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Abstract. In this paper, we propose a Hierarchical Identity Based En-
cryption scheme that is proven secure under the strongest model of [5]
directly, without relying on random oracles. The size of the ciphertext
is a constant while the size of public parameters is independent to the
number of bit representing an identity. It is the first in the literature to
achieve such a high security level and space efficiency at the same time.
In addition, we also propose the first Hierarchical Identity Based Signa-
ture scheme that is proven under the strongest model without relying
on random oracles and using more standard q-SDH assumption. Similar
to the proposed encryption scheme, the space complexity of the signa-
ture and public parameters are as efficient as the proposed encryption
scheme.

1 Introduction

Identity based (ID-based) cryptosystem [15] is a public key cryptosystem where
the public key can be represented as an arbitrary string such as an email ad-
dress. The concept was proposed in 1984. However, practical ID-based encryp-
tion (IBE) schemes were not found until the work of Boneh and Franklin [5]
in 2001. It requires a central authority called the Public Key Generator (PKG)
to use a master key to issue private keys to identities that request them. It is
provable secure in the random oracle model. Several IBE schemes [7, 1, 13] are
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later proposed which are secure without random oracles but under a weaker
“selective-ID” model [7]. [2] and [16] proposed IBE schemes which are provably
secure without random oracles under the model of [5].

Hierarchical ID-based cryptography was proposed in [12] and [14] in 2002. It
is a generalization of IBE that mirros an organizational hierarchy. It allows a root
PKG to distribute the workload by delegating private key generation and iden-
tity authentication to lower-level PKGs. In a hierarchical ID-based encryption
(HIBE) scheme, a root PKG only needs to generate private keys for domain-level
PKGs, who in turn generate private keys for their users in the domains of the
lower level. To encrypt a message to Bob, Alice only needs to obtain the public
parameters of Bob’s root PKG and his identity. It is especially useful in large
companies or e-government structure where there are hierarchical administrative
issues needed to be taken care. Another application of HIBE is to construct for-
ward secure encryption, as suggested by Canetti, Halevi and Katz [7]. It allows
users to periodically update their private keys so that a message encrypted at
period n cannot be read using a private key from period n′ > n. HIBE provides
one of the most direct and practical solutions to the key exposure problem in
daily life public key infrastructure applications.

Recently, Boneh et al. [4] (preliminary papers [8, 6]) suggested some methods
to construct chosen ciphertext secure (CCA) `-level HIBE scheme from a chosen
plaintext secure (CPA) (`+1)-level HIBE scheme. Several HIBE without random
oracles are proposed in [1, 2, 16, 3] using this result. However, They are all secure
in the selective-ID model only. Transforming of selective-ID model into the model
of [5] introduces a loss factor of about 2160 in the reduction [1, 3].

On the other side, the idea of hierarchical ID-based signature (HIBS) scheme
was first proposed by Gentry and Silverberg [12] in 2002 while the first provable
secure HIBS scheme was proposed by Chow et al [10]. It requires the random
oracle to prove its security. Yuen and Wei [17] observed that HIBS can be con-
structed by using hierarchical authentication tree and one-time signature, al-
though it is inefficient. They also provided a direct construction where the size
of the signature is independent to the number of levels. Although their scheme
can be proven without random oracles, it is either provable secure under a even
weaker model called the “gauntlet-ID model” or require a specially designed
strong assumption, the OrcY W assumption.

Table 1 summerizes a comparison between different HIBE schemes.

Contributions. In this paper, we propose a HIBE scheme that is secure in
the model of [5] directly without using random oracles. Its security is proven
using the q-ABDHE assumption [11]. The size of the ciphertext is a constant.
Moreover, the size of public parameters is independent to the number of bit
representing an identity, while the size of public parameters of the scheme in [9]
grows with a factor of h, where h is the number of block to represent an identity
of n bits, with each block using n/h bits. Our scheme is the first in the literature
to achieve the highest security level and most efficient space complexity which
makes it more practical to be used in daily application.
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without Full / size of size of hardness
RO Selective-ID ciphertext pub param assumption

Gentry-Silverberg [12] X Full O(`) O(1) BDH
Horwitz-Lynn [14] X Full O(1) O(1) BDH
Boneh-Boyen [1]

√
Selective-ID O(`) O(`) Dec. BDH/ q-BDHI

Boneh-Boyen [2]
√

Selective-ID O(n× `) O(n) Dec. BDH
Waters [16]

√
Selective-ID O(1) O(n× `) Dec. BDH

Boneh-Boyen-Goh [3]
√

Selective-ID O(1) O(`) Dec. weak BDHI
Chatterjee-Sarkar [9]

√
Full O(1) O(`) +O(h) Dec. BDH

This paper
√

Full O(1) O(`) Dec. q-ABDHE
Table 1. ` is the number of level, n is the number of bit representing an identity, h is
the number of block to store the identity with each block size is n/h

In addition, we also propose the first HIBS scheme that is secure in the
strongest model of [5] without using random oracles as well. Its security is
proven using the more standard q-SDH assumption. Similar to the proposed
HIBE scheme, the size of the signature is a constant and the size of public
parameters is the same as our HIBE scheme.

Organization. The rest of the paper is organized as follow. Some mathematical
preliminaries are given in Section 2. Security definition is given in Section 3. Our
proposed HIBE and HIBS schemes are presented in Section 4 and 5 respectively.
The paper is concluded in Section 6.

2 Preliminaries

2.1 Pairings

We briefly review bilinear pairing. Let G and GT be two multiplicative cyclic
groups of prime order p. Let g be a generator of G, and e be a bilinear map such
that e : G×G→ GT with the following properties:

1. Bilinearity: For all u, v ∈ G, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
3. Computability: It is efficient to compute e(u, v) for all u, v ∈ G.

2.2 Intractability Assumption

The security of our HIBE scheme is based on a complexity assumption called
“truncated decision q-ABDHE assumption” proposed by Gentry in [11]. It is
extended from the q-BDHE problem.

We define the truncated decision q-ABDHE problem is as follows: Given a
vector of q + 3 elements:(

g′, g′
(α)q+2

, g, gα, g(α)2 , . . . , g(α)q)
∈ Gq+3
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and an element Z ∈ GT as input, output 0 if Z = e(g(α)q+1
, g′) and output 1

otherwise.
An algorithm B has advantage ε in solving the truncated decision q-ABDHE

if: ∣∣ Pr[B(g′, g′(α)q+2

, g, gα, . . . , g(α)q

, e(g(α)q+1
, g′)) = 0]

−Pr[B(g′, g′(α)q+2

, g, gα, . . . , g(α)q

, Z) = 0]
∣∣ ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z in GT , and the random
bits consumed by B. We refer the distribution on the left as PABDHE and the
distribution on the right as RABDHE .

Definition 1 (q-Augmented Bilinear Diffie-Hellman Exponent Assump-
tion (q-ABDHE)). We say that the truncated decision (t, ε, q)-ABDHE as-
sumption holds in G if no t-time algorithm has advantage at least ε in solving
the truncated decision q-ABDHE problem in G.

The security of our HIBS scheme is based on q-SDH assumption, which is
defined as follow:

Definition 2 (q-Strong Diffie-Hellman Assumption (q-SDH)). The q-
Strong Diffie-Hellman (q-SDH) problem in G is defined as follow: On input a
(q + 2)-tuple (g0, h0, hx

0 , hx2

0 , · · · , hxq

0 ) ∈ Gq+2, output a pair (A, c) such that
A(x+c) = g0 where c ∈ Z∗

p. We say that the (t, ε, q)-SDH assumption holds in G
if no t-time algorithm has advantage at least ε in solving the q-SDH problem in
G.

3 Security Model

3.1 Hierarchical Identity-Based Encryption (HIBE)

An `-level HIBE scheme consists of four algorithms: (Setup, Extract, Encrypt,
Decrypt). The algorithms are specified as follows:

– Setup: On input a security parameter 1λs , the TA generates 〈msk, param〉
where msk is the randomly generated master secret key and param is the
corresponding public parameter.

– Extract: On input an identity vector ID (where |ID| < `), it returns the
corresponding private key SKID (corresponds to param).

– Encrypt: On input the recipient identity ID (where |ID| ≤ `) and a message
M , it outputs a ciphertext σ corresponding to param.

– Decrypt: On input the private key of the recipient ID (where |ID| ≤ `),
SKID, and a signature σ, it decrypts to a message M .

The security of a HIBE consists of two requirements, namely Correctness and
Indistinguishability. They are defined as follows:
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Correctness. We require that M ← Decrypt(SKID, Encrypt(ID,M)) for any
message M , any private key SKID and its corresponding identity ID.

Indistinguishability. We define the indistinguishability against adaptive iden-
tity and adaptive chosen ciphertext attack for HIBE (IND-ID-CCA), as in the
following game. We define the following oracles:

– KEO(ID): The Key Extraction Oracle with input ID (where |ID| ≤ `) will
output the secret key SKID corresponding to msk.

– DO(ID, σ): The Decryption Oracle with input recipient identity ID (where
|ID| ≤ `) and ciphertext σ will output a message M .

The Game is defined as follows:

1. (Phase 1.) S generates system parameter param and gives param to Adver-
sary A.

2. (Phase 2.) A queries KEO and DO in arbitrary interleaf.
3. (Phase 3.)A gives two messages M∗

0 , M∗
1 and identity ID∗ (where |ID∗| ≤ `)

to S. S randomly picks a bit b and returns σ∗ = Encrypt(ID∗,M∗
b ) to A.

4. (Phase 4.) A queries KEO and DO in arbitrary interleaf.
5. (Phase 5.) A delivers a guess b̂.

A wins if the following holds: b̂ = b and ID∗ or its prefix has never been
queried to the KEO and (ID∗, σ∗) has never been queried to the DO. A’s ad-
vantage is its probability that he wins over half.

Definition 3 (Chosen Ciphertext Security). The HIBE scheme is (t, ε, qe, qd)-
IND-ID-CCA secure if no t-time attacker has advantage at least ε in the Indis-
tinguishability Game with qe queries to KEO and qd queries to DO.

We said that if the above Indistinguishability Game does not allow decryption
oracle query, then the HIBE scheme is only chosen plaintext (IND-ID-CPA)
secure.

3.2 Hierarchical Identity-Based Signatures (HIBS)

An `-level HIBS scheme consists of four algorithms: (Setup, Extract, Sign, Verify).
The Setup and Extract are the same as HIBE. The other algorithms are specified
as follows:

– Sign: On input the private key of the signer ID, SKID and a message M , it
outputs a signature σ corresponding to param.

– Verify: On input the signer identity vector ID, a message M and signature
σ, it outputs > if σ is a valid signature of M corresponding to ID, param.
Otherwise, it outputs ⊥.

The security of a HIBS consists of two requirements, namely Correctness and
Existential Unforgeability. They are defined as follows:
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Correctness. We require that > ← Verify(ID, M , Sign(SKID,M)) for any
message M , any private key SKID and its corresponding identity ID.

Existential Unforgeability. We define the existential unforgeability against
adaptive identity and adaptive chosen message attack for HIBS (EU-ID-CMA),
as in the following game. We define the following oracles:

– KEO(ID): same as HIBE.
– SO(ID,M): The Signing Oracle with input signer ID (where |ID| ≤ `) and

message M outputs a signature σ such that Verify(ID,M, σ) = >.

The Game is defined as follows:

1. (Phase 1.) Simulator S generates system parameter param and gives it to
Adversary A.

2. (Phase 2.) A queries KEO(ID) and SO(ID,M), in arbitrary interleaf.
3. (Phase 3.)A delivers a signature σ∗ for signer identity ID∗ (where |ID∗| ≤ `)

and message M∗. ID∗ or its prefix have never been input to a KEO and σ∗

should not be the output of SO(ID∗,M∗).

A wins if he completes the Game with> = Verify(ID∗,M∗, σ∗). Its advantage
is its probability of winning.

Definition 4. The HIBS scheme is (t, ε, qe, qs)-EU-ID-CMA secure if no t-time
adversary A has an advantage at least ε in the EU-ID-CMA game using qe

queries to KEO and qs queries to SO.

4 The proposed HIBE scheme

4.1 Construction of a `-HIBE scheme

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. We use a multiplicative notation for the operation in G and GT .

Setup: The PKG selects a random generator g ∈ G and randomly chooses
h1, . . . , h` ∈R G and α ∈R Zp. It sets g1 = gα and ui = hα

i for i ∈ {2, . . . , `}.
The public parameters param and master secret key msk are given by

param = (g, g1, h1, . . . , h`, u2, . . . , u`) msk = α

Extract for the 1st level: To generate a private key for identity ID1 ∈ Zp, the
PKG generates random r1 ∈R Zp and computes

a1 =
(
h1g

−r1
)1/(α−ID1)

and outputs private key (a1, r1).
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Extract for other levels: To generate a private key for identity (ID1, . . . , IDi) ∈ Zi
p,

the PKG generates random ri ∈R Zp and computes

ai = a1(
i∏

k=2

F (k)IDk)ri , bi = (g1g
−ID1)ri , ci,i+1 = F (i+1)ri , . . . , ci,` = F (`)ri

where F (k) = ukhk
−ID1 . The private key is (ai, bi, ci,i+1, . . . , ci,`, r1). The private

key can also be generated by its parent (ID1, . . . , IDi−1) having the secret key
ai−1, bi−1, ci−1,i, . . . , ci−1,`. He generates random t ∈R Zp and computes

ai = ai−1 · cIDi
i−1,i · (

i∏
k=2

F (k)IDk)t, bi = bi−1 · (g1g
−ID1)t,

ci,i+1 = ci−1,i+1 · F (i + 1)t, . . . , ci,` = ci−1,` · F (`)t

This private key is a properly distributed private key for ri = ri−1 + t.

Encrypt: To encrypt m ∈ GT using identity (ID1, . . . , IDi) ∈ Zi
p, the sender

randomly chooses s ∈R Zp and constructs the ciphertext

C = (C1, C2, C3, C4) =
(

gs
1g

−sID1 , e(g, g)s , m · e(g, h1)−s , (
i∏

k=2

F (k)IDk)s
)

Decrypt: To decrypt the ciphertext C with a private key (ai, bi, ci,i+1, . . . , ci,`, r1),
he computes the plaintext as

m = C3 · e(C1, ai) · C2
r1/e(bi, C4)

4.2 Security

Correctness. The correctness is as follows:

e(C1, ai) · C2
r1/e(bi, C4) = e(gs

1g
−sID1 , a1(

i∏
k=2

F (k)IDk)ri) · e(g, g)sr1/e(g1g
−ID1 ,

i∏
k=2

F (k)IDk)sri

= e(gs
1g

−sID1 , a1) · e(g, g)sr1

= e(gs(α−ID1), (h1g
−r1)1/(α−ID1)) · e(g, g)sr1

= e(g, h1)s

Theorem 1. The scheme is (t′, ε′, qe)-IND-ID-CPA secure if the truncated de-
cision (t, ε, q)-ABDHE assumption holds, with

q = qe + 1, t′ = t−O(texp · q2), ε′ = ε + qqe/p

where texp is the time required to compute the exponent in G.
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Proof. Assume there is a (t, ε, qe)-adversary A exists. We are going to construct
another PPT B that makes use of A to solve the truncated decisional q-ABDHE
problem with probability at least ε′ and in time at most t′.
B takes as input a random truncated decisional q-ABDHE challenge (g′, g′q+2,

g, g1, . . . , gq, Z), where Z is either e(gq+1, g
′) or a random element of GT (recall

that gi = gαi

). In order to use A to solve for the problem, B needs to simulate
the oracles for A. B does it in the following way.
Setup. B generates a random polynomial f(x) ∈ Zp[x] of degree q. It sets h1 =
gf(α), computing h1 from (g, g1, . . . , gq). B picks random µi ∈R Z∗

p and sets hi =
gµi , ui = gµi

1 for i = 2, . . . , `. It sends the param = (g, g1, h1, . . . , h`, u2, . . . , u`)
to A. We can see that param is uniformly random and the public key has a
distribution identical to that in the real world.
Oracles Simulation. B simulates the extraction oracle as follow:
(Extraction oracle.) Upon receiving a query for a private key of a first level
identity I1, if I1 = α, B uses α to solve the truncated decisional q-ABDHE
problem immediately. Otherwise, let FI1(x) denote the (q−1)-degree polynomial
(f(x)− f(I1))/(x− I1). B sets the private key to be:

r1 = f(I1), a1 = gFI1 (α).

This is a valid private key as

gFI1 (α) = g(f(α)−f(I1))/(α−I1) = (h1g
−f(I1))1/(α−I1).

Upon receiving a query for a private key of an identity (Ī1, . . . , Īi) for some
i ∈ {2, . . . , `}, if Ī1 = α, B uses α to solve the truncated decisional q-ABDHE
problem immediately. Otherwise, B computes A−1 ∈ Zp and a polynomial g(x) ∈
Zp[x] of degree q − 1 such that

f(x) = g(x)(x− Ī1) + A−1.

Note that B aborts if A−1 = 0. B randomly picks r̄ ∈ Z∗
p and computes:

ai = gg(α)+r̄
∑i

k=2 µk Īk , bi = gr̄, r1 = A−1,

ci,i+1 = hr̄
i+1, . . . , ci,` = hr̄

`

This is a valid secret key since we set a random r = r̄/(α− Ī1):

bi = gr(α−Ī1) = (g1g
−Ī1)r

ai = gg(α)+r̄
∑i

k=2 µk Īk

= g
f(α)−A−1

x−Ī1
+r̄

∑i
k=2 µk Īk

=
(
h1g

−r̄1
)1/(α−Ī1) ·

( i∏
k=2

h
(α−Ī1)Īk

k

)r

=
(
h1g

−r̄1
)1/(α−Ī1) ·

( i∏
k=2

F (k)Īk
)r

ci,j = hr̄
j = h

r(α−Ī1)
j = F (j)r
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Notice that B records the input and output of the extraction oracle, and
return the same output for duplicate inputs.

Challenge. A outputs two messages M0,M1 and an identity (I∗1 , . . . , I∗i ). If I∗1 =
α, B uses α to solve the truncated decisional q-ABDHE problem immediately.
Otherwise, B randomly picks a bit b ∈ {0, 1} and computes a private key (a1, r1)
for I∗1 as in the extraction oracle. Let f2(x) = xq+2 and let F2(x) = (f2(x) −
f2(I∗1 ))/(x− I∗1 ), which is a polynomial of degree q + 1. B sets:

C∗
1 = g′

f2(x)−f2(I
∗
1 )

, C∗
2 = Z · e(g′,

q∏
i=0

gF2,iα
i

),

C∗
3 = Mb/e(C∗

1 , a1)C∗
2

r1 , C∗
4 = C∗

1

∑`
i=2 µkI∗k

where F2,i is the coefficient of xi in F2(x). It sends (C∗
1 , C∗

2 , C∗
3 , C∗

4 ) to A as the
challenge ciphertext.

Let s = (loggg
′)F2(α). If Z = e(gq+1, g

′), then C∗
1 = gs(α−I∗1 ), C∗

2 = e(g, g)s,
Mb/C∗

3 = e(C∗
1 , a1)C∗

2
r1 = e(g, h1)s, and C∗

4 = gs(α−I∗1 )
∑`

i=2 µkI∗k = (
∏i

k=2 F (k)I∗k )s.
Then (C∗

1 , C∗
2 , C∗

3 , C∗
4 ) is a valid, appropriately-distributed challenge to A.

Output Calculation. Finally, A outputs a guess b′ ∈ {0, 1}. If b = b′, B outputs
0 as the solution to the truncated decisional q-ABDHE problem. Otherwise, B
outputs 1.

Probability Analysis. The probability analysis follows the proof in [11]. Let I
be a set consisting of α, I∗1 and the (first level) identities queried by A. Then
we have |I| ≤ q + 1.As f(x) is a uniformly random polynomial of degree q, the
values {f(a) : a ∈ I} are uniformly random and independent. Therefore the keys
issued by B are appropriately distributed.
B aborts if A−1 = 0 in the polynomial g(α). As f is a randomly distributed

polynomial, a random input of Ī1 will make A−1 = 0 (that is, Ī1 is a root of
f(x)) with probability q/p. Therefore B does not aborts with probability qqe/p

As our security model here does not consider anonymity, the challenge ci-
phertext contain no information regarding the bit b.

Time Complexity Analysis. B’s overhead is dominated by computing gFI1 (α) in
the extraction oracle queries. Each such computation requires O(q) exponentia-
tions in G. Since A makes at most q − 1 queries, t = t′ +O(texp · q2). ut

4.3 Full CCA Secure HIBE

Boneh et al. [4] showed that an adaptive CCA-secure `-level hierarchical identity
based encryption (HIBE) scheme Π can be constructed from a CPA-secure `+1-
level HIBE scheme Π ′ and a strong one-time signature scheme Sig. Although
their theorem and proof is only in the weaker “selective-ID” model, they remark
that their theorem can be easily derived for the stronger model we are using
now.
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Boneh et al. further suggest that a secure encapsulation scheme and a se-
cure message authentication code (MAC) can be used together in order to re-
place the strong one-time signature scheme. Therefore our CCA-secure HIBE
has a short ciphertext. Using our CPA-secure 2-HIBE, efficient encapsulation
and MAC scheme in [4], we have an efficient CCA-secure IBE scheme. It is com-
parable to the construction in [11] which uses Cramer-Shoup type construction
to achieve CCA security.

5 The proposed HIBS scheme

5.1 Construction of a `-HIBS scheme

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. We use a multiplicative notation for the operation in G and GT .

Setup: The PKG selects a random generator g ∈ G and randomly chooses
h1, . . . , h` ∈R G and α ∈R Zp. It sets g1 = gα and ui = hα

i for i ∈ {2, . . . , `}.
The public parameters param and master secret key msk are given by

param = (g, g1, h1, . . . , h`, u2, . . . , u`) msk = α

Extract for the 1st level: To generate a private key for identity ID1 ∈ Zp, the
PKG generates random r1 ∈R Zp and computes

a1 =
(
h1g

−r1
)1/(α−ID1)

and outputs private key (a1, r1).

Extract for other levels: To generate a private key for identity (ID1, . . . , IDi) ∈ Zi
p,

the PKG generates random ri ∈R Zp and computes

ai = a1(
i∏

k=2

F (k)IDk)ri , bi = (g1g
−ID1)ri , ci,i+1 = F (i+1)ri , . . . , ci,` = F (`)ri

where F (k) = ukhk
−ID1 . The private key is (ai, bi, ci,i+1, . . . , ci,`, r1). The private

key can also be generated by its parent (ID1, . . . , IDi−1) having the secret key
ai−1, bi−1, ci−1,i, . . . , ci−1,`. He generates random t ∈R Zp and computes

ai = ai−1 · cIDi
i−1,i · (

i∏
k=2

F (k)IDk)t, bi = bi−1 · (g1g
−ID1)t,

ci,i+1 = ci−1,i+1 · F (i + 1)t, . . . , ci,` = ci−1,` · F (`)t

This private key is a properly distributed private key for ri = ri−1 + t.
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Sign: To sign a message m ∈ Z∗
p using identity (ID1, . . . , IDi) ∈ Zi

p with secret key
(ai, bi, ci,i+1, . . . , ci,`+1, r1), the signer randomly chooses s ∈R Zp and constructs
the signature

σ1 = ai · cm
i,i+1 · (F (i + 1)m

i∏
k=2

F (k)IDk)s, σ2 = bi · (g1g
−ID1)s,

The signature is (σ1, σ2, r1)

Verify: To verify the signature (σ1, σ2, r1) for message m and identity (ID1, . . . , IDi),
he compares if

e(g1g
−ID1 , σ1)

?= e(g, h1) · e(g, g)−r1 · e(σ2, F (i + 1)m
i∏

k=2

F (k)IDk)

5.2 Security

Correctness. The correctness is as follows:

e(g1g
−ID1 , σ1) = e(gα−ID1 , ai · cm

i,i+1 · (F (i + 1)m
i∏

k=2

F (k)IDk)s)

= e(gα−ID1 , a1) · e(gα−ID1 , (
i∏

k=2

F (k)IDk)ri · F (i + 1)mri · (F (i + 1)m
i∏

k=2

F (k)IDk)s)

= e(gα−ID1 , (h1g
−r1)1/(α−ID1)) · e(σ2, F (i + 1)m

i∏
k=2

F (k)IDk)

= e(g, h1) · e(g, g)−r1 · e(σ2, F (i + 1)m
i∏

k=2

F (k)IDk)

Theorem 2. The scheme is (t′, ε′, qe, qs)-EU-ID-CMA secure if the (t, ε, q)-SDH
assumption holds, with

q = qe + 1, t′ = t−O(texp · q(q + qs)), ε′ = ε + q(q + qs)/p

where texp is the time required to compute the exponent in G.

Proof. Assume there is a (t, ε, qe)-adversary A exists. We are going to construct
another PPT B that makes use of A to solve the q-SDH problem.
B takes as input a random q-SDH challenge (g, g1, . . . , gq) (recall that gi =

gαi

). In order to use A to solve for the problem, B needs to simulate the oracles
for A.
Setup. B generates a random polynomial f(x) ∈ Zp[x] of degree q. It sets h1 =
gf(α), computing h1 from (g, g1, . . . , gq). B picks random µi ∈R Z∗

p and sets hi =
gµi , ui = gµi

1 for i = 2, . . . , `. It sends the param = (g, g1, h1, . . . , h`, u2, . . . , u`)
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to A. We can see that param is uniformly random and the public key has a
distribution identical to that in the real world.
Oracles Simulation. B simulates the extraction oracle as follow:
(Extraction oracle.) Upon receiving a query for a private key of a first level iden-
tity I1, if I1 = α, B uses α to solve the q-SDH problem immediately. Otherwise,
let FI1(x) denote the (q − 1)-degree polynomial (f(x)− f(I1))/(x− I1). B sets
the private key to be:

r1 = f(I1), a1 = gFI1 (α).

This is a valid private key as

gFI1 (α) = g(f(α)−f(I1))/(α−I1) = (h1g
−f(I1))1/(α−I1).

Upon receiving a query for a private key of an identity (Ī1, . . . , Īi) for some
i ∈ {2, . . . , `}, if Ī1 = α, B uses α to solve the q-SDH problem immediately. B
computes A−1 ∈ Zp and a polynomial g(x) ∈ Zp[x] of degree q − 1 such that

f(x) = g(x)(x− Ī1) + A−1.

Note that B aborts if A−1 = 0. B randomly picks r̄ ∈ Z∗
p and computes:

ai = gg(α)+r̄
∑i

k=2 µk Īk , bi = gr̄, r1 = A−1,

ci,i+1 = hr̄
i+1, . . . , ci,` = hr̄

`

This is a valid secret key since we set a random r = r̄/(α− Ī1):

bi = gr(α−Ī1) = (g1g
−Ī1)r

ai = gg(α)+r̄
∑i

k=2 µk Īk

= g
f(α)−A−1

x−Ī1
+r̄

∑i
k=2 µk Īk

=
(
h1g

−r̄1
)1/(α−Ī1) ·

( i∏
k=2

h
(α−Ī1)Īk

k

)r

=
(
h1g

−r̄1
)1/(α−Ī1) ·

( i∏
k=2

F (k)Īk
)r

ci,j = hr̄
j = h

r(α−Ī1)
j = F (j)r

Notice that B records the input and output of the extraction oracle, and
return the same output for duplicate inputs.
(Signing oracle.) Upon receiving a query for a signature for users (I1, . . . , Ii) and
message m, B computes as if m = IDi+1 and runs as in the extraction oracle
for identity (I1, . . . , Ii, Ii+1).
Output Calculation. Finally, A outputs a signature (σ∗1 , σ∗2 , r∗) for message m∗

and signer ID∗ = (I∗1 , . . . , I∗i ) for some i ∈ {1, . . . , `}.
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Let G(x) denote the (q − 1)-degree polynomial (f(x) − r∗)/(x − I∗1 ). Then
we have G(α) =

∑q−1
k=0 Akαk + A−1/(α − I∗1 ). B aborts if A−1 = 0. Otherwise,

B computes A−1, A0, . . . , Aq−1. Therefore, we have:

σ∗1 = a1(F (i + 1)m∗
i∏

k=0

F (k)I∗k )rk+s

= g(f(α)−r∗)/(α−I∗1 )(gµi+1(α−I∗1 )m∗
i∏

k=0

gµk(α−I∗1 )I∗k )ri+s

σ∗2 = g(α−I∗1 )(ri+s)

Therefore B can compute:

W =
σ∗1

σ∗2
µi+1m∗+

∑i
k=0 µkI∗k

= g(f(α)−r∗)/(α−I∗1 )

= g
∑q−1

k=0 Akαk+A−1/(α−I∗1 )

Finally B computes:

g1/(α−I∗1 ) =
( W

g
∑q−1

k=0 Akαk

)1/A−1

Then B returns (g1/(α−I∗1 ), I∗1 ) as the solution to the q-SDH problem.

Probability Analysis. The probability analysis follows the proof in [11]. Let I
be a set consisting of α, I∗1 and the (first level) identities queried by A. Then
we have |I| ≤ q + 1.As f(x) is a uniformly random polynomial of degree q, the
values {f(a) : a ∈ I} are uniformly random and independent. Therefore the keys
issued by B are appropriately distributed.
B aborts if A−1 = 0 in the polynomial G(α). As f is a randomly distributed

polynomial, a random input of r∗ will make A−1 = 0 with probability q/p (as
there is at most q roots of the polynomial in Z∗

p). Notice that if A uses r∗ from
extraction oracle output with input ID = {I∗1 , I2, . . . , Ii} (not a subset of ID∗),
B forces A−1 6= 0 in the above simulation. Also, neither querying extraction
oracle with just ID∗

j for j ≥ 2 nor using its output will force B to abort.
Similarly B aborts if A−1 = 0 in the polynomial g(α). As f is a randomly

distributed polynomial, a random input of Ī1 will make A−1 = 0 (that is, Ī1 is
a root of f(x)) with probability q/p.

Therefore B does not aborts with probability q(qe + qs + 1)/p = q(q + qs)/p.

Time Complexity Analysis. B’s overhead is dominated by computing gFI1 (α) in
the extraction oracle queries. Each such computation requires O(q) exponentia-
tions in G. Since A makes at most qs+q−1 queries, t = t′+O(texp ·q(q+qs)). ut
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6 Conclusion

In this paper, we proposed a HIBE scheme which achieves the strongest secu-
rity model without random oracles. It relies on the q-ABDHE assumption. Its
ciphertext size is constant while the size of public parameters is independent to
the number of bit of identity. In addition, we also proposed a HIBS scheme with
same security level and space efficiency as the HIBE scheme. It relies on the q-
SDH assumption. Both are the first in the literature to achieve these advantages,
regardless of the scheme in [17] which requires a non-standard assumption.

References

1. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In Proc. EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223–238. Springer-Verlag, 2004.

2. D. Boneh and X. Boyen. Secure Identity Based Encryption Without Random
Oracles. In Proc. CRYPTO 2004, volume 3152 of Lecture Notes in Computer
Science, pages 443–459. Springer-Verlag, 2004.

3. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In Proc. EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 440–456. Springer-Verlag, 2005.

4. D. Boneh, R. Canatti, S. Halevi, and J. Katz. Chosen-
Ciphertext Security from Identity-Based Encryption.
http://crypto.stanford.edu/ dabo/abstracts/ccaibejour.html, 2005.

5. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In
Proc. CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
213–229. Springer-Verlag, 2001.

6. D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In Proc. CT-RSA 2005, volume 3376 of Lecture
Notes in Computer Science, pages 87–103. Springer-Verlag, 2005.

7. R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. In Proc. EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 255–271. Springer-Verlag, 2003.

8. R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. In Proc. EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 207–222. Springer, 2004.

9. S. Chatterjee and P. Sarkar. HIBE with Short Public Parameters Secure in the
Full Model Without Random Oracle. To appear in ASIACRYPT 2006, 2006. Also
available at http://eprint.iacr.org/2006/279.

10. S. S. Chow, L. C. K. Lui, S. Yiu, and K. P. Chow. Secure Hierarchical Identity
Based Signature and Its Application. In ICICS 2004, volume 3269 of Lecture Notes
in Computer Science, pages 480–494. Springer, 2004.

11. C. Gentry. Practical identity-based encryption without random oracles. In Proc.
EUROCRYPT 2006, volume 4404 of Lecture Notes in Computer Science, pages
445–464. Springer-Verlag, 2006.

12. C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Proc. ASI-
ACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 548–566.
Springer-Verlag, 2002.



Title Suppressed Due to Excessive Length 15

13. S.-H. Heng and K. Kurosawa. k-Resilient Identity-Based Encryption in the Stan-
dard Model. In Proc. CT-RSA 2004, volume 2964 of Lecture Notes in Computer
Science, pages 67–80. Springer-Verlag, 2004.

14. J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. In Proc.
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
466–481. Springer-Verlag, 2002.

15. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Proc.
CRYPTO 84, volume 196 of Lecture Notes in Computer Science, pages 47–53.
Springer-Verlag, 1984.

16. B. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Proc. EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 114–127. Springer-Verlag, 2005.

17. T. H. Yuen and V. K. Wei. Constant-Size Hierarchical Identity-Based Signa-
ture/Signcryption without Random Oracles. Cryptology ePrint Archive, Report
2005/412, 2005. http://eprint.iacr.org/.


