
The Wrestlers Protocol

A simple, practical, secure, deniable protocol for

key-exchange

Mark Wooding
mdw@distorted.org.uk

2 November 2006

Abstract We describe and prove (in the random-oracle model) the security of a simple but
efficient zero-knowledge identification scheme, whose security is based on the computational
Diffie-Hellman problem. Unlike other recent proposals for efficient identification protocols,
we don’t need any additional assumptions, such as the Knowledge of Exponent assumption.

From this beginning, we build a simple key-exchange protocol, and prove that it achieves
‘SK-security’ – and hence security in Canetti’s Universal Composability framework.

Finally, we show how to turn the simple key-exchange protocol into a slightly more complex
one which provides a number of valuable ‘real-life’ properties, without damaging its security.

Contents

1 Introduction 3
1.1 Desirable properties of our

protocols 3
1.2 Asymptotic and concrete

security results 4
1.3 Formal models for key-

exchange 4
1.4 Outline of the paper 5

2 Preliminaries 6
2.1 Miscellaneous notation . . . 6
2.2 Groups 6
2.3 Bit strings and encodings . 6
2.4 Games, adversaries, and

oracles 7
2.5 The random oracle model . 7
2.6 Notation for algorithms . . 8
2.7 Diffie-Hellman problems . 8
2.8 Example groups and en-

codings 11
2.9 Symmetric encryption . . . 12
2.10 Simulations 13

3 A zero-knowledge identification
scheme 17
3.1 Description 17

3.2 Security 18
3.3 An identity-based identifi-

cation scheme 25
3.4 Comparison with the pro-

tocol of Stinson and Wu . . 26

4 A simple key-exchange protocol 27
4.1 Overview 27
4.2 Security model and secu-

rity definition 29
4.3 Security 31
4.4 Insecure protocol variants . 33
4.5 Deniability 35
4.6 Practical issues 40

5 Conclusions 42

6 Acknowledgements 43

7 References 43

A Proofs 47
A.1 Proof of theorem 4.3.1 . . . 47
A.2 Proof of theorem 4.5.1 . . . 54
A.3 Sketch proof of single-key

protocol for secure chan-
nels 55

1. Introduction

1 Introduction

This paper proposes protocols for identification and authenticated key-exchange.

An identification protocol allows one party, say Bob, to be sure that he’s really talking to
another party, say Alice. It assumes that Bob has some way of recognising Alice; for instance,
he might know her public key. Our protocol requires only two messages – a challenge and
a response – and has a number of useful properties. It is very similar to, though designed
independently of, a recent protocol by Stinson and Wu; we discuss their protocol in section 3.4.

Identification protocols are typically less useful than they sound. As Shoup [Sho99] points
out, it provides a ‘secure ping’, by which Bob can know that Alice is ‘there’, but provides
no guarantee that any other communication was sent to or reached her. However, there
are situations where this an authentic channel between two entities – e.g., a device and a
smartcard – where a simple identification protocol can still be useful.

An authenticated key-exchange protocol lets Alice and Bob agree on a shared secret, known
to them alone, even if there is an enemy who can read and intercept all of their messages, and
substitute messages of her own. Once they have agreed on their shared secret, of course, they
can use standard symmetric cryptography techniques to ensure the privacy and authenticity
of their messages.

1.1 Desirable properties of our protocols

Our identification protocol has a number of desirable properties.

• It is simple to understand and implement. In particular, it requires only two messages.

• It is fairly efficient, requiring two scalar multiplications by each of the prover and verifier.

• It is provably secure (in the random oracle model), assuming the intractability of the
computational Diffie-Hellman problem.

Our key-exchange protocol also has a number of desirable properties.

• It is fairly simple to understand and implement, though there are a few subtleties. In
particular, it is symmetrical. We have implemented a virtual private network system
based on this protocol.

• It is efficient, requiring four scalar multiplications by each participant. The communica-
tion can be reduced to three messages by breaking the protocol’s symmetry.

• It is provably secure (again, in the random oracle model), assuming the intractability of
the computational Diffie-Hellman problem, and the security of a symmetric encryption
scheme.

• It provides perfect forward secrecy. That is, even if a user’s long-term secrets are
compromised, past sessions remain secure.

• It is deniable. It is possible to construct simulated transcripts of protocol executions
between any number of parties without knowing any of their private keys. The sim-
ulated transcripts are (almost) indistinguishable from real protocol transcripts. Hence, a
transcript does not provide useful evidence that a given party was really involved in a
given protocol execution.

3

The Wrestlers Protocol

1.2 Asymptotic and concrete security results

Most security definitions for identification (particularly zero-knowledge) and key-exchange
in the literature are asymptotic. That is, they consider a family of related protocols, indexed
by a security parameter k; they that any polynomially-bounded adversary has only negligible
advantage. A polynomially-bounded adversary is one whose running time is a bounded
by some polynomial t(k). The security definition requires that, for any such polynomially-
bounded adversary, and any polynomial p(k), the adversary’s advantage is less than p(k) for
all sufficiently large values of k.

Such asymptotic notions are theoretically interesting, and have obvious connections to
complexity theory. Unfortunately, such an asymptotic result tells us nothing at all about the
security of a particular instance of a protocol, or what parameter sizes one needs to choose for
a given level of security against a particular kind of adversary. Koblitz and Menezes [KM06]
(among other useful observations) give examples of protocols, proven to meet asymptotic
notions of security, whose security proofs guarantee nothing at all for the kinds of parameters
typically used in practice.

Since, above all, we’re interested in analysing a practical and implemented protocol, we
follow here the ‘practice-oriented provable security’ approach largely inspired by Bellare and
Rogaway, and exemplified by [BKR94, BGR95, BR95a, BR96, BCK96, BDJR97]; see also [Bel99].
Rather than attempting to say, formally, whether or not a protocol is ‘secure’, we associate with
each protocol an ‘insecurity function’ which gives an upper bound on the advantage of any
adversary attacking the protocol within given resource bounds.

1.3 Formal models for key-exchange

Many proposed key-exchange protocols have turned out to have subtle security flaws. The
idea of using formal methods to analyse key-exchange protocols begins with the logic of
Burrows, Abadi and Needham [BAN89]. Their approach requires a ‘formalising’ step, in
which one expresses in the logic the contents of the message flows, and the beliefs of the
participants.

Bellare and Rogaway [BR94] describe a model for studying the computational security of
authentication and key-exchange protocols in a concurrent setting, i.e., where multiple parties
are running several instances of a protocol simultaneously. They define a notion of security in
this setting, and show that several simple protocols achieve this notion. Their original paper
dealt with pairs of parties using symmetric cryptography; they extended their definitions in
[BR95b] to study three-party protocols involving a trusted key-distribution centre.

Blake-Wilson, Johnson and Menezes [BWJM97] applied the model of [BR94] to key-exchange
protocols using asymmetric cryptography, and Blake-Wilson and Menezes [BWM98] applied
it to protocols based on the Diffie-Hellman protocol.

The security notion of [BR94] is based on a game, in which an adversary nominates a challenge
session, and is given either the key agreed by the participants of the challenge session, or
a random value independently sampled from an appropriate distribution. The adversary’s
advantage – and hence the insecurity of the protocol – is measured by its success probability
in guessing whether the value it was given is really the challenge key. This challenge-session
notion was also used by the subsequent papers described above.

Bellare, Canetti and Krawczyk [BCK98] described a pair of models which they called the

4

1. Introduction

AM (for ‘authenticated links model’) and UM (‘unauthenticated links model’). They propose
a modular approach to the design of key-exchange protocols, whereby one first designs a
protocol and proves its security in the AM, and then applies a authenticating ‘compiler’ to the
protocol which they prove yields a protocol secure in the realistic UM. Their security notion is
new. They define an ‘ideal model’, in which an adversary is limited to assigning sessions fresh,
random and unknown keys, or matching up one session with another, so that both have the
same key. They define a protocol to be secure if, for any adversaryA in the AM or UM, there is
an ideal adversary I , such that the outputs of A and I are computationally indistinguishable.

In [Sho99], Shoup presents a new model for key-exchange, also based on the idea of
simulation. He analyses the previous models, particularly [BR94] and [BCK98], and highlights
some of their inadequacies.

Canetti and Krawczyk [CK01] describe a new notion of security in the basic model of [BCK98],
based on the challenge-session notion of [BR94]. The security notion, called ‘SK-security’,
seems weaker in various ways than those of earlier works such as [BR94] or [Sho99]. However,
the authors show that their notion suffices for constructing ‘secure channel’ protocols, which
they also define.

In [Can01], Canetti describes the ‘universal composition’ framework. Here, security notions
are simulation-based: one defines security notions by presenting an ‘ideal functionality’. A
protocol securely implements a particular functionality if, for any adversary interacting with
parties who use the protocol, there is an adversary which interacts with parties using the
ideal functionality such that no ‘environment’ can distinguish the two. The environment
is allowed to interact freely with the adversary throughout, differentiating this approach
from that of [BCK98] and [Sho99], where the distinguisher was given only transcripts of the
adversary’s interaction with the parties. With security defined in this way, it’s possible to
prove a ‘universal composition theorem’: one can construct a protocol, based upon various
ideal functionalities, and then ‘plug in’ secure implementations of the ideal functionalities
and appeal to the theorem to prove the security of the entire protocol. The UC framework
gives rise to very strong notions of security, due to the interactive nature of the ‘environment’
distinguisher.

Canetti and Krawczyk [CK02] show that the SK-security notion of [CK01] is equivalent
to a ‘relaxed’ notion of key-exchange security in the UC framework, and suffices for the
construction of UC secure channels.

The result of [CK02] gives us confidence that SK-security is the ‘right’ notion of security for
key-exchange protocols. Accordingly, SK-security is the standard against which we analyse
our key-exchange protocol.

1.4 Outline of the paper

The remaining sections of this paper are as follows.

• Section 2 provides the essential groundwork for the rest of the paper. It introduces
important notation, and describes security notions and intractability assumptions.

• Section 3 describes our zero-knowledge identification protocol and proves its security.

• Section 4 describes the simple version of our key-exchange protocol, and proves its
security and deniability. It also describes some minor modifications which bring practical
benefits without damaging security.

5

The Wrestlers Protocol

• Finally, section 5 presents our conclusions.

2 Preliminaries

2.1 Miscellaneous notation

We write F [D → R] for the set of all functions with domain D and range R. We write N<n =
{ i ∈ Z | 0 6 i < n } = {0, 1, . . . , n− 1} for the set of nonnegative integers less than n.

2.2 Groups

Let (G,+) be a cyclic group1of prime order q, and generated by an element P . We shall write
the identity of G as 0G, or simply as 0 when no ambiguity is likely to arise. Thus, we have
〈P 〉 = G and qP = 0. Any X ∈ G can be written as X = xP for some x ∈ N<q .

2.3 Bit strings and encodings

Let Σ = {0, 1} be the set of binary digits. Then Σn is the set of n-bit strings, and Σ∗ the set of
all (finite) bit strings. If x ∈ Σn is a bit string, we write its length as |x| = n. For a bit string
x ∈ Σn, and for 0 6 i < n, we write x[i] as the ith bit of x. The empty string is denoted λ.

Let x and y be two bit strings. If |x| = |y| = n, we write x⊕ y to mean the bitwise exclusive-or
of x and y: if z = x ⊕ y then |z| = n, and z[i] = (x[i] + y[i]) mod 2 for 0 6 i < n. We write
x ‖ y to mean the concatenation of x and y: if z = x ‖ y then |z| = |x| + |y| and z[i] = x[i] if
0 6 i < |x| and z[i] = y[i− |x|] if |x| < i 6 |x| + |y|.

Finally, we let ⊥ be a value distinct from any bit string.

We shall want to encode group elements X ∈ G and indices x ∈ I = N<|G| as bit strings. To
this end, we shall assume the existence of integers ℓG, ℓI > 0 and functions

eS :S → ΣℓS and dS : ΣℓS → S ∪ {⊥} for S ∈ {G, I}.

with the following properties.

• The functions are unique and unambiguous, i.e., for any t ∈ ΣℓS , we have

dS(t) =

{

s if there is some s ∈ S such that t = eS(s), or

⊥ if no such s exists.

• The functions should be efficient to compute. Indeed, we shall be assuming that the time
taken for encoding and decoding is essentially trivial.

Note that, as we have defined them, all encodings of group elements are the same length, and
similarly for encodings of indices. This is necessary for the security of our protocols.

We shall frequently abuse notation by omitting the encoding and decoding functions where it
is obvious that they are required.

1 We find that additive group notation is easier to read. In particular, in multiplicative groups, one ends up with
many interesting things tucked away in little superscripts.

6

2. Preliminaries

2.4 Games, adversaries, and oracles

Many of the security definitions and results given here make use of games, played with
an adversary. An adversary is a probabilistic algorithm. In some games, the adversary is
additionally equipped with oracles, which perform computations with values chosen by the
adversary and secrets chosen by the game but not revealed to the adversary. We impose
limits on the adversary’s resource usage: in particular, the total time it takes, and the number
of queries it makes to its various oracles. Throughout, we include the size of the adversary’s
program as part of its ‘time’, in order to model adversaries which contain large precomputed
tables.

The games provide models of someone trying to attack a construction or protocol. For
security, we will either define a notion of ‘winning’ the game, and require that all adversaries
have only a very small probability of winning, or we consider two different games and require
that no adversary can distinguish between the two except with very small probability.

Our proofs make frequent use of sequences of games; see [Sho04, BR04]. The presentation
owes much to Shoup [Sho04]. We begin with a game G0 based directly on a relevant security
definition, and construct a sequence of games G1, G2, . . . , each slightly different from the
last. We define all of the games in a sequence over the same underlying probability space
– the random coins tossed by the algorithms involved – though different games may have
slightly differently-defined events and random variables. Our goal in doing this is to bound
the probability of the adversary winning the initial game G0 by simultaneously (a) relating
the probability of this event to that of corresponding events in subsequent games, and (b)
simplifying the game until the probability of the corresponding event can be computed
directly.

The following simple lemma from [Sho01] will be frequently useful.

2.4.1 Lemma (Difference Lemma) Let S, T , F be events. Suppose Pr[S|F̄] = Pr[T |F̄]. Then |Pr[S] −
Pr[T]| 6 Pr[F].

Proof A simple calculation:

|Pr[S]− Pr[T]| = |(Pr[S|F] Pr[F] + Pr[S|F̄] Pr[F̄])− (Pr[T |F] Pr[F] + Pr[T |F̄] Pr[F̄])|

= Pr[F] · |Pr[S|F]− Pr[T |F]|

6 Pr[F]

and we’re done! �

2.5 The random oracle model

In particular, most of our results will make use of the random oracle model [BR93], in which
all the participants, including the adversary, have access to a number of ‘random oracles’. A
random oracle with domain D and range R is an oracle which computes a function chosen
uniformly at random from the set of all such functions. (In the original paper [BR93], random
oracles are considered having domain Σ∗ and range Σω; we use finite random oracles here,
because they’re easier to work with.)

Given a protocol proven secure in the random oracle model, we can instantiate each random
oracle by a supposedly-secure hash function and be fairly confident that either our protocol
will be similarly secure, or one of the hash functions we chose has some unfortunate property.

7

The Wrestlers Protocol

Proofs in the random oracle must be interpreted carefully. For example, Canetti, Goldreich
and Halevi [CGH04] show that there are schemes which can be proven secure in the random
oracle model but provably have no secure instantiation in the standard model.

The random oracle model is useful for constructing reductions and simulators for two main
reasons.

1. One can use the transcript of an adversary’s queries to random oracles in order to extract
knowledge from it.

2. One can ‘program’ a random oracle so as to avoid being bound by prior ‘commitments’,
or to guide an adversary towards solving a selected instance of some problem.

Our proofs only make use of the first feature. This becomes particularly important when we
consider issues of zero-knowledge and deniability in a concurrent setting, because we want
to be able to claim that we retain these features when the random oracle is instantiated using
a cryptographic hash function, and hash functions definitely aren’t ‘programmable’ in this
way! The former property seems rather more defensible – one would indeed hope that the
only sensible way of working out (anything about) the hash of a particular string is to actually
compute the hash function, and the random oracle model is, we hope, just giving us a ‘hook’
into this process.

(Our protocols can be modified to make use of bilinear pairings so as to provide identity-
based identification and key-exchange, using the techniques of [BF03]. Proving the security of
the modifications we discuss would involve ‘programming’ random oracles, but this doesn’t
affect the zero-knowledge or deniability of the resulting protocols.)

2.6 Notation for algorithms

We shall have occasion to describe algorithms by means of a pseudocode. Our choice of
pseudocode is unlikely to be particularly controversial. We let x ← y denote the action of

setting x to the value y; similarly, x
$

← Y denotes the action of sampling x from the set Y
uniformly at random.

The expression a← AO(·,x)(y) means ‘assign to a the value output by algorithm A on input y,
and with oracle access to the algorithm which, given input z, computes O(z, x)’.

We make use of conditional (if-else) and looping (for-do and while-do) constructions; in
order to reduce the amount of space taken up, the bodies of such constructions are shown by
indentation only.

We don’t declare the types of our variables explicitly, assuming that these will be obvious
by inspection; also, we don’t describe our variables’ scopes explicitly, leaving the reader to
determine these from context.

Finally, the notation Pr[algorithm : condition] denotes the probability that condition is true after
running the given algorithm.

2.7 Diffie-Hellman problems

The security of our protocols is related to the hardness of the computational, decisional, and
gap Diffie-Hellman problems in the group G. We define these problems and what it means
for them to be ‘hard’ here.

8

2. Preliminaries

The computational Diffie-Hellman problem (CDH) is as follows: given two group elements
X = xP and Y = yP , find Z = xyP .

2.7.1 Definition (The computational Diffie-Hellman problem) Let (G,+) be a cyclic group generated by
P . For any adversaryA, we say that A’s success probability at solving the computational Diffie-
Hellman problem in G is

Succcdh
G (A) = Pr[x

$

← I; y
$

← N<|G| : A(xP, yP) = xyP]

where the probability is taken over the random choices of x and y and any random decisions
made by A. We say that the CDH insecurity function of G is

InSeccdh(G; t) = max
A

Succcdh
G (A)

where the maximum is taken over adversaries which complete in time t. �

Certainly, if one can compute discrete logarithms in the group G (i.e., given xP , find x), then
one can solve the computational Diffie-Hellman problem. The converse is not clear, though.
Shoup [Sho97] gives us some confidence in the difficulty of the problem by showing that a
generic adversary – i.e., one which makes no use of the specific structure of a group – has
success probability no greater than q2/|G|.

This isn’t quite sufficient for our purposes. Our proofs will be able to come up with (possibly)
a large number of guesses for the correct answer, and at most one of them will be correct.
Unfortunately, working out which one is right seems, in general, to be difficult. This is the
decision Diffie-Hellman problem (DDH), which [Sho97] shows, in the generic group model, is
about as hard as CDH. (See [Bon98] for a survey of the decision Diffie-Hellman problem.)

Our reference problem will be a ‘multiple-guess computational Diffie-Hellman problem’
(MCDH), which is captured by a game as follows. An adversary is given a pair of group
elements (xP, yP), and an oracle V (·) which accepts group elements as input. The adversary
wins the game if it queries V (xyP).

2.7.2 Definition (The multiple-guess computational Diffie-Hellman problem) Let (G,+) be a cyclic group
generated by P . For some adversary A, we say that A’s success probability at solving the
multiple-guess computational Diffie-Hellman problem in G is

Succmcdh
G (A) = Pr[Gamemcdh

G (A) = 1]

where Gamemcdh
G (A) is shown in figure 2.1. We say that the MCDH insecurity function of G is

InSecmcdh(G; t, qV) = max
A

Succmcdh
G (A)

where the maximum is taken over adversaries which complete in time t and make at most
qV -oracle queries. �

Note that our MCDH problem is not quite the ‘gap Diffie-Hellman problem’ (GDH). The gap
problem measures the intractibility of solving CDH even with the assistance of an oracle for
solving (restricted) decision Diffie-Hellman problems in the group. Specifically, the adversary
is given (X,Y) = (xP, yP) and tries to find Z = xyP , as for CDH, but now it has access to an
oracle D(R,S) which answers 1 if S = xR and 0 otherwise.

Clearly MCDH is at least as hard as GDH, since our simple verification oracle V (Z) can be
simulated with the gap problem’s DDH oracle, as D(Y, Z). However, we can (loosely) relate
the difficulty of MCDH to the difficulty of CDH.

9

The Wrestlers Protocol

Gamemcdh
G (A):

w ← 0;

x
$

← N<|G|; y
$

← N<|G|;
AV (·)(xP, yP);
return w;

Function V (Z):
if Z = xyP then
w ← 1;
return 1;

return 0;

Figure 2.1: The multiple-guess computational Diffie-Hellman problem: Gamemcdh
G (A)

2.7.3 Proposition (Comparison of MCDH and CDH security) For any cyclic group (G,+),

InSecmcdh(G; t, qV) 6 qV InSeccdh(G; t+O(qV)).

Proof Let A be an adversary attacking the multiple-guess computational Diffie-Hellman
problem inG, and suppose that it runs in time t and issues qV queries to its verification oracle.

We use a sequence of games. Game G0 is the original MCDH attack game. In each game Gi,
we let the event Si be the probability that the adversary wins the game.

Game G1 is the same as G0, except that we change the behaviour of the verification oracle.
Specifically, we make the oracle always return 0. We claim that this doesn’t affect the
adversary’s probability of winning, i.e., Pr[S1] = Pr[S0]. To see this, note that if none of the
adversary’s V (·) queries was correct, then there is no change in the game; conversely, if any
query was correct, then the adversary will have won regardless of its subsequent behaviour
(which may differ arbitrarily between the two games).

We are now ready to construct from A an adversary B attacking the standard computational
Diffie-Hellman problem.

Adversary B(X,Y):
n← 0;
for i ∈ N<qV

do Qi ← 0;
AV (·);

r
$

← N<n;
return Qr;

Function D(Z ′):
Qn ← Z ′;
n← n+ 1;
return 0;

Observe that B provides A with an accurate simulation of game G1. Moreover, at the end of
the algorithm, we have 0 < n 6 qV , the output of A is stored in Qn−1 and the values Q0, Q1,
. . . , Qn−1 are the values of A’s oracle queries. Hence, with probability Pr[S1], at least of one
of theQi is the correct answer to the CDH problem. Let ε = Pr[S1] = Pr[S0]; we claim thatB’s
probability of success is at least ε/qV . The proposition follows directly from this claim and
that, because A was chosen arbitrarily, we can maximize and count resources.

We now prove the above claim. For 0 6 i < qV , let Wi be the event that Qi = xyP , i.e., that Qi

is the correct response. A simple union bound shows that

∑

06i<j

Pr[Wi | n = j] > ε.

10

2. Preliminaries

We now perform a calculation:

Succcdh
G (B) =

∑

06i<qV

Pr[Wi ∧ r = i]

=
∑

0<j6qV

Pr[n = j]

(

∑

06i<j

Pr[Wi ∧ r = i | n = j]

)

=
∑

0<j6qV

Pr[n = j]

(

1

j

∑

06i<j

Pr[Wi | n = j]

)

>
∑

0<j6qV

Pr[n = j]
ε

j

>
ε

qV

∑

0<j6qV

Pr[n = j]

=
ε

qV
.

which completes the proof. �

2.8 Example groups and encodings

For nonnegative integers 0 6 n < 2ℓ, there is a natural binary encoding Nℓ: N<2ℓ → Σℓ which
we can define recursively as follows.

N0(0) = λ Nℓ(n) =

{

Nℓ−1(n) ‖ 0 if 0 6 n < 2ℓ−1

Nℓ−1(n− 2ℓ−1) ‖ 1 if 2ℓ−1 6 n < 2ℓ.

Given an encoding a = Nℓ(n) we can recover n as

n =
∑

06i<ℓ

a[i]2i.

Hence, given some limit L 6 2ℓ, we can encode elements of N<L using the functions (e, d):

e(L, ℓ, n) = Nℓ(n) d(L, ℓ, a) =

{

Nℓ(a) if Nℓ(a) < L

⊥ otherwise

The reader can verify that the functions e(L, ℓ, ·) and d(L, ℓ, ·) satisfy the requirements of
section 2.3.

Given some q < 2ℓI and I = N<q, then, we can define an encoding (eI , dI) by eI(n) =
e(q, ℓI , n) and dI(a) = d(q, ℓI , a).

Let p and q be primes, with q|(p − 1). Then there is an order-q subgroup of (Z/pZ)∗. In
practice, an order-q element can be found easily by taking elements h ∈ (Z/pZ)∗ at random
and computing g = h(p−1)/2 until g 6= 1; then G = 〈g〉 is a group of q elements. Assuming
that p and q are sufficiently large, the Diffie-Hellman problems seem to be difficult in G. Some
texts recommend additional restrictions on p, in particular that (p−1)/2q be either prime or the
product of large primes. Primes of this form protect against small-subgroup attacks; but our
protocols are naturally immune to these attacks, so such precautions are unnecessary here.
Elements of G can be encoded readily, since each element n + pZ of Z/pZ has an obvious

11

The Wrestlers Protocol

‘representative’ integer n such that 0 6 n < p, and given 2ℓG > p, we can encode n as
e(p, ℓG, n), as above.

Alternatively, let F = Fpf be a finite field, and E be an elliptic curve defined over F such that
the group E(F) of F-rational points of E has a prime-order cyclic subgroup G. Elements
of G can be represented as pairs of elements of F. If f = 1, i.e., F = Z/pZ then field
elements can be encoded as above. If p = 2, we can represent the field as F2/(p(x)) for some
irreducible polynomial p(x) ∈ F2[x] of degree f . An element r ∈ F can then be represented by
a polynomial r(x) with degree less than f , and coefficients ci ∈ {0, 1}, i.e.,

r(x) =
∑

06i<f

cix
i

and hence we can uniquely encode r as an f -bit string a such that a[i] = ci.

2.9 Symmetric encryption

Our key-exchange protocol requires a symmetric encryption scheme. Our definition is fairly
standard, except that, rather than specifying a key-generation algorithm, we assume that key
generation simply involves selecting a string of a given length uniformly at random.

2.9.1 Definition (Symmetric encryption schemes) A symmetric encryption scheme E = (κ,E,D) consists
of:

• an integer κ > 0,

• a randomized encryption algorithm E which, on input K ∈ Σκ and p ∈ Σ∗ outputs some
c ∈ Σ∗, written c← EK(p);

• a decryption algorithmD which, on input K ∈ Σκ and c ∈ Σ∗ outputs some p′ ∈ Σ∗ ∪{⊥},
written p′ ← DK(c).

Furthermore, a symmetric encryption scheme must be sound: that is, if c ← EK(p) for some
K ∈ Σκ and p ∈ Σ∗, and p′ ← DK(c) then p = p′. �

Our security notion for symmetric encryption is the standard notion of left-or-right indistin-
guishability of ciphertexts under chosen-ciphertext attack.

2.9.2 Definition (Indistinguishability under chosen-ciphertext attack (IND-CCA)) Let E = (κ,E,D) be a
symmetric encryption scheme, and A be an adversary. Let lrb(x0, x1) = xb for b ∈ {0, 1}. Let

Pb = Pr[K
$

← Σκ; b← AEK(lrb(·,·)),DK(·)() : b = 1]

An adversary is valid if

• for any query to its encryption oracle EK(lrb(x0, x1)) we have |x0| = |x1|, and

• no query to the decryption oracle DK(·) is equal to any reply from an encryption query.

If A is valid, then we define its advantage in attacking the security of E as follows

Advind-cca
E = P1 − P0.

Further, we define the IND-CCA insecurity function of E to be

InSecind-cca(E ; t, qE , qD) = max
A

Advind-cca
E (A)

12

2. Preliminaries

where the maximum is taken over all valid adversaries A which run in time t, and issue at
most qE encryption and qD decryption queries. �

2.10 Simulations

In section 3, we shall prove that our identification protocol is zero-knowledge; in section 4.5,
we show that our key-exchange protocol is deniable. In both of these proofs, we shall need to
demonstrate simulatability.

General framework Consider a game in which an adversaryA interacts with some ‘world’W ,
which we shall represent as a probabilistic algorithm. The world may in fact represent a
number of honest parties communicating in a concurrent fashion, but we can consider them
as a single algorithm for our present purposes.

Initially the world and the adversary are both given the same common input c; in addition,
the world is given a private input w. Both c and w are computed by an initialization function I ,
which is considered to be part of the definition of the game. Finally, the adversary decides
somehow that it has finished interacting, and outputs a value a. All this we notate as

(w, c)← I(); a← AW (w,c)(c).

This game is simulatable if there is an algorithm S – the simulator – which can compute the
same things as A, but all by itself without interacting with the world. That is, we run the
simulator on the common input c, allowing it to interact in some way with the adversary A,
and finally giving us an output s.

(w, c)← I(); s← SA(c).

We shall say that the simulator is effective if it’s difficult to tell whether a given string was
output by the adversary after interacting with the world, or by the simulator running by
itself. That is, for any algorithm D – a distinguisher – running in some bounded amount of
time, its advantage

Pr[(w, c)← I(); a← AW (w,c)(c); b← D(c, a) : b = 1]−

Pr[(w, c)← I(); s← SA(c); b← D(c, s) : b = 1]

is small. (Note that we gave the distinguisher the common input as well as the output of the
adversary or the simulator.)

It’s usual to study transcripts of interactions in these kinds of settings. We are considering
arbitrary adversarial outputs here, so this certainly includes adversaries which output
a transcript of their interactions. Indeed, for any adversary A, we could construct an
adversary AT which performs the same computation, and outputs the same result, but
also includes a complete transcript of A’s interaction with the world. Therefore we’re just
providing additional generality.

Random oracles We shall be considering interactions in which all the parties have access to
several random oracles. We could simply say that the random oracles are part of the worldW .
In the setting described above, only the adversary actually interacts with the world (and
therefore would be able to query random oracles). The simulator would be forced to ‘make
up’ its own random oracle, and the distinguisher would have to study the distributions of the
random-oracle queries and their responses to make up its mind about which it was given.

13

The Wrestlers Protocol

However, this would be a poor model for the real world, since once we instantiate the random
oracle with a hash function, we know that everyone would in actually be able to compute the
hash function for themselves. Thus a distinguisher in the real world would be able to tell
the difference immediately between a real interaction and the simulated transcript, since the
‘random oracle’ queries recorded in the latter would be wrong!

Therefore we decide not to include the random oracles as part of the world, but instead
allow all the participants – adversary, simulator and distinguisher – access to them. If we
denote by H = (H0, H1, . . . , Hn−1) the collection of random oracles under consideration, the
expression for the distinguisher’s advantage becomes

Pr[(w, c)← I(); a← AW (w,c),H(c); b← DH(c, a) : b = 1]−

Pr[(w, c)← I(); s← SA,H(c); b← DH(c, s) : b = 1].

Auxiliary inputs If an adversary’s output can be effectively simulated, then we can con-
fidently state that the adversary ‘learnt’ very little of substance from its interaction, and
certainly very little it can prove to anyone else. However, as we have described the setting
so far, we fix an adversary before we choose inputs to the world, so our model says little
about what an adversary which has already acquired some knowledge might learn beyond
that. For example, an adversary might overhear some other conversation between honest
parties and be able to use this to its advantage.

To this end, we give the adversary an auxiliary input u, computed by an algorithm U . We give
U both c and w, in order to allow the adversary to gain some (possibly partial) knowledge
of the secrets of the other parties. We also allow U access to the random oracles H, because
clearly in the ‘real world’ it would be ridiculous to forbid such an algorithm from computing
a publicly-known hash function.

The simulator and distinguisher are also given the auxiliary input. The simulator is meant to
represent the adversary’s ability to compute things on its own, without interacting with the
world, and since the adversary is given the auxiliary input, the simulator must be too. The
distinguisher must be the auxiliary input because otherwise the simulator could just ‘make
up’ plausible-looking inputs.

Resource limits We shall not allow our algorithms to perform completely arbitrary compu-
tations and interactions. Instead, we impose limits on the amount of time they are allowed
to take, the number of random-oracle queries they make, and so on. Specifically, we are
interested in

• the time tA taken by the adversary and tD taken by the distinguisher,

• the number of oracle queries QA = (qA,0, qA,1, . . . , qA,n−1) made by the adversary, and
QD made by the distinguisher,

• a number of resource bounds R on the adversary’s interaction with the world (e.g.,
number of messages of various kinds sent and received), and

• a number of bounds U on the contents of the adversary’s auxiliary input u.

Sometimes we shall not be interested in proving simulatability of adversaries with auxiliary
inputs. We write U = 0 to indicate that auxiliary output is not allowed.

14

2. Preliminaries

World syntax It will be worth our while being more precise about what a ‘world’ actually
is, syntactically. We define a world to be a single, randomized algorithm taking inputs
(ι, σ, τ, µ) ∈ (Σ∗)4; the algorithm’s output is a pair (σ′, ρ) ∈ (Σ∗)2. We show how the
adversary’s interaction is mapped on to this world algorithm in figure 2.2.

• The ‘input’ ι is the result of the initialization function I . That is, it is the pair (w, c) of the
world’s private input and the common input.

• The ‘state’ σ is empty on the world’s first invocation; on each subsequent call, the value
of the world’s output σ′ is passed back. In this way, the world can maintain state.

• The ‘type τ is a token giving the type of invocation this is.

• The ‘message’ µ is any other information passed in; its form will typically depend on the
type τ of the invocation.

• The ‘new state’ σ′ is the value of σ to pass to the next invocation of the world.

• The ‘reply ρ is the actual output of the invocation.

There are two special invocation types. The adversary is forbidden from making special
invocations.

• The special invocation type init is used to allow the world to prepare an initial state. The
world is invoked as

WH(ι, λ, init, λ)

and should output an initial state σ′. The world’s reply ρ is ignored. (Recall that λ
represents the empty string.)

• The special invocation type random is used to inform the world that the adversary has
issued a random oracle query. The world is invoked as

WH(ι, σ, random, (i, x, h))

to indicate that the adversary has queried its random oracle Hi(·) on the input x, giving
output h. The world may output an updated state σ′; its reply ρ is ignored.

The latter special query is a technical device used to allow the ‘fake-world’ simulators we
define below to be aware of the adversary’s random oracle queries without being able to
‘program’ the random oracle. Including it here does little harm, and simplifies the overall
exposition.

Definitions We are now ready to begin making definitions.

2.10.1 Definition (Simulation security) Consider the game described above, with the initialization
function I , and the world W : let A be an adversary, and let U be an auxiliary-input function;
let S be a simulator, and letD be a distinguisher. We defineD’s advantage against S’s simulation
of A’s interaction with W with auxiliary inputs provided by U to be

Advsim
W,I,S(A,U,D) = Pr[Gamereal

W,I,S(A,U,D) = 1]− Pr[Gamesim
W,I,S(A,U,D) = 1]

where the games are as shown in figure 2.3. Furthermore, we define the simulator’s insecurity
function to be

InSecsim(W, I, S; tD, tA,QD,QA,R,U) = max
D,A,U

Advsim
W,I,S(A,U,D)

15

The Wrestlers Protocol

Interaction AW (w,c),H(c, u):
(σ, ρ)←W ((w, c), λ, init, λ);
a← Aworld(·,·),random(·,·)(c, u);
return a;

Function world(τ, µ):
if τ ∈ {init, random} then return ⊥;
(σ, ρ)←W ((w, c), σ, τ, µ);
return ρ;

Function random(i, x):
h← Hi(x);
(σ, ρ)←W ((w, c), σ, random, (i, x, h));
return h;

Figure 2.2: Interacting with a world: Interaction AW,H

Gamereal
W,I,S(A,U,D):

(w, c)← I();
u← UH(w, c);
a← AW (w,c),H(c, u);
b← DH(c, u, a);
return b;

Gamesim
W,I,S(A,U,D):

(w, c)← I();
u← UH(w, c);
s← SA,H(c, u);
b← DH(c, u, s);
return b;

Figure 2.3: Games for simulation: Gamereal
W,I and Gamesim

W,I

where the maximum is taken over all distinguishers D running in time tD and making at most
QD random-oracle queries, and all adversaries A running in time tA, making at most QA

random-oracle queries, not exceeding the other stated resource bounds R on its interaction
with W , and auxiliary-input functions producing output not exceeding the stated bounds U .

�

2.10.2 Remark The usual definitions of zero-knowledge, for example, require the simulator to work
for all choices of inputs (common, private and auxiliary), rather than for random choices.
Our definition therefore looks weaker. Our proof of zero-knowledge actually carries through
to the traditional stronger-looking definition. Critically, however, the standard universal
quantification over inputs fails to capture deniability in the random oracle model, since the
inputs can’t therefore depend on the random oracle. Our formulation therefore actually gives
stronger deniability that the usual one. �

Fake-world simulators The simulators we shall be considering in the present paper are of a
specific type which we call ‘fake-world simulators’. They work by running the adversary
in a fake ‘cardboard cut-out’ world, and attempting to extract enough information from
the adversary’s previous interactions and random oracle queries to maintain a convincing
illusion.

That is, the behaviour of a fake-world simulator S is simply to allow the adversary to interact
with a ‘fake world’ W ′, which was not given the world private input. That is, there is some
world W ′ such that

SA,H(c, u) ≡ AW ′(u,c),H(c, u)

16

3. A zero-knowledge identification scheme

Fake-world simulators are convenient because they allow us to remove from consideration
the distinguisher D as the following definition shows.

2.10.3 Definition (Fake-world simulation security) Let I , W and U be as in definition 2.10.1. Let A be an
adversary which outputs a single bit. Let S be a fake-world simulator. We defineA’s advantage
against S’s fake-world simulation of W with auxiliary inputs provided by U to be

Advfw
W,I,S(A,U) = Pr[(w, c)← I();u← UH(w, c); b← AW (w,c),H(c, u) : b = 1]−

Pr[(w, c)← I();u← UH(w, c); b← SA,H(c, u) : b = 1]

Furthermore, we define the simulator’s insecurity function to be

InSecfw(W, I, S; tD, t,Q,R,U) = max
A,U

Advfw
W,I,S(A,U)

where the maximum is taken over all adversaries A running in time t, making at most Q
random-oracle queries, not exceeding the other stated resource bounds R on its interaction
with W , and auxiliary-input functions producing output not exceeding the stated bounds U .

�

It remains for us to demonstrate that this is a valid way of analysing simulators; the following
simple proposition shows that this is indeed the case.

2.10.4 Proposition (Fake-world simulation) Let I be an initialization function and let W be a world. Then,
for any fake-world simulator S,

InSecsim(W, I, S; tD, tA,QD,QA,R,U) 6 InSecfw(W, I, S; tA + tD,QD +QA,R,U)

(where addition of query bounds Q is done elementwise).

Proof LetW and I as in the proposition statement be given; also let a distinguisher D running
in time tD and making QD random-oracle queries, an adversary A running in time tA and
makingQA random-oracle queries and interacting with its world within the stated boundsR,
an auxiliary-input function U satisfying the constraints U on its output, and a fake-world
simulator S all be given.

We construct an adversary B outputting a single bit as follows

Adversary BW,H(c, u):
a← AW,H(c, u);
b← DH(c, u, a);
return b;

A glance at definitions 2.10.1 and 2.10.3 and the resources used by B shows that

Advsim
W,I,S(A,U) = Advfw

W,I,S(B,U) 6 InSecfw(W, I, S; tD + tA,QD +QA,R,U)

as required. �

3 A zero-knowledge identification scheme

3.1 Description

Here we present a simple zero-knowledge identification scheme. Fix some group G. Suppose
Alice chooses a private key x ∈$ N<|G|, and publishes the corresponding public key X = xP .

17

The Wrestlers Protocol

Setup Group G = 〈P 〉; |G| = q is prime. HI(·, ·) is a secure hash.
Private key x ∈$ N<q .
Public key X = xP .
Challenge (R, c) where r ∈$ N<q , R = rP , c = r ⊕HI(R, rX).
Response xR = rX if R = (c⊕HI(R, xR))P ; otherwise ⊥.

Figure 3.1: Summary of the Wrestlers Identification Protocol, W -ident

Function setup():

x
$

← N<q ;
X ← xP ;
return (x,X);

Function challengeHI(·,·)(R, c,X):

r
$

← N<q;
R← rP ; Y ← rX ;
h← HI(R, Y); c← r ⊕ h;
return (Y,R, c);

Function verify(Y, Y ′):
if Y ′ = Y then return 1;
return 0;

Function responseHI (·,·)(R, c, x):
Y ′ ← xR;
h← HI(R

′, Y ′); r′ ← c⊕ h;
if R 6= r′P then return ⊥;
return Y ′;

Figure 3.2: Functions implementing W -ident in the random oracle model

Let HI :G
2 → ΣℓI be a secure hash function. Here’s a simple protocol which lets her prove her

identity to Bob.

1. Bob selects a random r ∈$ N<|G|, and computes R = rP , Y = rX , and c = r ⊕HI(R, Y).
He sends the pair (R, c) to Alice as his challenge.

2. Alice receives (R, c). She computes Y ′ = xR and r′ = c ⊕ HI(R
′, Y ′), and checks that

R = r′P . If so, she sends Y ′ as her response; otherwise she sends ⊥.

3. Bob receives Y ′ from Alice. He checks that Y ′ = Y . If so, he accepts that he’s talking to
Alice; otherwise he becomes suspicious.

We name this the Wrestlers Identification Protocol in G, W -identG (we drop the superscript
to refer to the protocol in general, or when no ambiguity is likely to result). A summary is
shown in figure 3.1.

3.2 Security

In order to evaluate the security of our protocol, we present a formal description of the
algorithms involved in figure 3.1. Here, the hash function HI(·, ·) is modelled as a random
oracle.

Completeness Suppose that Bob really is talking to Alice. Note that Y ′ = xR = x(rP) =
r(xP) = rX = Y . Hence r′ = c⊕HI(R

′, Y ′) = c ⊕HI(R, Y) = r, so r′P = rP = R, so Alice
returns Y ′ = Y to Bob. Therefore W -ident is complete: if Bob really is communicating with
Alice then he accepts.

Soundness We next show that impersonating Alice is difficult. The natural way to prove this
would be to give an adversary a challenge and prove that its probability of giving a correct

18

3. A zero-knowledge identification scheme

Game
imp-n
W -ident(A):

HI
$

← F [G2 → ΣℓI];
(x,X)← setup();
win← 0;
R-map← ∅;
c← challenges(n);
(R′, Y ′)← AHI (·,·),check(·,·)(X, c);
return win;

Function challenges(n):
for i ∈ N<n do

(Y,R, c)← challengeHI(·,·);
R-map← R-map∪ {R 7→ Y };
c[i]← (R, c);

return c;

Function check(R′, Y ′):
if R′ /∈ domR-map then return 0;
Y ← R-map(R′);
if verify(Y, Y ′) then

win← 1;
return 1;

return 0;

Figure 3.3: Soundness of W -ident: Game
imp-n
W -ident(A)

response is very small. However, we prove a stronger result: we show that if the adversary
can respond correctly to any of a large collection of challenges then it can solve the MCDH
problem.

Consider the game Game
imp
W -ident shown in figure 3.3. An adversary’s probability of success-

fully impersonating Alice in our protocol, by correctly responding to any one of n challenges,
is exactly its probability of winning the game (i.e., causing it to return 1).

3.2.1 Theorem (Soundness of W -ident) Let A be any adversary running in time t and making qI queries to
its random oracle, and qV queries to its verification oracle. Let G be a cyclic group. Then

Pr[Game
imp-n

W -identG
(A) = 1] 6 InSecmcdh(G; t′, qI + qV)

where t′ = t+O(qI) +O(qV).

3.2.2 Remark Note that the security bound here is independent of the value of n. �

Proof We prove this by defining a sequence of games Gi. The first will be the same as the

attack game Game
imp-n
W -ident(A) and the others will differ from it in minor ways. In each game

Gi, let Si be the event that A wins the game – i.e., that it successfully impersonates the holder
of the private key x.

Let game G0 be the attack game Game
imp
W -ident(A), and let (R′, Y ′) be the output of A in the

game.

We define a new game G1 which is the same as G0, except that we query the random oracleHI

at (R′, Y ′) whenever the adversary queries check(R′, Y ′). (We don’t charge the adversary for
this.) This obviously doesn’t affect the adversary’s probability of winning, so Pr[S1] = Pr[S0].

Game G2 is like G1, except that we change the way we generate challenges and check their
responses. Specifically, we new functions challenges2 and check2, as shown in figure 3.4.

19

The Wrestlers Protocol

Function challenges2(n):

r∗
$

← I ; R∗ ← r∗P ; Y ∗ ← r∗X ;
for i ∈ N<n do

r
$

← I ; R← rR∗; Y ← rY ∗;
h← HI(R, Y); c← r ⊕ h;
R-map← R-map ∪ {R 7→ r};
c[i]← (R, c);

return c;

Function check2(R
′, Y ′):

if R′ /∈ domR-map then return 0;
r ← R-map(R′);
if verify(Y ∗, Y ′/r) then

win← 1;
return 1;

return 0;

Figure 3.4: Soundness of W -ident: challenges2 and check2

Function challenges4(n):

r∗
$

← I ; R∗ ← r∗P ; Y ∗ ← r∗X ;
for i ∈ N<n do

r
$

← I ; R← rR∗;

c
$

← ΣℓI ;
R-map← R-map ∪ {R 7→ r};
c[i]← (R, c);

return c;

Figure 3.5: Soundness of W -ident: challenges4

While we’re generating and checking challenges in a more complicated way here, we’re
not actually changing the distribution of the challenges, or changing the winning condition.
Hence Pr[S2] = Pr[S1].

Now we change the rules again. Let G3 be the same as G2 except that we change the winning
condition. Instead, we say that the adversary wins if any of the queries to its random oracle
HI(R

′, Y ′) would be a correct response – i.e., check2(R
′, Y ′) would return 1. Since we query

the oracle on (R′, Y ′) on its behalf at the end of the game, no adversary can do worse in this
game than it does in G2, so we have Pr[S3] > Pr[S2]. (It’s not hard to see that this only helps
quite stupid adversaries. We can transform any adversary into one for which equality holds
here.)

Finally, let G4 be the same as G3 except that we change the way we generate challenges again:
rather than computing h and setting c ← h ⊕ r, we just choose c at random. Specifically, we
use the new function, challenges4, shown in figure 3.5.

SinceHI(·, ·) is a random function, the adversary can only distinguish G4 from G3 if it queries
its random oracle at some (R, rY ∗). But if it does this, then by the rule introduced in G3 it has
already won. Therefore we must have Pr[S4] = Pr[S3].

Our challenges4 function is interesting, since it doesn’t actually make use of r∗ or Y ∗ when
generating its challenges. This gives us the clue we need to bound Pr[S4]: we can use
adversaryA to solve the multiple-guess Diffie-Hellman problem in G by simulating the game

20

3. A zero-knowledge identification scheme

Adversary BV (·)(X,R∗):
F ← ∅; R-map← ∅;
for i ∈ N<n do

r
$

← I ; R← rR∗; c
$

← ΣℓI ;
R-map← R-map ∪ {R 7→ r};
c[i]← (R, c);

(R′, Y ′)← AHI (·,·),check(·,·)(X, c);
if Y ′ 6= ⊥ then HI(R

′, Y ′);

Oracle HI(R
′, Y ′):

if (R′, Y ′) ∈ domF then
h← F (x);

else
check(R′, Y ′);

h
$

← ΣℓI ; F ← F ∪ {(R′, Y ′) 7→ h};
return h;

Oracle check(R′, Y ′):
if R′ ∈ domR-map then V (Y ′/R-map(R′));

Figure 3.6: Soundness of W -ident: reduction from MCDH

G4. Specifically, we define the adversary B as shown in figure 3.6. That is, for each query A
makes to its random oracle at a new pair (R′, Y ′), we see whether this gives us the answer

we’re looking for. We have Pr[S0] 6 Pr[S4] = Succmcdh
G (B) 6 InSecgdh(G; t′, qI + qV) as

required. �

Zero-knowledge Finally we must prove that W -ident is (statistical) zero-knowledge – i.e.,
that, except with very small probability, Bob learns nothing of use to him except that he’s
interacting with Alice. To do this, we show that, for any algorithm B which Bob might
use to produce his challenge to the real Alice, there exists a simulator S which produces
transcripts distributed very similarly to transcripts of real conversations between B and
Alice, the difference being that S doesn’t know Alice’s key. We shall show that the statistical
difference between the two distributions is 2−ℓI .

The intuition here is that Bob ought to know what answer Alice is going to give him when he
constructs his challenge. This is certainly true if he’s honest: his challenge is R = rP for some
r he knows, so he won’t learn anything useful when Alice responds with xR = rX . However,
if Bob sends a challenge R when he doesn’t know the corresponding r, he learns something
potentially useful. The accompanying check value c = r ⊕HI(R, rX) keeps him honest.

To show this, we present an extractor which, given any challenge (R, c) Bob can construct,
and his history of random-oracle queries, either returns a pair (r, Y) such that R = rP and
Y = rX , or ⊥; moreover, the probability that Alice returns a response Y ′ 6= ⊥ given the
challenge (R, c) is 2−ℓ. We can, of course, readily convert this extractor into a simulator to
prove the zero-knowledge property of our protocol.

We shall actually consider a slightly more complex setting. We grant Bob access to an oracle
which produces random, correctly-formed challenges. We require this to model the legitimate
challenges of other parties when we analyse the security of our key exchange protocol. The
extractor is permitted to fail given

3.2.3 Definition (Discrete-log extractors) Let T , B be randomized algorithms. Define the game

Gamedl-ext
G (T,B) as shown in figure 3.7. The success probability of T as a discrete-log extractor

against B is defined as

Succdl-ext
G (T,B) = Pr[Gamedl-ext

G (T,B) = 1].

�

21

The Wrestlers Protocol

Gamedl-ext
G (T,B) :

HI
$

← F [G2 → ΣℓI]; QH ← ∅; QC ← ∅;
(x,X)← setup();
(R, c)← BHI -trap(·,·),C()(x,X);
(r, Y)← T (R, c,QH);
Y ′ ← xR; h′ ← HI(R, Y

′); r′ ← c⊕ h′;
if r 6= ⊥ then

if Y = ⊥ ∨R 6= rP ∨ Y 6= Y ′ then return 0;
if R = r′P then (r∗, Y ∗) = (r′, Y ′);
else (r∗, Y ∗)← (⊥,⊥);
if (R, c) ∈ QC then return 1;
if (r, Y) = (r′, Y ′) then return 1;
return 0;

Oracle HI -trap(R′, Y ′):
h← HI(R

′, Y ′);
QH ← QH ∪ {(R

′, Y ′, h)};
return h;

Oracle C():

r
$

← N<q ;
R← rP ; c← r ⊕HI(R, rX);
QC ← QC ∪ {(R, c)};
return (R, c)

Figure 3.7: Discrete log extraction game: Gamedl-ext
G (T,B)

Let’s unpack this definition slightly. We make the following demands of our extractor.

• It is given a bare ‘transcript’ of B’s execution. In particular, it is given only its output and
a list of B’s random-oracle queries in no particular order.

• While the extractor is not given the private key x, the adversary B is given the private
key.

• We require that, if the extractor produces values r, Y 6= ⊥ then r and Y are correct; i.e.,
that R = rP and Y = xR.

• The extractor is explicitly not given the outputs of the challenge-generation oracle C(),
nor of the random-oracle queries issued by C(). However, we allow the extractor to fail
(i.e., return ⊥) if B simply parrots one of its C-outputs.

• The extractor is allowed – indeed required – to fail if the challenge (R, c) is invalid (i.e.,
Alice would return ⊥ given the challenge).

The resulting definition bears a striking similarity to the concept of plaintext awareness in
[BDPR98].

Such an extractor indeed exists, as the following lemma states.

3.2.4 Lemma (Effectiveness of extractor TW -ident) There exists a universal discrete-log extractor TW -ident

which, for any algorithm B,

Succdl-ext
G (TW -ident, B) > 1−

1

2ℓI
.

Moreover, if B issues at most qH random-oracle queries, then the running time of TW -ident is O(qH).

We prove this result at the end of the section. For now, let us see how to prove that W -ident is
zero-knowledge.

We use the set-up described in section 2.10. Our initialization function IW -ident just chooses a
random x ∈ N<q as the world private input and sets X = xP as the common input. In the

22

3. A zero-knowledge identification scheme

Initialization function IW -ident():

x
$

← N<|G|;
X ← xP ;
return (x,X);

Real-prover world W
HI(·,·)
W -ident((x,X), σ, τ, µ):

if τ = challenge then
(R, c)← µ;
Y ← responseHI (·,·)(R, c, x);
return (1, Y);

else
return (σ,⊥);

Simulator SW -ident’s fake world

W
HI (·,·)
sim ((X,u), σ, τ, µ):

if τ = init then
return (∅, λ);

QH ← σ;
if τ = challenge then

(R, c)← µ;
(r, Y)← TW -ident(R, c,QH);
return (QH , Y);

else if τ = random then
(i, (R′, Y ′), h)← µ;
QH ← QH ∪ {(R

′, Y ′, h)};
return (QH , λ);

else
return (σ,⊥);

Figure 3.8: Real-prover and simulator for zero-knowledge of W -ident

‘real world’, the adversary is allowed to submit a (single) challenge to the prover; it is given
the prover’s response, and must then compute its output. This is shown on the left hand side
of figure 3.8.

The zero-knowledge property of the scheme is described by the following theorem.

3.2.5 Theorem (Statistical zero-knowledge of W -ident) Let IW -ident, WW -ident and SW -ident be the real-prover
world and simulator shown in figure 3.8. Then, for any t, qI and qC ,

InSecsim(WW -ident, IW -ident, SW -ident; t, qI , qC , 0) 6
qC

2ℓ
I

.

where qC is the maximum number of challenges allowed by the adversary.

Proof The simulator simply uses the extractor TW -ident to extract the answer from the
adversary’s history of random oracle queries. Observe that SW -ident is a fake-world simulator.
By lemma 3.2.4, the extractor fails with probability only 2−ℓI . The theorem follows by a simple
union bound and proposition 2.10.4. �

We now return to proving that our extractor exists and functions as claimed. The following
two trivial lemmata will be useful, both now and later.

3.2.6 Lemma (Uniqueness of discrete-logs) Let G = 〈P 〉 be a cyclic group. For anyX ∈ G there is a unique
integer x where 0 6 x < |G| and X = xP .

Proof Certainly such an x exists, since G is cyclic and finite. Suppose X = xP = x′P : then
0 = xP − x′P = (x− x′)P . Hence (x− x′) is a multiple of |G|. �

3.2.7 Lemma (Uniqueness of check values) LetG = 〈P 〉 be a cyclic group; letHI be a functionHI : Σ
2ℓG →

ΣℓI . Fix some x ∈ N<|G| and define the set

Vx =
{

(R, c) ∈ G× ΣℓI
∣

∣ R =
(

c⊕HI(R, xR)
)

P
}

.

23

The Wrestlers Protocol

Extractor TW -ident(R, c,QH):
for (R′, Y ′, h) in QH do
r ← h⊕ c;
if R = R′ = rP ∧ Y ′ = rX then return (r, Y ′);

return (⊥,⊥);

Figure 3.9: The discrete-log extractor TW -ident

Then, for any R, c, c′, if (R, c) ∈ Vx and (R, c′) ∈ Vx then c = c′.

Proof From lemma 3.2.6, we see that there is a unique r ∈ N<|G| for which R = rP . Now, if
(R, c) ∈ Vx, we must have r = c⊕HI(R, xR). It follows that c = r ⊕HI(R, xR). �

Proof of lemma 3.2.4 Our extractor TW -ident is shown in figure 3.9.

Let B be any randomized algorithm, and let (R, c,QH) be as given to the extractor by

Gamedl-ext
G (TW -ident, B). Let the quantities HI , QC , r, r′, x and X be as in that game.

Suppose that the extractor returns values (r, Y) 6= (⊥,⊥). Let h = r ⊕ c; then there must be a
query (R, Y, h) ∈ QH , and we have R = rP and Y = rX = r(xP) = x(rP) = xR = Y ′, so the
extractor’s output must be correct unless it fails.

Furthermore, in the case where the extractor did not fail, we have h = HI(R, Y) = HI(R, Y
′)

and c = r⊕h, so the challenge was valid. Therefore, if the challenge was invalid, the extractor
will fail.

We now deal with the challenge-generation oracle. Suppose that (R, c′) ∈ QC for some
c′. Now, if c = c′ then (R, c′) is a repeat of some challenge from the challenge-generation
oracle, and the extractor is permitted to fail. On the other hand, suppose c 6= c′; then, the
challenge (R, c) must be invalid by lemma 3.2.7, so the extractor is required to fail, and we
have established that indeed it will. From now on, suppose that R is distinct from all the
R-values returned by C().

Let Y = xR. Suppose thatB queried its random oracle at (R, Y). Let h = HI(Y), so r′ = c⊕h.
If the challenge is valid then R = r′P ; therefore Y = xR = xr′P = r′X , so we have (R, Y, h) ∈
QH with R = rP and Y = rX . Hence the extractor returns r = r′ as required.

It remains to deal with the case where there is no random-oracle query at (R, Y). But then
h = HI(R, Y) is uniformly distributed, and independent of the entire game up to this point.
Let r be the correct discrete log of R; by lemma 3.2.6 there is only one possible value. The
extractor always fails under these circumstances, but a correct responder would reply with
probability

Pr[h = c⊕ r] =
1

2ℓI
.

This concludes the proof. �

3.2.8 Remark Note that the fact that the algorithm B was given the private key is irrelevant to the
above argument. However, we shall need this property when we come to prove deniability
for the key-exchange protocol. �

24

3. A zero-knowledge identification scheme

3.2.9 Remark It’s easy to see from the above proof that the extractor works flawlessly on the
‘honest verifier’ algorithm challenge shown in figure 3.2. This shows that W -ident is perfect
zero-knowledge against honest verifiers. We’re much more interested in dishonest verifiers,
though. �

3.3 An identity-based identification scheme

Boneh and Franklin [BF03] showed how to construct an identity-based encryption scheme
using bilinear pairings. The resulting encryption scheme looks somewhat like a pairing-based
version of ElGamal’s encryption scheme [ElG85]. We can easily apply their techniques to our
identification protocol, and thereby obtain an identity-based identification scheme. Providing
the necessary formalisms to prove theorems analogous to our theorems 3.2.1 and 3.2.5 would
take us too far from our objectives; but given appropriate security notions, we can readily
adapt our existing proofs to the new setting.

Bilinear pairings Before we describe the necessary modifications to the protocol, we first give
a (very brief!) summary of cryptographic pairings. (The Boneh-Franklin paper [BF03] gives
more detail; also [Men05] provides a useful introduction to the topic.)

Let (G,+), (G′,+) and (GT ,×) be cyclic groups with prime order q; let P ∈ G and P ′ ∈ G′

be elements of order q in G and G′ respectively. We say that a mapping ê:G × G′ → GT is a
non-degenerate bilinear pairing if it satisfies the following properties.

Bilinearity For all R ∈ G and S′, T ′ ∈ G′, we have ê(R,S′ + T ′) = ê(R,S′) ê(R, T ′); and
for all R,S ∈ G and T ′ ∈ G′ we have ê(R+ S, T ′) = ê(R, T ′) ê(S, T ′).

Non-degeneracy ê(P, P ′) 6= 1.

For practical use, we also want ê(·, ·) to be efficient to compute. The reader can verify that
ê(aP, bP ′) = ê(P, P ′)ab. It is permitted for the two groups G and G′ to be equal.

We require a different intractability assumption, specifically that the bilinear Diffie-Hellman
problem (BDH) – given (aP, bP, aP ′, cP ′) ∈ G2 × G′2, find ê(P, P ′)abc ∈ GT – is difficult.
This implies the difficulty of the computational Diffie-Hellman problem in all three of G, G′

and GT .

The identity-based scheme We need a trusted authority; following [Sch96] we shall call him
Trent. Trent’s private key is t ∈ N<q; his public key is T = tP .

Finally, we need cryptographic hash functions HI :G×GT → ΣℓI and HID: Σ∗ → G′; a formal
security analysis would model these as random oracles.

Alice’s public key is A = HID(Alice) ∈ G′. Her private key is KA = tA ∈ G′ – she needs Trent
to give this to her. Bob can interact with Alice in order to verify her identity as follows.

1. Bob computes γA = ê(T,A) ∈ GT . (He can do this once and store the result if he wants,
but it’s not that onerous to work it out each time.)

2. Bob chooses r ∈$ N<q , and sets R = rP . He also computes ψ = γr
A, h = HI(R,ψ) and

c = r ⊕ h. He sends his challenge (R, c) to Alice.

3. Alice receives (R′, c′). She computes ψ′ = ê(R,KA), h′ = HI(R
′, ψ′), and r′ = c′ ⊕ h′).

She checks that R′ = r′P ; if so, she sends ψ′ back to Bob; otherwise she refuses to talk to
him.

25

The Wrestlers Protocol

4. Bob receives ψ′. If ψ = ψ′ then he accepts that he’s talking to Alice.

This works because ψ = γr
A = ê(T,A)r = ê(tP,A)r = ê(rP,A)t = ê(R, tA) = ψ′.

Informal analysis An analogue to lemma 3.2.4 can be proven to show how to extract r from
a verifier’s random-oracle queries; statistical zero knowledge would then follow easily, as in
theorem 3.2.5. Soundness is intuitively clear, since an adversary must compute ψ = ê(P, P ′)art

givenA = aP ′,R = rP and T = tP , which is an instance of the BDH problem. An analogue of
theorem 3.2.1 would have to prove this for an adversary capable of making identity requests
as well as obtaining challenges. Finally, our key-exchange protocol can be constructed out
of this identity-based identification scheme, yielding an identity-based authenticated key-
exchange protocol. We leave it to the reader to work through the details.

3.4 Comparison with the protocol of Stinson and Wu

Our protocol is similar to a recent proposal by Stinson and Wu [SW06]. They restrict their
attention to Schnorr groups G ⊂ F

∗
p. Let γ be an element of order q = |G|. The prover’s

private key is a ∈$ N<q and her public key is α = γa. In their protocol, the challenger chooses
r ∈$ N<q, computes ρ = γr and ψ = αr, and sends a challenge (ρ,H(ρ, ψ)). The prover checks
that ρq 6= 1, computes ψ = ρa, checks the hash, and sends ψ back by way of response. They
prove their protocol’s security in the random-oracle model.

Both the Wrestlers protocol and Stinson-Wu require both prover and verifier to compute two
exponentiations (or scalar multiplications) each. The sizes of the messages used by the two
protocols are also identical.

(An earlier version of the Stinson-Wu protocol used a cofactor exponentiation: if we set f =
(p − 1)/q, then we use ψ = αrf) = ρaf = γafr. This is more efficient in typical elliptic curve
subgroups, since the cofactor of such subgroups is usually small: indeed, [Cer00] recommends
rejecting groups with cofactor f > 4. However, in the Schnorr groups used by Stinson and
Wu, the cofactor is much larger than q, and their new variant is more efficient.)

We note that the zero-knowledge property of the Stinson-Wu protocol requires the Diffie-
Hellman knowledge of exponent assumption (KEA). Very briefly: suppose A is a randomized
algorithm which takes as input X ∈ G and outputs a pair (rP, rX); intuitively, the KEA
asserts A must have done this by choosing r somehow and then computing its output from it.
Formally, it asserts the existence of an ‘extractor’ algorithm which takes as input the element
X and the random coins used by A and outputs r with high probability. This is a very strong
assumption, and one which is unnecessary for our protocol, since we can present an explicit
extractor.

The KEA assumption as stated in [SW06] allows the extractor to fail with some negligible
probability, over and above the probability that a dishonest verifier managed to guess the
correct h = H(ρ, ψ) without making this random-oracle query. Not only does our protocol
achieve zero- knowledge without the KEA, our extractor is, in this sense, ‘perfect’.

Our protocol is just as strong as Stinson-Wu under attack from active intruders: see table 3.1
for a very brief sketch of the case-analysis which would be the basis of a proof of this.

An identity-based analogue of Stinson-Wu can be defined using a bilinear pairing, just as
we did in section 3.3. However, to prove the zero-knowledge property, one needs to make a
bilinear analogue of the knowledge of exponent assumption.

26

4. A simple key-exchange protocol

Challenge Response Security

R c Y Nothing to prove.

R c′ — Prover rejects by lemma 3.2.7; Y ′ probably wrong
by theorem 3.2.1.

R c Y ′ Response is incorrect.

R′ — Y Response is incorrect.

R′ c Y ′ Prover rejects with probability 1−2−ℓI ; Y ′ probably
wrong by theorem 3.2.1.

R′ c′ Y ′ Simulate prover using extractor (lemma 3.2.4); Y ′

probably wrong by theorem 3.2.1.

Table 3.1: Security of W -ident against active intruders (summary)

We suspect that a key-exchange protocol like ours can be constructed using Stinson-Wu rather
than the Wrestlers identification scheme. We haven’t, however, gone through all the details,
since we believe our protocol is just as efficient and is based on much more conservative
assumptions.

4 A simple key-exchange protocol

In this section, we describe a simple key-exchange protocol built out of the identification
protocol shown previously.

The key-exchange protocol arises from the following observation. If Bob sends a challenge,
presumably to Alice, and gets a correct response, then not only did he really send the
challenge to Alice but he knows that she received it correctly.

So, if Alice and Bob authenticate each other, by the end of it, they should each have chosen a
random private value, sent the corresponding public value to the other, and been convinced
that it arrived safely.

Unfortunately, life isn’t quite this kind, and we have to do some more work to make this
scheme secure.

Our key exchange protocol essentially consists of two parallel instances of the identification
protocol. If Alice receives a correct response to her challenge, she will know that Bob received
her challenge correctly, and vice versa. If we let Alice’s challenge be R0 = r0P and Bob’s
challenge be R1 = r1P then each can compute a shared secret Z = r0R1 = r0r1P = r1R0

unknown to an adversary. There are, unfortunately, a few subtleties involved in turning this
intuition into a secure key-exchange protocol, which we now describe.

4.1 Overview

We present a quick, informal description of our basic key-exchange protocol. In addition to
our group G, we shall also need a secure symmetric encryption scheme E = (κ,E,D), and
two secure hash functions HI : Σ

2ℓG → ΣℓI and HK : ΣℓG+1 → Σκ.

27

The Wrestlers Protocol

Setup Group G = 〈P 〉; |G| = q is prime. HI(·, ·) and HK(·) are secure hashes.
E = (κ,E,D) is an IND-CCA2 symmetric encryption scheme.

Parties Ui for 0 6 i < n.
Private keys xi ∈$ N<q.
Public keys Xi = xiP .

ri
$

← I ; Ri ← riP
ci ← ri ⊕HI(Ri, riXj)

Check Rj =
(

cj ⊕HI(xiRj)
)

P
Z ← riRj ; K ← HK(0, Z)
χi ← EK(xiRj)

Check DK(χj) = riXj

Shared key is HK(1, Z)

rj
$

← I ; Rj ← rjP
cj ← rj ⊕HI(Rj , rjXi)

Check Ri =
(

ci ⊕HI(xjRi)
)

P
Z ← rjRi; K ← HK(0, Z)
χj ← EK(xjRi)

Check DK(χi) = rjXi

Shared key is HK(1, Z)

(Ri, ci)

(Ri, χi)

(Rj , cj)

(Rj , χj)

Figure 4.1: Summary of the Wrestlers Key Exchange protocol, W -kx

Suppose that Alice’s and Bob’s private keys are a and b respectively, and their public keys are
A = aP and B = bP .

1. Alice chooses a random index r ∈$ N<|G|. She computes R = rP and c = r ⊕HI(R, rB).
She sends the pair (R, c) to Bob.

2. Similarly, Bob chooses a random s ∈$ N<|G|. He computes S = sP and d = s⊕HI(S, sA).
He sends (S, d) to Alice.

3. Alice receives (S′, d′) from Bob. She computes s′ = d′ ⊕ HI(S
′, aS′), and verifies that

S′ = s′P . If so, she computes KA = HK(0 ‖ rS′), and sends R,EKA
(aS′) to Bob.

4. Similarly, Bob receives (R′, c′) from Alice. He verifies that R′ =
(

c′ ⊕ HI(R
′, bR′)

)

P . If
so, he computes KB = HK(0 ‖ sR′) and sends S, EKB

(bR′) to Alice.

5. Alice receives a ciphertext (S′′, χB) from Bob. She checks that S′′ = S′, decrypts χB , and
checks that DKA

(χB) = rB. If so, she uses HK(1 ‖ rS′) as her shared secret.

6. Similarly, Bob receives (R′′, χA) from Alice, and checks R′′ = R′ and DKB
(χA) = sA. If

so, he uses HK(1 ‖ sR′) as his shared secret.

This is the Wrestlers Key Exchange protocol, W -kxG,E (again, we omit the superscripts when
referring to the general protocol, or when confusion is unlikely). A diagrammatic summary
of the protocol is shown in figure 4.1.

28

4. A simple key-exchange protocol

Assume, for the moment, that Alice and Bob’s messages are relayed honestly. Then:

• aS′ = aS = a(sP) = s(aP) = sA, so s′ = d′ ⊕ HI(S
′aS′) = d ⊕ HI(S, sA) = s, and

S′ = S = sP = s′P , and therefore Alice responds to Bob’s message;

• similarly bR′ = rB, so r′ = r and R′ = r′P , and therefore Bob responds to Alice’s
message;

• bR′ = bR = b(rP) = r(bP) = rB, and aS′ = aS = a(sP) = s(aP) = sA, and therefore
both parties compute their responses correctly; and

• rS′ = rS = r(sP) = s(rP) = sR = sR′, so KA = KB, and therefore they can decrypt
each others’ responses, and agree the same shared secret.

This shows that the protocol is basically valid, but says little about its security. The remainder
of this section will describe our protocol in more formal detail, and prove its security in a
model with multiple parties and an adversary who controls the network.

Observe that the protocol as we’ve presented here is symmetrical. There’s no notion of
‘initiator’ or ‘responder’. There are a total of four messages which must be sent before
both parties accept. However, this can be reduced to three by breaking the symmetry of the
protocol and combining one or other party’s challenge and response messages. We choose to
analyse the symmetrical version, since to do so, it suffices to consider only the two different
kinds of messages. Since our security model allows the messages to be adversarially delayed
and reordered, it is easy to show that the security of an optimized, asymmetrical protocol is
no worse than the symmetrical version we present here.

4.2 Security model and security definition

Our model is very similar to that of Canetti and Krawczyk [CK01], though we have modified
it in two ways.

1. We allow all the participants (including the adversary) in the protocol access to the
various random oracles required to implement it.

2. Since we want to analyse a specific, practical scheme, asymptotic results are useless. We
measure the adversary’s resource usage carefully, and produce a quantitative bound on
the adversary’s advantage in the SK-security game.

Overview We briefly describe our modified model, pointing out the changes we have made,
and how they apply to our protocol. Much of Canetti and Krawczyk’s model (for example,
the local and global outputs) is useful for proving more general security properties such as
demonstrating that SK-security suffices for constructing secure channels, and we shall not
concern ourselves with such details. Other parts deal with issues such as security parameters
and ensuring that all the computation is polynomially bounded, which are irrelevant since
we are dealing with a single concrete protocol rather than a family of them.

The entities in the model are the adversary A, and a (fixed) number of parties Pi, for 0 6 i < n.
If the protocol under consideration makes use of random oracles, then all the participants –
the adversary and the parties – are all allowed access to the random oracles.

The parties and the adversary play a ‘game’. At the beginning of the game, the participants
are given some inputs computed by a randomized initialization procedure init. This produces
as output a pair (iU , i); the value iU is the global input, and is given to all the participants

29

The Wrestlers Protocol

including the adversary. The vector i has n components, and party Pi is given (iU , i[i]) as
input.

Sessions Parties don’t act directly. Instead, each party runs a number of sessions. A session
a triple S = (Pi, Pj , s), where i, j ∈ N<n identify the owning party and a partner, and s ∈ ΣℓS

is a session-id. (The original model includes a rôle, for distinguishing between initiators and
responders. Our protocol is symmetrical, so this distinction isn’t useful.) If Pi runs a session
S = (Pi, Pj , s) and Pj runs a session S′ = (Pj , Pi, s) then we say that S and S′ are matching,
and that Pj is Pi’s partner for the session.

At most one participant in the game is active at any given time. Initially the adversary is active.
The adversary may activate a session in one of two ways.

1. It may create a session of a partyPi, by selecting a session-id s ∈ ΣℓS and a partner j. There
is no requirement that Pj ever have a matching session. However, all sessions of a party
must be distinct, i.e., sessions with the same partner must have different session-ids.

2. It may deliver a message µ ∈ Σ∗, from party Pj , to an existing session S = (Pi, Pj , s).
There is no requirement that any party previously sent µ: the adversary is free to make
up messages as it sees fit.

The adversary becomes inactive, and the session becomes active. The session performs some
computation, according to its protocol, and may request a message µ be delivered to the
matching session running in its partner (which may not exist). The session may also terminate.
In the case we are interested in, of key-exchange protocols, a session S = (Pi, Pj , s) may
terminate in one of two ways:

1. it may complete, outputting (i, j, s,K), for some session key K , or

2. it may abort, outputting (i, j, s,⊥).

Once it has performed these actions, the session deactivates and the adversary becomes active
again. The adversary is given the message µ, if any, and informed of whether the session
completed or aborted, but, in the case of completion, not of the value of the key K . A session
is running if it has been created and has not yet terminated.

Other adversarial actions As well as activating sessions, the adversary has other capabilities,
as follows.

• It may expire any session S, causing the owning party to ‘forget’ the session key output
by that session.

• It may corrupt any party Pi, at will: the adversary learns the entire state of the corrupted
party, including its initial input i[i], the state of any sessions it was running at the time,
and the session keys of any completed but unexpired sessions. Once corrupted, a party
can no longer be activated. Of course, the adversary can continue to send messages
allegedly from the corrupted party.

• It may reveal the state of a running session S, learning any interesting values specific to
that session, but not the owning party’s long-term secrets.

• It may reveal the session-key of a completed session S.

• It may elect to be challenged with a completed session S, provided. Challenge sessions
form part of the security notion for key-exchange protocols. See below for more details.

30

4. A simple key-exchange protocol

We say that a session S = (Pi, Pj , s) is locally exposed if

• it has had its state revealed,

• it has had its session-key revealed, or

• Pi has been corrupted, and S had not been expired when this happened.

A session is exposed if it is locally exposed, or if its matching session exists and has been locally
exposed.

At the beginning of the game, a bit b∗ is chosen at random. The adversary may choose to
be challenged with any completed, unexposed session;2 the adversary is then given either the
session’s key – if b∗ = 1 – or a string chosen at random and independently of the game so far
from a protocol-specific distribution – if b∗ = 0. At the end of the game, the adversary outputs
a single bit b.

SK-security We’ve now described the game; it is time to explain the adversary’s goal in it.
The adversary wins the game if either

1. two unexposed, matching sessions complete, but output different keys,3 or

2. the adversary correctly guesses the hidden bit b∗.

More formally, we make the following definition.

4.2.1 Definition (SK-security) Let ΠH0(·),H1(·),... be a key-exchange protocol which makes use of
random oracles H0(·), H1(·), . . . , and let A be an adversary playing the game described
previously, where n parties run the protocol Π. Let V be the event that any pair of matching,
unexposed sessions completed, but output different session keys. Let W be the event that the
adversary’s output bit matches the game’s hidden bit b∗. We define the adversary’s advantage
against the SK-security of the protocol Π to be

Advsk
Π (A, n) = max(Pr[V], 2 Pr[W]− 1).

Furthermore, we define the SK insecurity function of the protocol Π to be

InSecsk(Π; t, n, qS , qM , qH0
, qH1

, . . .) = max
A

Advsk
Π (A, n)

where the maximum is taken over all adversaries A with total running time t (not including
time taken by the parties), create at most qS sessions, deliver at most qM messages, and (if
applicable) make at most qHi

random-oracle queries to each random oracle Hi(·). �

4.3 Security

In order to analyse our protocol W -kxG,E properly, we must describe exactly how it fits into
the formal model described in our formal model.

2 The original Canetti-Krawczyk definition restricts the adversary to a single challenge session, but our proof works
independent of the number of challenge sessions, so we get a stronger result by relaxing the requirement here.)

3 The original Canetti-Krawczyk definition differs slightly here. It requires that ‘if two uncorrupted parties complete
matching sessions then they both output the same key’ [original emphasis]. This can’t be taken at face value,
since none of the protocols they claim to be secure actually meet this requirement: they meet only the weaker
requirement that parties completing matching sessions output different keys with negligible probability. We
assume here that this is what they meant.

31

The Wrestlers Protocol

Sessions and session-ids Our formal model introduced the concept of sessions, which the
informal description of section 4.1 neglected to do. (One could argue that we described
a single session only.) As we shall show in section 4.4, our protocol is insecure unless we
carefully modify it to distinguish between multiple sessions.

In the model, distinct key-exchange sessions are given distinct partners and session-ids. In
order to prevent sessions interfering with each other, we shall make explicit use of the session-
ids.

Suppose the session-ids are ℓS-bit strings. We expand the domain of the random oracle HI so
that it’s now

HI :G× ΣℓS ×G×G→ ΣℓI
.

Messages We split the messages our protocols into two parts: a type τ and a body µ. We
assume some convenient, unambiguous encoding of pairs (τ, µ) as bit-strings. For readability,
we present message types as text strings, e.g., ‘challenge’, though in practice one could use
numerical codes instead.

The message body itself may be a tuple of values, which, again, we assume are encoded as bit-
strings in some convenient and unambiguous fashion. We shall abuse the notation for the sake
of readability by dropping a layer of nesting in this case: for example, we write (hello, x, y, z)
rather than

(

hello, (x, y, z)
)

.

The protocol Our protocol is represented by three functions, shown in figure 4.2.

• init(n) is the initialization function, as described in section 4.2. It outputs a pair (p, i),
where i[i] is the private key of party Pi and p[i] is the corresponding public key. Only Pi

is given i[i], whereas all parties and the adversary are given p.

• new-sessionHI (·,·,·,·),HK(·)(p, x, i, j, s) is the new-session function. This is executed by
party Pi when the adversary decides to create a new session S = (Pi, Pj , s). It is also
given the relevant outputs of init, and allowed access to the random oracles HI and HK .

• messageHI (·,·,·,·),HK(·)(τ, µ) is the incoming-message function. This is executed by a
session when the adversary decides to deliver a message (τ, µ) to it. It makes use of
the subsidiary functions msg-challenge and msg-response to handle the messages.

We observe that the protocol never aborts. We could make it do so if it receives an invalid
message, but we prefer to ignore invalid messages for the sake of robustness.4

Session states We must specify what the adversary obtains when it chooses to reveal a
session’s state. Given the program in figure 4.2, we can see that the session state consists
of the variables (x,X,X ′, r, R, Y, C).

However, x is the owning party’s long-term secret, and it seems unreasonable to disclose this
to an adversary who stops short of total corruption.

The public keys X and X ′ are part of the adversary’s input anyway, so revealing them
doesn’t help. Similarly, the set C of valid challenges could have been computed easily by

4 Note that this protocol would therefore require modification before it was acceptable in the simulation-based
model of [Sho99]. There it is required that a key-exchange protocol terminate after a polynomially-bounded
number of messages are delivered to it.

32

4. A simple key-exchange protocol

Function init(n):
for i ∈ N<n do

x
$

← N<|G|;
i[i]← x;
p[i]← xP ;

return (p, i);

Function new-sessionHI (·,·,·,·),HK(·)(p, x, i, j, s):
X ← p[i]; X ′ ← p[j]; C ← ∅;

r
$

← N<|G|; R← rP ; Y ← rX ′;
h← HI(X, s,R, Y); c← r ⊕ h;
send (challenge, R, c);

Function messageHI (·,·,·,·),HK(·)(τ, µ):
if τ = challenge then msg-challenge(µ);
else if τ = response then msg-response(µ);

Function msg-challenge(µ):
(R′, c′)← µ;
Y ′ ← xR′;
h′ ← HI(X

′, s, R′, Y ′);
r′ ← c′ ⊕ h′;
if R′ 6= r′P then return;
C ← C ∪ {R};
Z ← rR′;
(K0,K1)← HK(Z);
χ← EK0

(Y ′);
send (response, R, χ);

Function msg-response(µ):
(R′, χ′)← µ;
if R′ /∈ C then return;
Z ← rR′;
(K0,K1)← HK(Z);
Y ′ ← DK0

(χ′);
if Y ′ 6= Y then return;
output K1; stop;

Figure 4.2: Formalization of W -kx

the adversary, since a group element R′ ∈ C if and only if the session S responded to some
message (challenge, R′, c′).

The value R = rP is easily computed given r, and besides is sent in the clear in the session’s
first message. The expected response Y = rX ′ is also easily computed from r. The converse
is also true, since r can be recovered from R and c in the session’s challenge message and the
value Y . Besides, r is necessary for computing Z in response to incoming challenges.

We conclude that the only ‘interesting’ session state is r.

Security Having formally presented the protocol, we can now state our main theorem about
its security. The proof is given in appendix A.1.

4.3.1 Theorem (SK-security ofW -kx) LetG be a cyclic group. Let E = (κ,E,D) be a symmetric encryption
scheme. Then

InSecsk(W -kxG,E ; t, n, qS, qM , qI , qK) 6 2qS
(

InSecind-cca(E ; t′, qM , qM) +

InSecmcdh(G; t′, qK) + n InSecmcdh(G; t′, qM + qI)
)

+
n(n− 1)

|G|
+

2qM
2ℓI

.

where t′ = t+O(n) +O(qS) +O(qMqI) +O(qK).

4.4 Insecure protocol variants

It’s important to feed the session-id and verifier’s public key to the random oracle HI when
constructing the check-value c. Without these, the protocol is vulnerable to attack. In this

33

The Wrestlers Protocol

section, we consider some variants of our protocol which hash less information, and show
attacks against them.

To simplify the presentation, we shall consider Alice and Bob, and a third character Carol.
We shall be attacking a pair of matching sessions A and B, run by Alice and Bob respectively.
Let Alice and Bob’s private keys be xA and xB , and let their public keys be XA = xAP and
XB = xBP respectively.

Protocol diagram notation In order to keep the presentation as clear as possible, we use a
simple diagrammatic notation for describing protocol runs. A line of the form

action S result

states that the adversary performs the given action on session S, with the stated result. The
action may be

• Create session (Pi, Pj , s): the session is created, running in party Pi, with partner Pj and
session-id s.

• Receive µ: the session is activated with an incoming message µ.

• Session-state reveal: The adversary requests the session’s internal state.

The result may be

• Send µ′: the session requests the delivery of the message µ′.

• Complete: K : the session completes, outputting the key K .

• State: σ: the session’s state is revealed to be σ.

• (Ignore): the result of the action is unimportant.

Omitting the session-id Consider a protocol variant where session S sets hS =
HI(XN , RS , YS), where N is the session’s partner. That is, we’ve omitted the session-id from
the hash. An adversary can cross over two sessions between Alice and Bob. Here’s how.

The attack assumes that Alice and Bob set up two pairs of matching sessions with each other,
thus.

Create session (Alice,Bob, s) A Send (challenge, RA, cA)

Create session (Bob,Alice, s) B Send (challenge, RB, cB)

Create session (Alice,Bob, s′) A′ Send (challenge, RA′ , cA′)

Create session (Bob,Alice, s′) B′ Send (challenge, RB′ , cB′)

Observe that the session pairs use distinct session-ids s 6= s′, so this is allowed. Now the
adversary crosses over the challenges, using the second pair of sessions to provide responses
to the challenges issued by the first pair. By revealing the state in the second pair of sessions,

34

4. A simple key-exchange protocol

the adversary can work out the (probably different) session keys accepted by the first pair.

Receive (challenge, RB, cB) A′ Send (response, RA′ , EKA′B,0
(xARB))

Receive (challenge, RA, cA) B′ Send (response, RB′ , EKB′A,0
(xBRA))

Receive (challenge, RA′ , cA′) A (ignored)

Receive (challenge, RB′ , cB′) B (ignored)

Session-state reveal A′ rA′

Session-state reveal B′ rB′

Receive (response, RB′ , EKB′A,0
(xBRA)) A Complete: KAB′,1

Receive (response, RA′ , EKA′B,0
(xARB)) B Complete: KBA′,1

The adversary can now compute KAB′ = HK(rB′RA) and KB′A = HK(rA′RB). Safely in
possession of both keys, the adversary can now read and impersonate freely.

Omitting the partner’s public key Now consider a protocol variant where session S sets hS =
HI(s,RS , YS), where s is the session-id. An adversary can use a sessions with Carol to attack
a session between Alice and Bob. Here’s how the sessions are set up.

Create session (Alice,Bob, s) A Send (challenge, RA, cA)

Create session (Bob,Alice, s) B Send (challenge, RB, cB)

Create session (Alice,Carol, s) A′ Send (challenge, RA′ , cA′)

Create session (Bob,Carol, s) B′ Send (challenge, RB′ , cB′)

Although each of Alice and Bob have two sessions with session-id s, this is allowed, since they
are with different partners. The rest of the attack in fact proceeds identically to the previous
case.

4.5 Deniability

We have claimed that the Wrestlers key-exchange protocol is deniable. In this section, we define
what we mean, explain the limits of the deniablility of the protocol as currently presented, fix
the protocol with an additional pass (which can be collapsed to a single message flow by
breaking the protocol’s symmetry), and prove the deniability of the resulting protocol.

Our notion of deniability is taken from Di Raimondo, Gennaro and Krawczyk [RGK06], except
that, as usual, we opt for a concrete security approach.

Discussion Our definition for deniability is that, for any adversary interacting with partici-
pants in the protocol, a simulator exists which can compute the same things as the adversary.
In particular, since an adversary could output a transcript of the interactions between itself
and the parties, it would follow that a simulator could do this too. If the simulator is
effective, its output is indistinguishable from that of the real adversary, and hence no ‘judge’
(distinguisher) should be persuaded by evidence presented by someone who claims to have
witnessed or participated in an interaction.

We work again the model described in 4.2. That is, our adversary has complete control over
the ordering and delivery of all messages. The adversary is also able, at any time, to reveal
the state of any session. However, deniability is obviously impossible against an adversary

35

The Wrestlers Protocol

who can corrupt other parties, since simulating such an adversary’s actions would necessarily
require the simulator to compute private keys corresponding to the known public keys, and
this is (we believe) difficult, because an efficient algorithm for doing this could easily attack
our protocol, which we already proved secure. Therefore, we forbid the adversary from
corrupting parties.

In order to allow the adversary to participate in the protocol, rather than merely observing it,
we need to give it one or more private keys. We could modify the initialization function init
from figure 4.2 to give the adversary a private key, but there’s an easier way: we can just give
the adversary a number of private keys in its auxiliary input.

Definitions Let Π be a key-exchange protocol, in the model described in section 4.2. We use
the simulation framework of section 2.10. We define the initialization function IΠ to be the
initialization function of Π, as before, and the corresponding world WΠ(ι, σ, τ, µ) is a fairly
straightforward mapping of the adversary’s possible actions to the simulation model:

• The invocation new-session with µ = (i, j, s) creates a new session on party Pi, with part-
ner Pj and session-id s. The reply ρ = (δ,m) is a decision δ ∈ {continue, abort, complete}
and an output message m ∈ Σ∗ ∪ {⊥}. If m 6= ⊥ then m is a message to be sent to the
matching session (if any).

• The invocation deliver with µ = (i, j, s,m) delivers message m to the session S =
(Pi, Pj , s). The response ρ is as for new-session invocations.

• The invocation reveal-session-state with µ = (i, j, s) reveals to the adversary the state of
the running session S = (Pi, Pj , s). The response ρ is the session’s state if S is indeed a
running session, or ⊥ otherwise.

• The invocation reveal-session-key with µ = (i, j, s) reveals to the adversary the session-
key of the completed session S = (Pi, Pj , s). The response ρ is the session key K if the
session is indeed complete, or ⊥ otherwise.

There are no invocations corresponding to the adversary actions of corrupting parties (since
deniability against an corrupting adversary is impossible, as discussed earlier), or session
expiry or challenging (since they are useless in this context).

We measure the deniability of a protocol Π, using a given simulator S, by the insecurity

function InSecsim(WΠ, IΠ, S; tD, tA,QD,QA,R,U) of definition 2.10.1. The interaction bounds
R = (qS , qM) we place on the adversary are on the number (qS) of new-session and (qM) deliver
invocations it makes.

We shall (informally) say that a protocol Π is deniable if there is a simulator SΠ for which
the insecurity function is small for appropriate resource bounds on the adversary and
distinguisher.

The current protocol As it stands, W -kx isn’t deniable, according to our definition, for
arbitrary auxiliary inputs. Let’s see why.

Suppose that Bob is an informant for the secret police, and wants to convince a judge that Alice
is involved in subversive activities in cyberspace. Unfortunately, Bob’s job is difficult, because
of the strong zero-knowledge nature of the Wrestlers identification protocol. However, Bob
can work with the judge to bring him the evidence necessary to convict Alice. Here’s how.

Alice’s public key is A, and Bob’s public key is B. The judge chooses some session-id s, and

36

4. A simple key-exchange protocol

r ∈$ N<q. He computes R = rP and c = r ⊕HI(B, s,R, rA), and gives Bob the triple (s,R, c),
keeping r secret. Bob can now persuade Alice to enter into a key-exchange with him, with
session-id s. He uses (R, c) as his challenge message. When Alice sends back her response
(R′, χ) (because Bob’s challenge is correctly formed), Bob aborts and shows (R′, χ) to the
judge. The judge knows r and can therefore decrypt χ and check the response. If it’s wrong,
then Bob was cheating and gets demoted – he can’t get the right answer by himself because
that would require him to impersonate Alice. If it’s right, Alice is really a subversive element
and ‘disappears’ in the night.

We shall show in theorem 4.5.2 below that this is basically the only attack against the
deniability of the protocol. However, we can do better.

Fixing deniability We can fix the protocol to remove even the attack discussed above. The
change is simple: we feed both parties’ challenges to the hash function HI rather than just the
sender’s. We use a five-argument hash function (random oracle) HI :G

2 × ΣℓS × G2 → ΣℓI .
We introduce a new message pass at the beginning of the protocol: each session simply sends
its challenge point R = rP in the clear as a ‘pre-challenge’. The actual challenge is R and
c = r ⊕HI(X,R

′, s, R, c), where R′ is the challenge of the matching session.

By breaking symmetry, we can reduce the communication complexity of this variant to four
messages. As before, we analyse the symmetrical version. The extra flow might seem a high
price to pay, but we shall see that it has additional benefits beyond deniability.

A summary of the new protocol is shown in figure 4.3, and the formal description is shown in
figure 4.4.

The security of this variant is given by the following theorem, whose proof is in appendix A.2.

4.5.1 Theorem (SK-security of W -dkx) Let G be a cyclic group. Let E = (κ,E,D) be a symmetric
encryption scheme. Then

InSecsk(W -dkxG,E ; t, n, qS , qM , qI , qK) = InSecsk(W -kxG,E ; t, n, qS , qM , qI , qK)

Deniability of the Wrestlers protocols In order to quantify the level of deniability our
protocols provide, we shall impose a limit on the auxiliary input to the adversary. In
particular, we shall use U of definition 2.10.1 to count the number of challenges in the auxiliary
input. That is, U = nC is the number of tuples (i, j, s, R′, R, c) for which there is an r such that
R = rP and c = r ⊕HI(R

′, Xj, s, R, rXi) (or without the R′ for W -kx).

With this restriction in place, we can state the following theorem about the deniability of our
protocols.

4.5.2 Theorem (Deniability of W -kx and W -dkx) There exist simulators SW -kx and W -dkx such that

InSecsim(WW -kxG,E , IW -kxG,E , SW -kxG,E ; tD, tA,QD,QA, (qS , qM), 0) 6
qM
2ℓI

and

InSecsim(WW -dkxG,E , IW -dkxG,E , SW -dkxG,E ; tD, tA,QD,QA, (qS , qM), nC) 6
nCqS
|G|

+
qM
2ℓI

.

The running time of the simulators is O(tA) +O(QAqM).

Proof The simulators SW -kx and SW -dkx are very similar. We describe both here. Both are
fake-world simulators, working as follows.

37

The Wrestlers Protocol

Setup Group G = 〈P 〉; |G| = q is prime. HI(·, ·, ·, ·, ·) and HK(cdot) are secure
hashes. E = (κ,E,D) is an IND-CCA2 symmetric encryption scheme.

Parties Ui for 0 6 i < n.
Private keys xi ∈$ N<q.
Public keys Xi = xiP .

ri
$

← I ; Ri ← riP

ci ← ri ⊕HI(Rj , Xi, s, Ri, riXj)

Check Rj =
(

cj ⊕HI(xiRj)
)

P
Z ← riRj ; K ← HK(0, Z)
χi ← EK(xiRj)

Check DK(χj) = riXj

Shared key is HK(1, Z)

rj
$

← I ; Rj ← rjP

cj ← rj ⊕HI(Ri, Xj , s, Rj , rjXi)

Check Ri =
(

ci ⊕HI(xjRi)
)

P
Z ← rjRi; K ← HK(0, Z)
χj ← EK(xjRi)

Check DK(χi) = rjXi

Shared key is HK(1, Z)

Ri

(Ri, ci)

(Ri, χi)

Rj

(Rj , cj)

(Rj , χj)

Figure 4.3: Summary of the Deniable Wrestlers Key Exchange protocol, W -dkx

1. Initially, it constructs simulated parties Pi, for 0 6 i < n, giving each the public key Xi

from the common input.

2. Suppose the adversary requests creation of a new session S = (Pi, Pj , s). Then the
simulator creates a new session, including a random value rS ∈$ N<|G|, and computes
RS = rSP , and YS = rSXj . For W -dkx, it sends the message (pre-challenge, RS); for
W -kx, it additionally computes h = HI(Xi, s, RS , YS) and sends (challenge, RS , rS ⊕ h).

3. Suppose, for W -dkx, the adversary sends a message (pre-challenge, R′) to a ses-
sion S = (Pi, Pj , s). The simulator computes h = HI(R

′, Xi, s, RS , YS), and sends
(challenge, RS , rS ⊕ h).

4. Suppose the adversary sends a message (challenge, R′, c′) to session S = (Pi, Pj , s). The
simulator doesn’t know xi.

(a) If R′ = RT for some other simulated session T , then the simulator knows rT such
that RT = rTP . Let Y ′ = rTXi. The simulator computes h = HI(Xj , s, R

′, Y ′) (resp.
h = HI(RS , Xj , s, R

′, Y ′)) for W -kx (resp.W -dkx) and checks that rT = c′⊕ h. If not,

38

4. A simple key-exchange protocol

Function init(n):
for i ∈ N<n do

x
$

← N<|G|;
i[i]← x;
p[i]← xP ;

return (p, i);

Function new-sessionHI (·,·,·,·,·),HK(·)(p, x, i, j, s):
X ← p[i]; X ′ ← p[j]; C ← ∅;

r
$

← N<|G|; R← rP ; Y ← rX ′;
send (pre-challange, R);

Function messageHI (·,·,·,·,·),HK(·)(τ, µ):
if τ = pre-challenge then msg-pre-challenge(µ);
else if τ = challenge then msg-challenge(µ);
else if τ = response then msg-response(µ);

Function msg-pre-challenge(µ):
R′ ← µ;
h← HI(R

′, X, s, R, c);
c← r ⊕ h;
send (msg-challenge, R, c);

Function msg-challenge(µ):
(R′, c′)← µ;
Y ′ ← xR′;
h′ ← HI(R,X

′, s, R′, Y ′);
r′ ← c′ ⊕ h′;
if R′ 6= r′P then return;
C ← C ∪ {R};
Z ← rR′;
(K0,K1)← HK(Z);
χ← EK0

(Y ′);
send (response, R, χ);

Function msg-response(µ):
(R′, χ′)← µ;
if R′ /∈ C then return;
Z ← rR′;
(K0,K1)← HK(Z);
Y ′ ← DK0

(χ′);
if Y ′ 6= Y then return;
output K1; stop;

Figure 4.4: Deniable key-exchange: formalization of W -dkx

the simulator discards the message. Otherwise, it computes (K0,K1) = HK(rSR
′),

and sends the message (response, R,EK0
(Y ′)).

(b) Otherwise the simulator runs the extractor TW -ident on the adversary’s history of
queriesHI(Xj , s, R

′, ·) (resp.HI(RS , Xj , s, R
′, ·)) forW -kx (resp.W -dkx). The extrac-

tor returns (r′, Y ′). If Y ′ = ⊥ then the simulator ignores the message. Otherwise, the
simulator computes (K0,K1) = HK(rR′) and sends back (response, R,EK0

(Y ′)).

5. Suppose the adversary sends a message (response, R′, χ) to session S = (Pi, Pj , s). The
simulator computes (K0,K1) = HK(rSR

′), and decrypts Y ′ = DK0
(χ). If Y ′ 6= YS then

the simulator discards the message. Otherwise, it makes the simulated session complete,
and outputs key K1.

6. Finally, if the adversary reveals a session’s state, the simulator reveals rS as required; if
the adversary reveals a session-key, the simulator reveals the K1 it output.

The only point where the simulation fails to be perfect is in 4b. LetR′ and c′ be the values from
an incoming challenge message to session S = (Pi, Pj , s). Let r′ be such that R′ = r′P and let
Y ′ = r′Xi. If a random-oracle query HI(Xj , s, R

′, Y ′) (or HI(RS , Xj, s, R
′, Y ′) for W -dkx) has

been issued, then there are a number of possibilities. Let h′ be the result of this query.

39

The Wrestlers Protocol

• The adversary made this query. Then the extractor will find it and return Y ′ if c′ = h′⊕r′,
or ⊥ otherwise.

• Some simulated session U = (Pi′ , Pj′ , s
′) made this query. But simulated sessions only

make HI -queries when constructing challenges, so R′ = RU for some session U . But the
simulator does something different in that case.

• In W -dkx, the quadruple (s,RS , R
′, c′) came from the adversary’s auxiliary input. In

this case the simulator must fail. But RS = rSP , and rS was chosen uniformly at
random. If there are at most nC challenge sets in the auxiliary input then this happens
with probability at most nC/|G| for any given session.

We conclude that the simulator fails with probability

qM
2ℓI

+
qSnC

|G|
.

(Note that we only consider nC = 0 for W -kx.) No adversary can distinguish the simulator
from a real interaction unless the simulator fails, and the simulator is a fake-world simulator.
We therefore apply proposition 2.10.4; the theorem follows. �

4.6 Practical issues

Denial of service from spoofers The adversary we considered in 4.2 is very powerful. Proving
security against such a powerful adversary is good and useful. However, there are other
useful security properties we might like against weaker adversaries.

Eavesdropping on the Internet is actually nontrivial. One needs control of one of the
intermediate routers between two communicating parties. (There are tricks one can play
involving subversion of DNS servers, but this is also nontrivial.) However, injecting packets
with bogus source addresses is very easy.

Layering the protocol over TCP [Pos81a] ameliorates this problem because an adversary needs
to guess or eavesdrop in order to obtain the correct sequence numbers for a spoofed packet;
but the Wrestlers protocol is sufficiently simple that we’d like to be able to run it over UDP
[Pos80a], for which spoofing is trivial.

Therefore, it’s possible for anyone on the ’net to send Alice a spurious challenge message
(R, c). She will then compute Y = aR, recover r′ = c⊕HI(. . . , R, Y) check that R = r′P and
so on. That’s at least two scalar multiplications to respond to a spoofed packet, and even with
very efficient group operations, coping with this kind of simple denial-of-service attack might
be difficult.

A straightforward solution is to use the Deniable variant of the protocol, and require a
challenge to quote its matching session’s challenge R′ in its challenge. That is, upon receiving
a (pre-challenge, R′), the session sends (challenge, R′, R, c). Alice then rejects any incoming
challenge message which doesn’t quote her current challenge value. Now only eavesdroppers
can force her to perform expensive computations.

Indeed, one need not quote the entire challenge R′: it suffices to send some short hard-to-
guess hash of it, maybe just the bottom 128 bits or so.

This can’t reduce security. Consider any adversary attacking this protocol variant. We
can construct an adversary which attacks the original protocol just as efficiently. The new

40

4. A simple key-exchange protocol

adversary attaches fake R′ values to challenges output by other parties, and strips them off
on delivery, discarding messages with incorrect R′ values.

Key confirmation Consider an application which uses the Wrestlers protocol to re-exchange
keys periodically. The application can be willing to receive incoming messages using the new
key as soon as the key exchange completes successfully; however, it should refrain from
sending messages under the new key until it knows that its partner has also completed. The
partner may not have received the final response message, and therefore be unwilling to
accept a new key; it will therefore (presumably) reject incoming messages under this new
key.

While key confirmation is unnecessary for security, it has practical value, since it solves the
above problem. If the application sends a switch message when it ‘completes’, it can signal its
partner that it is indeed ready to accept messages under the new key. Our implementation
sends (switch-rq, EK0

(HS(0, R,R′))) as its switch message; the exact contents aren’t important.
Our retransmission policy (below) makes use of an additional message switch-ok, which can
be defined similarly.

It’s not hard to show that this doesn’t adversely affect the security of the protocol, since the
encrypted message is computed only from public values. In the security proof, we modify the
generation of response messages, so that the plaintexts are a constant string rather than the
true responses, guaranteeing that the messages give no information about the actual response.
To show this is unlikely to matter, we present an adversary attacking the encryption scheme
by encrypting either genuine responses or fake constant strings. Since the adversary can’t
distinguish which is being encrypted (by the definition of IND-CCA security, definition 2.9.2),
the change goes unnoticed. In order to allow incorporate our switch messages, we need only
modify this adversary, to implement the modified protocol. This is certainly possible, since
the messages contain (hashes of) public values. We omit the details.

However, while the extra message doesn’t affect the security of our protocol, it would be
annoying if an adversary could forge the switch request message, since this would be a
denial of service. In the strong adversarial model, this doesn’t matter, since the adversary can
deny service anyway, but it’s a concern against less powerful adversaries. Most IND-CCA
symmetric encryption schemes also provide integrity of plaintexts [BN00] (e.g., the encrypt-
then-MAC generic composition approach [BN00, Kra01], and the authenticated-encryption
modes of [RBB03, BRW04, MV04]), so this isn’t a great imposition.

Optimization and piggybacking We can optimize the number of messages sent by combining
them. Here’s one possible collection of combined messages:

pre-challenge R

challenge R′, R, c = HI(R
′, X, s, R, c)⊕ r

response R′, R, c, EK0
(xR′)

switch R′, EK0
(xR′, HS(0, R,R′))

switch-ok R′, EK0
(HS(1, R,R′))

The combination is safe:

• the switch and switch-ok messages are safe by the argument above; and

41

The Wrestlers Protocol

• the other recombinations can be performed and undone in a ‘black box’ way, by an
appropriately defined SK-security adversary.

Unreliable transports The Internet UDP [Pos80a] is a simple, unreliable protocol for transmit-
ting datagrams. However, it’s very efficient, and rather attractive as a transport for datagram-
based applications such as virtual private networks (VPNs). Since UDP is a best-effort rather
than a reliable transport, it can occasionally drop packets. Therefore it is necessary for a UDP
application to be able to retransmit messages which appear to have been lost.

We recommend the following simple retransmission policy for running the Wrestlers protocol
over UDP.

• Initially, send out the pre-challenge message every minute.

• On receipt of a pre-challenge message, send the corresponding full challenge, but don’t
retain any state.

• On receipt of a (valid) challenge, record the challenge value R′ in a table, together with
K = (K0,K1) and the response Y ′ = xR′. If the table is full, overwrite an existing
entry at random. Send the corresponding response message, and retransmit it every ten
seconds or so.

• On receipt of a (valid) response, discard any other challenges, and stop sending
pre-challenge and response retransmits. At this point, the basic protocol described above
would accept, so the key K1 is known to be good. Send the switch message, including its
response to the (now known-good) sender’s challenge.

• On receipt of a (valid) switch, send back a switch-ok message and stop retransmissions. It
is now safe to start sending messages under K1.

• On receipt of a (valid) switch-ok, stop retransmissions. It is now safe to start sending
messages under K1.

Key reuse Suppose our symmetric encryption scheme E is not only IND-CCA secure
(definition 2.9.2) but also provides integrity of plaintexts [BN00] (or, alternatively, is an AEAD
scheme [Rog02]. Then we can use it to construct a secure channel, by including message type
and sequence number fields in the plaintexts, along with the message body. If we do this, we
can actually get away with just the one key K = HK(Z) rather than both K0 and K1.

To do this, it is essential that the plaintext messages (or additional data) clearly distinguish
between the messages sent as part of the key-exchange protocol and messages sent over the
‘secure channel’. Otherwise, there is a protocol-interference attack: an adversary can replay
key-exchange ciphertexts to insert the corresponding plaintexts into the channel.

We offer a sketch proof of this claim in appendix A.3.

5 Conclusions

We have presented new protocols for identification and authenticated key-exchange, and
proven their security. We have shown them to be efficient and simple. We have also shown
that our key-exchange protocol is deniable. Finally, we have shown how to modify the key-
exchange protocol for practical use, and proven that this modification is still secure.

42

6. Acknowledgements

6 Acknowledgements

The Wrestlers Protocol is named after the Wrestlers pub in Cambridge where Clive Jones and
I worked out the initial design.

7 References

[BAN89] Michael Burrows, Martin Abadi, and Roger Needham; A logic of authentication;
Tech. Rep. 39; Digital Equipment Corporation, Systems Research Centre; February
1989.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk; Keying hash functions for message authen-
tication; in Neal Koblitz, ed., Advances in cryptology, CRYPTO ’96: 16th annual
international cryptology conference, Santa Barbara, California, USA, August 18–22,
1996: proceedings; vol. 1109 of Lecture Notes in Computer Science; Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc.; 1996; ISBN 3-
540-61512-1; ISSN 0302-9743; pp. 1–15; URL Fullversion:http://www.research.
ibm.com/security/; sponsored by the International Association for Cryptologic
Research (IACR), in cooperation with the IEEE Computer Society Technical
Committee on Security and Privacy and the Computer Science Department of the
University of California at Santa Barbara (UCSB).

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk; A modular approach to the design
and analysis of key exchange protocols; in Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC-98); ACM Press, New York; May 23–
26 1998; ISBN 0-89791-962-9; pp. 419–428; URL http://www.cs.ucsd.edu/~mihir/
papers/key-distribution.html.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway; A concrete security
treatment of symmetric encryption; in IEEE Symposium on Foundations of Computer
Science; 1997; pp. 394–403; URL http://www-cse.ucsd.edu/users/mihir/papers/
sym-enc.html.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway; Relations among notions of
security for public-key encryption schemes; Lecture Notes in Computer Science; 1462;
1998: 26–??; ISSN 0302-9743.

[Bel99] M. Bellare; Practice-oriented provable security; Lecture Notes in Computer Science; 1561;
1999: 1–15; ISSN 0302-9743.

[BF03] Dan Boneh and Matthew Franklin; Identity-based encryption from the Weil pair-
ing; SIAM Journal on Computing; 32 (3); June 2003: 586–615; ISSN 0097-
5397 (print), 1095-7111 (electronic); URL http://epubs.siam.org/sam-bin/dbq/
article/39852.

[BGR95] Mihir Bellare, Roch Guerin, and Phillip Rogaway; XOR MACs: New methods for
message authentication using finite pseudorandom functions; in Don Coppersmith, ed.,
Advances in cryptology, CRYPTO ’95: 15th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 27–31, 1995: proceedings; vol. 963 of
Lecture Notes in Computer Science; Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc.; 1995; ISBN 3-540-60221-6 (Berlin); ISSN 0302-9743;
pp. 15–??; sponsored by the International Association for Cryptologic Research

43

The Wrestlers Protocol

(IACR), in cooperation with the IEEE Computer Society Technical Committee on
Security and Privacy.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway; The security of cipher block chaining;
in Desmedt [Des94]; pp. 341–358.

[BN00] Mihir Bellare and Chanathip Namprempre; Authenticated encryption: relations
among notions and analysis of the generic composition paradigm; in Advances in
cryptology—ASIACRYPT 2000 (Kyoto); vol. 1976 of Lecture Notes in Comput. Sci.;
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.;
2000; pp. 531–545.

[Bon98] D. Boneh; The decision Diffie-Hellman problem; Lecture Notes in Computer Science;
1423; 1998: 48–63; ISSN 0302-9743; URL http://theory.stanford.edu/~dabo/
papers/DDH.ps.gz.

[BR93] Mihir Bellare and Phillip Rogaway; Random oracles are practical; in Proceedings of the
First Annual Conference on Computer and Communications Security; ACM; 1993; URL
http://www-cse.ucsd.edu/users/mihir/papers/ro.html.

[BR94] M. Bellare and P. Rogaway; Entity authentication and key distribution; in Desmedt
[Des94]; pp. 232–249.

[BR95a] M. Bellare and P. Rogaway; Optimal asymmetric encryption; in Alfredo De Santis,
ed., Advances in cryptology — EUROCRYPT ’94: Workshop on the Theory and
Application of Cryptographic Techniques, Perugia, Italy, May 9–12, 1994: proceedings;
vol. 950 of Lecture Notes in Computer Science; Springer-Verlag, Berlin, Germany /
Heidelberg, Germany / London, UK / etc.; 1995; ISBN 3-540-60176-7; ISSN 0302-
9743; pp. 92–111.

[BR95b] M. Bellare and P. Rogaway; Provably secure session key distribution: The three party
case; in ACM, ed., Proceedings of the twenty-seventh annual ACM Symposium on
Theory of Computing: Las Vegas, Nevada, May 29–June 1, 1995; ACM Press, New
York, NY 10036, USA; 1995; ISBN 0-89791-718-9; pp. 57–66; aCM order no. 508950.

[BR96] M. Bellare and P. Rogaway; The exact security of digital signatures — how to sign with
RSA and Rabin; Lecture Notes in Computer Science; 1070; 1996: 399–??; ISSN 0302-
9743.

[BR04] Mihir Bellare and Phillip Rogaway; Code-based game-playing proofs and the security
of triple encryption; Cryptology ePrint Archive, Report 2004/331; 2004; URL http:
//eprint.iacr.org/2004/331; full version of [BR06].

[BR06] Mihir Bellare and Phillip Rogaway; The security of triple encryption and a framework
for code-based game-playing proofs; in Serge Vaudenay, ed., Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings; vol. 4004 of Lecture Notes in Computer Science; Springer; 2006; ISBN
3-540-34546-9; pp. 409–426; proceedings version of [BR04].

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner; The EAX mode of operation; in
Bimal K. Roy and Willi Meier, eds., FSE; vol. 3017 of Lecture Notes in Computer
Science; Springer; 2004; ISBN 3-540-22171-9; pp. 389–407; URL http://www.cs.
berkeley.edu/~daw/papers/eax-fse04.ps.

44

7. References

[BWJM97] S. Blake-Wilson, D. Johnson, and A. Menezes; Key agreement protocols and
their security analysis; Lecture Notes in Computer Science; 1355; 1997: 30–
??; ISSN 0302-9743; URL http://www.cacr.math.uwaterloo.ca/~ajmeneze/
publications/agreement.ps.

[BWM98] S. Blake-Wilson and A. Menezes; Entity authentication and authenticated key trans-
port protocols employing asymmetric techniques; Lecture Notes in Computer Science;
1361; 1998: 137–??; ISSN 0302-9743; URL http://www.cacr.math.uwaterloo.ca/
~ajmeneze/publications/transport.ps.

[Can01] Ran Canetti; Universally composable security: A new paradigm for cryptographic
protocols; Report 2000/067; Cryptology ePrint Archive; October 2001; URL http:
//eprint.iacr.org/2000/067; extended Abstract appeared in proceedings of the
42nd Symposium on Foundations of Computer Science (FOCS), 2001.

[Cer00] Certicom Research; Standards for efficient cryptography, SEC 1: Elliptic curve cryp-
tography, version 1.0; 2000; URL http://www.secg.org/download/aid-385/sec1_
final.pdf.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi; The random oracle methodology,
revisited; Journal of the ACM; 51 (4); July 2004: 557–594; ISSN 0004-5411.

[CK01] Ran Canetti and Hugo Krawczyk; Analysis of key-exchange protocols and their use for
building secure channels; May 2001; URL http://eprint.iacr.org/2001/040; an
extended abstract appears in the proceedings of Eurocrypt 2001.

[CK02] Ran Canetti and Hugo Krawczyk; Universally composable notions of key exchange and
secure channels; Lecture Notes in Computer Science; 2332; 2002: 337–??; ISSN 0302-
9743; URL http://eprint.iacr.org/2002/059.

[Des94] Yvo G. Desmedt, ed.; Advances in cryptology, CRYPTO ’94: 14th annual interna-
tional cryptology conference, Santa Barbara, California, USA, August 21–25, 1994:
proceedings; vol. 839 of Lecture Notes in Computer Science; Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc.; 1994; ISBN 3-540-58333-5
(Berlin), 0-387-58333-5 (New York); ISSN 0302-9743.

[ElG85] Taher ElGamal; A public key cryptosystem and a signature scheme based on discrete
logarithms; Lecture Notes in Computer Science; 196; 1985: 10–18; ISSN 0302-9743.

[KM06] Neal Koblitz and Alfred Menezes; Another look at "provable security". ii; Cryptology
ePrint Archive, Report 2006/229; 2006; URL http://eprint.iacr.org/2006/229.

[Kra01] Hugo Krawczyk; The order of encryption and authentication for protecting communica-
tions (or: how secure is SSL?); June 2001; URL http://eprint.iacr.org/2001/045;
an abridged version appears in the proceedings of CRYPTO 2001.

[Men05] Alfred Menezes; An introduction to pairing-based cryptography; 2005; URL http:
//www.cacr.math.uwaterloo.ca/~ajmeneze/publications/pairings.pdf; notes
from lectures given in Santander, Spain.

[MV04] David A. McGrew and John Viega; The security and performance of the galois/counter
mode (GCM) of operation; in Anne Canteaut and Kapalee Viswanathan, eds.,
INDOCRYPT; vol. 3348 of Lecture Notes in Computer Science; Springer; 2004; ISBN
3-540-24130-2; pp. 343–355; URL http://eprint.iacr.org/2004/193.

45

The Wrestlers Protocol

[Pos80a] J. Postel; RFC 768: User datagram protocol; August 1980; URL ftp://ftp.internic.
net/rfc/rfc768.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc768.txt; status:
STANDARD. See also STD0006 [Pos80b].

[Pos80b] J. Postel; STD 6: User Datagram Protocol; August 1980; URL ftp://ftp.isi.
edu/in-notes/rfc768.txt;ftp://ftp.isi.edu/in-notes/std/std6.txt;ftp:
//ftp.math.utah.edu/pub/rfc/rfc768.txt;ftp://ftp.math.utah.edu/pub/
rfc/std/std6.txt; see also RFC0768 [Pos80a].

[Pos81a] J. Postel; RFC 793: Transmission control protocol; September 1981; URL
ftp://ftp.internic.net/rfc/rfc793.txt,ftp://ftp.math.utah.edu/pub/
rfc/rfc793.txt; see also STD0007 [Pos81b]. Status: STANDARD.

[Pos81b] J. Postel; STD 7: Transmission Control Protocol: DARPA Internet Program Protocol
Specification; September 1981; URL ftp://ftp.isi.edu/in-notes/rfc793.
txt;ftp://ftp.isi.edu/in-notes/std/std7.txt;ftp://ftp.math.utah.edu/
pub/rfc/rfc793.txt;ftp://ftp.math.utah.edu/pub/rfc/std/std7.txt; see also
RFC0793 [Pos81a].

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black; OCB: a block-cipher mode of operation
for efficient authenticated encryptiona; ACM Transactions on Information and System
Security; 6 (3); 2003: 365–403; URL http://www.cs.colorado.edu/~jrblack/
papers/ocb.pdf.

[RGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk; Deniable authenti-
cation and key exchange; Cryptology ePrint Archive, Report 2006/280; 2006; URL
http://eprint.iacr.org/2006/280.

[Rog02] Phillip Rogaway; Authenticated-encryption with associated-data; in Ravi Sandhu, ed.,
Proceedings of the 9th ACM Conference on Computer and Communications Security;
ACM Press, Washington, DC, USA; November 2002; pp. 98–107; URL http://
www.cs.ucdavis.edu/~rogaway/papers/ad.html.

[Sch96] Bruce Schneier; Applied Cryptography: Protocols, Algorithms, and Source Code in
C; John Wiley and Sons, Inc., New York, NY, USA; Second edn.; 1996; ISBN 0-
471-12845-7 (cloth), 0-471-11709-9 (paper); URL http://www.counterpane.com/
applied.html.

[Sho97] Victor Shoup; Lower bounds for discrete logarithms and related problems; in Walter
Fumy, ed., Advances in cryptology — EUROCRYPT ’97: International Conference on
the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11–
15, 1997: proceedings; vol. 1233 of Lecture Notes in Computer Science; Springer-Ver-
lag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.; 1997; ISBN 3-
540-62975-0; ISSN 0302-9743; pp. xi + 507; URL http://www.shoup.net/papers/;
sponsored by the International Association for Cryptologic Research (IACR).

[Sho99] Victor Shoup; On formal models for secure key exchange; April 21 1999; URL http:
//www.shoup.net/papers/skey.ps.Z.

[Sho01] Victor Shoup; OAEP reconsidered; Lecture Notes in Computer Science; 2139; 2001:
239–??; ISSN 0302-9743; URL http://link.springer-ny.com/link/service/
series/0558/bibs/2139/21390239.htm;http://link.springer-ny.com/link/
service/series/0558/papers/2139/21390239.pdf.

46

A. Proofs

[Sho04] Victor Shoup; Sequences of games: a tool for taming complexity in security proofs;
Cryptology ePrint Archive, Report 2004/332; 2004; URL http://eprint.iacr.
org/2004/332.

[SW06] D.R. Stinson and J. Wu; An efficient and secure two-flow zero-knowledge identification
protocol; Cryptology ePrint Archive, Report 2006/337; 2006; URL http://eprint.
iacr.org/2006/337.

A Proofs

A.1 Proof of theorem 4.3.1

Before we embark on the proof proper, let us settle on some notation. Let Pi be a party. Then
we write xi for Pi’s private key and Xi = xiP is Pi’s public key. Let S = (Pi, Pj , s) be a
session. We write rS for the random value chosen at the start of the session, and RS , cS etc.
are the corresponding derived values in that session.

The proof uses a sequence of games. For each game Gi, let Vi be the event that some pair
of unexposed, matching sessions both complete but output different keys, and let Wi be the
event that the adversary’s final output equals the game’s hidden bit b∗. To save on repetition,
let us write

∆i,j = max(|Pr[Vi]− Pr[Vj]|, |Pr[Wi]− Pr[Wj]|).

Obviously,

∆i,j 6
∑

i6k<j

∆k,k+1.

Here’s a quick overview of the games we use.

• G0 is the original SK-security game.

• In G1, we abort the game unless all parties’ public keys are distinct. Since keys are
generated at random, parties are unlikely to be given the same key by accident.

• In G2, we change the way sessions respond to challenge messages, by using the extractor
to fake up answers to most challenges. Since the extractor is good, the adversary is
unlikely to notice.

• In G3, we abort the game if the adversary ever queriesHK(·) on the Diffie-Hellman secret
rSrTP shared between two unexposed matching sessions. We show that this is unlikely
to happen if the Diffie-Hellman problem is hard.

• In G4, we abort the game if any unexposed session accepts a response message which
wasn’t sent by a matching session.

Finally, we show that the adversary has no advantage in G4. The theorem follows.

For ease of comprehension, we postpone the detailed proofs of some of the steps until after
we conclude the main proof.

Let A be a given adversary which runs in time t, creates at most qS sessions, delivers at
most qM messages, and makes at most qI queries to its HI(·, ·, ·, ·) oracle and at most qK

47

The Wrestlers Protocol

queries to its HK(·) oracle. Let G0 be the original SK-security game of definition 4.2.1, played
with adversary A.

Game G1 is the same as game G0 except, if the initialization function reports two parties
as having the same public key (i.e., we have Xi 6= Xj where 0 6 i < j < n), we stop the
game immediately and without crediting the adversary with a win. This only happens when
the corresponding private keys are equal, i.e., xi = xj , and since the initialization function
chooses private keys uniformly at random, this happens with probability at most

(

n
2

)

/|G|.
Since if this doesn’t happen, the game is identical to G0, we can apply lemma 2.4.1, and see
that

∆0,1 6
1

|G|

(

n

2

)

=
n(n− 1)

2|G|
. (A.1.1)

In game G1 and onwards, we can assume that public keys for distinct parties are themselves
distinct. Note that the game now takes at most O(qI) times longer to process each message
delivered by the adversary. This is where the O(qIqM) term comes from in the theorem
statement.

Game G2 is the same as game G1, except that we change the way that we make parties
respond to challenge messages (challenge, R, c). Specifically, suppose that S = (Pi, Pj , s) is
a session.

• Suppose T = (Pj , Pi, s) is the matching session of S. The game proceeds as before if
(R, c) = (RT , cT) is the challenge issued by T .

• Otherwise, we run the extractor TW -ident on the adversary’s history so far of oracle
queries HI(Xi, s, R, ·) to determine a pair (r, Y). If r = ⊥ then we discard the message.
Otherwise, we add R to the list C, and return a fake response to the adversary by
computing K = HK(rRS) and handing the adversary (response, RS , EK(Y)).

The following lemma shows how this affects the adversary’s probabilities of winning.

A.1.1 Lemma
∆1,2 6

qM
2ℓI

. (A.1.2)

Let us say that a session S = (Pi, Pj , s) is ripe if

• there is a matching session T = (Pj , Pi, s), and

• S is unexposed.

Suppose that S is a ripe session, and that it has a matching session T : let ZS = ZT = rSrTP .

Game G3 is the same as G2, except that the game is immediately aborted if ever the adversary
queries its random oracle HK(·) at a value ZS for any ripe session S. The following lemma
shows how this affects the adversary’s probabilities of winning.

A.1.2 Lemma For some t′ within the bounds given in the theorem statement we have

∆2,3 6 qSInSecmcdh(G; t′, qK). (A.1.3)

Game G4 is the same as G3 except that the game is immediately aborted if ever the adversary
sends a response message to a ripe session S which wasn’t output by its matching session as
a response to S’s challenge, with the result that S completes.

48

A. Proofs

Let’s make this more precise. Let U and V be a pair of matching sessions. Let CU =
(challenge, RU , cU be the challenge message sent by U . Let MT be the set of messages which
T has sent upon delivery of CU . Then, in G4, we abort the game if, for any pair S and T of
matching, unexposed sessions, S has completed as a result of being sent a message µ /∈ MT .
We have the following lemma.

A.1.3 Lemma For a t′ within the stated bounds, we have

∆3,4 6 qS
(

InSecind-cca(E ; t′, qM , qM) + n · InSecmcdh(G; t′, qM + qI)
)

(A.1.4)

Finally, let us consider the state we’re in with G4.

• No ripe session completes except as a result the adversary faithfully delivering messages
between it and its matching session.

• The adversary never queries ZS for any ripe session S. If we set KS = (KS,0,KS,1) =
HK(ZS), then KS,1 is the key output by S when it completes.

• If S and T are matching ripe sessions, then KS = KT , since ZS = rSRT = rTRS = ZT .

• For any ripe session S, KS,1 is uniformly distributed in Σκ and independent of the
adversary’s view.

• If S = (Pi, Pj , s) and T = (Pj , Pi, s) are matching ripe sessions, then ZS depends only
rS and rT . Hence, once S and T complete, and erase their states, ZS is independent
of everything except the messages sent between the two sessions. In particular, ZS is
independent of the long-term secrets xi and xj , so if either player is later corrupted, the
key KS,1 remains independent of the adversary’s view.

• Hence, the keys output by unexposed sessions are indistinguishable from freshly-
generated random strings, and remain so indefinitely.

We conclude that, for any adversary A,

Pr[V4] = 0 and Pr[W4] =
1

2
. (A.1.5)

Putting equations A.1.1–A.1.5 together, we find

Advsk
W -identG,E (A) 6 2qS

(

InSecind-cca(E ; t′, qM , qM) +

InSecmcdh(G; t′, qK) + n InSecmcdh(G; t′, qM + qI)
)

+
n(n− 1)

|G|
+

2qM
2ℓI

.(A.1.6)

The theorem follows, since A was chosen arbitrarily.

Proof of lemma A.1.1 The two games G1 and G2 differ only in whether they accept or reject
particular challenge messages (challenge, R, c).

We claim firstly that no message is accepted by G2 which would have been rejected by G1. To
prove the claim, it is sufficient to note that the extractor’s output, if not ⊥, is always correct,
and hence if G2 accepts a message then G1 would have done so too.

Since G2 also behaves identically when the adversary submits to S the challenge from the
matching session T , we have nothing to prove in this case. Let F be the event that the

49

The Wrestlers Protocol

adversary submits a message (challenge, R, c) to a session S which S would have accepted
in G1 but would be rejected by the new rule in G2. By lemma 2.4.1 we have ∆1,2 6 Pr[F]. To
prove the current lemma, therefore, we must show that Pr[F] 6 qM/2ℓI .

Rather than consider individual challenge messages, we consider classes of messages. We shall
refer to a quadruple Λ = (i, j, s, R) as a class-id, and define some useful functions:

• the class’s session S(Λ) = (Pi, Pj , s);

• the class’s index r(Λ) is r ∈ I where R = rP , which is well-defined by lemma 3.2.6;

• the class’s query Q(Λ) = (Xj , s, R, xiR);

• the class’s hash H(Λ) = HI(Q(Λ)) = HI(Xj , s, R, xiR);

• the class’s check-value c(Λ) = H(Λ)⊕ r(Λ);

• the class’s check-set V (Λ) is the set of check-values c such that a message (challenge, R, c)
was sent to session S = (Pi, Pj , s); and

• the class’s count ν(Λ) = |V (Λ)|.

Consider any class-id Λ = (i, j, s, R). A natural question which arises is: which participants
have issued Λ’s query, i.e., queried HI at Q(Λ)?

We can characterise the HI(·, ·, ·, ·) queries of a session U = (Pi′ , Pj′ , s
′) as follows:

• computing the check-value for the challenge RU by querying HI(Xi′ , s
′, RU , rUXj′), and

• checking an incoming challenge R′ by querying HI(Xj′ , s
′, R′, xi′R

′).

The class Λ’s query Q(Λ) is U ’s check-value query if

(j, i, s, R) = (i′, j′, s′, RU)

i.e., U is the matching session of S(Λ), and moreover R = RU is the challenge value issued by
U . For any c ∈ V (Λ), if c = c(Λ) then (challenge, R, c) is precisely the challenge message issued
by U to S(Λ); the rules for handling this message didn’t change. However, if c 6= c(Λ) then
the message would have been rejected in G1, and we have already shown that G2 continues
to reject all messages rejected by G1.

Let us say that a class-id Λ = (i, j, s, R) is bad if

1. the value R is not the challenge issued by S(Λ)’s matching session, and

2. the adversary has not issued Λ’s query Q(Λ), but

3. c(Λ) ∈ V (Λ), so one of the check-values submitted to S was actually correct.

We claim that our extractor will work perfectly unless some class-id is bad. Certainly, if R
was issued by the matching session, there is nothing to prove; if the adversary has issued
the relevant query then the extractor will recover r(Λ) just fine; and if c(Λ) /∈ V (Λ) then all
messages in the class would have been rejected by G1 anyway.

Let B(Λ) be the event that the class Λ is bad. We claim that

Pr[B(Λ)] 6
ν(Λ)

2ℓI
.

50

A. Proofs

The present lemma follows, since

∆1,2 6 Pr[F] 6
∑

Λ

Pr[B(Λ)] 6
∑

Λ

ν(Λ)

2ℓI
=

1

2ℓI

∑

Λ

ν(Λ) 6
qM
2ℓI

as required.

Now observe that, in G2, sessions don’t actually check incoming challenges in this way any
more – instead we run the extractor. So, to prove the claim, we consider a class Λ where
properties 1 and 2 above hold. The correct hash H(Λ) is then independent of the rest of the
game, so the probability that c(Λ) ∈ V (Λ) is precisely ν(Λ)/2ℓI as required.

This completes the proof the lemma. �

Proof of lemma A.1.2 Let F be the event that the adversary makes a query HK(ZS) for some
ripe session S. Since G3 proceeds exactly as G2 did unless F2 occurs, we apply lemma 2.4.1,
which tells us that ∆2,3 6 Pr[F2]. We must therefore bound this probability.

To do this, we consider a new game G′
3, which is the same as G3, except that, at the start of

the game, we choose a random number k ∈$ N<qS
. For 0 6 i < qS , let Si be the ith session

created by the adversary. We define F ′ to be the event that the adversary queries HK(ZSk
)

when Sk is ripe.

The lemma now follows from these two claims.

1 Claim Pr[F] 6 qS Pr[F ′].

To see this, for any session S, let FS be the event that the adversary queries HK(ZS) when S
is ripe. Then

Pr[F] 6
∑

06i<qS

Pr[FSi
].

Hence,

Pr[F ′] = Pr[FSk
] =

∑

06i<qS

Pr[FSi
] Pr[k = i] =

1

qS

∑

06i<qS

Pr[FSi
] >

Pr[F]

qS

proving the claim.

2 Claim For some t′ = t+O(n)+O(qSqM)+O(qI)+O(qK), we have Pr[F ′] 6 InSecmcdh(G; t′, qK).

To prove this claim, we construct an adversaryB which solves the MCDH problem in G. The
adversary works as follows.

1. It is given a pair (R∗, S∗) = (r∗P, s∗P) of group elements; its objective is to make a
verification-oracle query V (Z∗) where Z∗ = r∗s∗P .

2. It sets up a simulation of the game G′
3, by running the init function, and simulating all

of the parties. In particular, it chooses a random k ∈ N<qS
.

3. It sets up accurate simulations of the random oraclesHK(·) andHI(·, ·, ·, ·), which choose
random outputs for new, fresh inputs. However, whenever A queries HK(·) on a group
element Z , B also queries V (Z).

4. It runs A in its simulated game. It responds to all of A’s instructions faithfully, until the
kth session-creation.

51

The Wrestlers Protocol

5. When creating the kth session S = Sk = (Pi, Pj , s), B has party Pi choose R∗ as its
challenge, rather than choosing rS and setting RS = rSP . Because it simulates all the
parties, B can compute YS = xjR, which is still correct.

6. IfA requests the creation of a matching session T = (Pj , Pi, s) thenB has partyPj choose
S∗ as its challenge. Again, B computes YT = xiS

∗.

7. If A ever corrupts the parties Pi or Pj , or reveals the session state of S or T then B stops
the simulation abruptly and halts.

Adversary B’s running time is within the bounds required of t′, and B makes at most qK
queries to V (·); we therefore have

Pr[F ′] 6 Succmcdh
G (B) 6 InSecmcdh(G; t′, qK)

as required. �

Proof of lemma A.1.3 Let F4 be the event under which we abort the game G4. Clearly, if F
doesn’t occur, games G3 and G4 proceed identically, so we can apply lemma 2.4.1 to see
that ∆3,4 6 Pr[F4]. Bounding Pr[F4], however, is somewhat complicated. We use a further
sequence of games.

Firstly, let G5 be like G4 with the exception that we choose, at random, an integer k ∈$ N<qS
.

As we did in the proof for lemma A.1.3, let Si be the ith session created by the adversary. For
each session Si, let Ti be its matching session, if there is one. We define F5 to be the event that

• Sk completes immediately following delivery of a message µ /∈MTk
, and

• Sk was ripe at this point.

For games Gi, for i > 5, we define the event Fi to be the event corresponding to F5 in Gi.
Note that if Sk is sent a message in MTk

then Sk immediately completes.

1 Claim Pr[F4] 6 Pr[F5]/qS .

This claim is proven exactly as we did for claim 1 of lemma A.1.2.

Let G6 be the same as G5 except that we change the encrypted responses of session Sk

and its matching session Tk. Let K∗ = (K∗
0 ,K

∗
1) = HK(ZS). Then, rather than sending

(response, RS , EK∗

0
(YT)), session S sends (response, RS , EK∗

0
(1ℓG)).

2 Claim |Pr[F6]− Pr[F5]| 6 InSecind-cca(E ; t′, qM , qM).

To prove this claim, we construct an adversary B which attacks the IND-CCA security of our
encryption scheme E . The adversary B works as follows.

1. It is given no input, but a pair of oracles E(·, ·) and D(·); the former encrypts either the
left or right input, according to a hidden bit, and the latter decrypts ciphertexts other
than those returned by E(·, ·). Its goal is to guess the hidden bit.

2. It sets up a simulation of the game G5, by running the init function, and simulating all
of the parties. In particular, it chooses a random k ∈ N<qS

.

3. It sets up accurate simulations of the random oracles HK(·) and HI(·, ·, ·, ·).

52

A. Proofs

4. It runs A in its simulated game. It responds to all of A’s instructions faithfully, except for
the matching sessions Sk and Tk. Let S = Sk = (Pi, Pj , s), and T = Tk = (Pj , Pi, s).

5. Suppose T is sent the message CS = (challenge, RS , cS). Rather than computing K∗ =
HK(rTRS) and performing the encryption properly,B queries its left-or-right encryption
oracle E(·, ·) on E(1ℓG , xjRS), and sends the resulting ciphertext χ back to S as part of
a message (response, RT , χ). The set MT is precisely the set of messages constructed in
this fashion. (Recall that challenge messages other than CS aren’t actually delivered to
T , since we simulate the responses using the extractor, as of G2.)

6. Suppose S is sent a message M = (response, RT , χ) ∈ MT . We immediately stop the
simulation, and B returns 0.

7. Suppose, instead, that S is sent some message M ′ = (response, R, χ) /∈ MT . There are
two cases to consider. If R = RT then we must have χ distinct from the ciphertexts
returned by the E(·, ·) oracle, so we can invoke the decryption oracle D(·) on χ to obtain
a response Y . Alternatively, if R 6= RT , we can compute the key K = (K0,K1) =
HK(rSR), and recover Y = DK0

(χ). In either case, if Y = rSXj) then S would complete
at this point: B stops the simulation and returns 1.

8. If A exposes S (by corrupting Pi or Pj , or revealing S or T) then we stop the simulation
and B returns 0.

9. Finally, if the game stops, either because A halts, or because of one of the special rules
introduced in earlier games, B returns 0.

It is clear that B’s oracle queries are acceptable, since |xjRS | = ℓG by definition, and B
never queries D(·) on a ciphertext returned by its encryption oracle. By the rules of G3, we
know that the game stops immediately if A ever queries ZS , so the key K∗ is independent of
everything in A’s view except the ciphertexts χ output by S and T . Therefore, if the hidden
bit of the IND-CCA game is 1, B accurately simulates G5, whereas if the bit is 0 then B
accurately simulates G6. We issue no more that qM encryption or decryption queries. Finally,
B’s running time is within the bounds allowed for t′. Therefore,

Advind-cca
E (B) = Pr[F5]− Pr[F6] 6 InSecind-cca(E ; t′, qM , qM).

We construct the adversary B̄ which is the same asB above, except that B̄ returns 0 whenever
B returns 1, and vice versa. Clearly

Advind-cca
E (B̄) = (1− Pr[F5])− (1− Pr[F6]) = Pr[F6]− Pr[F5] 6 InSecind-cca(E ; t′, qM , qM).

This proves the claim.

Let G7 be the same as G6, except that at the start of the game we choose a random m ∈ N<n,
and when the adversary creates the session S = Sk = (Pi, Pj , s), we abort the game unless
j = m. Clearly we have Pr[F6] = nPr[F7].

Finally, we can explicitly bound F6. In G6, the adversary’s view is independent of the correct
response YS = rSXS = xjRS to S’s challenge. Therefore, if A manages to send any message
µ /∈MT which causes S to complete, then it has impersonated Pj .

3 Claim Pr[F7] 6 InSecmcdh(G; t′, qM + qI).

The present lemma follows from this and the previous claims.

53

The Wrestlers Protocol

To prove the claim formally, we construct an adversary B′, which behaves as follows.

1. It is given as input a public key X∗ and a single challenge (R∗, c∗), a random oracle
H∗

I (·, ·), and an oracle V (·, ·), which verifies responses (R, Y). Its goal is to invoke V (·, ·)
with a correct response to the challenge.

2. It chooses a random k ∈ N<qS
and m ∈ N<n. It sets up a simulation of the game G7, by

running the init function, and simulating all of the parties, except that it gives party Pm

the public key X∗. This makes no difference, since Pm doesn’t actually need to give any
‘honest’ responses because of the change we made in G6.

3. It sets up accurate simulations of the random oracles HK(·) and HI(·, ·, ·, ·), with one
exception – see below.

4. It runs A in its simulated game. It responds to all of A’s instructions faithfully, except
for the session Sk. Let S = Sk = (Pi, Pj , s), and let T = Tk = (Pj , Pi, s) be its matching
session.

5. When session S is created, B′ checks that j = m, and if not stops the simulation and
halts. Otherwise, B′ invokes its oracle C() to obtain a pair (R, c). Session S sends CS =
(challenge, R, c) as its challenge to T .

6. When A makes a query HI(X
∗, s, R, Y), B answers it by querying its own random oracle

H∗
I (R, Y).

7. When S receives a message (response, R, χ), we compute (K0,K1) = rSR, and Y =
DK0

(χ). If Y 6= ⊥ then B′ calls V (R, Y).

8. If A reveals S or corrupts Pi or Pj then B′ stops the simulation immediately and halts.

The running time of B′ is within the bounds required of t′; it makes at most qI random-oracle
and at most qM verification queries. Clearly B′ succeeds whenever F7 occurs. The claim
follows from theorem 3.2.1. �

A.2 Proof of theorem 4.5.1

The proof is almost identical to the proof of theorem 4.3.1, in appendix A.1. Unfortunately a
black-box reduction doesn’t seem possible.

We use the games and notation of section A.1.

The change to the check-value calculation doesn’t affect key-generation at all, so the transition
to G1 goes through as before.

The transition from G1 to G2 – answering challenges using the extractor – needs a little care.
Let S = (Pi, Pj , s) be a session, and consider an incoming message (challenge, R, c).

• If T = (Pj , Pi, s) is the matching session to S, andR = RT is the public challenge value of
T , and c = rT ⊕HI(RS , Xj, s, RT , rTXi) is the check-value output by T when it received
(pre-challenge, RS) as input, then S replies as it did in G1.

• If the challenge message is any other message, then we use the extractor.

As in lemma A.1.1, we examine which sessions could have queried HI(RS , Xj , s, R, xiR), and
for the same reasons conclude that only the matching session would have done this, and only

54

A. Proofs

in response to the pre-challenge RS . It follows that ∆1,2 6 qM/2ℓI as before.

The remaining game steps go through unchanged. In particular, we conclude that a ripe
session will only complete if the adversary has transmitted messages from its matching
session correctly, and the session key is independent of the adversary’s view. The theorem
follows.

A.3 Sketch proof of single-key protocol for secure channels

We want to show that the Wrestlers Key-Exchange protocol, followed by use of the encryption
scheme E , with the same key K = K0, still provides secure channels.

Secure channels definition We (very briefly!) recall the [CK01] definition of a secure channels
protocol. We again play a game with the adversary. At the beginning, we choose a bit b∗ ∈$

{0, 1} at random. We allow the adversary the ability to establish secure channels sessions within
the parties. Furthermore, for any running session S = (Pi, Pj , s), we allow the adversary to
request S to send a message µ through its secure channel. Finally, the adversary is allowed to
choose one ripe challenge session, and ask for it to send of one of a pair of messages (µ0, µ1),
subject to the restriction that |µ0| = |µ1|; the session sends message µb∗ . The adversary may
not expose the challenge session.

The adversary wins if (a) it can guess the bit b∗, or (b) it can cause a ripe session S (i.e., an
unexposed, running session), with a matching session T to output a message other than one
that it requested that T send.

Protocol definition The protocol begins with Wrestlers key-exchange. The encryption in the
key-exchange protocol is performed as EK(kx, ·); encryption for secure channels is performed
as EK(sc, i, o, ·), where i is a sequence number to prevent replays and o ∈ {S, T } identifies the
sender.

Proof sketch We use the games and notation of appendix A.1.

The proof goes through as far as the step between G5 and G6 in the proof of lemma A.1.3.
Here we make the obvious adjustments to our adversary against the IND-CCA security of
E . (Our adversary will need to use the left-or-right oracle for messages sent using the secure
channel built on K∗. That’s OK.)

In G4, we know that ripe sessions agree the correct key, and the adversary never queries the
random oracle, so the key is independent of the adversary’s view.

We define a new game G8, which is like G4, except that we stop the game if the adversary
ever forges a message sent over the secure channel. That is, if a ripe session S ever announces
receipt of a message not sent (at the adversary’s request) by its matching session T . Let F8 be
the event that a forgery occurs. We apply lemma 2.4.1, which tells us that ∆4,8 6 Pr[F8]. To
bound F8, we isolate a session at random (as in lemmata A.1.2 and A.1.3), which tells us that

∆4,8 6 qS · InSecint-ptxt(E ; t′, qM , qM) (A.3.1)

Finally, we can bound the adversary’s advantage at guessing the hidden bit b∗. We isolate
(we hope) the challenge session S by choosing a target session at random, as before. Let
K∗ = HK(ZS) be the key agreed by the session (if it becomes ripe). We define an adversary
B against the IND-CCA security of E . The adversary B simulates the game. If the adversary
exposes the target session, or doesn’t choose it as the challenge session, B fails (and exits 0);

55

The Wrestlers Protocol

otherwise it uses the left-or-right encryption oracle to encrypt both of the adversary’s message
choices, and outputs the adversary’s choice. Let b be the adversary’s output, and let ε be the
advantage of our IND-CCA distinguisher. Then

Pr[b = b∗] = Pr[b = b∗ ∧ b∗ = 1] + Pr[b = b∗ ∧ b∗ = 0]

=
1

2

(

Pr[b = b∗ | b∗ = 1] + Pr[b = b∗ | b∗ = 0]
)

=
1

2

(

Pr[b = b∗ | b∗ = 1] + (1− Pr[b 6= b∗ | b∗ = 0])
)

=
1

2

(

Pr[b = 1 | b∗ = 1]− Pr[b = 1 | b∗ = 0] + 1
)

=
1

2

(

1 + qS Advind-cca
E (B)

)

6
1

2

(

1 + qS InSecind-cca(E ; t′, qM , qM)
)

. (A.3.2)

56

