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Abstract

At Eurocrypt '06, Nguyen and Regev presented a new key-recovery attack on the Goldreich-
Goldwasser-Halevi (GGH) lattice-based signature scheme: when applied to NTRUSIGN-251
without perturbation, the attack recovers the secret key given only 90,000 signatures. At the
rump session, Whyte speculated whether the number of required signatures might be signifi-
cantly decreased to say 1,000, due to the special properties of NTRU lattices. This short note
shows that this is indeed the case: it turns out that as few as 400 NTRUSIGN-251 signatures
are sufficient in practice to recover the secret key. Hence, NTRUSIGN without perturbation
should be considered totally insecure.
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1 Background

We assume the reader is familiar with the Nguyen-Regev paper [9] on attacking GGH [4] and
NTRU [5] signatures: we follow the same notations as [9]. Vectors of R" will be row vectors
denoted by bold lowercase letters such as b, and we will use row representation for matrices. The
group of n X n invertible matrices with real coefficients will be denoted by GL,,(R).

1.1 NTRUSign

NTRUSIGN [5] is a special instantiation of GGH [4] with the compact lattices from the NTRU
encryption scheme [8], which we briefly recall: we refer to [5, 3] for more details. In the NTRU
standards [3] which were being considered by IEEE P1363.1 [10], one selects n = 251 and ¢ = 128.
Let R be the ring Z[X]/(X™ — 1) whose multiplication is denoted by *. Using resultants, one
computes a quadruplet (f, g, F, G) € R* such that f+*G —g*F = ¢ in R and f is invertible mod g,
where f and g have 0-1 coefficients (with a prescribed number of 1), while F' and G have slightly
larger coefficients, yet much smaller than ¢. This quadruplet is the NTRU secret key. It defines a
lattice L, given by the secret basis formed by the rows of the following (2n) x (2n) matrix:

foo A - fam1 9o g1 e gn-1 |
fn—l fO fn—2 In—1 90 gn—2
R= f1 o fra fo g1 ctr gn-—1 go
Fo Fy e Fra Go Gy Gn-1 |’
anl FO Fn72 anl GO an
L cee Fuoa Fo G1 R € | Go |



where f; denotes the coefficient of X* of the polynomial f. Due to the special structure of R, it
turns out that a single row of R is sufficient to recover the whole secret key. Because f is chosen
invertible mod ¢, the polynomial h = g/f (mod ¢) is well-defined in R: this is the NTRU public
key. Its fundamental property is that f «h = g (mod ¢) in R. The polynomial h defines a natural
public basis of L, which we omit (see [5]).

The messages are assumed to be hashed in {0,...,¢—1}?". Let m € {0,...,q— 1}?" be such a
hash. We write m = (m;, my) with m; € {0,...,¢ — 1}". It is shown in [5] that the NTRU secret
key (f, g, F,G) allows to compute a lattice vector (s,t) € Z?" which is rather close to m: it is the
output of the so-called Babai’s rounding algorithm [1]. In practice, the signature is simply s and
not (s, t), as t can be recovered from s thanks to h. To verify the signature s of a message m, one
recovers t so that (s,t) € L, and check that (s, t) is sufficiently close to m.

This is the basic NTRUSIGN scheme [5] without perturbation. In order to strengthen the
security of NTRUSIGN, perturbation techniques have been proposed in [6, 3, 7] and are now
recommended. Roughly speaking, such techniques perturb the hashed message m before signing
with the NTRU secret basis. However, there was no perturbation in half of the parameter choices
recommended in NTRU standards [3] under consideration by IEEE P1363.1 at the time of writing
of [9]. Namely, this was the case for the parameter choices ees251sp2, ees251sp3, ees251sp4 and
ees251sp5 in [3]. For the other half, only a single perturbation was recommended.

1.2 The Parallelepiped Attack

In [9], it is shown that after many random pairs (message,signature) have been released, an attacker
who wants to recover the secret key is faced with the following learning problem:

Problem 1.1 (The Hidden Parallelepiped Problem or HPP) LetV = [vy,...,vy] € GL,(R).
Define the parallelepiped spanned by V as P(V) = {3 i~ x;vi, x; € [—1,1]}. Denote by U(P) the
uniform distribution on a parallelepiped P. Given poly(m) samples from U(P(V)), find a good
approximation of the rows of £V .

Here, m = 2n where n is the NTRUSIGN parameter, and the matrix V is the NTRUSIGN secret
key R previously described. Nguyen and Regev [9] further presented a statistical method based on a
gradient descent to solve the HPP: it was reported that experimentally, in the case of NTRUSIGN-
251, 90,000 pairs (message,signature) were sufficient to recover the secret key. Whyte noted in [12]
that the figure of 90,000 was higher than the figure of 10,000 allowed by NTRU guidelines for the
unperturbed case, and stated that “users who follow NTRU guidance would nevertheless be safe”.
However, [12] also recommended that more time be taken to study the attack before proceeding
with standardization of NTRUSign. Whyte observed roughly one month later in [11] that NTRU
bases have special properties which perhaps might lead to improved attacks: though no attack was
presented in [11], NTRUSIGN without perturbation was no longer recommended. We now explain
those special properties.

2 Symmetries in the NTRU Parallelepiped

2.1 Symmetries

Whyte [11] observed that in the particular case of NTRUSIGN, the hidden parallelepiped P(R) has
a peculiar property: for each x € P(R), the block-rotation o(x) also belongs to P(R), where o is



Table 1: New experiments on NTRUSIGN-251 without perturbation.

Number of signatures | Expected number of descents to recover the secret key
1,000 2
500 40
400 100
the application which maps any (21, ..., Zn, Y1, - > Yn) € RZt0 (Tn, T15 -+ o1, Yns Yls - - > Yn1)-

This is because o maps each row of the (2n) x (2n) matrix R to another of those rows. As a
result, each sample in the parallelepiped P(R) actually gives rise to n samples in the parallelepiped
P(R), thanks to the n rotations. Whyte concluded in [11] that the parallelepiped P(R) is uniquely
determined after O(q) signatures have been released, and left it as a challenge to attack NTRUSIGN
without perturbations given only 1,000 signatures.

2.2 Exploiting the Symmetries

Here, we observe that Whyte’s remark can be exploited by the attack of [9]: the attack remains
the same, except that we derive n samples in the parallelepiped P(R) from each signature released,
thanks to the block-rotation ¢. For instance, 400 NTRUSIGN-251 signatures give rise to 100,400
samples in the NTRU parallelepiped. In doing so, we no longer have independent samples in the
parallelepiped, but we can still run the attack and see if it works or not.

We experimented with the attack [9] on genuine NTRUSIGN-251 signatures of messages gener-
ated uniformly at random over {0, ..., ¢—1}?". Using the block-rotations, it seems that the number
of signatures required by the attack becomes roughly divided by n, compared to [9]. Partial results
are given in Table 1. As Table 1 shows, as few as 400 signatures are enough in practice to recover
the secret key. Note that even the figure of 400 signatures may not be optimal.

2.3 Conclusion

In the particular case of NTRUSIGN, the number of signatures required for the key-recovery attack
of [9] can significantly be reduced in practice, thanks to the symmetries of NTRU parallelepipeds.
Namely, as few as 400 signatures are sufficient to break NTRUSIGN-251 without perturbation.
Hence, NTRUSIGN without perturbation should be considered totally insecure.
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