
Revisiting the Efficiency of Malicious Two-Party

Computation

David P. Woodruff ⋆

MIT Computer Science and Artificial Intelligence Laboratory
dpwood@mit.edu

Abstract. In a recent paper Mohassel and Franklin study the efficiency
of secure two-party computation in the presence of malicious behav-
ior. Their aim is to make classical solutions to this problem, such as
zero-knowledge compilation, more efficient. The authors provide several
schemes which are the most efficient to date. We propose a modification
to their main scheme using expanders. Our modification asymptotically
improves at least one measure of efficiency of all known schemes. We also
point out an error, and improve the analysis of one of their schemes.

Keywords: secure function evaluation, malicious model, efficiency, expander
graphs

1 Introduction

Two parties, Alice with input x and Bob with input y, wish to evaluate a func-
tion f(x, y) in such a way that neither learns more information than what can
be deduced from the output f(x, y). This problem, known as general two-party
secure computation, generalizes many important cryptographic tasks. A cele-
brated result is Yao’s garbled circuit protocol [34, 21], which provides a solution
to this problem for any efficiently computable function f .

Yao’s protocol provides security in the semi-honest model, that is, a model in
which parties must follow the instructions of the protocol, though they may keep
message histories in an attempt to learn more than what is prescribed. A more
reaslistic security model is the malicious model in which parties may behave
arbitrarily. The textbook solution to achieve security in the malicious model
is to perform the zero-knowledge compilation of Goldreich et al [15, 16, 17] to
Yao’s protocol. This yields a protocol with communication and computation cost
bounded by a polynomial in the size of a circuit for computing f . This results
in optimal efficiency, up to polynomial factors, but the polynomial factors are
rather large and so this approach may not be useful in practice.

This motivates alternative methods for protecting Yao’s protocol against ma-
licious behavior, as suggested in [24, 26, 28]. These techniques provide a well-
defined tradeoff between security and efficiency, and are useful in practice.

⋆ Supported by an N.D.S.E.G. fellowship.

These protocols all use the following cut-and-choose technique. Alice creates
m independently garbled circuits C1, . . . , Cm, each computing the same function
f . These garbled circuits are transmitted to Bob, along with various commit-
ments. Bob chooses a subset S ⊂ [m] = {1, . . . , m}, and asks Alice to reveal
the secrets of all circuits Ci (along with their corresponding commitments) with
i ∈ S. This gives Bob confidence that Alice correctly formed most of the garbled
circuits and commitments. Alice then sends her garbled inputs for the circuts
in [m] \ S, and Alice and Bob perform oblivious transfer for Bob to receive his
garbled inputs for these circuits. Finally, Bob evaluates the garbled circuits and
outputs the majority value.

There are a number of subtleties and complexities within this framework. As
pointed out by Mohassel and Franklin in [26], the Fairplay scheme [24] designed
in this framework has a subtle bug allowing one of the parties to cheat unde-
tectably. Moreover, Kiraz and Schoenmakers [20] found an error that occurs in
both Mohassel and Franklin’s work and Fairplay. Recently, Lindell and Pinkas
[22] have pointed out new flaws in many existing protocols. In this paper we also
present an error in [26], showing a flaw in their estimated concrete costs.

This framework poses the following problems. How do we ensure Alice pro-
vides the same garbled input to most of the circuits in [m]\S? How do we ensure
Bob receives the same garbled input to most of the circuits in [m] \S? If neither
of these conditions hold, Alice can fool Bob into outputting an incorrect value
or having to abort the protocol depending on his input.

Let f be a function computable by a Boolean circuit with g gates and I
inputs. We want a protocol which achieves both privacy and correctness. Intu-
itively, the privacy aspect is that nothing is learned from the output, and the
correctness aspect is that the output is distributed according to the described
functionality, see [17]. Following previous work [26, 22], we will have two secu-
rity parameters. The first is the input length, n, which is the security parameter
for our commitment schemes, encryption, and oblivious transfer protocols. The
second parameter, ǫ, is a statistical security parameter specifying the number
of garbled circuits used in the cut-and-choose framework. Here, n depends on
computational assumptions, whereas ǫ indicates the error probability incurred
in this framework, and is therefore a “statistical” security parameter (this term
was coined in [22]). Note that one can set ǫ independently of n, and this can be
used to “trade” security for efficiency, as discussed below.

We note that when both parties are honest, it suffices to only have Bob output
f(x, y). Indeed, as shown in Section 2.2 of [22], this is without much loss of
generality because given such a secure protocol, it can be efficiently transformed
so that Alice also obtains f(x, y), or even f ′(x, y) for some other function f ′. We
thus assume that only Bob has output in the remainder of the paper.

1.1 Our contributions

We study the efficiency of protocols in this framework. We measure three quan-
tities: the number of symmetric encryptions, the number of exponentiations, and
the communication complexity.

We are aware of four schemes in this framework - Fairplay [24], Committed-
input [26], Equality-checker [26], and the very recent protocol of Lindell and
Pinkas [22]. These schemes differ in the way the set S is chosen, together with
their methods of enforcing Alice and Bob to have consistent inputs.

The main result of this paper is a new scheme, Expander-checker, which
asymptotically improves at least one measure of efficiency of all known schemes.
It results in fewer symmetric encryptions and smaller communication complexity
than Fairplay, Equality-checker, and Lindell and Pinkas’ protocol, while achiev-
ing fewer exponentiations1 than Committed-input. See the section on other re-
lated work below for a more detailed account of Lindell and Pinkas’ new protocol.
Our results are summarized by the following table.

Scheme Symmetric Enc. Exponentiations Communication

Fairplay [24] O(1

ǫ
g) O(I) O(1

ǫ
g)

Committed-input [26] O(ln(1

ǫ
)g) O(ln(1

ǫ
)I) O(ln(1

ǫ
)g)

Equality-checker [26] O(ln(1

ǫ
)g + ln(1

ǫ
)2I) O(I) O(ln(1

ǫ
)g + ln(1

ǫ
)2I)

Lindell-Pinkas [22] O(ln(1

ǫ
)g + ln(1

ǫ
)2I) O(I) O(ln(1

ǫ
)g + ln(1

ǫ
)2I)

Expander-checker (new) O(ln(1

ǫ
)g) O(I) O(ln(1

ǫ
)g)

Our scheme is built off of Equality-checker. In that scheme, S is a random
subset of size m/2. With a suitable commitment scheme, Mohassel and Franklin
ensure that Bob’s garbled inputs to the different circuits correspond to the same
ungarbled input in each of the oblivious transfer steps. The more interesting part
is how they ensure that Alice’s garbled inputs to the different circuits correspond
to the same ungarbled input. Their method only assumes a generic commitment
scheme and can be implemented without any exponentiations.

Alice commits to tuples (j, j′, Kj
i,b, K

j′

i,b) for all distinct j, j′ ∈ [m], where

Kj
i,b refers to the key in Yao’s garbled circuit protocol associated with the ith

input wire of Alice with value b in circuit j. When Bob is given purported keys

Kj
i,b and Kj′

i,b′ , which correspond to Alice’s garbled ith input for circuits j and
j′ respectively, Bob can use the witness to verify that b = b′.

If Alice creates enough commitments (j, j′, Kj
i,b, K

j′

i,b′) with b 6= b′, then the
set S likely contains a pair of circuits Cj , Cj′ with this property, and she will
be caught when forced to reveal the circuits in S and the commitments between

them. On the other hand, suppose most of the commitments (j, j′, Kj
i,b, K

j′

i,b′)
satisfy b = b′. Consider the complete graph G with vertex set [m]\S, each vertex
indexing a circuit not chosen by Bob to reveal. Since every pair of circuits Cj , C

′
j

with j, j′ ∈ [m]\S has a commitment (j, j′, Kj
i,b, K

j′

i,b′), there is a large connected
component C for which for each edge {j, j′} ∈ C, for each i and each b, in the

commitment (j, j′, Kj
i,b, K

j′

i,b′), b = b′. By transitivity, Alice’s input is the same

1 Some care needs to be taken when measuring the number of exponentiations since
under certain assumptions it is possible to obtain a large number of exponentiations
by only performing a small number of exponentiations and a few simpler operations,
see [5, 18]. In this work we follow previous work and make the simplifying, practical
assumption that there are O(I) exponentiations in the oblivious transfer stage.

to every circuit in C. If C is large enough, then the majority of circuits Bob
evaluates (those in [m] \ S) have the same input from Alice, and the protocol
will be simulatable.

The drawback of this scheme is the number of commitments computed and
transmitted. This is Θ(mg + m2I), where I is the number of input wires owned
by Alice. To achieve probability of undetected cheating at most ǫ, we need m =
Ω(ln(1

ǫ)), and thus Ω(g ln 1
ǫ + I ln2 1

ǫ) commitments. Each commitment involves
at least one symmetric encryption and one transfer from Alice to Bob, resulting
in a total of Ω(g ln(1

ǫ) + I ln2(1
ǫ)).

Our idea is instead of computing commitments to all tuples (j, j′, Kj
i,b, K

j′

i,b),
we only commit to tuples for which {j, j′} is an edge in an expander graph.
Suppose G is an expander with vertex set [m] and O(m) edges. We commit
only to pairs of circuits with a corresponding edge in G, and thus the number of
symmetric encryptions and communication drop to O(ln(1

ǫ)g). For many circuits
g is not much larger than I, and in this case we save a factor of ln(1

ǫ) in both
efficiency measures.

Why is the new protocol secure? If Alice commits to enough (j, j′, Kj
i,b, K

j′

i,b′)
with b 6= b′, then as in Equality-checker, she is likely to get caught when Bob
chooses a random subset of circuits and commitments to expose. On the other

hand, if many of the (j, j′, Kj
i,b, K

j′

i,b′) satisfy b = b′, then, since the corresponding
graph G is an expander, it contains a large connected component of such edges.
Thus, as before, the majority of circuits Bob evaluates will have the same Alice
input, and the protocol will be simulatable.

Mohassel and Franklin [26] evaluated concrete costs for some practical set-
tings of parameters. We point out an error in their analysis for Equality-checker,
which is not obvious to us how to fix within their framework. We present a
new graph-theoretic framework which fixes this and gives sharper bounds. We
show the probability Alice can cheat is at most 2 · 2−m

4 , whereas it was previ-
ously thought this probability was at most 2 · 2−

m
6 . Since the communication

and number of symmetric encryptions of Equality-checker are proportional to
mg + m2I, for a given security level we achieve at least a (1/4)/(1/6) = 3/2
factor efficiency improvement. This implies that Equality-checker is superior in
practice to Fairplay for a wider range of parameters than Tables 2 and 4 of [26]
suggest. To provide a good comparison with previous schemes, it is essential that
we also lower bound the probability that Alice can cheat. We give a lower bound
that is within a factor of 2 of our upper bound on this probability.

For Expander-checker we show the probability that Alice can cheat is at most

2
−m

4
+O

(

m log d√
d

)

. With the present analysis, for a practical setting of parameters
Equality-checker is still superior. We discuss barriers in derandomization and pro-
tocol design that need to be overcome in order to provably make Expander-checker

superior in practice. We leave it as an open question to improve the analysis or
provide an implementation to determine which protocol is more practical.

1.2 Other related work

Expanders have been used in other contexts for enforcing equality constraints.
For example, see [19, 32, 10]. As far as we are aware though, this is the first time
they have been used in the cut-and-choose framework.

Very recently, Lindell and Pinkas [22] have given the first rigorous proof of
security of a protocol in the cut-and-choose framework that meets a simulation-
based definition. Our protocol has the same security as Equality-checker [26]
(with the fix pointed out by [20]), and it seems that a rigorous simulation-based
security proof for Equality-checker has not appeared anywhere.

We stress that the focus of this work is a new way of proving input consis-
tency using expander graphs, which we hope can be of use in other protocols in
the cut-and-choose framework. It seems likely, though we have yet to formally
verify, that one can combine our approach with Lindell and Pinkas’ protocol to
achieve the improved efficiency of Expander-checker while also achieving a full
simulation-based proof of security. We sketch how this might be done in the
proof of Theorem 3.

1.3 Organization

Section 2 reviews secure two-party computation, Yao’s garbled circuit proto-
col, the Equality-checker scheme, and expander graphs. In Section 3 we present
Expander-checker, and prove its security. In Section 4 we discuss efficiency, both
in theory and in practice. This work also appears as a technical report in [33].

2 Preliminaries

2.1 Two-party secure computation

For an excellent treatment of secure two-party computation, the reader is referred
to [17]. Here we summarize the model. A two-party computation is a random
process mapping pairs of inputs to pairs of outputs. We refer to this process as
the desired functionality, denoted f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ ×{0, 1}∗ where
f = (f1, f2). For any two inputs x, y ∈ {0, 1}n, the output (f1(x, y), f2(x, y)) is a
random variable ranging over pairs of strings. The interpretation here is that the
first party wants to learn f1(x, y) and the second party wants to learn f2(x, y).

In this paper we consider the malicious model of security. The formal def-
initions can be found in [17]. In this model one of the parties can behave in
an arbitrary way. We will, however, assume that both parties are computation-
ally bounded (i.e., randomized polynomial-time Turing machines). Security is
achieved by comparing the adversaries in the real model with those in an ideal-
model in which both parties have a trusted party to interact with. Informally, a
two-party protocol is secure if for any admissible pair of parties (A, B) in the
real-model, there is an admissible pair of parties (A′, B′) in the ideal model where
the outputs of the two executions are indistinguishable. A pair is admissible if
at least one of the parties in the pair is honest. Thus, intuitively, the protocol is

secure if it provides the correct output behavior, and provides privacy to honest
parties.

In our protocols we need a specific protocol called oblivious transfer, which
has been extensively studied [11, 27, 29]. We only need 1-out-of-2 oblivious
transfer. In this case, x = (z0, z1), y = σ, f1(x, y) = ∅, and f2(x, y) = zσ. Efficient
oblivious transfer protocols secure in the malicious model exist [27].

2.2 Yao’s garbled circuit protocol

Here we review Yao’s garbled circuit protocol [34]. Let f be an efficiently-
computable function two parties wish to securely compute. Then f can be rep-
resented as a polynomial-size circuit. The first party computes a garbled form
of this circuit as follows.

For every wire j in the circuit, she chooses two random strings Kj,0 and
Kj,1. These random strings correspond to a value of 0 and a value of 1 on wire
j, respectively. Next, for every gate in the circuit, she computes a garbled truth
table as follows. Let E be a symmetric encryption scheme. Then she uses E
together with the keys corresponding to the values on the input wires to encrypt
the value of the corresponding output wire. For example, if the gate is an AND
gate on two input wires j, j′ with output wire ℓ, then there are four entries

EKj,0(EKj′,0
(Kℓ,0)), EKj,0 (EKj′,1

(Kℓ,0)), EKj,1 (EKj′,0
(Kℓ,0)), EKj,1(EKj′,1

(Kℓ,1)).

These entries should be permuted so that the second party does not learn in-
termediate values of the computation. Also, she creates a table which translates
the garbled output values to their actual values (0 or 1). She sends the garbled
circuit and her garbled inputs to the second party.

The second party learns his garbled inputs through an oblivious transfer step.
This ensures that only his garbled inputs are learned, and nothing else, while
the first party learns nothing about the second party’s inputs. The second party
then computes the garbled circuit gate by gate, obtaining his garbled output.
Finally, using the translation table, he obtains the actual output of the circuit.
See [21] for detail, and a proof of security in the semi-honest model.

It is well-known that Yao’s garbled protocol is not secure in the malicious
model. The standard way of fixing this is to apply the zero-knowledge compiler
of [15, 16]. The first party needs to supply a zero-knowledge proof that her circuit
was constructed correctly and computes the desired functionality. The second
party needs to supply zero-knowledge proofs that show he correctly evaluated
the circuit. These zero-knowledge proofs, though theoretically feasible, are very
inefficient and motivate the search for practical solutions.

2.3 Equality-checker scheme

The following is the Equality-checker scheme of [26]. Here, zj,j′,i,b is Alice’s

commitment to the tuple (j, j′, i, Kj
i,b, K

j′

i,b) for every distinct pair of circuits
j, j′ ∈ [m], every input wire i of Alice, and every input value b ∈ {0, 1}. wj,j′,i,b

is the corresponding witness for decommittal. zj,i,b is the commitment of the

tuple (j, i, b, Kj
i,b) for every circuit j ∈ [m], every input wire i of Bob, and every

input value b ∈ {0, 1}. wj,i,b is the corresponding witness for decommittal.
In the original paper [26], a generic oblivious transfer scheme was chosen in

step 6, and this was shown to be insecure [20]. One fix is to use a committed
oblivious transfer scheme (as stated below), or a committing scheme. See [20] for
the details. Yet another approach will be discussed in the proof of Theorem 3.

We note that this does not affect our asymptotic analysis, and only marginally
affects our concrete costs.

Equality-checker:

1. Alice creates m garbled circuits C1, . . . , Cm. She sends the Cj ,
(j, j′, i, zj,j′,i,b), and (j, i, b, zj,i,b) to Bob. The (j, j′, i, zj,j′,i,b) should be sent
in a random order so that Alice cannot distinguish zj,j′,i,0 from zj,j′,i,1.

2. Bob chooses a random subset S ⊂ [m] with |S| = m/2 and sends S to Alice.
3. Alice exposes the secrets of the Ci for every i ∈ S. She also sends witnesses

wj,j′,i,b and wj,i,b for all i, b and all j, j′ ∈ S. Bob verifies the garbled circuits
and commitments are correct.

4. Renumber the remaining garbled circuits C1, . . . , Cm/2. Alice sends the keys

Kj
i,bi

and the witnesses wj,j′,i,bi for every distinct j, j′ ∈ [m/2] and each of
her input wires i, where bi is her input for wire i.

5. Bob uses the witnesses wj,j′,i,bi to verify that Alice’s input to all the circuits
is the same.

6. Alice and Bob engage in committed oblivious transfers in or-
der for Bob to receive his garbled input bits. For every in-
put wire i of Bob, Alice uses a single oblivious transfer to give

Bob one of two tuples: (K1
i,0, w1,i,0, K

2
i,0, w2,i,0, . . . , K

m/2
i,0 , wm/2,i,0) or

(K1
i,1, w1,i,1, K

2
i,1, w2,i,1, . . . , K

m/2
i,1 , wm/2,i,1), depending on Bob’s value for

input i.
7. Bob evaluates the m/2 garbled circuits and prints the majority output.

We assume, as in [26], that computing the commitments zj,j′,i,b and zj,i,b does
not require exponentiation, but rather, just a symmetric encryption. We also
assume a single oblivious transfer requires O(1) exponentiations.

Theorem 1. ([26]) Equality-checker is secure in the malicious model with in-
verse exponential (in m) probability of undetected cheating. The number of sym-
metric encryptions and the communication complexity are O(mg + m2I), and
the number of exponentiations is O(I), where g and I are the number of gates
and inputs of the circuit to be computed, respectively.

2.4 Expander properties

Let G = (V, E) be a d-regular graph on n vertices. Let A = (auv), u, v ∈ V, be its
adjacency-matrix, that is, auv = 1 if (u, v) ∈ E and auv = 0 otherwise. Since G is

d-regular, the largest eigenvalue of A is d, corresponding to the all 1s eigenvector.
Let λ = λ(G) denote the second largest absolute value of an eigenvalue of G. We
need the following discrepancy theorem, known as the expander-mixing lemma
(see, e.g, [1, 7], for the proof).

Theorem 2. For any subsets X, Y ⊆ V ,

|e(X, Y) − d

n
|X ||Y || ≤ λ

n

√

|X |(n − |X |)|Y |(n − |Y |),

where e(X, Y) is the number of edges with one endpoint in X and one endpoint
in Y .

In our asymptotic analysis, we use explicit expander graphs known as Ramanujan
graphs. The construction we use is essentially due to Lubotzky, Phillips, and
Sarnak [23], and independently discovered by Margulis [25]. However, the form
of these graphs [23, 25] is not so convenient to work with. We use a slight variant
of these graphs described in section II of [2].

Fact 1 [2] Let p, q be any distinct primes congruent to 1 modulo 4, with p a
quadratic residue modulo q, and q ≥ 2

√
p. Let d = p+1. Then for every positive

integer ℓ, there is an explicit (p+1)-regular graph on 1
2 (q3ℓ−q3ℓ−2) vertices such

that λ ≤ 2
√

p.

For fixed p, q as we vary ℓ we get an infinite family of graphs, and there is a
positive constant α such that for any integer m, there is a graph in the family
with m′ vertices, where m′ ≤ m ≤ αm′. For a description of how to efficiently
compute these graphs, see section II of [2].

We note that one can also obtain Ramanujan graphs by random sampling,
and testing with Gaussian elimination. See [13] for how to sample such graphs.

2.5 Combinatorial identities

Fact 2 (see [12, 30]) For integers n > 0,
√

2πnn+ 1
2 e−n ≤ n! ≤

√
2πnn+ 1

2 e−ne
1
12 .

3 Expander-checker

Alice associates her m garbled circuits with the vertices of a d-regular Ramanu-
jan graph G = (V, E) on m vertices. The difference between our protocol and
Equality-checker is that instead of committing to every pair of circuits {j, j′},
Alice only commits to the edges of G. Equality-checker is a special case of our
protocol, which corresponds to setting d = m−1. Since G has dm/2 edges, Alice
performs dm/2 commitments.

We borrow some notation from Equality-checker, as described in Section 2.3.
Let zj,i,b, wj,i,b, zj,j′,i,b, and wj,j′,i,b be the commitments and witnesses as defined
in that section. Alice only computes zj,j′,i,b and wj,j′,i,b for those {j, j′} for which
{j, j′} is an edge of G.

For a subset S of the vertices V , let G(S) denote the induced subgraph of G
on vertex set S.

Expander-checker:

1. Alice creates m garbled circuits C1, . . . , Cm. For edges {j, j′} in G, she
sends the Cj , (j, j′, i, zj,j′,i,b), and (j, i, b, zj,i,b) to Bob. The (j, j′, i, zj,j′,i,b)
should be sent in a random order so that Alice cannot distinguish zj,j′,i,0

from zj,j′,i,1.
2. Bob chooses a (uniformly) random subset S ⊆ [m] of size m/2. Bob sends

S to Alice.
3. Alice exposes the secrets of the Ci for every i ∈ S. She also sends witnesses

wj,j′,i,b and wj,i,b for all i, b, all j ∈ S, and all {j, j′} ∈ G(S). Bob verifies
the garbled circuits and commitments are correct.

4. Renumber the remaining garbled circuits C1, . . . , Cm/2. Alice sends the keys

Kj
i,bi

and the witnesses wj,j′,i,bi for every j ∈ V \ S, every edge {j, j′} ∈
G(V \ S), and each of her input wires i, where bi is her input for wire i.

5. Bob uses the witnesses wj,j′,i,bi to verify that Alice’s input to all the circuits
is the same.

6. Alice and Bob engage in committed oblivious transfers in or-
der for Bob to receive his garbled input bits. For every input
wire i of Bob, Alice uses a single oblivious transfer to give Bob

one of the two tuples (K1
i,0, w1,i,0, K

2
i,0, w2,i,0, . . . , K

m/2
i,0 , wm/2,i,0) or

(K1
i,1, w1,i,1, K

2
i,1, w2,i,1, . . . , K

m/2
i,1 , wm/2,i,1), depending on Bob’s value for

input i.
7. Bob evaluates the m/2 garbled circuits and prints the majority output.

If both parties are honest, the above protocol is correct, so we turn to security.
We first develop a framework for proving the security of Equality-checker that is
more powerful than that given in [26] (leading to better bounds, see Section 1),
and which generalizes to Expander-checker.

3.1 Security analysis for Equality-checker

We will show that in order for a malicious Alice to cheat with non-negligible
probability, the following must be true: Alice does not provide the same input
for more than m

4 of the correctly-garbled circuits that Bob will evaluate. If this is
not true then Bob will respond with the output corresponding to the majority
input of Alice, in which case the protocol will be simulatable in the ideal model
by sending the majority input to the trusted third party.

Let F be a family of complete graphs where each G ∈ F has some of its edges
labeled bad, and some of its vertices labeled incorrect. We will use the observation
above to construct a family F containing all of the (labeled) complete graphs G
for which a malicious Alice can cheat with non-negligible probability.

If Alice can cheat by sending a graph G with exactly ǫm incorrect cicuits,
then there must be some subset S of m

2 vertices of G which Bob can sample, so
that if we remove S from G, Alice can assign her inputs to the remaining vertices

so that no more than m
4 of the remaining vertices are assigned the same input.

Partition the set of remaining vertices into groups B, C1, C2, . . . , Cr, where B
denotes the set of incorrect circuits (here, |B| = ǫm), and for each Ci, all vertices
in Ci are assigned the same input. Then, all of the edges connecting Ci to Cj ,
for any i 6= j, must be bad edges, as otherwise Alice will get caught. Moreover,
by the observation above, |Ci| ≤ m

4 for all i. For a given G, there may be more
than one choice of S, each giving rise to different sets B, C1, C2, . . . , Cr with the
above properties. For our purposes, what matters is that there is at least one
such S, B, C1, C2, . . . , Cr for the graph G. Let F be the family of all such graphs
G.

Lemma 1. If Alice chooses any graph G ∈ F , she will get caught when Bob

samples m
2 vertices of G with probability at least 1 − 2

(3m
4
m
2

)

/
(

m
m
2

)

.

Proof. Fix any G ∈ F , and let S, B, C1, C2, . . . , Cr be a partition of the vertices
of G with the properties described above. We compute the probability that Alice
does not get caught. Note that |S| = m

2 and |B| = ǫm. For all i, let ci = |Ci| ≤ m
4 .

As observed above, all of the edges between Ci and Cj for i 6= j are bad, and
therefore in order for Alice not to get caught, Bob can sample vertices from at
most one Ci. Since B contains only incorrect circuits, Bob’s samples must all be
drawn from S and at most one Ci. Define an elusive set E to be a set of vertices
of G not containing any incorrect vertices and such that no two endpoints of a
bad edge lie in E. For Alice not to get caught, Bob must sample an elusive set.

The number of elusive sets is at most
∑

m
2

j=0

(m
2

j

)
∑r

i=1

(

ci
m
2
−j

)

.

We claim this expression is maximized when r = 2, c1 = m
4 , and c2 = m

4 −ǫm
(recall that

∑r
i=1 ci =

(

1
2 − ǫ

)

m). First, if r = 0, the number of elusive sets is 1,
namely, the set S. Second, if r = 1, then since c1 ≤ m

4 , the expression evaluates

to at most
(3m

4
m
2

)

. This follows from the identity:
∑ℓ

j=0

(

n1

j

)(

n2

ℓ−j

)

=
(

n1+n2

ℓ

)

. For

the remainder of the proof, assume r ≥ 2.
We now use the identity for a ≥ b:

(

a
x

)

+
(

b
x

)

≤
(

a+1
x

)

+
(

b−1
x

)

. Since ci ≤ m
4

for all i, we may inductively apply the identity so that r = 2, c1 = m
4 , and

c2 = m
4 − ǫm. It follows that the number of elusive sets is at most

m
2

∑

j=0

(m
2

j

) ((m
4

m
2 − j

)

+

(m
4 − ǫm
m
2 − j

))

=

(3m
4
m
2

)

+

(3m
4 − ǫm

m
2

)

≤ 2

(3m
4
m
2

)

.

It follows that the probability that Alice does not get caught is at most 2
(3m

4
m
2

)

/
(

m
m
2

)

.

Corollary 1. With probability at least 1 − 2
(3m

4
m
2

)

/
(

m
m
2

)

, there are more than m
4

correctly-garbled circuits that Bob evaluates for which Alice will provide the same
input, or Alice will get caught.

Proof. If Alice does not use the same input for more than m
4 of the correctly-

garbled circuits that Bob will evaluate, she will be caught unless she sends some
graph G ∈ F . But then, by the previous lemma, she will get caught with prob-

ability at least 1 − 2
(3m

4
m
2

)

/
(

m
m
2

)

, as needed.

Theorem 3. Equality-checker is secure when Alice is malicious with probability

of undetected cheating by Alice at most 2
(3m

4
m
2

)

/
(

m
m
2

)

≤ 2 · 2−m
4 .

Proof. By the previous corollary, with probability at least 1 − 2
(3m

4
m
2

)

/
(

m
m
2

)

≥
1 − 2 · 2−

m
4 , the majority of inputs to the correctly-garbled circuits that Bob

evaluates have the same input, or Alice will get caught, and thus Bob will output
the value outputted by the circuits on this input.

The security, at this point, reduces to the original argument for Equality-

checker given in Claim 3 of [26]. As the proof in [26] is incomplete, we refer the
reader to [22]. To make the protocol simulatable, one needs to change step 2
of the protocol so that Alice and Bob run a standard coin-tossing protocol to
generate the subset of circuits to evaluate. This ensures that if Bob is malicious,
the circuits evaluated are still uniformly chosen (this sub-protocol is very effi-
cient, and doesn’t affect the overall efficiency). Also, instead of using committed
oblivious transfer, another approach (analyzed in [22]) is for Bob to receive his
inputs before Alice sends the garbled circuits. This amounts to removing step 6,
and inserting it after step 1 in the protocol. Since the circuits to be evaluated
have not yet been chosen, Bob should simply receive his inputs for every circuit.

Theorem 4. Equality-checker is secure when Bob is malicious.

Proof. The security reduces to the original argument for Equality-checker given
in Claim 4 of [26]. For a formal proof, we refer the reader to [22].

Theorem 5. In Equality-checker, Alice can cheat with probability at least
(3m

4
m
2

)

/
(

m
m
2

)

.

Proof. Alice will send the following labeled graph G ∈ F to Bob. She will not
create any incorrect circuits. She will partition the vertices into two groups V1, V2,
with |V1| = 3m

4 and |V2| = m
4 (assume m is a multiple of 4). An edge is labeled

bad if and only if it connects V1 to V2. Consider the following event E : Bob

samples all m
2 of his circuits from V1. This occurs with probability

(3m
4
m
2

)

/
(

m
m
2

)

.

Assume the circuit being evaluated has only one bit of input from Alice.
Suppose E occurs. Alice may then assign all remaining vertices in V1 the input
0 and all vertices in V2 the input 1. If the function being evaluated differs on
its output (for a given Bob input) when Alice’s input is a 0 or a 1, then there
is no majority output of Bob’s evaluations (there are two outputs, and each one
occurs for exactly half of the circuits). Thus, Bob will have to abort (and this
behavior cannot be hidden from Alice), and this may reveal information to Alice
about Bob’s input. For instance, there may be another possible input of Bob
which is insensitive to the input of Alice, in which case all circuits will have the
same output, and Bob will not abort.

In Appendix 5, we present a counterexample to Lemma 3 in [26], from which
their Table 4, which analyzes the performance of Equality-checker for different
security levels, is constructed.

3.2 Security analysis for Expander-checker

We generalize the analysis of the previous section. The difficulty is that now the
family F of graphs for which Alice can cheat with non-negligible probability is
more complex. The graphs are no longer labeled complete graphs, but rather
labeled expander graphs. We bound the new probability that Alice gets caught
if she chooses a graph G ∈ F to send to Bob.

As before, for Alice to cheat, she cannot provide the same input for more than
m
4 of the correctly-garbled cicuits that Bob will evaluate. Corollary 1, Theorem
3, and Theorem 4 are unchanged, except for the probability that Alice does
not get caught, which will increase. We prove the new version of Lemma 1 in
Theorem 6 below.

In Expander-checker, if Alice can cheat by sending a graph G, then as before,
we can find a vertex partition S, B, C1, C2, . . . , Cr with |S| = m

2 , |B| = ǫm for
some ǫ where B denotes the set of incorrect circuits, all edges in the expander
connecting Ci to Cj for i 6= j are bad, and |Ci| ≤ m

4 for all i. Let F be the
family of all such labeled graphs G.

We assume the expander graph satisfies λ ≤ 2
√

d.

Theorem 6. Let G be a d-regular Ramanujan graph for a sufficiently large con-
stant d. If Alice chooses any graph G ∈ F , she will get caught when Bob samples
m
2 vertices of G with probability at least

1 − 3
(m

4
+ 1

)

√

πme1/3

2
· 2−m

4
+2m

√
2
d log(e

4

√
d
2
).

Remark 1. Recall that our bound on the probability of undetected cheating by
Alice for Equality-checker was 2·2−m

4 . Comparing this to our bound for Expander-

checker, we see that when the degree d = ω(1), our new bound has the form
2−

m
4

+o(m), close to that of Equality-checker.

Proof. Fix a graph G ∈ F with corresponding S, B, C1, C2, . . . , Cr, where |S| =
m
2 , |B| = ǫm, and ci

def
= |Ci| ≤ m

4 for all i. The difference between this proof and
the previous is that now Bob can actually sample vertices from more than one
Ci without Alice getting caught. This is because the graph G is not complete,
so there may not be any edges connecting Bob’s samples in the different Ci.
However, using the expander-mixing lemma, we will show that if Bob samples
too many vertices from different Ci, there will be bad edges connecting some of
them, and Alice will get caught.

Define an elusive set as in the proof of Lemma 1. In order for Alice not to
get caught, Bob must sample an elusive set, i.e., his vertices must come from
S ∪ C1 ∪ C2 ∪ · · · ∪ Cr and there must be no edge between any of his samples
lying in different Ci. We seek an upper bound on the number of elusive sets in
G.

If r = 0, the number of elusive sets of G is 1. If r = 1, since c1 ≤ m
4 , as in

the proof of Lemma 1 for r = 1, the number of elusive sets is at most
(3m

4
m
2

)

. For

the remainder of the proof, r ≥ 2.

We consider a labeled graph G′ which has at least as many elusive sets as G.
It will be easier to upper bound the number of elusive sets of G′. We want G′ to
have the property that its vertices can be partitioned into sets S, B, D0, D1, D2

or sets S, B, D0, D1 such that |S| = m
2 , |B| = ǫm, all edges between Di and Dj

with i 6= j are bad, and di = |Di| ≤ m
4 for all i.

If r = 2 or r = 3, then put G′ = G. Otherwise, r ≥ 4. By averaging, there
exist distinct Ci and Cj in G with ci + cj ≤ m

4 . Suppose we create G′ from G by
removing all bad edges between Ci and Cj , and by grouping vertices in Ci and
Cj into a single set D of size d = ci + cj ≤ m

4 . It follows that r has decreased
by 1. If r is still more than 3, repeat this process on G′. We eventually end up
with the desired labeled graph G′. We will assume that r = 3. If actually r = 2,
we may just set D2 = ∅. We introduce some notation.

Definition 1. We say that three integers i0, i1, i2, where i0 ≤ d0, i1 ≤ d1, and
i2 ≤ d2, are harmonious if there exist sets S0 ⊆ D0, S1 ⊆ D1, and S2 ⊆ D2,
where |Sj | = ij for j = 0, 1, 2, such that e(S0, S1) = e(S0, S2) = e(S1, S2) = 0.
That is, there are no edges in G′ between them.

The number of elusive sets in G′, and thus in G, is at most

m
2

∑

j=0

(m
2

m
2 − j

)

∑

i0+i1+i2=j
harmonious i0,i1,i2

(

d0

i0

)(

d1

i1

)(

d2

i2

)

≤

m
2

∑

j=0

(m
2

j

) 2
∑

r=0

∑

i0+i1+i2=j
ir=max(i0,i1,i2)

harmonious i0,i1,i2

(

d0

i0

)(

d1

i1

)(

d2

i2

)

We will choose d0, d1, d2 to maximize this expression, subject to
∑

i di = m
4 −ǫm

and di ≤ m
4 for all i. As before, it is clear that the expression is maximized when

ǫ = 0. We start by bounding the following expression.
m
2

∑

j=0

(m
2

j

)

∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(

d0

i0

)(

d1

i1

)(

d2

i2

)

. (1)

The following is the only place where we use the fact that G is an expander.

Claim. For fixed harmonious i0, i1, i2 with i0 + i1 + i2 = j and i0 ≥ i1, i2, we
have,

(

d1

i1

)(

d2

i2

)

≤
(m

2

2m
√

2/d

)

.

Proof. Suppose first that i0 ≤ m
√

2/d. Then since i0 ≥ i1, i2, we have i1 + i2 ≤
2i0 ≤ 2m

√

2/d. We arrive at
(

d1

i1

)(

d2

i2

)

≤
(

d1 + d2

i1 + i2

)

≤
(m

2

2m
√

2/d

)

,

where we have used that i1 + i2 ≤ 2m
√

2/d ≤ m
4 since d is sufficiently large.

Now suppose that i0 ≥ m
√

2/d. This is where we use the fact that G is an
expander. Suppose T is a subset of D0 ∪ D1 ∪ D2, and set X = T ∩ D0 and
Y = T ∩ (D1 ∪ D2). Suppose |X | = i0 and |Y | = i1 + i2. We first note that the
edgeset in G′ connecting X to Y is identical to that in G. By the expander-mixing
lemma, there is at least one edge from X to Y provided2 that

d

m
|X ||Y | >

λ

m

√

|X |(m − |X |)|Y |(m − |Y |).

This is equivalent to the condition |X ||Y | >
(

λ
d

)2
(m−|X |)(m−|Y |). As we will

choose λ so that λ ≤ 2
√

d, this is in turn implied by the simpler |X ||Y | > 4m2

d .

This is just i0(i1+i2) > 4m2

d . Since i0 ≥ m
√

2/d, this holds if i1+i2 > 2m
√

2/d.

Thus, i0, i1, and i2 are not harmonious if i1 + i2 > 2m
√

2/d, and so we again

have
(

d1

i1

)(

d2

i2

)

≤
(

d1+d2

i1+i2

)

≤
(

m
2

2m
√

2/d

)

.

By the previous claim, expression 1 simplifies to

m
2

∑

j=0

(m
2

j

)

∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(

d0

i0

)(m
2

2m
√

2/d

)

=

(m
2

2m
√

2/d

)

m
2

∑

j=0

(m
2

j

)

∑

i0+i1+i2=j
i0 ≥ i1,i2

harmonious i0,i1,i2

(

d0

i0

)

In expression 1, we took i0 ≥ i1, i2, but we could’ve equally well taken i1 ≥ i0, i2
or i2 ≥ i0, i1. It follows that the number of elusive sets in G is at most

(m
2

2m
√

2/d

)

m
2

∑

j=0

(m
2

j

) 2
∑

r=0

∑

i0+i1+i2=j
ir ≥ ir+1,ir+2

harmonious i0,i1,i2

(

dr

ir

)

, (2)

where the subscripts should be understood modulo 3. At this point, our task is
to maximize expression 2 subject to

∑

i di = m
2 and di ≤ m

4 for all i.
By switching the order of summations, we have shown that the number of

elusive sets is at most

(m
2

2m
√

2/d

) 2
∑

r=0

m
2

∑

j=0

∑

i0+i1+i2=j
ir ≥ ir+1,ir+2

harmonious i0,i1,i2

(m
2

j

)(

dr

ir

)

. (3)

2 One can do slightly better than the expander-mixing lemma by using Tanner’s in-
equality [31]. This does not affect our bound much, so we omit this improvement.

Then, since there are at most j + 1 pairs (ir+1, ir+2) for a given ir for which
ir + ir+1 + ir+2 = j, we can bound the inner sum by

(m
2

j

)

(j + 1)2dr . We may

then pull out the 2dr term and, ignoring the terms that we have pulled out, we

are left with
∑

m
2

j=0

(m
2

j

)

(j + 1). We recall the identity:
∑n

i=0 i
(

n
i

)

= n2n−1. This
implies

m
2

∑

j=0

(j + 1)

(m
2

j

)

=
m

2
· 2 m

2
−1 + 2

m
2 =

(m

4
+ 1

)

2
m
2 .

We can now simplify expression 3 to the following,
(m

2

2m
√

2/d

)

(m

4
+ 1

)

2
m
2

(

2d0 + 2d1 + 2d2
)

.

This expression is clearly maximized when dr = dr+1 = m
4 and dr+2 = 0 for

some value of r. Since 2
m
4 ≥ 1 for any m ≥ 0, this expression is at most

3

(m
2

2m
√

2/d

)

(m

4
+ 1

)

2
3m
4 .

Using the identity
(

a
b

)

≤
(

ae
b

)b
, we further upper bound this expression as

3
(m

4
+ 1

)

2
3m
4

+2m
√

2
d log(e

4

√
d
2
),

which upper bounds the total number of elusive sets. Thus, the probability that
Alice does not get caught is at most this quantity divided by

(

m
m
2

)

. Using Fact

2, after some algebraic manipulation,
(

m
m/2

)

= m!
(m/2)!2 ≥ 2m

(

2
πme1/3

)1/2
. We

conclude that the probability that Alice does not get caught is at most

3
(m

4
+ 1

)

√

πme1/3

2
· 2−m

4
+2m

√
2
d log(e

4

√
d
2
).

and the proof of the theorem is complete.

4 Efficiency

To compare Expander-checker with Equality-checker, we would like to achieve
inverse exponential (in m) probability of undetected cheating, where m is an
input parameter we use to measure our protocol’s efficiency. m corresponds to
the number of garbled circuits in the above.

The probability Alice can cheat in Expander-checker is at most

3
(m

4
+ 1

)

√

πme1/3

2
· 2−m

4
+2m

√
2
d log(e

4

√
d
2
).

One can write a short computer program to find a constant d = p + 1 with p a
prime congruent to 1 mod 4, for which we can instantiate the graphs G in the

previous section with those of Fact 1 on Θ(m) vertices, so that this probability
is at most 2−Ω(m). One can also find such a graph by random sampling [13].

To achieve error probability ǫ, we may set m = O(ln 1
ǫ). Recall that g and I

denote the number of gates and inputs to the circuit to be computed, respectively.
Step 1 requires O(mg) = O(ln(1

ǫ)g) symmetric encryptions and communi-
cation for the garbled circuits. The commitments require O(dmI + 2mI) =
O(mI) = O(mg) symmetric encryptions and communication. Step 2 requires
communication O(m). Similar to step 1, step 3 requires O(mg) communication.
Step 4 requires O(mI) communication. Step 6 requires O(I) exponentiations.

Theorem 7. Expander-checker is secure in the malicious model with inverse ex-
ponential (in m) probability of undetected cheating. The number of symmetric
encryptions and communication complexity are O(mg), and the number of ex-
ponentiations is O(I).

Recall that Equality-checker achieves 2−Ω(m) probability of undetected cheat-
ing with O(mg + m2I) communication and number of symmetric encryptions,
while the number of exponentiations is O(I) (see Theorem 1). Suppose we
want error probability ǫ. Let m be such that we achieve error probablity ǫ in
Equality-checker. Then in Expander-checker we achieve error probability ǫ for
m′ = O(m). Moreover, our communication and number of symmetric encryp-
tions is O(m′g) = O(mg), which improves the Ω(mg + m2I) of Equality-checker

for sufficiently large m and I.

4.1 Practical issues and open questions

For a practical setting of parameters our bounds on the probability that Alice
can cheat in Expander-checker may not be good enough to make Expander-checker

favorable to Equality-checker. This is due in part to a certain suboptimality of our
Ramanujan graphs. In Claim 3.2 we argued that any two disjoint sets of vertices
in a Ramanujan graph on m vertices, one of size at least m

√

2/d and one of size

at least 2m
√

2/d, have an edge between them. However, a counting argument
shows there exist graphs on m vertices for which there is an edge between any
two disjoint sets of vertices of size at least 2m lnd/d. Such an explicit graph

would significantly reduce the 22m
√

2/d log(e
4

√
d
2
) factor in our probability bound.

We cannot even rule out that there exist graphs on m vertices for which there
is an edge between any two disjoint subsets of Θ(m/d) vertices. As far as we
are aware, the best explicit construction of such graphs can be obtained from
[6], and show there exist graphs on m vertices for which any two disjoint sets of
vertices of size Ω(m · polylog(d)/d) have an edge between them. We leave it as
an open problem to see if the work of [6] can be of practical use in this context.

Besides directly trying to construct such graphs, it may be possible to slightly
change the protocol. The natural thing to do would be to have Bob sample a
d-regular graph on m vertices at random, and send it to Alice to use instead of
our explicit Ramanujan graph. Then with high probability it is such that any
two disjoint subsets of vertices of size 2m lnd/d have an edge between them. The

problem with this approach is that the probability of sampling such a graph is
only 1 − 2−Θ(m/d), which is smaller than the 1− 2−Θ(m) we are looking for. We
leave it as an open problem to see if a probabilistic approach can be effective here.

Acknowledgments: We thank Payman Mohassel, Benny Pinkas, and the anony-
mous referees for many helpful comments.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6, 1986, pp. 86–96.
[2] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptoti-

cally good, low-rate error-correcting codes through pseudo-random graphs, IEEE
Transactions on Information Theory 38 (192), pp. 509-516.

[3] N. Alon and V. D. Milman. Eigenvalues, expanders, and superconcentrators,

FOCS, 1984.
[4] N. Alon and J. Spencer. The Probabilistic Method, 2000.
[5] D. Beaver. Correlated pseudorandomness and the complexity of private computa-

tions, STOC, 1996.
[6] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors

and constant-degree lossless expanders, STOC, 2002.
[7] F. Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS Publications, 1997.
[8] F. Chung and L. Lu. Concentration inequalities and martingale inequalities - a

survey, Internet Mathematics, to appear.
[9] R. Diestel. Graph Theory, Springer-Verlag, 2005.

[10] I. Dinur. The PCP Theorem by Gap Amplification, STOC, 2006.
[11] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts,

Communications of the ACM, 1985.
[12] W. Feller, Stirling’s Formula, Section 2.9 in An Introduction to Probability Theory

and its Applications 1, 3rd edition, New York: Wiley, pp. 50 -53, 1968.
[13] J. Friedman, A Proof of Alon’s Second Eigenvalue Conjecture, STOC, 2003.
[14] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators,

JCSS, 22(3):407-420, 1981.
[15] O. Goldreich, S. Micali, and C. Rackoff. Proofs that yield nothing but their validity

or all languages in NP have zero-knowledge proofs, FOCS, 1986.
[16] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a

completeness theorem for protocols with honest majority, STOC, 1987.
[17] O. Goldreich. Foundations of cryptography - volume 2, ch. 7, 2004.
[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers effi-

ciently, Crypto, 2003.
[19] J. Kilian and E. Petrank. An efficient noniteractive zero-knowledge proof system

for NP with general assumptions, Journal of Cryptology, 11:1–27, 1998.
[20] M. Kiraz and B. Schoenmakers, A protocol issue for the malicious case of Yao’s

garbled circuit construction, in the 27th Symposium on information theory in the
BENELUX (WIC), 2006.

[21] Y. Lindell, and B. Pinkas. A proof of Yao’s protocol for secure two-party compu-

tation, Cryptology ePrint Archive, Report 2004/175, 2004.
[22] Y. Lindell, and B. Pinkas. An efficient protocol for secure two-party computation in

the presence of malicious adversaries, to appear in these proceedings, Eurocrypt,
2007.

[23] A. Lubotzky, R. Phillips, and P. Sarnak. Explicit expanders and the Ramanu-

jan conjectures, STOC, 1986. See also: A. Lubotzky, R. Phillips, and P. Sarnak,
Ramanujan graphs, Combinatorica 8, 1988, pp. 261-277.

[24] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure two-party com-

putation system, Usenix, 2004.
[25] G. A. Margulis. Explicit group-theoretical constructions of combinatorial schemes

and their application to the design of expanders and superconcentrators, Problemy
Peredachi Informatsii 24: 51-60 (Russian). English translation in Problems of
Information Transmission 24, 1988, 39-46.

[26] P. Mohassel and M. Franklin. Efficiency Tradeoffs for Malicious Two-Party Com-

putation, PKC, 2006.
[27] M. Naor and B. Pinkas. Efficient oblivious transfer. SODA, 2001.
[28] B. Pinkas. Fair secure two-party computation, Eurocrypt, 2003.
[29] M. Rabin. How to exchange secrets by oblivious transfer, Technical Report Tech.,

Memo. TR-81, Aiken Computation Laboratory, Harvard University, 1981.
[30] H. Robbins. A remark of Stirling’s Formula., Amer. Math Monthly 62, pp. 26-29,

1955.
[31] R. M. Tanner. Explicit Construction of Concentrators from Generalized N-Gons,

SIAM J. Alg. Discr. Math 5, 1984, pp. 287-293.
[32] L. Trevisan. Inapproximability of Combinatorial Optimization Problems, Optimi-

sation Combinatiore 2.
[33] D. Woodruff Revisiting the efficiency of malicious two-party computation, Cryp-

tology ePrint Archive, Report 2006/397, 2006.
[34] A. C. Yao. How to generate and exchange secrets, FOCS, 1986.

5 Appendix: a counterexample

We’ve restated the lemma of [26] in our language (in this paper we have swapped
the roles of Alice and Bob):

Lemma 3 of [26]: With probability ≥ 1 − 2−
m
6 , at least 5

6 of Alice’s m
2 inputs

are the same, or Alice will get caught.
Consider the following behavior of a malicious Alice. Label the garbled cir-

cuits C1, ..., Cm. Suppose m is a multiple of 8. For the first 7m
8 circuits C1, ..., C7m/8,

Alice will use the input 0 (assume Alice has only one input to the circuits), and
for every other circuit, Alice will use the input 1. Thus, the bad edges are exactly
those between one of the first 7m

8 circuits and one of the last m
8 circuits.

Since all the circuits are correctly garbled, Alice only gets caught if a bad
commitments is exposed in step 3. Consider the following event E : Bob samples
all m

2 of his circuits from the first 7m
8 garbled circuits. Observe that if E occurs,

no bad commitment is exposed in step 3, and therefore Alice does not get caught.
Moreover, if E occurs, Bob will use 7m

8 − m
2 = 3m

8 0 inputs when he performs
verification, and m

8 1 inputs. Thus, at most 3
4 of Alice’s m

2 inputs are the same,
contrary to the 5

6 claimed by Lemma 3.
For the counterexample to go through, it remains to show Pr[E] > 2−

m
6 . But

Pr[E] is just
(7m

8
m
2

)

/
(

m
m
2

)

. It is then straightforward to show
(7m

8
m
2

)

/
(

m
m
2

)

> 2−
m
6 , as

needed.
The above presentation was done for simplicity. One can replace 7m

8 by any
value less than 11m

12 in the above to get a “stronger” counterexample.

