampled uniformly from H, f is sampled uniformly from F ,
and ri is 1 for j ≤ i < L, but sampled uniformly from J for 0 ≤ i < j.

Suppose A has advantage ε in distinguishing between the distribution
D0 and DL. Then by a standard hybrid argument, A has advantage at least
ε/L in distinguishing between distributions Dj and Dj+1 for some j, that
is:

|Pr[A(Dj) = 1]− Pr[A(Dj+1) = 1]| ≥ ε/L.

Let A′ be an algorithm that takes as input x in G. It samples xi, 0 ≤
i < L, i 6= j, from H, f from Hom(G, G), r′j , rj+1, . . . , rL−1 from J , and a
bit b. Then it sets xj = x, rj = (r′j)

b and ri = 1, 0 ≤ i < j, and computes
the set {(xi, f(xi)ri)}. It runs A with this input, and A outputs b′. If b = b′,
A′ outputs 1, otherwise 0.

The run time of A′ is the run time of A plus L − 1 samples from H,
at most L samples from J , L exponentiations (evaluations of f) and L
multiplications.

If the input to A′ is sampled from the uniform distribution on H, the
input to A is distributed according to Dj if b = 0, and Dj+1 if b = 1. We
get

Pr[A′(H) = 1] =
1
2
(Pr[A(Dj) = 0] + Pr[A(Dj+1) = 1])

=
1
2

+
1
2
(Pr[A(Dj+1) = 1]− Pr[A(Dj) = 1]).

Next, we consider the case that the input x to A′ is sampled from the
uniform distribution on G \H.

The group G is isomorphic to G/H×G/J . The group Hom(G, G) is iso-
morphic to Hom(G/H, G/H)×Hom(G/J,G/J). Let (fH , fJ) be the image
of f in the latter group under the canonical isomorphism. We can determine
the distribution of (x, f(x)(r′j)

b) by looking separately at the distributions
in the factor groups G/J and G/H.

We first consider the distribution of the pairs in the group G/J ×G/J .
Every pair except the jth is computed independently of b, so their distribu-
tion must be independent of b. As for (xJ, (f(x)(r′j)

b)J), since r′j ∈ J we
have r′jJ = 1J , and we get

(f(x)(r′j)
b)J = fJ(xJ)(r′jJ)b = fJ(xJ).

8

The distribution of the pairs in G/J ×G/J is therefore independent of b.
Next, we consider the distribution of (xH, (f(x)(r′j)

b)H) in G/H×G/H.
We get

(f(x)(r′j)
b)H = fH(xH)(r′jH)b.

For b = 1 this is uniformly distributed in G/H and independent of x, since
r′j is uniformly distributed in J .

If b = 0, we must compute the distribution of fH(xH). Since for all pairs
(xi, zi), i 6= j, (xi, zi) ∈ H × H, we have that (xiH, ziH) = (1H, 1H) and
therefore independent of fH . If xH is a generator for G/H, fH(xH) will be
uniformly distributed over G/H, and independent of all the other pairs and
x.

We conclude that the distribution of (xi, f(xi)ri) is independent of b
when xH = xjH is a generator for G/H. We get

|Pr[A′(G \H) = 1]− 1
2
| ≤ 1− φ(n′)/n′.

Summing up, we get that

ε′ = |Pr[A′(H) = 1]− Pr[A′(G \H) = 1]|

≥ |1
2

+
1
2
(Pr[A(Dj+1) = 1]− Pr[A(Dj) = 1])− 1

2
| − (1− φ(n′)/n′)

=
1
2
ε/L− (1− φ(n′)/n′),

which concludes the proof.

We remark that if we are willing to accept that both DDH and the
Subgroup Membership problems are hard, we can get tighter bounds in the
security proof for the family F . However, the bounds we have established
are sufficient for our uses.

3.3 Useful Zero-Knowledge Proofs

In an election scheme, it is vital that every voter proves the correctness of his
vote. To do this and still preserve zero latency, we must use non-interactive
zero-knowledge proofs. Since we already employ the random oracle model,
we can use standard honest-verifier zero-knowledge proofs since in the ran-
dom oracle model, these can be converted to non-interactive zero-knowledge
proofs.

9

The zero knowledge proofs in this section are all completely standard,
and we skip the proofs for completeness and honest-verifier zero-knowledge.
Soundness is proved in Sect. 3.4

We specify two parameters, t and N . The security parameter t deter-
mines how easy it is for a cheating prover to convince the verifier, it is
chosen so that the probability 2−t is sufficiently low. If the group order n
is known, N = n. Otherwise, N is chosen so that the uniform distributions
on {0, 1, . . . , N − 1} and {ae, ae + 1, . . . , N + ae − 1} are statistically close
for any 0 ≤ a < n and 0 ≤ e < 2t, say N ≈ 22tn.

3.3.1 Correct Evaluation

The first proof is that a we have correctly evaluated f ∈ F , relative to a
known function value, or alternatively, of equality of discrete logarithms.
The prover P wants to prove that there exists a such that h0 = ga

0 and h1 =
ga
1 , for some g0 and g1. This amounts to showing that (h0, h1) = (g0, g1)a,

and we can do that by proving that we know a logarithm of (h0, h1) to the
base (g0, g1).

The prover’s private input is a, the public input is (g0, g1), (h0, h1) such
that (h0, h1) = (g0, g1)a.

1. The prover chooses x uniformly at random from ZN , computes (z0, z1) =
(g0, g1)x, and sends (z0, z1) to the verifier..

2. The verifier chooses e uniformly at random from {0, 1, . . . , 2t− 1} and
sends e to the prover.

3. The prover computes y = x + ea and sends y to the verifier.

The verifier accepts if (g0, g1)y = (z0, z1)(h0, h1)e.
We note that given an e, we can produce an accepting conversation

(z0, z1, e, y) by choosing y uniformly at random from {0, 1, . . . , N − 1} and
setting (z0, z1) = (g0, g1)y(h0, h1)−e.

Theorem 5. The above protocol is complete and honest verifier zero knowl-
edge.

3.3.2 One of Two is Correct

The second proof is that for a given f ∈ F , one out of two values corre-
spond to the correct value of f(x) for some x. Again, for our family F this
corresponds to showing that one out of two pairs have the same discrete log-
arithm as a reference pair. We prove this by running the previous proof in

10

parallell and tying the two runs together through the challenge. The prover
fakes an accepting conversation for the incorrect value and then creates an
accepting conversation for the correct.

The prover’s private input is a and b, the public input is (g0, g1), (h00, h01),
(h10, h11) such that (hb0, hb1) = (g0, g1)a.

1. The prover generates an accepting conversation (z1−b,0, z1−b,1, s1−b, y1−b)
for (h1−b,0, h1−b,1) by choosing s1−b uniformly at random from {0, 1, . . . , 2t−
1}, y1−b uniformly at random from {0, 1, . . . , N − 1} and computing
(z1−b,0, z1−b,1) = (g0, g1)y1−b(h1−b,0, h1−b,1)−s1−b .

He then chooses x uniformly at random from {0, 1 . . . , N − 1} and
computes (zb,0, zb,1) = (g0, g1)x.

The prover then sends (z00, z01) and (z10, z11) to the verifier.

2. The verifier chooses e uniformly at random from {0, 1, . . . , 2t− 1} and
sends e to the prover.

3. The prover chooses sb from {0, 1, . . . , 2t−1} such that s0 +s1 ≡ e mod
2t and computes yb = asb + x and sends s0, s1, y0, y1 to the verifier.

The verifier accepts if s0+s1 ≡ e (mod 2t) and (g0, g1)yi = (zi,0, zi,1)(hi,0, hi,1)e

for i = 0, 1.

Theorem 6. The above protocol is complete and honest verifier zero knowl-
edge.

This protocol can obviously be extended to one out of k by running k
proofs in parallel, faking conversations for k − 1 of them and creating the
correct proof for the final one.

3.4 Group Structures

3.4.1 Prime Ordered Groups

The standard group structure for this construction is a group G of known
prime order, say the group of rational points on an elliptic curve, or the
multiplicative subgroup of a finite field. If the group itself is not of prime
order, we can take G to be any prime-ordered subgroup such that the co-
factor is relatively prime to the subgroup order. Typically, under Decision
Diffie-Hellman, we know that computing discrete logarithms must be hard,
and then we get soundness for the protocols in Sect. 3.3.

11

Theorem 7. Suppose P ∗ is a cheating prover for either of the two protocols
in Sect. 3.3 instantiated with a group G that succeeds with probability ε. If the
group order n is known and larger than 2t, then there exists an algorithm that
computes discrete logarithms in G. This algorithm has success probability
ε(ε− 2−t+1) and run time at most twice that of P ∗.

Proof. We can turn any discrete logarithm problem (g0, h0) into the public
input simply by choosing any random x and setting g1 = gx

0 , h1 = hx
0 .

Let (z0, z1, e, y) and (z0, z1, e
′, y′) be two accepting conversations for the

protocol from Sect. 3.3.1 with e 6= e′. We can by rewinding produce two
such conversations with probability at least ε(ε− 2−t+1), and the total run
time is not more than twice one run of P ∗. Observe that z0 = gy

0h−e
0 and

z0 = gy′

0 h−e′

0 .
Since n is prime and larger than 2t, we know that e − e′ is invertible

modulo n we get
h0 = g

(y−y′)/(e−e′)
0 ,

and this completes the proof.

3.4.2 Paillier’s Group

Another useful structure, especially for election schemes, is Z∗
ns+1 where

n is a product of two prime numbers such that n is relatively prime to
the order of Z∗

n. As first described by Paillier [9] and elaborated on by
Damg̊ard and Jurik [2], Z∗

ns+1 contains a subgroup isomorphic to Z∗
n that

is plausibly hard to distinguish (this would be our H), and a subgroup of
order ns where discrete logarithm computations are easy (this would be our
J). This subgroup membership problem is know as the Decision Composite
Residuosity problem.

Note that we have a nice map from Z∗
n into Z∗

ns+1 given by taking any
representative r for the residue class x and taking it to the residue class y
with representative rns

.
We shall assume that n is a product of two safe primes and consider only

the quadratic residues, since this simplifies arguments. (This is not essential,
however.) The most natural construction to apply in this situation is that of
Theorem 4 (note that there are no small primes in the order of J). However,
if we do not trust the hardness of the DCR problem, we could use Theorem 3
and rely on Decision Diffie-Hellman, at a modest computational cost.

If it is possible to find a multiple of the order of Z∗
n, then we can easily

factor the modulus n. This would allow us to solve the DCR problem, since
we can recover a multiple of the group order of H. It would also allow us to

12

apply Theorem 7. So the following theorem is sufficient to prove soundness
for the zero-knowledge protocols in Sect. 3.3 under the hardness of either
DDH or DCR problems.

Theorem 8. Suppose P ∗ is a cheating prover for either of the two protocols
in Sect. 3.3 instantiated with Z∗

ns+1 that succeeds with probability ε. Then
there exists an algorithm that computes a multiple of the group order of Z∗

n

with success probability essentially ε(ε−2−t) and run time at most twice that
of P ∗.

Proof. We consider first the protocol in Sect. 3.3.1. Let (z0, z1, e, y) and
(z0, z1, e

′, y′) be two accepting conversations with e 6= e′. We can by rewind-
ing produce two such conversations with probability at least ε(ε − 2−t+1),
and the total run time is not more than twice one run of P ∗. Observe that
z0 = gy

0h−e
0 and z0 = gy′

0 h−e′

0 .
Let N be the parameter used in the proof. Choose g′0 uniformly at

random by computing the square of a random element in Z∗
n. If g′0 is not

a generator of the quadratic residues, we have factored n and we can easily
output the group order Z∗

n. Otherwise, let g0 be the corresponding generator
for H (found by computing the ns power).

Now choose random N < x < 2N , and set h0 = gx
0 . From our two

accepting conversations, we get

gy
0h−e

0 = gy′

0 h−e′

0 = 1 or g
x(e′−e)+(y−y′)
0 = 1.

Since y − y′ < N , the exponent is not equal to 0, so x(e − e′) + (y − y′) is
a multiple of the order of g0, and if multiplied by 4, a multiple of the order
of Z∗

n.
To conclude the proof, we observe that for the protocol in Sect. 3.3.2,

if we have two accepting conversations for two distinct challenges, then we
must have at least one pair of accepting conversations for the first protocol,
and by the above arguments we are done.

4 The Election Scheme

We assume that there is a broadcast channel available. We want an election
scheme that can be used for multiple sequential or parallell elections after
some initial setup, and that satisfies the following functional requirements:

Constant-Round Setup The number of rounds in the setup phase must
be independent of the number of voters and the number of elections
that are to be held.

13

Single Round per Election Each of the multiple elections must require
just one round. No voter must be required to decide on his vote before
the start of the round, and after that round, every voter must be
in possession of the result for that election round, unless some fault
occurred.

Any election scheme must satisfy at least the following security require-
ments:

Privacy Every vote must be as secret as possible in an election (e.g. if
the result indicates that all votes were equal, no vote can possibly be
private, regardless of the system).

Correctness No voter should be able to submit incorrect votes.

Verifiability Every voter should be able to verify that the tallying was
performed correctly.

Usually, election schemes are also required to be robust, in the sense that
a few voters cannot prevent the remaining voters from computing the result.
Schemes that satisfy our functional requirements cannot be robust in this
sense. If the scheme allows voters to compute the correct result when one or
more votes are missing, any voter could first compute the correct result for
all the votes, then pretend that vote i is missing and compute this result.
That would reveal the ith vote, and privacy would be lost.

One might relax the functional requirements and say that the single
round requirement should hold except in the presence of faults, when a fall-
back election protocol should be used to compute the result. Unfortunately,
this would allow an inside attacker that can read the ith vote, but prevent
it from being broadcast to the other voters, to break the privacy of the ith
voter. He could compute the complete result on his own, and the result
without the ith vote together with the other voters.

It seems therefore that our functional election requirements forces us
to accept schemes that are somewhat fragile in the presence of faults. One
possible approach would be to simply re-run the election until no fault occur.
If a voter is consistently faulty, that voter could be removed from the voter
roll. Note that a denial of service attack is always possible, and against any
election protocol, if the attacker controls the entire network.

4.1 The Basic Scheme

We now describe our proposed election scheme, which takes the form of a
yes or no election, encoded as 1 and 0, respectively. The t voters want to

14

execute at most L elections, sequentially or partially in parallell. To focus
on the interesting part, we assume that we have a trusted dealer available
for now.

We assume that we have the tools developed in the previous section: A
pseudo-random function family F ′ from the set {0, 1, . . . , L} into the group
G with a group structure on F ′, along with a one-out-of-two proof for F ′.

Dealer The dealer chooses an element g from G (either a generator for G
or for a subgroup J), and for each user a function fi uniformly at
random from F ′. He computes the function f = f1f2 · · · ft. Then
he sends fi privately to the ith user, i = 1, 2, . . . , t, and broadcasts
(g, f, f1(0), f2(0), . . . , ft(0)) to every user.

Vote creation In the jth election, voter i encrypts his vote vi,j ∈ {0, 1}
as follows: First he computes ci,j = fi(j)gvi,j . He creates a one-out-
of-two proof pi,j that proves that one of the values ci,j or ci,j/g is the
correct value for fi(j). Then he broadcasts (ci,j , pi,j) to every user.

Tallying The ith voter has the votes {cl,j}l for the jth election, along the
the proofs {pl,j}l. He verifies the one-out-of-two proofs (stopping if
any proof fails), computes rj = (

∏
l cl,j)/f(j), and then computes the

result vj by computing the discrete logarithm of rj to the base g.

Note that computing the vote count will always be feasible, since the
number of votes is at most t.

Privacy This scheme preserves the privacy of every vote because F ′ is a
pseudo-random function family. Giving away the product function f
does not compromise this.

Correctness The non-interactive zero-knowledge proof ensures that every
vote is correct. Since every other action is performed either by the
trusted dealer or the voter himself, this is sufficient to ensure correct-
ness.

Verifiability Again, since the votes are verified to be correct and every
other action is performed either by the trusted dealer or the voter
himself, every voter will know that the result is correct if the tallying
procedure completes.

If we need to run something more complicated than a yes or no election,
we could encode votes and use proofs as described in [5], although this
would most likely require the Paillier-based [9] group structure, otherwise
computing the discrete logarithm would be too expensive.

15

4.2 Removing the Dealer

We would like to remove the trusted dealer from the scheme. The choice
of the element g used to encode the votes as group elements is arbitrary,
since the pseudo-random function family hides any value in the subgroup
generated by g equally well.

All that remains is for each player to choose fi and to compute a joint
representation for f without each player revealing their secret function, nor
allowing any player to cheat. The solution depends on whether the group
order is known or unknown.

4.2.1 Known prime group order

When the group order n is known and prime, everything is simple and we do
essentially a verifiable multiparty addition. At the start, every voter chooses
their function fi simply by choosing an exponent ai uniformly at random
from {0, 1, . . . , n− 1}.

In the first round, every voter sends a share of ai secretly to every other
voter. He also commits to his choice by broadcasting fi(0) along with a
non-interactive zero-knowledge proof of knowledge of possession of the key.
(One possibility is essentially the proof given in Sect. 3.3.1.)

Then every voter verifies every non-interactive zero knowledge proof,
adds every secret key share he has received, and in the second round pub-
lishes the sum of all the shares. Finally, every voter adds together all the
share sums, to get the number a =

∑
i ai, and this number defines f =

∏
i fi.

Note that the correctness of this result can be verified by computing f(0).

4.2.2 Modulo a Power of an RSA Modulus

Now we consider the case of Z∗
ns+1 . Note that the modulus can be jointly

generated using for example the protocol in [1], which supposedly can be
made robust against cheating.

Let N be as in Sect 3.3, and set Q = 2tN . Every voter chooses his func-
tion fi by choosing an exponent ai uniformly at random from {0, 1, . . . , N −
1}. Note that fi is sampled almost uniformly at random. The idea is now
to add the exponents together using multiparty addition modulo Q.

In the first round, every voter sends a share of ai secretly to every other
voter. He also commits to his choice by broadcasting fi(0) along with a
non-interactive zero-knowledge proof of knowledge of possession of the key.
(One possibility is essentially the proof given in Sect. 3.3.1, except that since

16

the known exponent ai is very large, we must use even larger numbers in
the proof to hide ai.)

Then every voter verifies every non-interactive zero knowledge proof,
adds every secret key share he has received, and in the second round pub-
lishes the sum of all the shares. Finally, every voter adds together all the
share sums, to get the number a =

∑
i ai (which is the integer sum), and

this number defines f =
∏

i fi. Note that the correctness of this result can
be verified by computing f(0).

5 Concluding Remarks

We have described and motivated the problem of doing multiparty compu-
tations in a single communication round. We have also shown that this is
possible, by giving an election scheme.

If we skip the vote verification parts of the election scheme, we are left
with a general multiparty group operation protocol that is secure in the
honest-but-curious model. With the construction from Sect. 3.1, this proto-
col achieves asymptotically optimal broadcast communication complexity:
The user contributes one group element to the multiparty computation and
broadcasts one group element per computation. It is impossible to achieve
lower broadcast communication complexity.

Our election scheme is realised in the random oracle model. While this is
a very good heuristic for security in the real world, many people would prefer
schemes in some weaker cryptographic model. It is possible to realise our
scheme in the common reference string model, where the common reference
string replaces the random values derived from the random function in the
construction of the PRF. Obviously, the size of the reference string will limit
the number of possible rounds. The non-interactive zero-knowledge proofs
would have to be replaced with proofs that work in the common reference
string model (see for example [8], or [4] for a somewhat different model).

We have not yet considered the general problem of what kind of mul-
tiparty computations can at all be performed in a single broadcast round.
This is currently an open problem.

Acknowledgements

Thanks to Susanna tom Raad for posing the problem that lead to the con-
struction in Sect. 3, and to David Wagner and Ivan Damg̊ard for helpful
discussions.

17

References

[1] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient com-
putation modulo a shared secret with application to the generation of
shared safe-prime products. In Moti Yung, editor, CRYPTO, volume
2442 of LNCS, pages 417–432. Springer-Verlag, 2002.

[2] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo
Kim, editor, Proceedings of Public Key Cryptography 2001, volume 1992
of LNCS, pages 119–136. Springer-Verlag, 2001.

[3] Ivan Damg̊ard, Kasper Dupont, and Michael Østergaard Pedersen. Un-
clonable group identification. In Vaudenay [10], pages 555–572.

[4] Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-
knowledge from homomorphic encryption. In Shai Halevi and Tal Ra-
bin, editors, TCC, volume 3876 of Lecture Notes in Computer Science,
pages 41–59. Springer, 2006.

[5] Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The theory and
implementation of an electronic voting system. In D. Gritzalis, editor,
Secure Electronic Voting. Kluwer Academic Publishers, 2002.

[6] Matthew Franklin and Moti Yung. Communication complexity of secure
computation. In Proceedings of the 24th ACM STOC, 1992.

[7] Kristian Gjøsteen. Re: Conditional decryption. Posted to USENET
sci.crypt, message-id d550oi$922$1@orkan.itea.ntnu.no, May
2005.

[8] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive
zero knowledge for np. In Vaudenay [10], pages 339–358.

[9] P. Paillier. Public-key cryptosystems based on composite degree residue
classes. In Jacques Stern, editor, Proceedings of EUROCRYPT ’99,
volume 1592 of LNCS, pages 223–238. Springer-Verlag, 1999.

[10] Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, volume 4004 of Lecture Notes in Computer Science.
Springer, 2006.

18

