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Abstract

The goal of a sovereign joinoperation is to compute a
query across independent database relations such that noth-
ing beyond the join results is revealed. Each relation in-
volved in a sovereign join is owned by a distinct entity and
the party posing the query is distinct from the relation own-
ers; it is not permitted to access the original relations.

One notable recent research result proposed a secure
technique for executing sovereign joins. It entails data own-
ers sending their relations to an independent database ser-
vice provider which executes a sovereign join with the aid
of a tamper-resistant secure coprocessor. This achieves the
goal of preventing information leakage during query execu-
tion. However, as we show in this paper, the proposed tech-
nique is actually insecure as it fails to prevent an attacker
from learning the query results. We also suggest some mea-
sures to remedy the security problems.

1 Introduction

At ICDE 2006, Agrawal, et al. [1] proposed a tech-
nique for secure execution of so-calledsovereign joins.
The proposed technique uses an outsourced database server
equipped with a tamper-resistant secure coprocessor (SC)
which performs the actual query execution. A set of spe-
cific security goals was stated in [1] and several algorithms
were proposed that satisfied these goals. However, as we
will show in the paper, even when the stated goals are sat-
isfied, it is still possible for attackers to violate the security
requirements of sovereign joins and learn query results.

A sovereign join can be viewed as a join over two (or
more) independent (sovereign) relations such that no infor-
mation – other than the query results – is revealed. Assum-
ing a simple two-relation sovereign join, four parties are in-
volved: the two relation owners, the party posing the query,
hereafter called aclient, and the party executing the query,
hereafter called aserver. The basic tenets of a sovereign
join are as follows:1

1The applicability of sovereign joins will become clearer with examples

1. The owners of the two relations do not trust each other:
no data from one relation should be learned by the
owner of the other.

2. The party posing the join is distinct from both owners.

3. The server is not trusted at all, by anone; it should learn
nothing about the two relations and query results.

4. Neither relation owner should learn anything about the
query results, even if it colludes with the server.

We now describe the model for executing sovereign joins
in [1]. It is predicated upon the server being equipped with
a tamper-resistant secure coprocessor. (Section 2 gives an
overview of secure coprocessors). A server hosts databases
belonging to owners who do not have the resource capac-
ity, such as database administrators and software/hardware,
to manage their own databases. However, a server is not
trusted with owners’ data. Therefore, all relations are en-
crypted prior to being outsourced to a server. The secure co-
processor (SC) is a tamper-resistant programmable compu-
tational device hosted at each server. Its memory cannot be
accessed and its internal computations cannot be observed.
However, due to limited on-board storage capabilities, en-
crypted relations are stored outside SC, at the server. It is
therefore possible for the server to monitor data flowing to
and from theSC, i.e., the I/O pattern. The main security
goal in [1] is to prevent information leaks through this I/O
pattern. Figure 1 depicts the key elements of the sovereign
join model.

1.1 Sovereign Join Applications

While the main contribution of this paper is the secu-
rity analysis of [1], we consider sovereign joins to be a
very useful primitive/operation. To this end, we present two
motivating (though still imagined) example applications for
sovereign joins:

1. A commercial flight from Canada to Mexico is sched-
uled to make a transit stop in the United States. A

below (see section 1.1).



Database


Client


Server


SC


ODB Provider


Internet


Figure 1. Sovereign Join Model from [1]
Thicker arrows indicate physical, and thinner
— logical, connections.

U.S. Government agency (e.g., TSA) needs to check
whether any passengers are on a certain secret (e.g.,
FBI-maintained) terrorist watch list. TSA is not per-
mitted to learn about members of this list who are not
among the passengers and neither about passengers
who are not on the terrorist watch list. A sovereign
join is necessary to compute the intersection between
the passengers and terrorists, without disclosing either
the entire watch list or the full passenger manifest to
TSA. In this case, the client is TSA and the two own-
ers are the airline and FBI.

2. The U.S. Department of Justice (DoJ) is required to pe-
riodically check whether any undercover secret agency
(e.g, CIA) employees have been convicted of any
felony in any of the 50 United States. A sovereign
join between an individual state’s (e.g., California’s)
records of convicted felons and the list of CIA agents
would disclose any such ”rogue” agents. At the same
time, the list of convicted felons is kept secret by Cali-
fornia, the list of agents is kept secret by CIA and DoJ
should learn neither, unless the two sets intersect. In
this case, the client is DoJ and the two owners are CIA
and California.

As can be seen from the above examples, the ability to
execute sovereign joins is of great value when the client pos-
ing the query (TSA and DoJ, respectively) is not allowed to
learn any data which does not satisfy its join predicates. In
general, we anticipate that sovereign joins are most valuable
in environments, such as healthcare and law enforcement ,
where privacy is particularly important.

1.2 Organization:

this paper is organized as follows: section 2 intro-
duces the concept and the capabilities of a secure copro-
cessor. Section 3 summarizes the sovereign join scheme
by Agrawal, et al. [1], including the assumed security
and threat model. In section 4 we describe our attacks on
that proposed scheme. Section 5 describes how to protect
against our attacks and section 6 briefly discusses some re-
lated work.

2 Secure Coprocessors

A secure coprocessor (SC) is a general-purpose com-
puter trusted to perform its computations undisturbed, even
when an adversary has direct physical access to the device
[2]. Besides a processor, an SC is typically equipped with
non-volatile secure memory, input devices, a backup bat-
tery and a cryptographic accelerator. It is fully enclosed in
a tamper-resistant container (shielding it from any type of
penetration) that cannot be opened without triggering sen-
sors, which incapacitate the device and securely erase all
cryptographic material. An SC is usually meant to be in-
stalled on a host computer to provide asecure perimeter
wherein sensitive data may be stored and processed. The
physical security of an SC stems from it being equipped
with a multitude of sensors that can detect a variety of phys-
ical attacks.

The IBM PCI-X product is among the most advanced
SCs available on the market today [3]. It is equipped with
a 266 Mhz processor and 64 MB on-board memory, as
well as 16 MB of read-only flash-based ROM. One area
where the PCI-X SC does not perform well is host-to-
card communication (host being the server where SC is in-
stalled). Although the card throughput is not specified in
[3], we can base the performance on its predecessor, the
IBM 4758 [2], which had reported throughput of around
600-800 Kbytes/sec [4].

Since the SC is a programmable unit, it is possible for
it to execute a query execution engine. Indeed, this has al-
ready been done in [5] where an entire query processor is
run on a smartcard, a device even more restricted in its re-
sources than an SC such as IBM PCI-X. One of the biggest
hurdles associated with implementing a database engine on
such an SC is its limited onboard storage. Consequently,
either only small relations can be processed (which is unre-
alistic) or there must be some dependence upon external (to
the SC) and thus untrusted storage. For this reason, in the
sovereign join scheme of [1] Agrawal, the server stores the
(encrypted) relations while theSC executes cryptographic
and query processing operations.



3 Sovereign Join Approach of [1]

The sovereign join approach in [1] takes advantage of the
third-party server which hosts outsourced database and a se-
cure coprocessor at that server. The main goal is to prevent
leakage of information through I/O patterns during query
processing. In particular, the server should not learn which
(encrypted) input tuples are included in query results. Data
owners should not learn each other’s relation contents, and
server should learn nothing about either relation or query
results. What we show in this paper is that, even if informa-
tion leakage through I/O patterns is prevented, the approach
suggested in [1] is vulnerable to attacks which result in pri-
vate data being revealed to unauthorized parties.

3.1 Model

We now recap the query model in [1]. There are players
PA, PB, PC , server, andSC. PA andPB are owners of the
sovereign relations over which the join is executed. They
are neither authorized to view the query results nor each
other’s data.PC is the client, the party that poses the query
and receives the query result.PC does not have access to re-
lations owned byPA andPB , and is not authorized to learn
anything beyond the joined tuples.Server is the database
service provider that receives encrypted relations fromPA

andPB . SC is the secure coprocessor hosted at the server.
It is responsible for executing the join and is trusted with the
relations’ contents. It shares encryption keys with relation
ownersPA andPB . We letA andB denotePA andPB ’s
relations, respectively, and useC to refer to the query result
received byPC .

PC transmits its join query to the server. We assume
thatPC andSC communicate over an authentic and private
channel, i.e., all communication is encrypted and authenti-
cated (which means that they share, or can establish, pair-
wise secret keys). The server may already have encrypted
relationsA and B; if not, it asksPA and PB to upload
their respective relations. It then forwards the query toSC

which decrypts and commences with query execution.SC

requests encrypted tuples from relationsA andB from the
server during query processing.SC writes tuples back to
the server as part of intermediate computation and eventu-
ally outputs the query resultsC. C is encrypted under a key
shared betweenSC andPC . Finally, the server sendsC to
PC .

Throughout query execution, the untrusted server can
monitor exactly which tuples are read bySC. These tu-
ples are encrypted and the server does not learn the con-
tents. However, if tuples are merely selected and written
out, the server can easily determine the exact records from
A that match (via join predicate) records fromB. The tech-
nique in [1] involves masking selected tuples by ensuring

thatSC ’s tuple access pattern is identical for all sovereign
joins overA andB. This is accomplished through a com-
bination of multiple passes over the data and oblivious sort-
ing. (An oblivious sorting algorithm sorts a list of elements
such that no observer learns the relationship between the
position of any element in the original list and the output
list [1]. Bitonic sort is an example of an oblivious sorting
algorithm [6].) It is assumed that, even if one of the rela-
tion owners (PA or PB) colludes with the server, they are
still unable to learn anything useful. We consider the same
threat model in section 4.

3.2 Clarification

Due to conflicting statements in [1], it is difficult to pre-
cisely define which parties the authors attempt to protect
against. In the above recap of the model, we labeledPC as
the querier and recipient of query resultC, andPA andPB

as the data owners. However, in [1] it is initially stated:

“... the recipient of the join resultcan be a party
different from one of the data providers ...”

This implies that it is possible forPA or PB to be recipients
of C. In a later paragraph, the initial statement is contra-
dicted as follows:

“... the resultC is sent to the partyPC , which is
not PA or PB ...”

Upon further thought, it is clear that neitherPA norPB can
be the recipient of query resultsC, if the security goals in
[1] are to be met. Otherwise, there would be no use in pro-
tecting against information leakage from I/O patterns be-
tween server andSC, since a data owners who colludes
with the server and learnsC, they already know exactly
which tuples that contribute to the query result. In this pa-
per we proceed with the understanding that a recipient of
query resultC cannot be one of the data owners.

3.3 Query Result Size

An important observation regarding [1] is that the size
of query results is rigid. Basically, the number of tuples re-
turned from a join on relationsA andB is N ∗ |A|, where
N represents the maximum number of tuples fromB that
match any tuple fromA. The size of results sets is therefore
always a factor of|A|. This makes it easy to determineN
when knowing the number of tuples inA (i.e. |A|). In a
sovereign join, where relations are joined over an attribute
unique within each relation (such as thesocial security num-
ber), N can only take on values 1 (if one or more tuples
join) and 0 (if none of the tuples join). As such, no tuple
from one relation can satisfy the join predicate with more
than one tuple from another relation.



4 Attack

We now describe a simple attack that targets the
sovereign join algorithm in [1]. The attacker is one of the
relation ownersPA colluding with the server with the goal
of learning query results. This fits within the attack model in
[1]. In other words, we show how the attacker can identify
the joined tuples. The attack therefore violates the security
requirements of sovereign joins.

We imagine the following sovereign join: relationA con-
tains a list of convicted felons in the state of California
while B represents a list of undercover secret agents. Both
relations contain an attributeSSN (social security number),
and the join is computed across this attribute, i.e., anequi-
join. The agents’ identities need to remain secret unless they
are convicted felons, in which case they must be identified.
Similarly, the list of convicted felons needs to remain secret
due to privacy concerns. The U.S. Department of Justice
(DoJ), a party with no relation to the owners ofA andB,
poses the sovereign join query.

As mentioned in section 3.3, the size of query result sets
is rigid – a multiple of one of the input relation’s size. We
exploit this feature as it allows the attacker to monitor the
size of the query replyC which is sent from the server to
PC .

The attacker’s goal is to learn whether a particular tuple
(TA) joins with a tuple from the other relation. The defini-
tion of a sovereign join states thatPA should not have access
to relations other than its own. By learning the relationship
between a tuple inA and tuples from the other relation, the
attacker violates the security of sovereign joins. We assume
that the attacker (PA and the server) knows the query that
PC poses. This is a reasonable assumption since the only
attribute in each relation is the SSN. The attacker wants to
find out whether a particular tupleTA in A joins with any
tuple inB.

One flavor of the attack occurs when the attacker (PA)
manipulates its own relation by adding and removing tuples
at will. For example,PA can construct a relationA′ that
consists of the single tupleTA. OnceA′ andB have been
uploaded to the server,SC proceeds to execute the join and
produces the query resultC which the server forwards to
PC . The server (under attacker’s control) can easily observe
the size ofC. If |C| = null (i.e. N = 0) then the attacker
knows thatTA did not match any tuple inB. However, if
|C| = |A′|, the attacker concludes thatTA matches at least
one tuple in inB. In other words, one of the felons inA is
indeed is an undercoversecret agent. Therefore, the attacker
(PA in collusion with the server) learns information which
it is not authorized to know.

A natural and trivial fix is to impose a policy whereby
the SC does not execute join queries where one of the in-
put relations is short, e.g., less thant records. However, the

same attack would apply, with one minor modification: in
addition toTA, the attacker inserts a number (> t) of fake
random tuples into relationA′. The query is executed as
above and the resultisolates TA as the only tuple that deter-
mines the query results. The attack therefore still succeeds.

Another flavor of the attack occurs if the attacker knows
that PA and PB ’s tuple attributes are unique within their
own relationsA andB, respectively. We now assume that
the attacker (again,PA in collusion with the server)cannot
simply manipulate its relationA by truncating it to a single
tuple or by padding it with fake tuples (perhaps because a
single tuple would look suspicious). In this case, since all
tuple attributes are unique, the parameterN can be at most
1, meaning that the query resultC is either of size|A| or 0
(if N = 0). We again assume thatPA wants to determine
whether a given tupleTA in A matches some tuple inB.
PA adds a duplicate ofTA to a copy of relationA, creat-
ing A′. When the sovereign join is run overA andB, it
returns a query result set of size|C| = N ∗ |A|. If |C| = 0,
the attacker knows that there is match forTA. However, if
X 6= 0, the attacker has no idea whetherTA has a match in
B (since many other tuples inA might have matches). That
is why the attacker re-runs the same sovereign join query
overA′ andB. If the result setC′ is such that|C′| > |C|,
the attacker concludes thatTA has a certain match inB.

Knowledge of the client’s query One assumption in the
above attacks is that the attacker knowsPC ’s query. This
is reasonable when the purpose of the sovereign join query
is clear from the context, as in our example of the terrorist
watch-list and the airline passenger manifest. Another ex-
ample is when the attacker can deduce the query based on
the attributes in a relation. For example, if a relation con-
tained the single attribute – “social security number”, then
one can expect an equi-join query based on this attribute.

Replay of the client’s query Our second attack makes a
further assumption that the attacker can replay the client’s
query. (Recall that the genuine query is run overA and
B and the replayed version is run overA′ andB.) This
assumption might be considered too strong (i.e., unrealis-
tic) but nothing in the sovereign join model of [1] explicitly
precludes it. In fact, authenticating the origin of the query
by the SC is not sufficient. Suppose that we fix the problem
by asking the clientPC to always sign its query requests.
However, even signed messages can be easily replayed. To
protect against replays, each client query request must be
timely and fresh. These are standard notions in crypto-
graphic protocols and, instead of treating them here, we re-
fer to [7]. Suffice it to say that timeliness and freshness ne-
cessitate the use of sequence numbers and timestamps. The
former complicate matters by requiring the SC to maintain
per client state (i.e., a current sequence number) while the



latter require the SC to maintain synchronized clocks with
all clients. These are clearly non-negligible costs. An alter-
native to using timestamps and/or sequence numbers is to
impose a real-time challenge-based authentication protocol
between the client and the SC. This would also impose cer-
tain costs upon the SC since to authenticate the client (and
its query) the SC would need to challenge the client which
would translate into (at least) a 3-message protocol and the
need to keep state in the interim.

5 Suggested Fix

Our attacks rely on observing the size of the query re-
sults returned by algorithms in [1]. These results sets reveal
the parameterN : the maximum number of tuples from rela-
tion B that match any tuple inA. One possible fix that can
make the algorithms resistant to our attacks is the addition
of random noise to the query results, e.g., by padding with
superfluous (encrypted) random tuples. This would make
the size of the result non-deterministic; the same query run
multiple times over identical relations would yield different
result sets.

A more secure fix would involve always returning results
of the same size, i.e.,N ∗ |A|. This would completely ad-
dress our attacks. However, such a solution is clearly im-
practical due to the significant additional communication
and storage overhead. A better approach would allow the
client to specify the desired security level through apri-
vacy parameter which would indicate the amount of noise
(padding) inserted into the query results by the SC. This
way, the client could achieve a custom trade-off between
efficiency and privacy. It is also quite likely that more effec-
tive fixes can be obtained by re-engineering the algorithms
in [1] to take into account the attacks presented in this paper.

6 Related Work

To the best of our knowledge, the work of Agrawal, et
al. [1] is first to propose a solution for sovereign joins based
upon an outsourced database model and a 3rd party server
equipped with an SC. The closest related work, although
more general in scope, is the use of logic circuits for se-
cure function evaluation [8, 9]. The goal of a two-party se-
cure function evaluation protocol is to enable partiesX and
Y , with respective inputsx andy, to jointly compute some
function F (x, y), such that they learn only the function’s
output, but nothing about each other’s inputs2. Although it
has been shown that logic circuits can be used to securely
compute complex functions, such work remains mostly of

2Although we here give a definition of secure function evaluation in
terms of two-party protocols, they can just as well ben-party protocols,
where functionF () takesn inputs.

theoretical interest. Albeit, a recent result by Malkhi, etal.
[10] has alluded to the existence of more practical solutions.

In [4], Smith and Safford explore the practicality of
achieving private information retrieval (PIR) through the
use of secure coprocessors hosted at a database server. The
goal is to completely hide – from the database server and
outsiders – any identifying information about tuples se-
lected during query execution. The performance measure-
ments are based on the IBM 4758 coprocessor [2], which
was the state-of-the-art at the time of publication. The con-
clusion of [4] is that the IBM 4758 is technologically in-
sufficient when attempting to realize a practical and secure
database query model. The main claimed bottleneck is the
relatively high latency between the coprocessor’s crypto-
graphic engine and its internal RAM. The developers of
the follow-up to IBM 4758, the next generation IBM PCIX
coprocessor, acknowledge that this bottleneck still remains
[3].

A more general outsourced database model was intro-
duced by Haĉigümus, et al. in [11]. That work focused
on enabling an untrusted server to execute queries over
encrypted data, using techniques such as data bucketiza-
tion and homomorphic encryption functions [12]. It pro-
vided a solid foundation for further research in this area,
but does have a few major disadvantages. These include the
computation and bandwidth overheads incurred by query-
ing clients, as well as the limitations in types of queries
that can be executed by the server. A more recent paper
[13] suggested overcoming some of these shortcomings by
extending the model with a secure coprocessor. A high-
level architecture for this new model was suggested along
with sketches for the execution of basic database operations;
however, no performance analysis or experimental results
have been provided.

7 Conclusion

In this paper we revisited the work by Agrawal, et al.
[1] which focused on secure execution of sovereign joins
achieved through the use of a secure coprocessor hosted at
a 3rd party database server. We demonstrated that the pro-
posed technique is subject to an attack that allows a data
owner to learn query results and, thus, the other owners’
data. This represents a violation of the sovereign join goals.
Two slightly different attack scenarios were described, both
based upon observing the size of the query result.
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