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Abstract. In spite of growing importance of AES, the Data Encryption Standard is
by no means obsolete. DES has never been broken from the practical point of view.
The triple DES is believed very secure, is widely used, especially in the financial sector,
and should remain so for many many years to come. In addition, some doubts have
been risen whether its replacement AES is secure, given the extreme level of “algebraic
vulnerability” of the AES S-boxes (their low I/O degree and exceptionally large number
of quadratic I/O equations).
Is DES secure from the point of view of algebraic cryptanalysis, a new very fast-growing
area of research? We do not really hope to break it, but just to advance the field of
cryptanalysis. At a first glance, DES seems to be a very poor target — as there is
(apparently) no strong algebraic structure of any kind in DES. However in [14] it was
shown that “small” S-boxes always have a low I/O degree (cubic for DES as we show
below). In addition, due to their low gate count requirements, by introducing additional
variables, we can always get an extremely sparse system of quadratic equations.
To assess the algebraic vulnerabilities is the easy part, that may appear unproductive.
In this paper we demonstrate that in this way, several interesting attacks on a real-life
“industrial” block cipher can be found. One of our attack is the fastest known algebraic
attack on 6 rounds of DES. Yet, it requires only one single known plaintext (instead
of a very large quantity) which is quite interesting in itself.
Though (on a PC) we recover the key for only six rounds, in a much weaker sense we can
also attack 12 rounds of DES. These results are very interesting because DES is known
to be a very robust cipher, and our methods are very generic. They can be applied to
DES with modified S-boxes and potentially other reduced-round block ciphers.

Key Words: block ciphers, algebraic cryptanalysis, DES, s5DES, AES, solving overde-
fined and sparse systems of multivariate equations, ElimLin algorithm, Gröbner bases,
logical cryptanalysis, SAT solvers.

1 Introduction

According to Shannon, breaking a good cipher should require “as much work as solving
a system of simultaneous equations in a large number of unknowns of a complex type”
(see [42]). For example, the problem of key recovery in AES given one known plaintext
can be written as solving a system of 4000 multivariate quadratic equations, see [13,
14]. In general, this problem (called the MQ problem) is NP-hard, and solving this
particular system remains a very ambitious goal. Nevertheless, there is a growing
body of positive results: systems of equations that arise in the cryptanalysis of block,
stream and public-key encryption schemes, turn out to be — for some specific reason
— efficiently solvable, see [37, 12, 11, 23, 26, 16, 20, 18, 19], to quote only some major



2 Nicolas T. Courtois and Gregory V. Bard

results. Yet the potential of efficiently solving certain multivariate systems of equations
with special properties is still underestimated in scientific community. For example,
in 2002, Courtois and Pieprzyk, have conjectured that sparse systems of equations are
in general much easier to solve than dense systems of the same size. In 2006, Courtois
Bard and Jefferson have discovered that SAT solvers, but also known Gröbner bases
algorithms such as F4, can in fact solve efficiently very sparse systems of multivariate
quadratic equations (dense MQ is a known NP-hard problem) [1]. To the best of our
knowledge no researcher have so far demonstrated such working attacks on systems
of equations of comparable size. In this paper use very similar methods, but instead
of randomly generated sparse systems, we use systems of equations derived from a
real-life block cipher. As a result, much larger systems can be solved in practice.
The rest of the paper is organized as follows: In the next section we study several
methods of writing equations for DES. In Section 3 we summarise our attacks, explain
in details important previous and related work, and give a complete description of a
couple of (best to date) attacks we did perform. In Section 4 we compare algebraic
cryptanalysis of DES to AES, and algebraic cryptanalysis to differential and linear
cryptanalysis. In Section 5 we show one example in which our attacks can solve
systems of equations that have many solutions more easily. Then comes the conclusion.

2 Algebraic Vulnerabilities of DES S-boxes

Unlike AES, there is no special algebraic structure in DES S-boxes that makes them
particularly vulnerable. In most of this work, we treat them exactly as any other S-box
of the same size. (These attacks should therefore also work on DES with any modified
set of S-boxes and also give few examples for s5DES, a clone of DES designed to be
more resistant known cryptanalytic attacks [28]).
The S-boxes in DES have n = 6 inputs and m = 4 outputs. There are many ways in
which one can write I/O equations for these S-boxes. The speed and the success of the
algebraic attack will greatly depend on how this is done. In our work we consider the
following three classes of equations that, heuristically, seem to be relevant to algebraic
cryptanalysis:

• Class 1. Low-degree multivariate I/O relations (cf. definition below),
• Class 2. I/O equations with a small number monomials (can be of high or of low

degree),
• Class 3. Equations of very low degree (between 1 and 2), low non-linearity and

extreme sparsity that one can obtain by adding additional variables.

We have tried several types of equations falling in one of the above categories, as well
as a number of their combinations. We have computed and tested all the equations
we consider in this paper, (and some others), and they can be obtained on demand
from the authors.
Very little is known about what approach would make an algebraic attack efficient and
why. In our simulations, though the last Class number 3 seems to be the best choice,
all the three do in fact give solvable systems of equations for several rounds of DES,
in spite of the fact that some of them are substantially larger in size. We anticipate
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that better methods for writing DES as a system of equations should be proposed in
the future, and we consider the question of finding the “best” representation as an
important research topic in itself.

2.1 Low-degree Multivariate I/O Relations

The following notion plays an essential role in algebraic attacks on LFSR-based stream
ciphers, see [16, 8] as well as for a couple of (weak) block ciphers [27, 20].

Definition 1 (The I/O degree, [8, 2]). Consider a function f : GF (2)n → GF (2)m,
f(x) = y, with x = (x0, . . . , xn−1) , y = (y0, . . . , ym−1).
The I/O degree of f is the smallest degree of the algebraic relation

g(x0, . . . , xn−1; y0, . . . , ym−1) = 0

that holds with certainty for every pair (x, y) such that y = f(x).

The minimum number (and frequently the exact number) of equations of some type
that do exist for one S-box can be obtained by applying the following theorem:

Theorem 1 (Courtois [14, 16, 19]). For any n × m S-box, F : (x1, . . . , xn) 7→

(y1, . . . , ym), and for any subset T of t out of 2m+n possible monomials in the xi and
yj, if t > 2n, there are at least t − 2n linearly independent I/O equations (algebraic
relations) involving (only) monomials in T , and that hold with probability 1, i.e. for
every (x, y) such that y = F (x).

Proof (sketch). All the monomials can be rewritten as a function of n variables and
their Algebraic Normal Form (ANF) belong to a linear space of dimension 2n. If their
number is bigger than the dimension, there will be at least t− 2n linear dependencies
between these ANF, and the same linear dependencies will also hold for the original
monomials. ⊓⊔

Example of Application of Theorem 1 to DES

For example, we can consider the equations of the following type:

∑

αijkxiyjyk +
∑

βijkxixjyk +
∑

γijxiyj +
∑

δixi +
∑

ǫiyi + η = 0

These equations are of degree 3. The total number of monomials that arise in these
equations is t = 1 + nm + n + m + n · m(m − 1)/2 + m · n(n − 1)/2 = 131. By
straightforward application of Theorem 1 we get:

Corollary 1. For any 6 × 4 S-box (not only a DES S-box) the number of linearly
independent equations r of this type is at least:

r ≥ t − 2n = 67.
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Table 1. The Real Number of Equations Observed for Different S-boxes

DES S-box 1 2 3 4 5 6 7 8

r = 67 67 67 67 68 68 67 67

Thus, for any 6 × 4 S-box (not only a DES S-box) there are at least r ≥ t − 2n = 67
such equations. In practice, for DES S-boxes, we get sometimes 67, sometimes 68:
Remark: Apparently the S-boxes of DES behave more or less as random S-boxes of
the same size, however with this type of equations it seems that we can still “distin-
guish” them from random. It appears that, for all types of I/O low degree equations,
with t approximatively above 131, the difference between the DES S-boxes and ran-
dom S-boxes is no longer visible. This is an important remark because it means that
(at least with these and similar types of equations) we do not expect algebraic at-
tacks to be actually more efficient on DES itself compared to versions with modified or
random S-boxes. And in general, the attacks should also work for many other ciphers.

Fully Cubic Equations

We also consider fully cubic equations in the 10 variables xi and yi. We have

t = 1 + (n + m) + (n + m)(n + m − 1)/2 + (n + m)(n + m − 1)(n + m − 2)/6 = 176,

and thus r ≥ t−2n = 112. Computer simulations give exactly 112 for all the 8 S-boxes
of DES. Here we can no longer see any difference between DES and random S-boxes.
The same numbers are obtained for s5DES [28].
Remark: one fully functional example of equations for the full 16-round DES based
on these (cubic) polynomials can be downloaded from [7]).

Sparse Cubic Equations

We can observe that not all cubic equations we found are dense. In this section we
give the number of very sparse cubic equations that we found for different DES S-
boxes. These equations have up to 8 monomials. We expect that more sparse cubic
equations can be found. It is possible that replacing our 112 equations by a smaller
but particularly sparse subsystem of equations (if it uniquely defines the S-box) gives
better results in some of our attacks. Currently we do not know a convincing example.

Table 2. The Number of Sparse Cubic Found for Different S-boxes

DES S-box 1 2 3 4 5 6 7 8

HW ≤ 6, r = 2 4 6 1 15 1 0 2

HW ≤ 8, r = 3 8 11 13 17 8 1 7

2.2 Quadratic Equations
Though no theorem guarantees their existence, for certain S-boxes, there are also
quadratic equations for DES S-boxes. Their number is not very large and they cannot
alone be used to mount an algebraic attack. In comparison, for s5DES [28], there is
more quadratic equations, but the number remains quite small and they do not allow
to uniquely define the S-boxes.
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Table 3. Quadratic Equations Observed for Different S-boxes

S-box 1 2 3 4 5 6 7 8

DES 1 0 0 5 1 0 0 0
s5DES 3 3 3 4 3 3 3 3

I/O Equations of Degree 4

We have t = 386, r ≥ t − 2n = 322. We obtain exactly this many for each S-box.

Remark. For all above mentioned types of low-degree equations, it is possible to
delete some equations, for example taking every second equation. This leads to systems
that are less over-determined and should give worse results in Gröbner basis attacks.
However in some SAT attacks it seems to give slightly better results.

2.3 Relations with a Very Small Number Monomials

These equations were first proposed and studied in [17]. First, we study equations
that can be of arbitrary degree but that contain only one monomial. These are called
monomial equations in [17]. For example x1x2x5y3y4 = 0. One should note that
we count 1 as a monomial and the equation x1x2x5y3y4 = 1 would be counted as
a binomial equation. We have also studied and computed equations with 3 and 4
monomials.
Since linear combinations may ruin the sparsity of equations (that’s our focus), all
these equations do not have to be linearly independent. Still, from our count of bino-
mial equations we exclude those that are trivial because they are linear combinations
of simpler, monomial equations. Similarly, from our count of trinomial equations we
exclude equations that would be a XOR of one monomial and one binomial equation,
etc. The number of equations with 4 monomials is getting already quite large, however
it is possible to select among these a smaller subset of equations that will also have a
substantially lower degree (e.g 4 instead of maximum 10). We have decided to limit
the sum of the degrees of the 4 monomials to 15 which also forces the degree to be ≤ 4
and to have some monomials of degree 3. For example, for DES S-box S1, we have
the following equation 0 = x[1]x[5]x[32]+x[1]x[2]x[5]+x[1]x[3]x[4]x[5]+x[1]x[5]y[31],
Here, the bits are numbered not according to their position in the S-box, but from
1 to 32, according to their position in the whole round function of DES. The sum of
degrees in this equation is 3 + 3 + 4 + 3 = 13.
In the following table we give the numbers of equations of each type we found for
DES, and compare with results obtained for several randomly generated S-boxes of
the same size.

Table 4. Equations that Contain a Small Number of Monomials in DES

1 monomial
2 monomials
3 monomials
4 monomials

4 m;
∑

deg ≤ 15

random
S-box

0 − 463
233 − 524
1 − 112

1880 − 6106
250 − 1053

DES S-box

1 2 3 4 5 6 7 8

170 140 179 145 207 154 153 173
360 385 322 362 303 345 379 329
123 125 56 66 74 115 81 99
716 608 771 567 484 543 750 448
87 73 104 57 86 104 94 75
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Remark 1. We observe that for a random S-box, the number of equations of different
types is rather strongly variable, On the contrary, all the DES S-boxes give quite
similar results and clearly these equations are a good method to distinguish the DES
S-boxes from a random function. We note also that monomial equations have a curious
property that, for a random S-box, it is not totally unusual to have 0 such equations.
Remark 2. When equations of this type are used alone to describe DES (especially
with a single plaintext/ciphertext pair), and the key is computed by an algebraic
attack, they typically will not uniquely define the solution to the system. This is be-
cause typically, when all yi = 0 and regardless the value of x, these equations will all
be satisfied (!). Though in some cases (by miracle or by chance) we still were able
to recover the right key by our attacks, we advocate the usage of these equations in
conjunction with some other equations that permit the removal of spurious solutions
to systems of equations. Our experience shows that in some cases, mixing these equa-
tions with more traditional I/O equations of degree 3 gives a faster attacks than with
cubic equations alone.

2.4 Equations with Additional Variables

Equations Related to Efficient Hardware Implementation. By adding up
to 52 additional variables per S-box and per round, it is possible to dramatically
reduce the size of equations, increase their sparsity and decrease their non-linearity.
All equations will have either 0 or 1 nonlinear monomial. There are many different
methods to achieve this, and ours is directly derived from the low-gate count non-
standard representation of DES that has been developed by Matthew Kwan, see [29].
These are our ”favorite equations” so far, and one example of system of equations that
contains all these (exact) equations we use can be downloaded from [7]). In practice,
we have observed a speedup factor between 2 and 20 compared to the same attack
done with the sets with 112 cubic equations per S-box.

Quadratic Representations with a Minimum Number of Added Variables.
In the previous version, we add as much as up to 52 additional variables. One can
do much better and it is possible to see that, due to the size of the DES S-boxes,
by adding just one variable the degree of the equations collapses from 3 to 2. More
generally we have:

Theorem 2. For every S-box with 6 input bits and 4 output bits, if we add any
additional variable that is defined by an arbitrary Boolean function of 6 input bits, the
number of linearly independent quadratic equations of degree 2 with these 4+6+1 = 11
variables is at least 3.

Proof. Indeed, following a reasoning as in Theorem 1, with 11 variables instead of
10, there are

(

11

2

)

+ 11 + 1 = 67 quadratic monomials, while the number of cases is
64. Therefore there are at least 3 quadratic equations.
We do not know a satisfactory choice for the additional variable to be added. More
research about quadratic representation of DES S-boxes is needed.



Algebraic Cryptanalysis of the Data Encryption Standard 7

3 Our Attacks on DES

3.1 Summary

From our equations on the S-boxes, it is easy to write a system of multivariate equa-
tions that describe the whole cipher. This system will be of degree 2, 3, 4 or more,
depending on which equations we use for the S-boxes. This system should have a
unique solution (if it is not the case one should either fix some variables or use some
extra equations). Examples of such systems of equations can be downloaded from [7].
Interestingly, though almost all researchers in cryptography we know believe that
there is no method whatsoever capable of solving (in practice) such systems of equa-
tions, we have discovered two totally different families of methods (that are of very
different nature) and that both work quite well.

1. The first is a particularly simple elimination algorithm called ElimLin, which can
be see as a very simplified version of known Gröbner bases algorithms. It is fully
described in Section 3.3.

2. The second is a simple and straightforward ANF to CNF conversion method fol-
lowing [1]. For each monomial in the equations we add a dummy variable, and
CNF equations that relate it logically to variables and sub-monomials. To encode
long XORs we use additional dummy variables and obtain shorter XORs. When
the conversion is done, we obtain a large SAT problem, on which we run MiniSat
2.0, a very efficient and one of the latest SAT solvers, that is freely available on
the internet with source code [34].

These methods can also be combined as follows: first we derive additional equations
(not always sparse) by ElimLin (or by using other methods such as F5 [23]), then
we add these new equations with the initial (very sparse) equations, then we run the
conversion and then MiniSat.

3.2 Related Work and What’s New

In the past, many researchers quite naturally wondered if DES could be broken by
solving a system of Boolean equations, see for example [43, 25] and Section 4.3.2. of
[22]. The idea was known as a method of “formal” coding. Unhappily, most people
worked with a “functional” approach to describing S-boxes and whole rounds of the
cipher. This is a very strong limitation that overlooks a wide range of attacks, see [8,
14, 37, 27]. Nevertheless, at Crypto’85 Chaum and Evertse looked at bits (and their
linear combinations) inside the DES encryption, that do not depend on some key
bits (or their linear combinations), see [4]. If a bit can be found that computed in
the forward direction from the plaintext, and computed from the ciphertext in the
backwards direction, this bit gives an equation that does not depend on some key
bits. Such equations can be used to speed-up the exhaustive search and for 6 rounds
of DES, an attack 22 times faster than brute force is reported. This can be seen as
the first algebraic attack on a reduced version of DES (our best attack will be faster).
The modern concept of algebraic cryptanalysis using arbitrary algebraic relations, see
[8, 14, 37, 27] is much richer in possibilities and working attacks. Our results should be
compared with previous work on solving very large systems of multivariate equations
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and to previous successful attacks on general block ciphers with no special/algebraic
properties such as in [4]. None of our solving methods is completely new. The use of
Gröbner bases for solving systems of equations derived from a cipher has become very
popular since [14], yet no convincing attacks on block ciphers were reported so far. The
use of SAT solvers to break 3 rounds of DES have previously been shown to be feasible
by Massacci and Marraro [32]. The authors of [32] call it “logical cryptanalysis” to
emphasise the “automated reasoning” view. We consider this to be a part of “algebraic
cryptanalysis” especially that we do not write SAT systems directly, but first write
multivariate low-degree equations, then work on general-purpose conversion. We also
consider that the methods of abstract algebra include and go beyond classical logic
and reasoning. Unlike as in [32], our method — write equations, convert and solve
— is very general and applicable to any block or stream cipher. It has an interesting
property that the equations can be combined with any set of “additional” equations
that are typically derived in Gröbner bases-like and related algorithms. SAT solvers
may then be also used as a tool to complete any algebraic attack that does not work
(sufficiently well) by itself, and this could be interesting because SAT solvers make
heuristic guesses based on non-algebraic (but rather statistical) observations.

Unhappily, the 3 rounds of DES broken in [32] are arguably very weak, even with
one single plaintext, and the authors report ”an abrupt jump in complexity” at 4
rounds. Maybe for this reason the result remained almost unnoticed in the crypto-
graphic community. In this paper we break twice as many rounds as anyone could
ever break given such small quantity of known plaintexts (after this paper has been
written, Raddum and Semaev have proposed yet another approach of this type, that
unfortunately works only for up to 4 rounds of DES, and runs out of memory for 5
rounds, see [38, 39]). Our attacks on DES are the first to be be faster than the (older)
algebraic attack on 6 round of DES [4]. Our methods are also clearly of much broader
applicability.

The immediate contribution of this paper is to show that some very sparse systems
of multivariate low-degree equations over smal finite fields derived from block ciphers
can be solved in a matter of seconds on a PC. This by both our conversion to SAT,
as well as techniques in the line of Gröbner bases (in fact we only worked with ex-
tremely simple monomial elimination tools that were however highly optimised in
terms of memory management, and the order of operations was rearranged to con-
serve sparsity). One can wonder to what extent the systems we are solving here are
special (i.e. weak)? It is very hard to know what exactly makes systems efficiently
solvable, but it appears that sparsity alone will make systems efficiently solvable, both
by SAT solvers and classical Gröbner bases methods, see [1]. One may notice that
in the past, a reduction from the MQ problem to SAT, has been used to show that
MQ was NP-hard. Now it is being used to solve very large instances of MQ that were
believed intractable to handle.
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3.3 Examples of Working Attacks — Fast Algebraic Attacks on Block
Ciphers

We start with a very simple yet remarkable algebraic attack that we call ElimLin.
The ElimLin function works as follows: we take the initial system (that is of degree
2 or 3) and look if there are linear equations in the linear span of the equations. If
so we can eliminate several variables, by simple substitution by a linear expression.
Then, quite surprisingly, new linear equations can be obtained, and this can go on for
many, many iterations. This process is repeated until no more linear equations can
be found. The order of variables is such that the variables that appear in the smallest
number of equations are eliminated first, which helps to preserve sparsity, while key
variables are eliminated at last.

ElimLin alone gives very good results, given its extreme simplicity. We write a system
of 112 fully cubic equations per S-box following Section 2.1, for 4 full rounds of DES,
and for one known plaintext. We fix first 19 key bits to their real values. 37 remain
to be determined. The time to compute 236 times 4 rounds of DES on our 1.6 GHz
Centrino CPU can be estimated to be about 8000 seconds. Instead, ElimLin takes only
8 seconds to find the correct solution. Attacks on 5 rounds can still be (marginally)
faster than brute force. For example, with 3 known plaintexts and 23 variables fixed,
we compute the key in 173 seconds, compared to about 540 s that would be needed
by a brute force attack.

With eliminate ElimLin we did not go very far, but still we do two more rounds than in
[31]. We observed that strictly better results (in terms of feasibility) can be obtained
with XL algorithm and the so called T’ method [13, 14, 21], or algorithms such as F4
or F5, however we do not report any results with these, as they do not really go much
further, and we feel that our implementation of these still needs improvement, and the
T’ method is not optimal (in particular it computes the same equations many times).
We have also tried ready packages such as MAGMA [30] and Singular [40], and found
that these systematically run out of memory on our examples due to (apparently)
lack of adequate support for sparse elimination on large systems, and this even on
some simple examples we could solve completely with ElimLin in less than 1 hour.

Comparison to s5DES. The same attacks work on s5DES and the attack on 5
rounds with 3 chosen plaintexts is about 8 times faster. This might be due to the fact
that for s5DES, a large subset of equations we use here are in fact of degree 2, see
Section 2.2.

3.4 Examples of Working Attacks — Attacks with Conversion to SAT

With a very simple early version of our ANF to CNF converter, we write a system
of quadratic equations with additional variables as described in section 2.4. We do it
for full 6 rounds of DES, fix 20 key variables (it does not really matter which) and do
the conversion that takes few seconds. Then with the latest version of MiniSat 2.0.
with pre-conditioning we compute the key in 68 seconds while the exhaustive search
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would take about 4000 s. The complexity to recover full 56-bit key by this attack is
about 248 applications of reduced DES (feasible in practice).

Remark 1: We have tried if either MAGMA [30] or Singular [40] could solve this
system of equations that we solve in 68 s. Both crash with out of memory message
after allocating nearly 2 Gbytes. The memory usage reported by MiniSat is 9 Mbytes.

Remark 2: Unhappily, we cannot apply this attack to s5DES, because it is based on
special gate-efficient representation developed for DES [29], and no such representa-
tion of s5DES is known.

4 Algebraic Cryptanalysis: the Great Challenge

4.1 Can Large Systems of Very Sparse Low-Degree Equations Be Solved
Efficiently?

In our (best) system of equations in section 3.4 above, we have 2900 variables, 3056
equations and 4331 monomials. 1 The system is very sparse and compact, it has on
average less than 1 non-linear monomial per equation. It is solved in 68 seconds.

We believe to be the first to show that such large systems of equations generated from
a real-life cipher structure can be efficiently solvable. Obviously, not every system with
similar parameters is efficiently solvable, and clearly the security of DES (as probably
for any other cipher) against our attacks does quickly increase with the number of
rounds.

Comparison to AES. Nevertheless, the following question can be asked, can we hope
to break, say 6 rounds of AES by using SAT solvers? In comparison to ours, the binary
system of equations proposed by Courtois and Pieprzyk in [14] has 4000 equations and
1600 variables: it is in fact overdefined and may seem easier to solve. Very unhappily,
this system has substantially more monomials, about 137 · 200 = 27400, much more
than a few thousands.2

4.2 Algebraic vs. Linear and Differential Cryptanalysis

Our vision of cryptanalysis changes each time a new cipher is considered, and each
time we discover a new powerful attack. In the past DES has been thoroughly crypt-
analysed by linear and differential cryptanalyses for up to 16 rounds. In this context
our results may appear quite insignificant. We believe that, on the contrary our results
are very good and are interesting for several reasons.

First, we can recover the key given one single known plaintext. A tiny amount of
data needed by the attacker is maybe the most striking feature of algebraic crypt-
analysis. This unprecedented quality of algebraic attacks has simply no equivalent

1 Some equations are linear and if we eliminated them, we would have 1298 variables, 1326 equations
and 10369 monomials. It would become less sparse (15 monomials per equation on average) but
still very sparse. We don’t do this, it makes the attack run slower.

2 Another system of equations that describes the whole AES have been proposed by Murphy and
Robshaw [36], and it contains on average less than one non-linear monomial per equation. This is
very similar to ours, however their system is over GF (256), not over GF (2).
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in any known cryptographic attack. It is precisely the reason why algebraic attacks
are potentially very devastating, and this however immature and inefficient they are
today. For example, from one single MAC computed by an EMV bank card with a
chip that is printed on a customer receipt, one would recover the key of the card, and
from this single key, the master key of the issuing bank that could be used to make
false bank cards. Luckily, there is no reason to believe that this could happen in a
foreseeable future.

Nevertheless, we contend that it is inappropriate to compare algebraic cryptanalysis
with linear and differential cryptanalysis and claim it is slower. In a certain way, linear
and differential cryptanalysis became the reference as a by-product of our incapacity to
ever find any attack on DES, that would be better than exhaustive search in a realistic
setting. Algebraic cryptanalysis, while still not very powerful and unable to break full
DES, does slowly emerge as more or less the only branch of cryptanalysis that may
work in real life (very few known plaintexts are available). We suggest that attacks
that require only a very small number of known plaintexts should be considered as
a research topic of its own right. They should mainly be compared just to other
attacks of this type. Moreover, if we can agree that for DES algebraic cryptanalysis is
currently no match compared to classical attacks, we may as well argue that actually
none of these attacks are of practical importance. Both represent the current state of
research in cryptology, and yet it is the algebraic cryptanalysis that is new and can
still be improved a lot. (It will already improve just by using better SAT solvers and
more powerful computers. For some systems we have observed a speed-up of a factor
8 between MiniSat version 1.4 and 2.0.)

One should also note that, the situation that we have for DES could be very different
for AES. Since AES is, by design, very strong against differential and linear crypt-
analysis, the number of rounds is accordingly quite small in AES, and the threat is
indeed that some form of algebraic cryptanalysis could give better results for this
cipher (comparatively to linear and differential attacks). However, since the initial at-
tack proposal [13, 14], it seems that no visible progress is being made in this direction.
Our feeling that, before attacking AES, we need to learn much more about algebraic
cryptanalysis, and try it on many other ciphers. This was the main motivation of the
present paper.

5 Algebraic Cryptanalysis As a Tool for Studying Ciphers

Algebraic (and logical) cryptanalysis is not only a tool for key recovery with unprece-
dented capabilities. It can also be used to solve many other problems that arise in
cipher design such as detecting weaknesses, special properties, weak keys, finding col-
lisions, second pre-images, long-range impossible differentials etc. In the past, these
tasks were done manually by a cryptanalyst. In the very near future, they will be
automated. We provide one example.
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5.1 A Special-Property Finder on Full 12 Rounds of DES

Let ‘0123456789ABCDEF’ be a fixed DES key (one that we did not choose and has no
special properties). We want to find an “educational” example of differential crypt-
analysis for the first 12 rounds of DES with difference (‘00196000’,‘00000000’),
that comes from the best existing differential characteristic for DES, see [15]. It is
known that this difference is reproduced after two rounds with probability exactly
2−8, regardless the value of the key. The naive method to find a sample plaintext for
which this difference holds throughout the whole computation is exhaustive search.
For 10 consecutive rounds it requires about 241 reduced DES computations and we
estimate that it would take about 4 days on our laptop. For 12 consecutive rounds it
requires about 249 reduced DES computations which would last for about 3 years.

An algebraic approach to this problem is obvious: we can write this problem as a
system of equations that has many solutions (we expect approximatively 224 and 216,
respectively). We have tried this approach. By using our (last) quadratic and very
sparse representation of the S-box, and by converting it to SAT, we have managed
to find a desired solution. For 10 rounds this is particularly easy, we do it in 50
seconds while in addition fixing 6 additional variables to values chosen by us (many
different solutions can thus be obtained). For 12 rounds it is harder to do, and the
solution was found in 6 hours (instead of 3 years). For example, one can verify that
the plaintext ‘4385AF6C49362B58’ is a solution to this problem for 12 rounds and
the key ‘0123456789ABCDEF’.

Thus we are able to find a special property of 12 rounds of DES within a time much
much smaller than the inverse of the probability of this property. This is a nice and
unexpected result with unclear ramifications. The system of equations is very similar
that in key recovery attacks, yet due to the multiplicity of solutions, it is much easier
to solve and we could do it on a laptop PC for as many as 12 rounds. It is not a key
recovery attack, but could be treated as a weak “certificational” algebraic attack on
12 rounds of DES.

5.2 Discussion

This attack is open to interpretation and discussion. How do we perceive and interpret
a cryptographic attack greatly depends on how it compares with other attacks. This
perception may change when we discover new attacks (for example, it would change if
somebody have found another attack that would achieve a similar speed-up). Here is
our current interpretation of this result. We encourage other researchers to challenge
this interpretation.

DES with 12-rounds can be treated and used as a pseudo-random permutation genera-
tor. We have found a new weakness of this generator and this w.r.t. attackers disposing
of a very low computing power (e.g. only 50 seconds on a PC for 10 rounds).

Thus far it was known that DES had a particular property w.r.t. differential cryptanal-
ysis that happens with a small probability and that can be detected when treating it
as a “black box”. In a “glass box” scenario, when the key and the algorithm is known
to the attacker, plaintexts that have these properties can be detected and generated
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much faster. DES with 12 rounds cannot be treated as a “black box” or “random
oracle” or “random cipher”. We expect that our attack works for every possible DES
key.
From differential cryptanalysis (a basic and naive application of it, could be improved)
we already knew that DES with 12 rounds cannot be treated as a “black box” by an
adversary that can do 249 queries to the oracle. We also knew that it cannot be treated
as a “black box” when the adversary can carefully choose the key — this is because
DES has some weak keys (and there is also the complementation property). Here we
learn that it cannot be treated as a “black box” when the key is random, and known
to the adversary: the adversary can do more things than just implement 12 rounds of
DES and experiment with it. The adversary does not have to be very powerful. He
doesn’t need to make 249 queries to the oracle, and he needs a rather small computing
power that is no match for computing answers for these 249 queries. To summarize,
DES with up to 12 rounds is not a very good permutation generator even against
adversaries with very limited computing power.

5.3 Future Research
We believe that many other results of this kind can be obtained by our (and similar)
methods. In particular, it appears that SAT solvers are particularly efficient in solving
problems that have many solutions as demonstrated in recent work on hash function
cryptanalysis with SAT solvers [35]. In general, we expect that it should be also
possible to break certain hash functions and MACs by algebraic and/or logical attacks
similar to ours, or in combination with other methods. It should be also possible to
answer many questions such as: given a block cipher, is there a choice of a subset
of key bits to be fixed such that there will be a differential true with probability 1
for 4 rounds. In some cases the attack would just consist of running ready computer
packages designed to efficiently solve SAT instances or/and systems of multivariate
equations and may require very little human intervention.

6 Conclusion

In this paper we show that in many interesting cases, it is possible to solve in practice
very large systems of multivariate equations with more than 1000 unknowns derived
from a contemporary block cipher such as DES. Several methods were considered,
and our best key-recovery attack allows one to break in practice, up to 6 complete
rounds of DES and given only 1 known plaintext (!). Very few attacks on ciphers that
work given such a low quantity of plaintext material are known. At the same time,
our approach is extremely general. It is clearly possible to use it to find algebraic
attacks of this type in an automated way starting from the very description of a
symmetric cipher, and without the need to find any strong property or particular
weakness. This opens new avenues of research which is rich in possibilities (many
different algebraic representations of the S-boxes) and in which experimentation is an
essential ingredient.
Until now, direct attempts to attack block ciphers with Gröbner bases have given
very poor results. In 2006 Courtois proposed a general strategy for “fast” algebraic
attacks on block ciphers [9]. We need to avoid methods such as Gröbner bases that
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expand systems of equations to a larger degree (e.g. 4 or 5) and then solve them.
Instead, we need to find methods to produce systems of equations that, though may
be much larger in size, can be nevertheless much easier to solve and by much simpler
techniques, without time and memory-consuming expansion. Here, linear algebra and
known elimination techniques need to be complemented with heuristics that take
advantage and (to some degree) preserve sparsity. Then, for attacks such as [9] and
in the present paper, it appears that current Gröbner bases techniques are no match
compared much simpler techniques such as ElimLin.
For DES (and also for KeeLoq, see [10]) it appears that the fastest algebraic attacks
currently known the fastest algebraic attacks are those obtained with modern SAT
solvers. Our specific approach is to write problems algebraically and work on conver-
sion. This allows methods from both families to be combined in many ways. By just
the few simple working examples we give in this paper, we have considerably enlarged
the family of algebraic cryptanalytic methods available to the researchers.
It should be noted that we ignore why some systems of equations are efficiently
solvable. We just demonstrate that they are. It is certainly an important topic for
further research to understand why these attacks actually work, but it would be wrong
to believe that only attacks that are well understood should be studied in cryptology.
This is because the number of possible algebraic attacks that can be envisaged is very
large: one finite DES S-box can be described by a system of algebraic equations in
an infinite number of ways, and the attacks that should be studied in priority are the
fastest ones, not the ones for which a nice mathematical theory already exists such as
Gröbner bases. Moreover, if one does not experiment, or if one only studies attacks
that are faster than linear and differential cryptanalysis some important attacks on
block ciphers will never be discovered.
Another interesting contribution of this paper is to point out that while the perfor-
mance of algebraic elimination methods is usually greatly degraded when the system
of equations has many solutions, SAT solvers in fact do benefit from it. This potential
remains largely unexplored, and may lead to interesting results in cryptanalysis of
hash functions and MACs. As an illustration we computed a special property of 12
full rounds of DES.
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