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Abstract

The NIST codebook-based deterministic random bit generators are analyzed in the context of
being indistinguishable from random. Upper and lower bounds based on the probability of distin-
guishing the output are proven. These bounds imply that the security of the designs are bounded
by the codebook width, or more precisely on the property that the codebooks act like a random
permutation, as opposed to their underlying security parameter or key length. This paper concludes
that these designs fail to support security parameters larger than the codebook width.

1 Introduction

Random bit generation is an essential element to almost every cryptographic system. A fundamental
aspect of cryptographic systems are not only should the key or secret be hard to determine given visible
aspects of the system, but also that it be hard to guess or divine. The security of many protocols
hinge on the availability of random values. The collection of random bits is typically expensive relative
to the deterministic aspects of modern computing. Because of this most cryptographic systems use a
deterministic random bit generator DRBG or pseudo-random number generator PRNG seeded from an
entropy source.

In turn, cryptographic systems are designed around a chosen security parameter k. This security pa-
rameter determines to what extent we expect a DRBG to behave like a true random source. A DRBG
for a cryptographic application should be indistinguishable from a true random number generator to
a computationally bounded adversary, where the bound is related to the security parameter k of the
overall system.

This paper constructs lower and upper bounds on the advantage function against the codebook DRBGs
constructed in NIST SP800 90 [11]. It uses the previous bounds given by Bellare, Desai, Jokiph and
Rogaway [4] to derive an upper bound. It also analyzes one adversarial distinguisher to compute a lower
bound on the advantage function.

1.1 Background

The PRNGs defined in ANSI X9.17 [12] and FIPS 186 [1] are being deprecated in favor of new standards
that account for more flexibility in terms of security parameters and to perform like a general purpose
PRNG instead of an application specific PRNG. These new standards are being developed as deter-
ministic random bit generators (DRBGs) both by the ANSI X9 F1 working group in X9.82 [5], and by
NIST in FIPS SP800-90 [11]. These standards contain multiple designs based on different cryptographic
primitives, such as a secure hash function, an HMAC construction, a codebook construction, and elliptic
curve cryptography.



One such construction is the codebook based DRBG, that uses a construction similar to counter-mode
encryption.

1.2 Contributions of the paper

The main goal is to analyze the codebook-based DRBG in terms of its indistinguishability from random.
In so it applies the work of Bellare et al [4] to generate an upper bound on the advantage function,
under an assumption of independence between the events of subsequent calls to the underlying DRBG
generate function. The paper then describes a concrete distinguisher algorithm that can be used by an
adversary and then computes the advantage function to the adversary for this distinguisher to arrive at
a lower bound.

The paper speculates that the design was inspired by the Bellare et al[4] paper. The results of that
paper indicate an upper bound on a real-or-random experiment on chosen plain text attacks on the
counter-mode of a symmetric encryption algorithm. The paper expresses the advantage function based
on the width of the underlying codebook, not the security parameter of the codebook. It is precisely
this subtlety that leads to the bounds on an advantage function which is a non-negligible function in
terms of the security parameter whenever that parameter exceeds the codebook width.

1.3 Related Work

There have been numerous papers on analyzing the output of codebook ciphers and the counter-mode
of codebook ciphers, Bellare et al [4], and McGrew[9], in addition to a great number of other papers.

There has been additional work on the theory of PRNGs or DRBGs, such as the work of Blum Blum
Shub [7] on the construction of PRNGs with provable properties and the work of Desai, Hevia and Yin
[2] to generate a framework for security of PRNGs. There has been additional work on straightforward
attacks on construction by Kelsey, Schneir, Wagner and Hall [6].

The work of Bleichenbacher pointed out a weakness of using application specific DRBGs as a general
purpose DRBG. This led to some of the new design requirements on the current set of DRBGs in
proposed standards and the changes in FIPS 186-2 [10].

While the above work has examined various DRBGs, constructed security frameworks for them, and
have analyzed various modes of operations for block ciphers, this paper applies those to the specific
constructions and requirements of the codebook-based DRBG defined in SP800 90.

1.4 Outline of the paper

The paper contains a brief introduction that contains a background and highlights the specific contribu-
tions of this paper relative to the previous work done in the area. It contains three more sections. The
second section is notations and preliminaries that builds up some of the language from previous related
works, and defines the general experiment that will be used to distinguish a DRBG from random.

The third section contains the bulk of the contribution of this paper. It gives a brief description of
the NIST SP800-90 codebook-based DRBG, both in a pictorial and algorithmic way. It redefines the
experiment from Section 2 in a way more expressive of the specific underlying construction of the DRBG.
It then uses this expression and relates it to previous work to construct an upper bound on the adversarial
function. The construction of the lower bound is done by explicitly defining a distinguisher algorithm
that can be utilized by an adversary to distinguish the output of the DRBG from a random source.
This distinguisher algorithm is used to construct a lower bound on the adversary function. These two



bounds, lower and upper, are then used in analyzing the effectiveness of the DRBG design in regards to
stated design goals.

The fourth section contains a brief summary and some suggestions for follow on analysis.

2 Notations and Preliminaries

We will adopt notation and system descriptions from both Ueli’s [8], and Bellare et al’s [4] papers. A
random variable will be denoted by a capital letter X and concrete values by the lower case letter, x.
For a set S, an S-sequence is a sequence s = sp, So, ... (finite or infinite). Let ppeon(n,t) denote the
probability that ¢ independent random variables with uniform distribution from a set of size n does not
contain a collision. When 2 < n we have

t—1 .
(] _ 2
pncoll(n7t) = H <1 - ’fl) >e ;”

i=1

And, when t << n this lower bound also serves as a good approximation. We denote peo;i(n,t) as the
analogous probability that a collision occurs, peon(n,t) < %,

good approximation when ¢ << n.

and again the upper bound serves as a

We will consider systems that upon request produce an output Y; € ). Any such system can be
stateless or contain internal memory, be deterministic or probabilistic. Our deterministic systems will
be endowed with a state space X, and we can think of our deterministic function f; : ¥ — Y x 3, where

(Yi, Si) = f(Si-1).

Our basic goal will be to distinguish between two Y-systems G and R, by means of a computationally
bounded distinguisher algorithm D, making at most ¢ requests for output from the system. In general
the distinguisher receives output Y7,Y5,...Y, and then produces a binary decision. For now we will
assume the algorithm is possibly unbounded. In general G is a deterministic random bit generator
system, like our DRBGs, and R will denote a true random source.

A DRBG Model: A DRBG G€& can be expressed as a tuple of algorithms G€ = (I, G). An initialization
algorithm I : N — ¥ which takes as input a security parameter k£ € N, and returns a state Sy € 3, the
state space. In our case the state will be a compound state of a key K; and a digest V;. The generation
function G takes as input the state S; = (V;, K;), and returns an output Y;, and a next state S;yi,
where |Y;| < ML, for some maximum length M L. In general we will restrict our discussion to just the
generate function G, and will drop the full model notation G€ and the security parameter. The security
parameter will return in the conclusion in analyzing the suggested bounds on an advantage function.

Ideally a polynomially bounded adversary cannot distinguish a deterministic J-system G, from a random
Y-system R by observing the output. An adversary is allowed to query the system. In the first game,
each query is responded to by a deterministic random bit string Y; «— G. In the second game, each
query is responded to with Y; «— R. We call such an experiment Explé)D, and we depict it in Figure
1.

We can then think about the advantage to an adversary running the algorithm D,

Advgp = |Pr(Expgp = 1) — Pr(Expg p = 1)]

We define the advantage function of the scheme G as,

Advg(t,q) = mDax{AdvG’D}
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Figure 1: Expl(’;)D

where the maximum is over all distinguisher algorithms D,with storage/time complexity ¢, making at
most g queries to the oracle. Here we accept the convention the ¢ represents both total running time of
the experiment, plus the size of storage required for the experiment.

Definition 1. (negligible function) A function f : N — R is called negligible if for all ¢ € N, there
exists an integer n. such that f(n) <n=¢ for all n > n..

We can use this notion of negligible function from [3] to define indistinguishable from random.

Definition 2. indistinguishable from random. We claim a DRBG GE = (1, G) is indistinguishable
from random if the Advg(t,q) is negligible in respect to the security parameter k used to instantiate the

DRBG.

3 Analysis of NIST SP800 90 CTR DRBG

The counter-mode codebook deterministic random bit generator(CTR-DRBG), described in NIST’s
SP800 90 contains the two basic functions, Initialize, and Generate. We will concentrate on the generate
function. The DRBG is defined around a codebook E : V x K — V, y = E(z, K), where z,y € V and
|x] = |y| = L the codebook width, and K € K is the key, |K| = k the security parameter, effectively.
The DRBG uses the codebook function E to operate on a state (V, K) € V x K. We use a simplified
version that does not accept input, and since the analysis is not dependent on the reseeding algorithm
we will ignore the logic that pertains to it.
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Figure 2: NIST SP800 90 CTR DRBG Generate, DRBG_E



A simplified generate function can be described as follows.

Simplified NIST CTR_DRBG Generate Function

INPUT: A requested length less then the maximum allowable length, current state (V, K).

OUTPUT: A length-many bits string, and updated state (V, K).

1. temp+— NULL
2. While (len(temp) <length

(a) V — (V 4+ 1)mod 2%
(b) temp «— temp|E(V, K)

w

. (V,K) — Update(V, K)

4. Return Y =length-leftmost bits of temp

The Update function in the generate function behaves nearly identical to the generate function. A
simplified version is presented here that takes no additional input from the calling function.

Simplified NIST CTR_DRBG Update Function

INPUT: A current state (V, K),

OUTPUT: A new state (V, K).

—_

length «— |K|+|V].
2. (temp) «— NULL
3. While (len(temp) <length

(a) V — (V + 1)mod 2F
(b) temp «— temp|E(V, K)

4. temp «— length-leftmost bits of temp
5. K «— leftmost |K| bits of temp

6. V «— rightmost |V| bits of temp

7. return (V, K).

We will assume that the generate function produces an output of ¥; where |Y;| < ML where ML is the
maximum output length in bits of a single call to the generate function. Since this analysis is confined
to the codebook counter mode DRBG detailed in NIST SP800 90, ML = 2! where [ = 13 for 3DES and
19 for AES implementations. We will denote the maximum output in blocks as M.

We provide the following reference table of lengths here to support their use throughout the remainder
of the paper.



L - The codebook width in bits of E

M - The maximum number of blocks the generate algorithm DRBG_E
will return

ML - The maximum length in bits that the generate algorithm DRBG_E
will return

q - The number of queries made to the oracle in an experiment.

3.1 An Upper Bound

We will restrict ourselves to NIST codebook-based DRBG models DRBG_£ = (DRBG_IE, DRBG.E).
Where E represents the underlying codebook algorithm, DRBG _IE the initialization algorithm, and
DRBG_E the generate algorithm. The maximum output length of DRBG_E will generate on a single
call is ML = M - L where L is the block bit-length and M is the maximum number of blocks. Let
b€ {0,1}, and D be a distinguisher algorithm.

Consider the experiment Exp%RBGE’D, which can now be expressed as,

e A current state of the DRBG_E is given (V, K).
e for j =1,... we have on(i{o7 1ML,
e for j =1,... we have Y} € {0,1}** — DRBG_E.

o d— DY, Y}, ...
The advantage of the distinguisher is

AdvprBG ED = ‘PT(EIPIIDRBG,E,D =1) - PT(EIPODRBG,E,D =1)|

We can then re-define the advantage of the family for any integers t, q as,

Advpree E(t, q) = mgX{AdUDRBG,E,D (@)}

where the maximum is over all distinguishing algorithms D with time complexity ¢ each making at most
q queries. At times when ¢ is not germane we will drop it from the notation.

The output of the DRBG DRBG_E can be viewed as keystream of the underlying codebook E in
counter mode. Under this perspective the previous work of Bellare, et al we can apply Proposition 8
and Theorem 13.

Proposition 8 [PRPs are PRFs] For any permutation family P with length L,

AdoPT T (t, M) < Ado® (¢, M) + M227 L1

Proposition 8 provides bounds by which a pseudorandom permutation, (prp) can be viewed as a pseu-
dorandom function, (prf). Now theorem 13 originally proven for left-or-right experiments of chosen



plaintext attacks, also applies to the real-or-random experiments and chosen plaintext attacks. Here we
state a simplified version of the theorem that allows more seamless application to our experiments.

Theorem 13 [Security of CTR using a pseudorandom function] Suppose E is a pseudorandom
family with input and output length L, then for any ¢ and M,

AdvGrim (6, M) < 2 Advl ! (t, M)

This theorem shows that the using the codebook algorithm E in counter mode CTRJ[E], the advantage
of a real-or-random ror experiment using chosen plaintext attack cpa is not greater than twice the
advantage of distinguishing the function E from a pseudorandom function.

And so we can combine Theorem 13 and Proposition 8 to get the following inequality and adopted
notation.

Adverr (t, M) < 2 Advly? (t, M) < 2 (Advy™(t, M) + M?27 L),

These advantage functions inequalities are based on experiments of chosen plaintext attacks on distin-
guishing output based on real or random. However, the observation that the output from the NIST
CTR_DRBG is simply keystream is analogous to being able to launch a chosen plaintext attack. Further
if we assume our codebook E cannot be distinguished from a prp, then Advly” (¢, M) = 0.

Using these results, the DRBG constructs DRBG_E, the above observation about their output streams,
and the fair assumption that the underlying codebooks cannot be distinguished from a random permu-
tation we get

Advprea E(t, 1) < Adverrg)(t, M) <2- (M*27571) = M?27".

We can run multiple experiments of this variety, and while the underlying key will be changed subject
to the update function, the individual experiments will not be effected. In this way we can get an upper
bound for Advprea_£(t,¢). Under this case we can ignore the ¢t values and consider only how many
times we make a request for to the generate function in the experiment, when the experiment variable b
does not change. We will express this advantage as Advprpa_g(¢), and look to express an upper bound
in terms of Advprpa_E(', 1), by considering the worse case, that the events are independent. Then

AdvprBG E(,q) <1—(1—¢€)?

where € is AdvprBg_E(+,1). However, since € is very small relative to % we can approximate this as

AdvprBa E(+,q) < q-€=q- AdvprBG E(- 1)

Thus whenever we are dealing with a specific NIST codebook DRBG we have
Advpree.e(q) < ¢ AdverrE) (M) < q- (M?*27F)

3.2 A Lower Bound

First we will construct a distinguisher algorithm D on a generation function G. Then we will apply
this distinguisher to the specific case when G is a DRBG_E, a NIST CTR_DRBG construction with
codebook E.



Our distinguisher D will operate on output from a )Y-system independently searching for an L — bit
collision. If no collision is found the algorithm will output 1, if a collision is found the algorithm will
output 0.

Distinguisher D

INPUT: A g-tuple of values {Y7,Y5,...Y,}, each of bit length M L.

OUTPUT: A result € {0,1}

1. Set i «—1

Express Y; = ti|ty] ... |t4,, M-blocks of bit length L
If t} =t} for any 0 < j <1 < M return result=0
Set i —1i+1

If i < ¢ GOTO 2

A

return result= 1.

Now we can think of the how this distinguisher can be used on a NIST CTR_DRBG, DRBG_E with
output length ML where L is the block length and M is the maximum number of output blocks that
DRBG_E will generate on a single call, and let b € {0,1}, and D be the above distinguisher algorithm.

In the case b =1,

Y} =E(V + 1(mod 2%), K)|E(V + 2(mod 2%), K))]...
| E(V + M(mod 2%), K)

and since E is a proper ECB, we are guaranteed not to repeat whenever M < 2!2%. In this case the
distinguisher will never see an L-bit block collision within and M L-bit output string Y, and will always
output 1, therefore Pr(Expprpe pp(?) =1) = 1.

Now when b = 0, we want to compute Pr(Emp%RBGE’D (¢) =1). Well our distinguisher will output 1
whenever it fails to detect an L-bit block collision in any of the ¢ output strings. In the random case
we have a small probability of a collision. If we consider just one such on, then we first compute the

probability that each L-bit block is unique Pyeon ; (2%, M)

M-—1 i 2
Prcon (25, M) = J] (1 - gr) m eI
=1

And so the probability of a collision PcollJ(QL, M) =~ 2]{—131 So, after ¢ queries of M L-bit blocks, the
probability of observing a collision within a single query response, P,y

M2
Pcoll =1- (1 - Pcoll,j)q ~q- PCO”J ~q- <2L+1>

So, the distinguisher has a probability of output 1 after g such queries



M2
PT’(ExP%RBG,E,D(Q) =1)=1-FPour1l-gq- (2L+1)

So we can compute the advantage function,

Advpreac E,D(q) = |P7’(E$P113RBG,E,D(Q) =1) - PT(El"p(lJ)RBG,E,D((J) =1)]

M2
”1—(1—?(2“1))
M?
Zq'<2L+1)

So this distinguisher algorithm gives us a lower bound for the advantage function,

Advpree.g,p(¢) < AdvprBG E(Q)

This gives us a fairly tight bound on the advantage function
M? M?
q- <2L+1) < AdvprBc.E(9) < - (2,;>

3.3 Examining the bounds

So, now that we have some bounds on the advantage functions of distinguishing output from the codebook
DRBG constructions from random, we can evaluate what this might mean to the specific instantiations
defined in NIST SP800-90. In particular NIST defines four models DRBG_3DES, DRBG_AES128,
DRBG_AES192, and DRBG_AES defined to accept the following security parameters for instantiation.

Model/Security 112 128 192 256
DRBG 3DES v 0 0 0
DRBG_AES128 v v 0 0
DRBG_AES192 v v v 0
DRBG_AES256 v v v v

Table 1: NIST CTR_DRBG Instantiation Function

In Table 1, v'symbolizes the instantiation function is defined and ) is interpreted as undefined. So for
majority of the matrix we can think of the security bounds on the DRBG _E the generate function when
E € {3DES, AES128, AES192, AES256}, regardless of the security parameter. In all defined cases
we look for the advantage function to be negligible in the security parameter k € {112,128,192, 256}.

In the case we are dealing with 3DES ML = 2'3 and since L = 64 = 25, M = 27. We can consider ¢ in
terms of 2™ for some m. Then we have the following more concrete bounds

1
250—m

351i=m < AdvbrBa spes(2™) <



And similarly for AES128, AES192, and AES256 we have ML = 2'2 and L = 128 = 27, M = 22, and

S0
1 m 1
9105—m < AdvprBG_aEs(2™) < 9104—m

The advantage function is negligible in these constructs in the case where the codebook width is the
security parameter. However, since the indistinguishable aspects of the security is based on the underly-
ing primitive being a pseudorandom permutation on the codebook width, the overall security seems to
be diminished from the advertised security level whenever the keylength is greater than the codebook
width. We can think of how this value might change based on the value of ¢, a summary of results are
given.

Model Supported Security k& | Queries ¢ | Lower Bound | Upper Bound
DRBG_3DES 112 232 2-19 2-18
DRBG_AES128 112, 128 218 207 256
DRBG_AES192 112, 128, 192 2064 2—H 2—10
DRBG_AES256 112, 128, 192, 256 280 2725 2—21

Table 2: Security Bounds on NIST CTR_DRBG Designs

4 Conclusion

It appears as though these designs were geared towards taking advantage of some of the provable security
properties of codebooks in counter-mode. However, the security proofs for counter-mode symmetric
encryption defined advantage functions that were negligible on the width of the codebook as opposed
to the size of the security parameter or keysize. Therefore the security of the codebook-based DRBGs
in NIST SP800-90 provide less than the advertised security whenever the security parameter is greater
than the codebook width. This would effectively yield the following table summary of instantiation.

Model 112 128 192 256
DRBG_3DES - 0 0 0
DRBG_AES128 + +* [} [
DRBG_AES192 + 4-* - 1]
DRBG_AES256 + +* -

Figure 3: Summary of results based on NIST codebook DRBGs

The — represents an allowable codebook and security parameter, but where the security is not delivered.
A + represents an allowable codebook and security parameter and where the security appears to be
preserved. And the () represent an undefined instantiation of the DRBG. The * should be noted since
in these cases their does seem to be some natural advantage given to the adversary by the virtue of the
fact that a 128-bit block cipher in counter-mode can be distinguish from a random function.

The upper bound used an assumption, which while fair, could use more investigation. It was assumed
that the update process changing the state during calls to the DRBG generate function results in
independence between consecutive queries, regardless of whether or not a reseed operation occurs. This
has the potential of raising the upper bound.
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