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Abstract

The common random string model permits the construction of cryptographic protocols that are prov-
ably impossible to realize in the standard model. In this model, a trusted party generates a random string
and gives it to all parties in the protocol. However, the introduction of such a third party should set alarm
bells going off: Who is this trusted party? Why should we trust that the string is random? Even if the
string is uniformly random, how do we know it does not leak private information to the trusted party? The
very point of doing cryptography in the first place is to prevent us from trusting the wrong people with
our secrets.

In this paper, we propose the more realistic multi-string model. Instead of having one trusted authority,
we have several authorities that generate random strings. We do not trust any single authority, we only
assume a majority of them generate the random string honestly. We demonstrate the use of this model
for two fundamental cryptographic taks. We define non-interactive zero-knowledge in the multi-string
model and construct NIZK proofs in the multi-string model. We also consider multi-party computation
and show that any functionality can be securely realized in the multi-string model.
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1 Introduction

THE PROBLEM. In the common random string model, a trusted party generates a uniformly random bit-
string and makes it available to all parties. A generalization of this model is the common reference string
(CRS) model, where the string may have a non-uniform distribution. Blum, Feldman and Micali [BFM88]
introduced the CRS model to construct non-interactive zero-knowledge (NIZK) proofs. A relaxation of the
plain model was needed, since only languages inBPP can have non-interactive or two-round NIZK proofs
in the plain model, [GO94]. There are other examples of protocols that cannot be realized in the standard
model but are possible in the CRS model, for instance universally composable (UC) commitment [CF01].
The CRS-model has therefore found wide-spread use in the field of cryptology.

Using the CRS-model to solve the tasks mentioned above in some sense just ignores a very real problem.
It remains to specify where the CRS comes from. One solution is to have a trusted third party that generates
the CRS, but this raises a trust-issue. It is very possible that the parties cannot find a party that they all trust.
Would Apple trust a CRS generated by Microsoft? Would US government agencies be willing to use a CRS
generated by their Russian counterparts?

Alternatively, the parties can generate the CRS themselvesat the beginning of the protocol. If a majority
is honest, they could for instance use multi-party computation to generate a CRS. However, this kind of setup
makes the whole protocol much more complicated and requiresthem to have an initial round of interaction.
They could also trust a group of parties to jointly generate aCRS, however, this leaves them with the task
of finding a volunteer group to run a multi-party computationprotocol whenever a CRS is needed. Other
relaxations of the CRS-model found in the literature, such as the registered public key model that Barak
et al.[BCNP04] use for multi-party computation also sufferfrom deficiencies. In the registered key model,
parties can register correctly generated public keys, and these keys can be used for multi-party computation.
However, now we need a trusted party to perform this verification of the keys.

THE MULTI -STRING MODEL. We propose the multi-string model as a solution to the abovementioned
problems. In this model we have a number of authorities that assist the protocol execution by providing
random strings. If a majority of these authorities are honest the protocol will be secure. There are two
reasons that the multi-string model is attractive. First, the authorities play a minimal role in the protocol.
They simply publish random strings, they do not need to perform any computation, be aware of each other
or any other parties, or have any knowledge about the specifics of the protocol to be executed. This permits
easy implementation, the parties wishing to execute a protocol can for instance simply download a set of
random strings from agreed upon authorities on the internet. Second, the security of the protocols need to
rely only on a majority of the authorities being honest at thetime they created the strings. No matter how
untrustworthy the other parties in your protocol are, you can trust the protocol if a majority of the authorities
are honest. In other words, the honesty of a small group of parties can be magnified and used by any set of
parties.

Now we have a new reasonable model for constructing secure protocols. The question remains, whether
we can actually securely realize protocols in this model? Weanswer this question in the affirmative by
defining and constructing non-interactive zero-knowledgeproofs in the multi-string model and by securely
realizing general multi-party computation in the multi-string model.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof is a two-party protocol, where a prover tries to convince a verifier about the truth
of some statement, typically membership of an NP-language.The proof should only convince the verifier if
indeed the statement is true, however, at the same time the proof should reveal no extra information to the
verifier other than the truth of the statement, in particularit should not reveal the NP-witness known to the
prover. Interactive zero-knowledge proofs are known to exist in the standard model, however, as mentioned
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before non-interactive and 2-round zero-knowledge proofsonly exist for trivial languages [GO94]. Instead,
much research has gone into constructing non-interactive zero-knowledge proofs in the CRS-model.

We define multi-string NIZK proofs for NP-languages in Section 2. In this definition a proof is con-
structed usingn common reference strings, which we imagine to be picked froma set of strings generated
by some authorities. We further imagine that out of then strings, a majority (or some threshold, see Section
2) of them have been honestly generated and no side-information has been stored about them. In that case
we will have completeness, soundness and zero-knowledge defined as respectively the prover being able to
convince the verifier if he knows a witness for the statement,the prover’s inability to prove a false statement
and the verifier’s inability to learn anything else from the proof than the truth of the statement. We also
consider more complex notions of zero-knowledge such as simulation-soundness, proofs of knowledge and
simulation-sound extractability in the multi-string model.

We will construct multi-string NIZK proofs for any NP-language based on general cryptographic assump-
tions. This is a non-trivial task, since any of the common reference strings may be maliciously generated and
leak information, so for instance the trivial solution of concatenatingn NIZK proofs does not work.

We also construct very efficient multi-string NIZK proofs for circuit satisfiability, based on specific num-
ber theoretic assumption related to groups with bilinear maps. Using groups with a bilinear map is harder
than one might expect at first glance, since all the common reference strings are generated independently and
therefore we cannot assume the existence of a commonly agreed upon group. Nonetheless, we manage to
construct such NIZK proofs and they are surprisingly efficient, a proof consists ofO(n + |C|) group ele-
ments. Since in a typical setting,n will be much smaller than the size of the circuit this matchesthe most
efficient known constructions for the single common reference string case by Groth, Ostrovsky and Sahai
[GOS06b, GOS06a] where an NIZK proof consists ofO(|C|) group elements.

1.2 Multi-party Computation

Canetti’s UC framework [Can01] defines secure execution of aprotocol under concurrent execution of arbi-
trary protocols. We refer the reader to Section 5.1 for an overview and to Canetti’s paper for details, for now
let us just say that the essence of the definition is to comparea protocol executing in the real world with an
ideal process where a trusted party takes inputs from the parties and hands them their outputs. A protocol
securely realizes the ideal functionality (the trusted party’s program) if whatever the executing environment
sees in the real life execution can be simulated on top of the ideal functionality.

It is known that in the plain model, any (well-formed) ideal functionality can be securely realized if
a majority of the parties are honest. On the other hand, if a majority may be corrupt, there are certain
functionalities that are provably impossible to realize. Relaxing the setting to the CRS-model, Canetti, et al.
showed that any (well-formed) ideal functionality can be securely realized in the CRS-model, even against
adversaries that can adaptively corrupt arbitrary partiesand where parties are not assumed to be able to
securely erase any of their data. However, it is an open question where this CRS should come from, since
the parties provably cannot compute it themselves and it maybe undesirable to trust one single authority to
create a CRS, and risk the compromise of all your confidentialdata if the trust turns out to be unwarranted.

In this paper, we will show that any well-formed functionality can be securely realized in the multi-string
model. This is a significant step forward, since even mutually distrustful parties may still agree on a set
of authorities where they trust that some subset will be honest enough to generate good common reference
strings. Also, there is now much less incentive for any givenauthority to cheat since to learn anything from
the protocol it would need to risk cooperation with other authorities and face a higher risk of being caught.
For instance the honest-but-curious system administratorwho in the single authority setup might generate
a common reference string that permitted decryption of the parties’ secrets, no longer learns anything and
therefore has less incentive to generate a fake common reference string.
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2 Definitions

Let R be an efficiently computable binary relation. For pairs(x,w) ∈ R we callx the statement andw the
witness. LetL be the NP-language consisting of statements inR.

A multi-string proof system for a relationR consists of probabilistic polynomial time algorithmsK,P, V ,
which we will refer to as respectively the key generator, theprover and the verifier.

The key generation algorithm can be used to produce common reference stringsσ. In the present paper,
we can implement our protocols with a key generator that outputs a uniformly random string of polynomial
lengthℓ(k), however, for the sake of generality, we include a key generator in our definitions. Please note,
the key generator takes only the security parameter as input, we do not assume that the key generator has any
knowledge of the circumstances in which the common reference string is going to be used.

The prover takes as input(tc, ts, tz, ~σ, x,w), where~σ is a set onn common reference strings and
(x,w) ∈ R, and produces a proofπ. The verifier takes as input(tc, ts, tz, ~σ, x, π) and outputs 1 if the
proof is acceptable and 0 if rejecting the proof. We call(K,P, V ) a (tc, ts, tz, n)-NIZK proof system for
R if it has the completeness, soundness and zero-knowledge properties described below. We remark that
(1, 1, 1, 1)-NIZK proof systems correspond closely to the standard notion of NIZK proofs in the CRS-model.

(tc, ts, tz, n)-COMPLETENESS. For all non-uniform polynomial time adversariesA we have

Pr
[

S := ∅; (~σ, x,w)← AK ;π ← P (tc, ts, tz, ~σ, x,w) :

V (tc, ts, tz, ~σ, x, π) = 0 and(x,w) ∈ R and|~σ \ S| ≥ tc

]

≈ 0,

whereK on queryi outputsσi ← K(1k) and setsS := S ∪ {σi}.
Our protocols will have perfect(tc, ts, tz, n)-completeness for all0 ≤ tc ≤ n. In other words, even if the

adversary chooses all common reference strings itself, we still have probability 1 of outputting an acceptable
proof.

(tc, ts, tz, n)-SOUNDNESS. The goal of the adversary in the soundness definition is to forge a proof using
n common reference strings, even ifts of them are honestly generated. The adversary gets to see possible
choices of correctly generated common reference strings and can adaptively choosen of them, it may also in
thesen common reference strings include up ton− ts fake common reference strings that it chooses itself.

We say(K,P, V ) is (tc, ts, tz, n)-sound if for all non-uniform polynomial time adversariesA we have

Pr
[

S := ∅; (~σ, x, π)← AK : V (tc, ts, tz, ~σ, x, π) = 1 andx /∈ L and|~σ \ S| ≥ ts

]

≈ 0,

whereK is an oracle that on queryi outputsσi ← K(1k) and setsS = S ∪ {σi}.

(tc, ts, tz, n)-ZERO-KNOWLEDGE. We wish to formulate that iftz common reference strings are correctly
generated, then the adversary learns nothing from the proof. As is standard in the zero-knowledge literature,
we will say this is the case, when we can simulate the proof. Let thereforeS1 be an algorithm that outputs
(σ, τ), respectively a simulation reference string and a simulation trapdoor. Let furtermore,S2 be an algo-
rithm that takes input(tc, ts, tz, ~σ, ~τ , x,w) and simulates a proofπ if ~τ containstz simulation trapdoors for
common reference strings in~σ.

We will strenghten the standard definition of zero-knowledge, by splitting the definition into two parts.
The first part simply says that the adversary cannot distinguish real common reference strings from simulation
reference strings. The second part, says thateven with access to the simulation trapdoorsthe adversary cannot
distinguish the prover from the simulator on a set of simulated reference strings. This kind of definition was
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considered by Groth in [Gro06] in the common reference string model and was proven to imply adaptive
multi-theorem zero-knowledge.

We say(K,P, V ) is (tc, ts, tz, n)-composable zero-knowledge if there existsS1, S2 such that we have
both reference string indistinguishability and simulation indistinguishability as described below. Either of
these come in computational, statistical and perfect flavors. We describe the computational flavor, since that
is the most relevant in this paper.

REFERENCE STRING INDISTINGUISHABILITY. For all non-uniform polynomial time adversariesA we have

Pr
[

σ ← K(1k) : A(σ) = 1
]

≈ Pr
[

(σ, τ)← S1(1
k) : A(σ) = 1

]

.

(tc, ts, tz, n)-SIMULATION INDISTINGUISHABILITY . For all non-uniform interactive polynomial time ad-
versariesA we have

Pr
[

S := ∅; (~σ, x,w)← AS1(1k);π ← P (tc, ts, tz, ~σ, x,w) : A(π) = 1 and(x,w) ∈ R and|~σ \ S| ≥ tz

]

≈ Pr
[

S := ∅; (~σ, x,w)← AS1(1k);π ← S2(tc, ts, tz, ~σ, ~τ , x) : A(π) = 1 and(x,w) ∈ R and|~σ \ S| ≥ tz

]

,

where~τ contains the simulation trapdoors corresponding toσi’s generated byS1.

LOWER BOUNDS FOR MULTI-STRING NIZK PROOFS. Soundness and zero-knowledge are complementary.
The intuition is that if an adversary controls enough strings to simulate a proof, then he can prove anything
and we can no longer have soundness.We capture this formallyin the following theorem.

Theorem 1 If L is a language with a proof system(K,P, V ) that has(tc, ts, tz, n)-completeness, soundness
and zero-knowledge thenL ∈ P/poly or ts + tz > n.

Proof. Assume we have an(tc, ts, tz, n)-NIZK proof system forR definingL andts + tn ≤ n. Given an
elementx, we wish to decide whetherx ∈ L or not. We simulatetz common reference strings(σi, τi) ←
S1(1

k) and generaten − tz common reference stringsσj ← K(1k) settingτj = ⊥. We then simulate the
proof π ← S2(~σ, ~τ , x). OutputV (~σ, x, π).

Let us analyze this algorithm. Ifx ∈ L, then by(tc, ts, tz, n)-completeness a prover with access to
a witnessw would output a proof that the verifier accepts if all common reference strings are generated
correctly. By reference string indistinguishability, we will therefore also accept the proof when some of
the common reference strings are simulated. By(tc, ts, tz, n)-simulation indistinguishability, where we give
(x,w) as non-uniform advice toA, we will output 1 with overwhelming probability onx ∈ L.

On the other hand, ifx /∈ L, then by the(tc, ts, tz, n)-soundness we output 0 with overwhelming
probability, sincen − tz ≥ ts common reference strings have been generated correctly. This shows that
L ∈ BPP/poly. By [Adl78] we haveP/poly = BPP/poly, which concludes the proof. �

In general, we wish to minimizets to make it more probable that the protocol is sound, and at thesame
time we wish to minimizetz to make it more probable that the protocol is zero-knowledge. In many cases,
choosingn odd, and settingts = tz = n+1

2 will be a reasonable compromise. However, there are also cases
where it might be relevant to have an eskewed setting. Consider the case, where Alice wants to e-mail a NIZK
proof to Bob, but does not know Bob’s preferences with respect to common reference strings. She may pick
a set of common reference strings and make a multi-string proof. Bob did not participate in deciding which
common reference strings to use, however, if they came from trustworthy authorities he may be willing to
accept that probably one of the authorities is honest. On theother hand, Alice gets to choose the authorities,
so she may be wiling to believe that all of them are honest. Theappropriate choice in this situation, is a
multi-string proof withts = 1, tz = n.
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(tc, ts, tz, n)-KNOWLEDGE. Strenghtening the definition of soundness, we call(K,P, V ) a (tc, ts, tz, n)
proof of knowledge forR if there exists a knowledge extractorE = (E1, E2) with the properties described
below.

For all non-uniform polynomial time adversariesA we have

Pr
[

σ ← K(1k) : A(σ) = 1
]

≈ Pr
[

(σ, ξ)← E1(1
k) : A(σ) = 1

]

.

For all non-uniform polynomial time adversariesA we have

Pr
[

S := ∅; (~σ, x, π)← AE1(1k);w ← E2(tc, ts, tz, ~σ, ~ξ, x, π) :

V (tc, ts, tz, ~σ, x, π) = 1 and|~σ \ S| ≥ ts and(x,w) /∈ R
]

≈ 0,

whereE1 is an oracle that returns(σ, ξ) ← E1 and setsS := S ∪ {σ}, and~ξ is then element vector that
contains at leastts ξ’s corresponding to theσ’s in ~σ generated byE1.

(tc, ts, tz, n)-SIMULATION -SOUNDNESS. In security proofs, it is often useful to simulate a proof for a false
statement. However, seeing a simulated proof for a false statement might enable an adversary to generate
more proofs for false statements. We say an NIZK proof is(tc, ts, tz, n)-simulation-sound if an adversary
cannot prove any false statement even after seeing simulated proofs of arbitrary statements.

More precisely, a(tc, ts, tz, n)-NIZK proof system(K,P, V, S1, S2) is (tc, ts, tz, n)-simulation-sound if
for all non-uniform polynomial time adversaries we have

Pr
[

S := ∅;Q := ∅; (~σ, x, π)← AS1,S′
2(·,·)(1k) :

(x, π) /∈ Q andx /∈ L andV (~σ, x, π) = 1 and|~σ \ S| ≥ ts

]

≈ 0,

whereS1 returns(σ, τ) ← S1(1
k) and setsS := S ∪ {σ}, andS′

2(~σ, x) returnsπ ← S2(tc, ts, tz, ~σ, ~τ , x)
with ~τ containing simulation trapdoors for theσ’s generated byS1 and setsQ := Q ∪ {x, π}.

(tc, ts, tz, n)-SIMULATION -EXTRACTABILITY . Since we are working in the multi-string model, we assume
strings can be set up and used by anybody who comes along. Knowledge extraction and zero-knowledge may
both be very desirable properties, however, we may also imagine security proofs where we at the same time
need to extract witnesses from some proofs and simulate other proofs. This joint simulation/extraction is for
instance often seen in security proofs in the UC framework.

Combining simulation soundness and knowledge extraction,we may therefore require that even after
seeing many simulated proofs, whenever the adversary makesa new proof we are able to extract a witness. We
call this property simulation-extractability. Simulation-extractability implies simulation-soundness, because
if we can extract a witness from the adversary’s proof, then obviously the statement must belong to the
language in question.

Consider a(tc, ts, tz, n)-NIZK proof of knowledge(K,P, V, S1, S2, E1, E2). Let SE1 be an algorithm
that outputs(σ, τ, ξ) such that it is identical toS1 when restricted to the first two parts(σ, τ). We say the
NIZK proof is (tc, ts, tz, n)-simulation-extractable if for all non-uniform polynomial time adversaries we
have

Pr
[

S := ∅;Q := ∅; (~σ, x, π)← ASE′
1,S2(·,·)(1k);w ← E2(tc, ts, tz, ~σ, ~ξ, x, π) :

(x, π) /∈ Q and(x,w) /∈ R andV (tc, ts, tz, ~σ, x, π) = 1 and|~σ \ S| ≥ ts

]

≈ 0,
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where SE′
1 outputs (σ, ξ) from (σ, τ, ξ) ← SE1(1

k) and setsS = S ∪ {σ}, S2 outputs π ←
S2(tc, ts, tz, ~σ, ~τ , x), where~τ containstz τ ’s corresponding toσ’s generated bySE1 and setsQ = Q∪{x, π},
and~ξ is a vector containing at leastts ξ’s generated bySE1 corresponding toσ’s in ~σ.

(tc, ts, tz, n)-EXTRACTION ZERO-KNOWLEDGE. Combining simulation soundness and knowledge extrac-
tion, we may also require that even after seeing many extractions, it should still be hard to distinguish real
proofs and simulated proofs from one another. This definition resembles the definition of chosen ciphertext
attack secure public key encryption.

Consider a(tc, ts, tz, n) NIZK proof of knowledge(K,P, V, S1, S2, E1, E2). Let SE1 be an algorithm
that outputs(σ, τ, ξ) such that it is identical toS1 when restricted to the first two parts(σ, τ). We say the
NIZK proof is (tc, ts, tz, n)-extraction zero-knowledge if for all non-uniform interactive polynomial time
adversaries we have

Pr
[

S := ∅; (~σ, x,w)← ASE′
1,E2(·,·)(1k);π ← P (tc, ts, tz, ~σ, x,w) :

AE2(·,·)(π) = 1 and(x,w) ∈ R and|~σ \ S| ≥ tz

]

≈

Pr
[

S := ∅; (~σ, x,w)← ASE′
1,E2(·,·)(1k);π ← S2(tc, ts, tz, ~σ, ~τ , x) :

AE2(·,·)(π) = 1 and(x,w) ∈ R and|~σ \ S| ≥ tz

]

,

where SE′
1 outputs (σ, τ) from (σ, τ, ξ) ← SE1(1

k) and setsS = S ∪ {σ}, E2 outputs w ←

E2(tc, ts, tz, ~σ, ~ξ, x), when the query containsts σ’s generated bySE1 andπ is not the challenge proof.

3 Multi-string NIZK Proofs based on General Assumptions

MULTI -STRING NIZK PROOFS. We start out with a simple construction of a multi-string NIZK proof that
works for tc = 0 and all choices ofts, tz, n so ts + tz > n. We use two tools in this construction, a
pseudorandom generator and a zap. Recall, a zap is a two-round public coin witness-indistinguishable proof,
where the verifier’s first message is chosen at random and can be fixed once and for all and be reused in
subsequent zaps.

A common reference string will consist of a random valuer and an initial messageσ for the zap. Given
a statementx ∈ L, the prover makes zaps for

x ∈ L or there aretz common reference strings wherer is a pseudorandom value.

In the simulation, we create simulation reference strings as r = prg(τ) enabling the simulator to make zaps
without knowing a witnessw for x ∈ L.

Common reference string: Generater ← {0, 1}2k ;σ ← {0, 1}ℓzap(k). OutputΣ := (r, σ).

Proof: Given inputtz, (Σ1, . . . ,Σn), a statementx and a witnessw so(x,w) ∈ R, we wish to provex ∈ L.
Using NP-reductions, we create a polynomial size circuitC that is satisfiable if and only if

x ∈ L or |{ri|∃τi : ri = PRG(τi)| ≥ tz.

Chosen appropriately, NP-reductions are witness preserving, so we also reducew to a witnessW for
C being satisfiable. For alln common reference strings, generateπi ← Pzap(σi, C,W ). Return the
proof Π := (π1, . . . , πn).
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Verification: Givenn common reference strings(Σ1, . . . ,Σn), a statementx and a proofΠ = (π1, . . . , πn)
return1 if and only if all of them satisfyVzap(σi, C, πi) = 1, whereC is generated as in the proof.

Simulated reference string: Selectτ ← {0, 1}k ; r := PRG(τ) andσ ← {0, 1}ℓzap(k). Output((r, σ), τ).

Simulated proof: Given input (Σ1, . . . ,Σn), (τ1, . . . , τn), x so we have fortz reference stringsri =
PRG(τi) we wish to simulate a proofΠ. As in a proof, use NP-reductions to get a circuitC that
is satisfiable if and only ifx ∈ L or |{ri|∃τi : ri = PRG(τi)| ≥ tz. Pick the firsttz common
reference stringΣi, whereri = PRG(τi), and reduce this to a witnessW for the satisfiability of
C. For all n common reference strings, generateπi ← Pzap(σi, C,W ). Return the simulated proof
Π := (π1, . . . , πn).

Theorem 2 The existence of one-way functions and zaps with perfect completeness imply the existence of
(0, ts, tz, n) NIZK proofs for any1 ≤ ts, tz ≤ n with ts + tz > n in the common random strings model
with statistical(0, ts, tz, n)-soundness. In particular, enhanced trapdoor permutations imply the existence of
NIZK proofs in the common random string model, which in turn implies the existence of zaps.

Proof. Trapdoor permutations imply one-way functions, which in turn imply the existence of pseudorandom
generators [HILL99]. Dwork and Naor [DN02] construct zaps from NIZK proofs in the random string
model, which can be built from trapdoor permutations. Thereare a few details that are easy to resolve,
but worth mentioning. First, they allow completeness errorin the zaps, however, it is easy to see that their
construction is actually perfectly complete if one uses an NIZK proof with perfect completeness in their
construction. Second, their construction uses an inital message that is polynomial in the statement size,
whereas we want the authorities to generate common reference strings without knowing the statement size in
advance. Plugging in any NIZK with common random string sizethat is independent of the statement size
circumvents this problem.

Direct verification reveals that we have perfect completeness, even fortc = 0. Let us prove that we
have(0, ts, tz, n)-soundness. Any honestly generated common reference string has negligible probability of
containing a pseudorandom valuer. With ts honestly generated strings andtz > n − ts, there is negligible
probability that(Σ1, . . . ,Σn) havetz or more pseudorandom values. Ifx /∈ L, the resulting circuitC is
unsatisfiable. Also, at least one of the common reference strings has a correctly generated initial message
for the zap. By the statistical soundness of this zap it is thus hard to construct a valid proof, even for an
unbounded adversary ofC being satisfiable.

We now turn to the question of(0, ts, tz, n)-zero-knowledge. Computational reference string indistin-
guishability follows from the pseudorandomness ofPRG. With at leasttz simulated reference strings the
only difference between proofs using the witness ofx ∈ L and simulated proofs using the simulation trap-
doors is the witnesses we are using in the zaps. Computational simulation indistinguishability follows from
a standard hybrid argument using the witness indistinguishability of the zaps. �

(0, ts, tz, n)-SIMULATION -EXTRACTABLE NIZK PROOF. More advanced proofs, such as multi-string NIZK
proofs of knowledge that are simultaneously(0, ts, tz, n)-simulation-extractable and(0, ts, tz, n)-extraction
zero-knowledge can also be constructed in the multi-stringmodel.

To permit the extraction of witnesses, we include a public key for a CCA2-secure cryptosystem in the
common reference strings. In a proof, the prover will make a(ts, n)-threshold secret sharing of the witness
and encrypt the shares under then public keys. To extract the witness, we will decryptts of these ciphertexts
and combine the shares to get the witness.

To avoid tampering with the proof, we will use a strong one-time signature scheme. The prover generates
a key(vksots, sksots) ← Ksots(1

k) that he will use to sign the proof. The implication is that theadversary,
who sees simulated proofs, must still use a differentvksots in his forged proof, because he cannot forge the
strong one-time signature.
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The common reference string will contain a value, which in a simulation string will be pseudorandom.
The prover will prove that he encrypted a(ts, n)-secret sharing of the witness, or that he knows how to eval-
uatetz pseudorandom functions invksots using the seeds of the respective common reference strings.On a
real common reference string, this seed is not known and therefore he cannot make such a proof. On the other
hand, in the simulation the simulator does know these seeds and can therefore simulate without knowing the
witness. Simulation soundness follows from the adversary’s inability to guess these pseudorandom functions
on vksots, even if it knew the evaluations on many other verification keys.

Zero-knowledge under extraction attack follows from the CCA2-security of the cryptosystem. Even after
having seen many extractions, the ciphertexts reveal nothing about the witness, or even whether the trapdoor
has been used to simulate a proof.

Common reference string/simulation string: Generate (pk1, dk1), (pk2, dk2) ← Kcca2(1
k); r ←

{0, 1}2k ;σ ← {0, 1}ℓzap(k). ReturnΣ := (pk1, pk2, r, σ).

The simulators and extractorsS1, E1, SE1 will generate the simulated reference strings in the same
way, except for choosingτ ← {0, 1}k andr := PRFτ (0). We use the simulation trapdoorτ and the
extraction keyξ := dk1.

Proof: P (0, ts, tz, (Σ1, . . . ,Σn), x, w) where(x,w) ∈ R runs as follows. First, generate a key pair for a
strong one-time signature scheme(vksots, sksots)← Ksots(1

k). Use(ts, n)-threshold secret sharing to
get sharesw1, . . . , wn of w. Encrypt the shares asci1 = Epki1

(wi, vksots; ri1). Also encrypt dummy
valuesci2 ← Epki2

(0). Consider the statement:c11, . . . , cn1 all encrypt vksots, and furthermore
c11, . . . , cn1 are encryptions of shares of a(ts, n)-secret sharing of a witnessw so(x,w) ∈ R or at least
tz of theri’s on the common reference strings are on the formri = PRFτi

(0) and the correspondingci2

is an encryption ofPRFτi
(vksots). We can reduce this statement to a polynomial size circuitC and a

satisfiability witnessW . For all i’s we create a zapπi ← Pzap(σi, C,W ). Finally, we sign everything
using the strong one-time signaturesig ← Signsksots

(vksots,Σ1, c11, c12, π1, . . . ,Σn, c1n, c2n, πn).
The proof isΠ = (vksots, c11, c12, , π1, . . . , c1n, c2n, πn, sig).

Verification: To verify Π on the form described above, verify the strong one-time signature and verify then
zapsπ1, . . . , πn.

Extraction: To extract a witness check that the proof is valid. Next, use the firstts extraction keys in~ξ to
decrypt the correspondingts ciphertexts. Use Lagrange interpolation on the plaintextsto recover the
witnessw.

Simulated proof: To simulate a proof, pick the firsttz simulation trapdoors in~τ . These areτi so
ri = PRFτi

(0). As in the proof generate(vksots, sksots) ← Ksots(1
k). Createtz pseudorandom

valuesvi := PRFτi
(vksots). Encrypt the values asci2 ← Epki2

(vi). For the other reference strings,
just let ci2 ← Epki2

(0). Let w1, . . . , wn be a(ts, n)-threshold secret sharing of 0. We encrypt also
these values asci1 ← Epki1

(wi, vksots). Let C be the circuit corresponding to the statement that
c11, . . . , cn1 containvksots, and alsoc11, . . . , cn1 contains a(ts, n)-threshold secret sharing of a wit-
nessw so(x,w) ∈ R or there are at leasttz of the ciphertextsc12, . . . , cn2 that contain pseudorandom
function evaluations onvksots. From the creation of the ciphertextsci1 andci2 we have a witnessW for
C being satisfiable. Create zapsπi ← Pzap(σi, C,W ) for C being satisfiable. Finally, make a strong
one-time signature on everythingsig ← Signsksots

(vksots,Σ1, c11, c12, π1, . . . ,Σn, cn1, cn2, πn). The
simulated proof isΠ := (vksots, c11, c12, π1, . . . , cn1, cn2, πn, sig).

Theorem 3 The above protocol is a(0, ts, tz, n)-NIZK proof for all choices ofts + tz > n. It can be
securely implented if trapdoor permutations exist, and it can be implemented with random strings if dense
cryptosystems and enhanced trapdoor permutations exist.
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Proof. Let us start with the latter part. Enhanced trapdoor permutations, imply the existence of zaps with
perfect completeness and pseudorandom functions and strong one-time signatures. Enhanced trapdoor per-
mutations also imply the existence of CCA2-secure public key encryption with errorless decryption. In case
dense public key cryptosystems and enhanced trapdoor permutations exist, CCA2-secure encryption with
random strings as public keys exist.

Perfect completeness follows by direct verification. Common reference strings and simulated reference
strings are indistinguishable by the pseudorandomness of the pseudorandom functionPRF.

Let us consider extraction-sound zero-knowledge. The adversary knows the simulation trapdoorsτi, and
has access to an extraction oracle. He selects a statementx and a witnessw and has to distinguish a proof on
a simulated reference string using respectively the witness or the simulator. We consider a series of hybrid
experiments.

Hybrid 1: This is the experiment, where we run the adversary on a simulated reference string and make
proofs using the real prover and witnessw.

Hybrid 2: We modify hybrid 1 by encryptingtz pseudorandom values inc12, . . . , cn2. We knowtz seedsτi

such thatri = PRFτi
(0). Instead of settingci2 ← Epk2

(0), we encryptci2 ← Epk2
(PRFτi

(vksots).

By the semantic security of the cryptosystem, hybrid 1 and hybrid 2 are computationally indistinguish-
able.

Hybrid 3: We modify hybrid 2, by reducing the pseudorandom values and the randomness used in forming
the ciphertextsc12, . . . , cn2 to form a witnessW for C being satisfiable. We use this witness in the
zaps, instead of the witnessw.

By the witness-indistinguishability of the zaps, hybrid experiments 2 and 3 are indistinguishable.

Hybrid 4: We modify hybrid 3 such that if the adversary ever recycles one of the ciphertextci1 from the
challenge proof in one of the encryption queries and this is avalid proof, then we abort.

There is negligible probability of aborting. To make a validproof, the adversary has to sign the proof
using a verification keyvk′

sots. By the existential forgeability of the strong one-time signature scheme,
this verification key has to differ from the verification keyvksots used in the challenge. This means,
ci1 contains the wrong verification key. However, in the zaps, ofwhich at least one is made using a
correctly generated initial message, the adversary provesthatci1 does containvk′

sots. By the soundness
of the zap, there is negligible probability of the adversarysucceeding in this.

Hybrid 5: We modify hybrid 4 by making a(ts, n)-threshold secret sharingw1, . . . , wn of 0 instead of
secret sharingw. We encrypt these shares inci1 ← Epki1

(wi, vksots). This hybrid is identical to the
simulation process.

Hybrid 4 and hybrid 5 are indistinguishable. We have ruled out that the adversary ever makes an extrac-
tion query, recycling aci1 from the challenge. Using a hybrid argument on the chosen ciphertext attack
security of the cryptosystems, the adversary cannot distinguish encryptions of shares of a threshold
secret sharing ofw from shares of a threshold secret sharing of0. The remainingn − tz < ts shares
do not reveal anything.

Next, let us consider simulation-sound extractability. Here the adversary sees extraction keys, but not
the simulation trapdoors of the common reference strings generated bySE1. It has access to a simulation
oracle, and in the end it outputs a statement and a proof. By the unforgeability of the strong one-time
signature scheme, it cannot reuse a strong verification keyvksots used in a simulated proof. Let us look at an
honestly generated simulated common reference string. Since it does not know the seed for the pseudorandom
function, it cannot encrypt a pseudorandom function evaluation of vksots. The zaps, of which at least one
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uses a correctly generated initial message, then tells us that c11, . . . , cn1 contain a(ts, n)-threshold secret
sharing ofw. Decryptingts of these ciphertexts, permits us to reconstruct the witnessw.

A similar proof, shows that we havestatistical(0, ts, tz, n)-knowledge extraction. The point in this proof
is that with overwhelming probability a random string does not contain a pseudorandom valuer, so therefore
c11, . . . , cn1 must encrypt a(ts, n)-threshold secret sharing of a witness forx ∈ L. �

4 Multi-string NIZK Proofs from Groups with a Bilinear Map

SETUP. We use groupsG, GT of orderp, wherep is a k-bit prime. We make use of a bilinear mape :
G × G → GT . I.e., for allu, v ∈ G anda, b ∈ Z we havee(ua, vb) = e(u, v)ab. We require thate(g, g)
is a generator ofGT if g is a generator ofG. We require that group operations, group membership, and the
bilinear map be efficiently computable. Such groups have been widely used in cryptography in recent years.

Let G be an algorithm that takes a security parameter as input and outputs(p, G, GT , e, g) such thatp
is prime,G, GT are descriptions of groups of orderp, e : G × G → GT is an admissible bilinear map as
described above andg is a random generator ofG.

We use the decisional linear assumption introduced by Boneh, Boyen and Shacham [BBS04].

Definition 4 (Decisional Linear Assumption (DLIN)) We say the decisional linear assumption holds for
the bilinear group generatorG if for all non-uniform polynomial time adversariesA we have

Pr
[

(p, G, GT , e, g)← G(1k);x, y, r, s ← Zp : A(p, G, GT , e, g, gx, gy , gxr, gys, gr+s) = 1
]

≈ Pr
[

(p, G, GT , e, g)← G(1k);x, y, r, s, d← Zp : A(p, G, GT , e, g, gx, gy , gxr, gys, gd) = 1
]

.

Throughout the paper, we work over a bilinear groups(p, G, GT , e, g) ← G(1k) generated such that the
DLIN assumption holds forG. Honest parties always check group membership ofG, GT when relevant and
halt if an element does not belong to a group that it was supposed to according to the protocol.

We will make some further assumptions on the groups that we use. Given a description of a group
(p, G, GT , e, g) it should be possible to verify that indeed it is a group. Moreover, we will require that there
is a decoding algorithm that given a random string of(n + 1)k bits interprets it asn random group elements.
The decoding algorithm should be reversible, such that given n group elements we can create a random
(n + 1)k-bit string that will decode to then group elements.

When working in the random strings model, we will also require that the group can be sampled from a
random string ofk-bit length.1

Example. We will offer a class of candidates for DLIN groups as described above. Consider the elliptic
curvey2 = x3 + 1 mod q, whereq = 2 mod 3 is a prime. It is straightforward to check that a point(x, y)

is on the curve. Furthermore, pickingy ∈ Zq at random and computingx = (y2 − 1)
q+1

3 mod q gives
us a random point on the curve. The curve has a total ofq + 1 points, including the point at infinity. When
generating such groups, we will pickp as a randomk-bit prime. We then letq be the smallest prime sop|q+1
and defineG to be the orderp subgroup of the curve. The target group isGT = F

∗
q2 and the bilinear map is the

modified Weyl-pairing. Verification of(p, G, GT , e, g) being a group with bilinear maps is straightforward,
since it corresponds to checking thatp, q are primes sop|q + 1 andq = 2 mod 3 andg is an orderp element
on the curve.

PSEUDORANDOM GENERATORS FROM THEDLIN ASSUMPTION. Consider a DLIN group(p, G, GT , e, g).
Choosex, y ← Z

∗
p at random and setf = gx, h = gy. Given random elementsu, v ← G, we can compute

1It is easy to modify our scheme to work with any group that can be specified by anO(k)-bit random string.

10



w = u1/xv1/y. The DLIN assumption says that(f, h, u, v, w) is indistinguishable from(f, h, u, v, r), where
r is a random group elements fromG. In other words, we can create a pseudorandom function(x, y, u, v) 7→
(gx, gy, u, v, u1/xv1/y) that strecthes our randomness with an extra group element. We will need to create
random looking strings that have hidden structure, this construction gives us exactly that. However, we need
to stretch our random group elements into more group elements.

Let us pickm pairs(xi, yi)← Z
∗
p×Z

∗
p and create correspondingfi = gxi , hi = gyi . We can now stretch

2n group elementsu1, v1, . . . , un, vn with mn extra group elements by computingwij := u
1/xi

j v
1/yi

j .
It turns out that if the n pairs of group elements(uj , vj) are chosen at random, then

(f1, h1, . . . , fm, hm, u1, v1, . . . , un, vn, w11, . . . , wmn) looks like a random2m + 2n + mn-tuple of group
elements. To see this, consider the following hybrid experimentEIJ , where we pickwij at random for pairs
(i, j) wherei < I ∨ (i = I ∧ j < J) and compute the rest of thewij ’s according to the method described
above. We need to prove that thewij ’s generated in respectivelyE11 andEm,n+1 are indistinguishable.

Consider first experimentsEI,J , EI,J+1 for 1 ≤ I ≤ m, 1 ≤ J ≤ n. In case there is a non-uniform
adversaryA that can distinguish these two experiments, then we can break the DLIN assumption as follows.
We have a challenge(f, h, u, v, w) and wish to know whetherw = u1/xv1/y or w is random. We let
fI := f, hI := h and generate all the otherfi, hi’s according to the protocol. We setuJ := u, vJ := v
andwIJ := w. For i < I we pick wij at random. Also, fori = I, j < J we pick wij at random. For
i = I, j > J we pick rj, sj at random and set(uj , vj , wIj) = (f rj , hsj , grj+sj ). For j < J we select
(uj , vj) at random. Finally, fori > I we compute allwij according to the protocol. If(u, v,w) is a linear
tuple, we have the distribution from experimentEI,J , whereas if(u, v,w) is a random tuple we have the
distribution from experimentEI,J+1. An adversary distinguishing these two experiments, therefore permits
us to distinguish linear tuples from random tuples. We conclude the proof by observingEI+1,1 = EI,n+1.

Observe, it is straightforward to provide a witness for(u, v,w) being a linear tuple. The witness consists
of π = uy/x. (u, v,w) is a linear tuple if and only ife(u, h) = e(f, π) ande(g, πv) = e(w, h). In other
words, we can providen2 proofsπij for wij being correct. Furthermore, all these proofs consist of group
elements and can be verified by checking a set of pairing product equations. It follows from Groth [Gro06]
that there exists a (simulation-sound) NIZK proof of sizeO(mn) group elements for thewij ’s having been
computed correctly.

MULTI -STRING NIZK PROOFS FROMDLIN GROUPS. We will construct a protocol that is a(0, ts, tz, n)-
simulation-sound NIZK proof for circuit satisfiability consisting ofO((n + |C|)k) bits, where|C| is the
number of gates in the circuit andk is the security parameter. Typically,n will be much smaller than|C|, so
the complexity matches the best known NIZK proofs for circuit satisfiability in the single common reference
string model [GOS06b, GOS06a] that have proofs of sizeO(|C|k).

One could hope that the construction from the previous section could be implemented efficiently using
groups with a bilinear map. This strategy does not work because each common reference string is generated
at random and independently of the others. This means that even if the common reference strings contain
descriptions of groups with bilinear maps, most likely theyare different and incompatible groups.

In our construction, we accept that all the common referencestrings describe different groups and we also
let the prover pick a group with a bilinear map. Our solution to the problem described above, is to translate
simulation reference strings into simulation reference strings in the prover’s group. Consider a common
reference string with groupGk and the prover’s groupG. We will let the common reference string contain a
random stringrk. From the earlier discussion, we know that we can build pseudorandom generators in each
group. Consider now the pair of strings(rk ⊕ sk, sk). Since strings can be interpreted as group elements,
we have corresponding sets of group elements in respectively Gk andG. However, sincerk is chosen at
random it is unlikely that bothrk ⊕ sk corresponds to a pseudorandom value inGk and at the same timesk

corresponds to a pseudorandom value inG. Of course, the prover has some degree of freedom in choosing
the groupG, but if one is careful and chooses sufficient stretching length in the pseudorandom function one
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can use an entropy argument for it being unlikely that both strings are pseudorandom values.
Now we use non-interactive zaps and NIZK proofs to hop accross the bridge between the two groups.

The prover will selectsk sork⊕ sk is a pseudorandom value inGk specified by the common reference string
and give an NIZK proof for this using that common reference string. In his own group, he getsn values
s1, . . . , sk and proves thattz of those are pseudorandom orC is satisfiable. In the simulation, on the other
hand he knows the simulation trapdoors fortz reference strings and he can therefore simulate NIZK proofs
of rk ⊕ sk being pseudorandom. This means, he can select the corresponding sk’s as a pseudorandom values
and use this to prove that there are at leasttz pseudorandom values in his own group, so he does not need to
know the satisfiability witnessw to carry out the proof in his own group.

There are more technical details to consider. We want to contruction to be efficient inn. Therefore,
instead of proving directly that there aretz pseudorandom values orC is satisfiable, we use a homomorphicly
encrypted counter. In the simulation, we set the counter to be 1 for each pseudorandom value and to be0
for the rest of the values in the prover’s group. The homomorphic property enables us to multiply these
ciphertexts and get an encrypted count oftz. It is straightforward to prove that the count istz or C is
satisfiable. As a further twist, we can set up the common reference strings such that they enable us to make
simulation-sound NIZK proofs. This way, with a few extra tweaks we actually get a(0, ts, tz, n)-simulation-
sound NIZK proof for circuit satisfiability whents + tz > n.

Common reference string/simulation reference string:Generate a DLIN group(p, G, GT , e, g) ←
G(1k). Generate a common reference string for a simulation-soundNIZK proof on basis of this group
Σ ← Ksim−sound(p, G, GT , e, g) as in [Gro06]. Also, pick a random stringr ← {0, 1}ℓ65(k). Output
Σ := (p, G, GT , e, g, σ, r).

Provided one can sample groups and group elements from random strings, this can all be set up in the
random string model.

When generating a simulation reference string, use the simulator for the simulation-sound NIZK proof
to generate(σ, τ)← Ssim−sound(p, G, GT , e, g). OutputΣ as described above and simulation trapdoor
τ .

Proof: Given common reference strings(Σ1, . . . ,Σn), a circuit C and a satisfiability witnessw do the
following. Pick a group(p, G, GT , e, g) ← G(1k). Pick also keys for a strong one-time signature
scheme(vksots, sksots)← Ksots(1

k). Encodevksots as a tuple ofO(1) group elements fromG.2

For each common reference stringΣk do the following. Pick a pseudorandom value with 6 key pairs,
6 input pairs and 36 structured elements. This gives us 60 group elements fromGk. Concatenate the
tuple of 60 group elements withvksots to getO(1) group elements fromGk. Make a simulation-sound
NIZK proof, usingσk, for theseO(1) group elements being of a form such that the first 60 of them
constitute a pseudorandom value. From [Gro06] we know that the size of this proof isO(1) group
elements fromGk. Definesk ∈ {0, 1}

65k to be a random string such thatrk ⊕ sk parses to the 60
elements from the pseudorandom value.

From now on we will work in the group(p, G, GT , e, g) chosen by the prover. Pickpk := (f, h) as
two random group elements. This gives us a CPA-secure cryptosystem, encrypting a messagem ∈ G

with randomnessr, s ∈ Zp asEpk(m; r, s) := (f r, hs, gr+sm). For eachk = 1, . . . , n we encrypt
1 = g0 asck ← Epk(1). Also, we takesk and parse it as 60 group elements. Call this tuplezk.

Make a non-interactive zapπ using the group(p, G, GT , e, g) and combining techniques of [GOS06a]

2Observe, in DLIN groups the discrete logarithm problem is hard and therefore we can construct collision-free hash-functions,
so there is no loss of generality in assuming the strong one-time signature scheme consists of a constant number of group elements.
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and [Gro06] for the following statement:

C satisfiable ∨ (
n

∏

k=1

ck encryptsgt

∧ ∀k : ck encryptsg0 or g1 ∧
(

zk is a pseudorandom structure∨ ci encryptsg0
)

).

The zap consists ofO(n + |C|) group elements and has perfect soundness.

Sign everythingsig ← Signsksots
(vksots, C,Σ1, s1, π1, c1, . . . ,Σn, sn, πn, cn, p, G, GT , e, g, f, h, π).

The proof isΠ := (vksots, s1, π1, c1, . . . , sn, πn, cn, p, G, GT , e, g, f, h, π, sig).

Verification: Given common reference stringsΣ1, . . . ,Σn, a circuitC and a proof as described above, do the
following. For allk check the simulation-sound NIZK proofsπk for rk⊕sk encoding a pseudorandom
structure inGk using common reference stringσk. Verify (p, G, GT , e, g) is a group with a bilinear
map. Verify the zapπ. Verify the strong one-time signature on everything. Output 1 if all checks are
ok.

Simulated proof: We are given reference stringsΣ1, . . . ,Σn. tz of them are simulation strings, where we
know the simulation trapdoorsτk for the simulation-sound NIZK proofs. We wish to simulate a proof
for a circuitC being satisfiable.

We start by choosing a group(p, G, GT , e, g) ← G(1k) and public keyf, h← G. We create ciphertexts
ck ← Epk(g

1) for the tz simulation reference strings, where we know the trapdoorτk, and setck ←

Epk(g
0) for the rest. We also choose a strong one-time signature key pair (vksots, sksots)← K

(
sots1

k).

For tz of the common reference strings, we know the simulation keyτk. This permits us to choose an
arbitrary stringsk and simulate a proofπk thatrk ⊕ sk encodes a60 element pseudorandom structure.
This means, we are free to choosesk so it encodes a pseudorandom struturezk in G

60. For the
remainingn− tz < ts reference strings, we selectsk sork ⊕ sk does encode a pseudorandom struture
in Gk and carry out a real simulation-sound NIZK proofπk for it being a pseudorandom structure
concatenated withvksots.

For allk we haveck encryptinggb, whereb ∈ {0, 1}. We have
∏n

k=1 ck encryptinggt. We also have for
thetz simulation strings, where we knowτk thatsk encodes a pseudorandom structure, whereas for the
other common reference strings we haveck encryptsg0. This means we can create the non-interactive
zapπ without knowingC ’s satisfiability witness.

Sign everythingsig ← Signsksots
(vksots, C,Σ1, s1, π1, c1, . . . ,Σn, sn, πn, cn, p, G, GT , e, g, f, h, π).

The simulated proof isΠ := (vksots, s1, π1, c1, . . . , sn, πn, cn, p, G, GT , e, g, f, h, π, sig).

Theorem 5 Assuming we have a DLIN group as described above, then the construction above gives us a
(0, ts, tz, n)-simulation-sound NIZK proof for circuit satisfiability, where the proofs have sizeO((n+ |C|)k)
bits. The proof has statistical(0, ts, tz , n)-soundness. The scheme can be set up in the common random
string model if we can sample groups with bilinear maps and group elements from random strings.

Proof. We have already argued in the construction that if we can sample groups and group elements from
random strings and vice versa given groups and group elements sample random strings that yield these group
elements, then the common reference strings can be set up in the random strings model. Perfect completeness
follows by straightforward verification.

Let us prove that we have statistical(0, ts, tz, n)-soundness. Consider first an arbitrary group
(p, G, GT , e, g) chosen by the prover. By assumption, it can be verified that this describes a group with
a bilinear map.
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We will now bound the probability of bothrk ⊕ sk and sk specifying pseudorandom values in their
respective groups for a random choice ofrk. Consider first the probability that a random stringsk specifies
a pseudorandom value inG60. There are at most224k pseudorandom strings, since the 12 pairs(fi, hi) and
the 12 pairs(uj , vj) fully define the pseudorandom value. 60 random group elements have at59k bits of
entropy, so we get a probability of at most224k−59k = 2−35k of sk specifying a pseudorandom value in
G

60. Similarly, for a random choice ofrk we have at most probability2−35k thatrk ⊕ sk is a pseudorandom
value in the group specified by the common reference string. With rk, sk both chosen at random, we have
a total maximal probability of2−70k of both rk ⊕ sk andsk specifying pseudorandom values. The prover
can choose the group freely, giving him at most22k different choices for the groupG andg. He can also
choosesk freely, giving him265k possibilities. Sincerk is chosen at random, there is at most probability
22k+65k−70k = 2−3k of it being possible to choosesk and the groupG so bothrk ⊕ sk and sk specify
pseudorandom values. With overwhelming probability, we can therefore assume that no honestly generated
common reference string exists such that bothrk ⊕ sk andsk specify pseudorandom values in respectively
Gk andG.

Any common reference stringΣk that is honestly generated has overwhelming probability ofhaving a
common reference stringσk for the simulation-sound NIZK with perfect soundness. Whenever the prover
makes a proof using this string, he must therefore picksk so rk ⊕ sk is pseudorandom. Consequently,sk

does not specify a pseudorandom value in the groupG. The zap has perfect soundness, so it shows thatC is
satisfiable orck containsg0. Similarly, for any stringΣk that is not honestly generated, the zap demonstrates
thatC is satisfiable orck containsg0 or g1. Since at leastts > n− tz strings are honestly generated, we see
that if C is unsatisfiable, then

∏n
k=1 ck contains one of the valuesg0, . . . , gtz−1. The zap therefore shows us

thatC must be satisfiable.
To argue computational(0, ts, tz, n)-simulation-soundness, observe that simulated proofs aresigned with

a strong one-time signature. Since the signature scheme hasexistential unforgeability, the adversary must
choose a differentvksots that it has not seen in a simulation. Recall, whenever we makea simulation-sound
NIZK using a particular common reference stringΣk, we concatenatevksots to rk ⊕ sk to get the statement
we wish to prove. By the simulation-soundness of the NIZK proofs on honestly generated strings, we can
not forge such a proof even though we have already seen simulated proofs. Therefore,rk ⊕ sk must be a
pseudorandom string. We can now argue(0, ts, tz, n)-simulation-soundness just as we argued(0, ts, tz, n)-
soundness.

It remains to prove computational(0, ts, tz, n)-zero-knowledge. Reference string indistinguishability
follows from the reference string indistinguishability ofthe simulation-sound NIZK proofs. We will now
consider simulation indistinguishability, so consider a case where the adversary sees simulated reference
strings and gets the simulation trapdoors that allow the simulation of proofs for the reference strings. The
adversary, chooses a set of common reference strings and receives a proof generated with the satisfiability
witness forC or alternatively a simulated proof and wants to distinguishbetween the two possibilities.

Let us start with a simulated proof and compare it with a hybrid experiment, where we use the satisfiability
witness forC in the non-interactive zap. By the computational witness-indistinguishability of the zap, the
adversary cannot tell these two experiments apart. Next, let us choose allck ’s as encryptions ofg0. By
the semantic security of the cryptosystem, the adversary cannot detect this change. We already selectsk so
rk ⊕ sk specifies a pseudorandom value for the reference strings notgenerated byS1. Let us switch to also
selectingsk sork ⊕ sk specify a pseudorandom value in the common reference strings where we do know
the simulation trapdoor. By the pseudorandomness of the strings, the adversary cannot detect this change
either. Finally, instead of simulating the proofs forrk ⊕ sk specifying a pseudorandom value inGk, let us
make a real proof. By the composable zero-knowledge property of the simulated reference strings for the
simulation-sound NIZK proofs, the adversary cannot distinguish here either. With this last modification, we
have actually ended up constructing proofs exactly as a realprover with access to a satisfiability witness does,
so we have(0, ts, tz, n) composable zero-knowledge. �

14



5 Multi-party Computation

5.1 The UC Framework

The universal composability (UC) framework, see [Can01] for a detailed description, is a strong security
model capturing security of a protocol under concurrent execution of arbitrary protocols. We model every-
thing not directly related to the protocol through an environmentZ. The environment can at its own choosing
give inputs to the parties running the protocol, and according to the protocol specification, the parties can give
outputs to the environment. In addition, there is an adversaryA that attacks the protocol.A can communicate
freely with the environment. It can aadaptively corrupt parties, in which case it learns the entire history of
that party and gains complete control over the actions of this party. The environment learns whenever a party
is corrupted.

To model security we use a simulation paradigm. We specify the functionalityF that the protocol should
realize. The functionalityF can be seen as a trusted party that handles the entire protocol execution and tells
the parties what they would output if they executed the protocol correctly. In the ideal process, the parties
simply pass on inputs from the environment toF and whenever receiving a message fromF they output it to
the environment. In the ideal process, we have an ideal process adversaryS. S does not learn the content of
messages sent fromF to the parties, but is in control of when, if ever, a message fromF is delivered to the
designated party.S can corrupt parties, at the time of corruption it will learn all inputs the party has received
and all outputs it has sent to the environment. As the real world adversary,S can freely communicate with
the environment.

We now compare these two models and say that the protocol securely realizesF if no environment can
distinguish between the two worlds. This means, the protocol is secure, if for any polynomial timeA running
in the real world, there exists a polynomial timeS running in the ideal process withF , so no non-uniform
polynomial time environment can distinguish between the two worlds.

Our goal in this section is to show that any well-formed functionality can be securely realized in the
multi-string model. By well-formed functionality, we meana functionality that is oblivious of corruptions
of parties, runs in polynomial time, and in case all parties are corrupted it reveals the internal randomness
used by the functionality is revealed to the ideal process adversary. This class contains all functionalities, we
can reasonably expect to implement with multi-party computation, because an adversary can always corrupt
a party and just have it follow the protocol, in which case theother parties in the protocol would never learn
that it was corrupted.

5.2 Tools

This section will present a number of tools we will need in ourconstructions.

PSEUDORANDOM CRYPTOSYSTEM WITH PSEUDORANDOM KEYS. A cryptosystem(Kpseudo, E,D) has
pseudorandom ciphertexts of lengthℓE(k) if for all non-uniform polynomial time adversariesA we have

Pr
[

(pk, dk)← Kpseudo(1
k) : AEpk(·)(pk) = 1

]

≈ Pr
[

(pk, dk)← Kpseudo(1
k) : ARpk(·)(pk) = 1

]

, (1)

whereRpk(m) runsc ← {0, 1}ℓE(k) and returnsc. We require that the cryptosystem have errorless decryp-
tion.

Trapdoor permutations imply pseudorandom cryptosystems,since we can use the Goldreich-Levin hard-
core bit [GL89] of a trapdoor permutation to make a one-time pad. For setting up our scheme in the common
random string model, we will require that the cryptosystem has a pseudorandom public key as well. Pseu-
dorandom cryptosystems with pseudorandom keys can be builtfrom various assumption such as RSA, DDH
and DLIN.
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TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT. A tag-based commitment scheme has four
algorithms. The key generation algorithmKtag−com produces a commitment keyck as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the commitment keyck, a messagem and any tag
tag and outputs a commitmentc = Comck(tag;m; r). To open a commitmentc with tag tag we revealm
and the randomnessr. Anybody can now verifyc = Comck(tag;m; r). As usual, the commitment scheme
must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithmsTcom,Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. We
create an equivocal commitment and an equivocation key as(c, ek) ← Tcomtk(tag). Later we can open it
to any messagem asr← Topenek(tag;m), such thatc = Comck(tag;m; r).

We require that equivocal commitments and openings are indistinguishable from real openings. For all
non-uniform polynomial time adversariesA we have

Pr
[

(ck, tk)← Ktag−com(1k) : AR(·,·)(ck) = 1
]

≈ Pr
[

(ck, tk)← Ktag−com(1k) : AO(·,·)(ck) = 1
]

, (2)

where R(m, tag) returns a randomly selected randomizer andO(m, tag) computes (c, ek) ←
Tcomtk(tag,m); r ← Topenek(tag,m) and returnsr. Both oracles ignore tags that have already been
submitted once.

The tag-based simulation-soundness property means that a commitment usingtag remains binding even
if we have made equivocations for commitments using different tags. For all non-uniform polynomial time
adversariesA we have

Pr
[

(ck, tk)← Ktag−com(1k); (tag, c,m0, r0,m1, r1)← A
O(·)(ck) : tag /∈ Q and (3)

c = Comck(tag;m0; r0) = Comck(tag;m1; r1) andm0 6= m1

]

≈ 0,

where O(Com, tag) computes (c, ek) ← Tcomtk(tag), returns c and stores (c, tag, ek), and
O(Open, c,m, tag) returnsr ← Topenck(tag, ek, c,m) if (c, tag, ek) has been stored, and whereQ is
the list of tags for which equivocal commitments have been made byO.

The term tag-based simulation commitment comes from Garay,MacKenzie and Yang [GMY03], while
the definition presented here is from MacKenzie and Yang [MY04]. The latter paper offers a construction
based on one-way functions. In addition, since we are working over random strings, we wantKtag−com to
output public keys that are random or pseudorandom, i.e., wecan usepk ← {0, 1}ℓtag−com to generate the
public key.

EXTRACTABLE TRAPDOOR COMMITMENT SCHEME. We will need something that is stronger than tag-
based simulation-sound commitments, namely a tag-based simulation-extractable commitment. This is a
tag-based simulation-sound trapdoor commitment scheme with an additional algorithmExtract that given
the trapdoor is able to extract the message inside the commitment. More precisely, with the trapdoor we can
make trapdoor commitments, however, for all other tags, theadversary will end up making unconditionally
binding commitments.

A tag-based simulation-extractable commitment scheme consists of five polynomial time algorithms
(Kse−com,Com,Tcom,Topen,Extract), such that the first 4 constitute a tag-based trapdoor commitment
scheme, and such that(Kse−com,Com,Extract) is a semantically secure cryptosystem. It will have the
property that a non-uniform adversary with access to trapdoor openings of commitments and the extraction
key, still cannot create a new commitment and opening thereof, such that the message it opens to differs from
the extracted message.
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For all non-uniform polynomial time adversariesA we have

Pr[Q := ∅; (σ, τ, ξ)← Kse−com(1k); (m, r)← AO(·); c := Comσ(tag;m; r) :

Extractξ(tag, c) 6= m andtag /∈ Q] ≈ 0,

whereO is an oracle that on input(tag,m) runs(c, ek) ← Tcomτ (tag); r ← Topenek(tag,m), returnsr
and setsQ := Q ∪ {tag}.

We will construct a tag-based simulation-extractable commitment scheme from the tools in this section.
We use a tag-based simulation-sound trapdoor commitment scheme to commit to each bit ofm. If m has
lengthℓ this gives us commitmentsc1, . . . , cℓ. When making trapdoor commitments, we can use the trapdoor
key tk to create equivocal commitmentsc1, . . . , cℓ that can be opened to any bit we like.

We still have an extraction problem, we may be unable to extract a message from tag-based commitments
created by the adversary. To solve this problem we choose to encrypt the openings of the commitments. Now
we can extract messages, but we have reintroduced the problem of equivocation. In a trapdoor commitment
we may know two different openings of a commitmentci to respectively 0 and 1, however, if we encrypt the
opening then we are stuck with one possible opening. This is where the pseudorandomness property of the
cryptosystem comes in handy. We can simply make two encryptions, one of an opening to 0 and one of an
opening to 1. Since the ciphertexts are pseudorandom, we canopen the ciphertext containing the opening we
want and claim that the other ciphertext was chosen as a random string. To recap, the idea so far to commit
to a bitb is to make a tag-based simulation-sound trapdoor commitment ci to this bit, and create a ciphertext
ci,b containing an opening ofci to b, while choosingci,1−b as a random string.

These are the main ideas, we now present the protocol in Figure 1.

Theorem 6 Tag-based simulation-extractable commitment schemes exist with pseudorandom keys if pseu-
dorandom cryptosystems with pseudorandom keys exist.

Proof. Tag-based simulation-sound trapdoor commitments with pseudorandom keys can be built from one-
way functions, so we have the tools needed in the construction. This also shows that we have pseudorandom
keys for the tag-based simulation-extractable commitmentscheme.

We now need to prove that even after seeing trapdoor commitments and openings, it is hard to come up
with a commitment with a different tag, where the opening andextraction are different. Consider first the
case, where the adversary for some indexi createsci, ci0, ci1 so bothci0 andci1 decrypt to valid openings
of ci to respectively0 and 1. Sincetag has not been used before, we have not usedtag, i in any com-
mitment we have trapdoor opened before, so we have broken thesimulation-sound binding property of the
tag-based simulation-sound trapdoor commitment. The errorless decryption property of the pseudorandom
cryptosystem now tells us that if the adversary opens all triplesci, ci0, ci1 succesfully, then so must we get
these openings when decrypting.

We also need to prove that we have the trapdoor property. We will modify the trapdoor oracle in several
steps and show thatA cannot tell the difference. Let us start with the oracle thaton input(tag,m) returns
a randomly chosen randomizerr1, R1,m1

, c1,1−m1
, . . . , rℓ, Rℓ,mℓ

, c1,1−mb
. Instead of making commitments

ci := Comck(tag, i;mi; ri), we may instead run(ci, eki)← Tcomtk(tag, i); ri ← Topeneki
(mi) and useri

as the randomizer. By the trapdoor property of the tag-basedsimulation-sound commitment the two oracles
are indistinguishable toA.

Next, consider the trapdoor oracle, where we make trapdoor openings to bothri0 and ri1 so ci =
Comck(tag, i; b; ri,b) for bothb = 0 andb = 1. We encrypt(b, ri,b) with randomnessRi,b. We then return
ri, Ri,mi

, ci,1−mi
. By the pseudorandomness of the ciphertexts, this is indistinguishable from the previous

oracle. �

STRONG ONE-TIME SIGNATURES. We remind the reader that strong one-time signatures allowa non-
uniform polynomial time adversary to ask an oracle for a signature on one arbitrary message. Under this
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Random key: Returnσ := (ck, pk)← {0, 1}ℓtag−com(k) × {0, 1}ℓpseudo(k)

Simulation-extraction key:

1. (ck, tk)← Ktag−com(1k)

2. (pk, xk)← Kpseudo(1
k)

3. Returnσ = (ck, pk), τ = (σ, tk), ξ = (σ, xk)

Commitment: On input(σ, tag,m) and randomizers as described below do

1. Fori = 1 to ℓ selectri at random and letci := Comck(tag, i;mi; ri)

2. Fori = 1 to ℓ selectRi,mi
at random and setci,mi

= Epk(mi, ri;Ri,mi
) and chooseci,1−mi

as a random string.

3. Returnc := (c1, c10, c11, . . . , cℓ, cℓ0, cℓ1)

Opening: On input(tag, c,m, r1, R1,m1
, . . . , rℓ, Rℓ,mℓ

) do

1. Verify that for alli we haveci = Comck(tag, i;mi; ri)

2. Verify that for alli we haveci,mi
= Epk(mi, ri;Ri,mi

)

3. Return1 if all checks work out, else return 0

Trapdoor commitment: On inputτ = (tk, pk) do

1. Fori = 1 to ℓ let (ci, ei)← Tcomtk(tag, i) and letri,0, ri,1 be equivocations so
ci = Comck(tag, i; b; ri,b) for b ∈ {0, 1}.

2. Fori = 1 to ℓ select randomnessRi,b and setci,b := Epk(b, ri,b;Ri,b).

3. Returnc := (c1, c10, c11, . . . , cℓ, cℓ0, cℓ1) andek := (σ, r1, R1,0, R1,1, . . . , rℓ, Rℓ,0, Rℓ,1).

Trapdoor opening: On input(tag, ek, c,m) return(r1, R1,m1
, . . . , rℓ, Rℓ,mℓ

).

Extraction: On input(tag, (σ, dk), c) use the decryption key to decrypt the ciphertextscib. In case, we
for i have exactly one ciphertextcib that decrypts tob, rib soci = Comσ(tag, i; b; rib), we set
mi := b. In case all these processes succeed, we return the concatenationm, else we return⊥.

Figure 1: Tag based simulation-extractable commitment.

attack, it must be infeasible to forge a signature on any different message and infeasible to come up with
a different signature on the same message. Strong one-time signatures can be constructed from one-way
functions.

5.3 Multi-party Computation in the Multi-string Model

We will demonstrate that any well-formed functionalityF can be securely realized in the multi-string model.
In this proof, we build on a result by Canetti et al. [CLOS02],which demonstrates that for any well-formed
functionalityF there is a non-trivial protocol that securely realizes it inthe common random string model.
Our task can therefore be simplified to securely realizingFCRS in the multi-string model.

Let us first formalize the multi-string model in the UC framework. Figure 2 gives an ideal multi-string
functionalityFMCRS. We will construct universally composable commitments, see Figure 3, in the multi-
string model. Next, we will show that the ideal common randomstring generatorFCRS, see Figure 4, can be
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securely realized in the(F1:N
COM)-hybrid model.

Functionality FMCRS

Parametrized by polynomialℓmcrs, and running with partiesP1, . . . , PN and adversaryS.

String generation: On input(crs, sid) from S, pick σ ← {0, 1}ℓmcrs(k) and store it. Send(crs, sid, σ)
toA.

String selection: On input(vector, sid, σ1, . . . , σn) whereσ1, . . . , σn ∈ {0, 1}
ℓmcrs(k) from S check

that more than half of the stringsσ1, . . . , σn match stored strings. In that case output
(vector, sid, σ1, . . . , σn) to all parties and halt.

Figure 2: The ideal multi-string generator.

Functionality F1:N
COM

Parametrized by polynomialℓ, and running with partiesP1, . . . , PN and adversaryS.

Commitment: On input(commit, sid,m) from partyPi check thatm ∈ {0, 1}ℓ(k) and in that case
store(sid, Pi,m) and send(commit, sid, Pi) to all parties andS. Ignore future
(commit, sid, ·) inputs fromPi.

Opening: On input(open, sid) from Pi check that(sid, Pi,m) has been stored, and in that case send
(open, sid, Pi,m) to all parties andS.

Figure 3: The ideal commitment functionality.

Functionality FCRS

Parameterized with polynomialℓ and running with partiesP1, . . . , Pn and adversaryS.

CRS generation: Generate randomσ ← {0, 1}ℓ(k) and output(crs, sid, σ) to all parties andS. Halt.

Figure 4: The ideal common random string generator.

We will assume the parties can broadcast messages, i.e., have access to an ideal broadcast functionallity
FBC, see Figure 5. We note that broadcast can be securely realized in a constant number of rounds if au-
thenticated communication is available [GL05]. Furthermore, authenticated communication can be securely
realized using digital signatures, so one possible setup isthat the parties somehow have managed to exchange
verification keys for the digital signature scheme.

Functionality FBC

Running with partiesP1, . . . , Pn and adversaryS.

Broadcast: On input(broadcast, sid, ssid,m) from Pi, send(broadcast, sid, ssid, Pi,m) to all
parties andS. Ignore future(broadcast, sid, ssid, ·) inputs fromPi.

Figure 5: The ideal authenticated broadcast fucntionality.

19



5.4 Universally Composable Commitment in the Multi-stringModel

In our security proof, the ideal process adversaryS will interact withF1:N
COM and make a black-box simulation

of A running withFMCRS andP1, . . . , PN . There are two general types of issues that can come up in the
ideal process simulation. First, whenF1:N

COM tells S a party has committed to some message,S does not
know which message it is. Therefore, we want to be able to maketrapdoor commitments and later open them
up. Second, when a corrupt party sends a commitment, thenS needs to input some message toF1:N

COM. In
this case, we therefore need to have an extractable commitment to the message. The tag-based simulation-
extractable commitments presented in Section 5.2 come close to fitting this description.

Our idea is to use each of then common random strings output byFMCRS as a public key for such a
commitment scheme. This gives us a set ofn commitment schemes, of which at leastt = ⌈n+1

2 ⌉ are secure.
Without loss of generality, we will from now on assume we haveexactlyt secure commitments. In the ideal
process, the simulator gets to pick these keys and can therefore pick them as simulation-extractable keys.

To commit to a messagem, a party makes a(t, n)-threshold secret sharing of it and commits to each
secret share using a different commitment scheme. When making a trapdoor commitment, we make honest
commitments ton−t random shares for the adversarial keys, and trapdoor commitments with the simulation-
extractable keys. Since the adversary knows at mostn − t < t shares, we can later open the commitment
to any message we want by fitting the remainingt shares and trapdoor opening the commitments to these
shares. To extract a messagem, we extractt shares from the simulation-extractable commitments. We can
now combine the shares to get the adversarial message.

One remaining issue is when the adversary recycles a commitment or parts of it. This way, we may risk
that it uses a trapdoor commitment made by an honest party, inwhich case we are unable to extract a message.
To guard against this problem, we will let the tag for the simulation-extractable commitment scheme contain
the identity of the senderPi, forcing the adversary to use a different tag, which in turn enables us to extract.

Another problem arises, when the adversary corrups a party,which enables it to send messages on behalf
of this party. At this point, however, we learn the message sowe just need to force it to reuse the same message
if it reuses parts of the trapdoor commitment. We therefore introduce a second trapdoor commitment scheme,
use this trapdoor commitment scheme to commit to the shares of the message, and insert it in the tag as well.
Therefore, if reusing a tag, the adversary must also reuse the same share given by this tag.

Commitment: On input(vector, sid, (ck1, σ1), . . . , (ckn, σn)) from FMCRS and(commit, sid,m) from
Z, the partyPi does the following. He makes a(t, n)-threshold secret sharings1, . . . , sn of m.
He picks randomizersrj and makes commitmentscj := Comck(sj; rj). He also picks random-
izers Rj and makes tag-based commitmentsCj := Comck((Pi, cj); sj;Rj). The commitment is
c := (c1, C1, . . . , cn, Cn). He broadcasts(broadcast, sid, c).

Receiving commitment: A party on input (vector, sid, (ck1, σ1), . . . , (ckn, σn)) from FMCRS and
(broadcast, sid, Pi, c) fromFBC broadcasts(broadcast, sid, Pi, c).

Once it receives similar broadcasts from all parties, all containing the samePi, c, it outputs
(commit, sid, Pi) to the environment.

Opening commitment: Party Pi wishing to open the commitment broadcasts
(open, sid, s1, r1, R1, . . . , sn, rn, Rn).

Receiving opening: A party receiving an opening(open, sid, Pi, s1, , r1, R1, . . . , sn, rn, Rn) from FBC

to a commitment it earlier received, checks that all commitments are correctly formedcj =
Comckj

(sj; rj) andCj = Comσj
((Pi, cj); sj ; rj). It also checks thats1, ldots, sn all are valid shares

of a (t, n)-threshold secret sharing of some messagem. In that case it outputs(open, sid, Pi,m).
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Theorem 7 The protocol securely realizesF1:N
COM in the(FBC,FMCRS)-hybrid model, assuming simulation-

extractable commitment schemes exist in the common random string model.

Sketch of proof.We describe the ideal-process adversaryS and sketch why it is secure along the way. It will
run a black-box simulation ofA and whatA sees. In particular, it will simulate the partiesP1, . . . , PN and
the ideal functionalitiesFMCRS andFBC. The dummy parties that are actually involved in the protocol and
communicate withZ are written as̃P1, . . . , P̃N .

Communication: Forward all communication betweenA andZ. Also, wheneverA delivers a message to a
partyPi, simulate this delivery.

Common random strings: WheneverA asksFMCRS for a common random string, select(ck, tk) ←
Ktrapdoor(1

k) and (σ, τ, ξ) ← Ksim−com(1k) and return (crs, sid, (ck, σ)), while storing
(ck, tk, σ, τ, ξ).

When A inputs (vector, sid, (ck1, σ1), . . . , (ckn, σn)) to FMCRS check that more than half
the pairs (ck1, σ1), . . . , (ckn, σn) match the stored public keys. In that case, send
(vector, sid, (ck1, σ1), . . . , (ckn, σn)) to all parties and halt the simulation ofFMCRS. Note, we
only needt stored keys, so if there are more thant honest key pairs, we just act as if we only knewt of
the trapdoors.

Commitment by honest party: On receiving(commit, sid, Pi) from F1:N
COM we learn thatPi has made a

commitment, albeit we do not know the message. We wait untilA has submitted reference strings to
FMCRS and delivers them toPi.

We select a(t, n)-threshold secret sharings1, . . . , sn of 0. For then − t reference strings where we
do not know the keys, including the ones where we do not know the secret keys, we commit tosj

ascj := Comtk(sj ; rj) andCj := Comσj
(Pi, cj ; sj ;Rj). For the remainingt reference strings, we

make trapdoor commitments(cj , ekj)← Tcom(tk) and(Cj , EKj)← Topenτj
(Pi, cj). We simulate

broadcasting(broadcast, sid, c1, C1, . . . , cn, Cn).

The process for receiving a commitment is exactly the same asin the protocol, when simulated parties
see the commitments they broadcast it. When everybody has broadcast, they are supposed to output
(commit, sid, Pi) to the environment.S therefore delivers the corresponding commitment message
fromF1:N

COM to the dummy party.

Opening: WhenS receives(open, sid, Pi,m) from F1:N
COM it means thatP̃i has been instructed to open

the commitment, and it was a commitment tom. We recall then − t shares that we committed
to honestly, and fit them into a(t, n)-threshold secret sharings1, . . . , sn of m. We open then − t
commitmentscj, Cj correctly. We then trapdoor open thet commitmentscj , Cj where we know the
corresponding equivocation keys asrj ← Topenekj

(sj) and Rj ← TopenEKj
((Pi, cj), sj). We

broadcast(broadcast, sid, s1, r1, R1, . . . , sn, rn, Rn).

Receiving an opening:On receiving an opening of an earlier received commitment, we check that the
commitments contains a consistent(t, n)-threshold secret sharing ofs1, . . . , sn of a messagem and
for all j we havecj = Comck(sj; rj) and Cj = Comσj

(Pi, cj ; sj;Rj). In that case, we deliver
(open, sid, Pi,m) fromF1:N

COM to our dummy party that outputs the opening toZ.

Commitment by corrupt party: When a corrupt party makes a commitment(c1, C1, . . . , cn, Cn) with a
valid signature so our simulated party would output(commit, sid, Pi), we need to input some mes-
sage toF1:N

COM so we can make the correspodning dummy party output this in the ideal process.

We use the extraction keys, to extractt committed valuessj ← Extractξj
((Pi, cj), Ci). The only case,

where we cannot do this is when the tag(Pi, cj) has been used before byPi, because then it may be
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a trapdoor commitment we are looking at. However, this can only happen ifPi used(Pi, cj) as a tag
when it was honest, and then upon corruption we have made a trapdoor opening ofcj to somesj and
therefore do not need to do any extraction.

We then reconstructm from these shares and input(commit, sid,m) to F1:N
COM on behalf of the

dummy party. In case we did not manage to extract a message, weinputm := 0 toF1:N
COM, which is ok

as long as we do not end up in a situation, where we need to askF1:N
COM to open the commitment. This

causesF1:N
COM to send out(commit, sid, Pi) messages to all dummy parties that we can deliver when

needed in the simulation.

Opening by corrupt party: When a corrupt party wants to open a commitment, we check the opening and
if acceptable we input(open, sid) toF1:N

COM. If any honest party receives the opening, we deliver the
message(open, sid, Pi,m) to the corresponding dummy partỹPj that outputs it to the environment.

Corruption: In case a partyPi is corrupted, we corrupt the corresponding dummy partyP̃i. We need to
simulate the history of this party. If the party has not yet made a commitment, this is easy since there
is no history to simulate. If the party has already opened thecommitment, we just need to reveal the
randomness used in generating the one-time signature.

If the party has made a commitment but not yet opened it, we must simulate an opening of it. On
corruptingP̃i, we learn the message it committed to, so we can use the opening simulation for honest
parties described earlier.

To see that this gives us a good simulation, consider the following hybrid experiments for adversaryA and
environmentZ.

Hybrid 1: This is the protocol executed withA and environmentZ.

Hybrid 2: This is the protocol, where we store(ck, tk, σ, τ, ξ) and return(ck, σ), wheneverA queries
FMCRS for a common reference string.

Since both commitment scheme have pseudorandom keys, hybrid 1 and 2 cannot be distinguished.

Hybrid 3: This is hybrid 2 modified such that honest partyPi for t commitments where it knows the key,
creates equivocal commitments using the trapdoor keys, instead of making real commitments. To
produce the openings, it then uses the equivocation keys to generate randomizers so the commitments
open to the relevant shares.

Hybrid 2 and hybrid 3 are indistinguishable due to the trapdoor properties of the commitment schemes.

Hybrid 4: We modify hybrid 3 such that when an honest partyPi makes a commitment, it uses a(t, n)-
threshold secret sharing of0 instead of a threshold secret sharing ofm. In the opening phase, it
opens then − t pairs(cj , Cj) where it does not know the trapdoors honestly to thesj it committed
to. It reconstructs sharessj for the t equivocal commitments sos1, . . . , sn is a(t, n)-threshold secret
sharing ofm. It then opens the equivocal commitments to these values.

Hybrid 3 and hybrid 4 are perfectly indistinguishable, sincen−t < t shares in a(t, n)-threshold secret
sharing scheme do not reveal anything aboutm.

Hybrid 5: We now turn to modify the way we handle corrupt parties. Whenever a corrupt partyPi submits
a commitment(c1, C1, . . . , cn, Cn) toFBC, we want to extract a message.

For any of thet Cj ’s where we know the key, there are two cases to consider. One case is where
(Pi, cj) has been used as a tag whenPi was still honest. In this case, we learned an openingsj, rj of
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cj upon corruption, and will therefore considersj the share. The second case is when(Pi, cj) has not
been used as a tag in a simulation-extractable commitment. In that case, we can extract a sharesj.

We now havet shares, so we can recombine them to get a possible messagem. We input
(commit, sid,m) on behalf ofP̃i. In case anything fails, we inputm := 0 on behalf ofP̃i.

Hybrid 4 and hybrid 5 are indistinguishable. The problem arises if the extractedm does not match the
opening. There are two ways this could happen. One possibility is thatcj created by an honest party
that is later corrupted is opened to a different share than inthe simulation. However, this would imply
a breach of the binding property of the commitment scheme. Another possibility is that the extraction
fails. However, this would imply breaking the simulation-extractability of the commitment scheme.

We conclude the proof by observing that hybrid 5 is identicalto the simulation.

5.5 Coin-Flipping

We will now generate a common random string. The parties willthe following natural coin-flipping protocol.

Commitment: Pi chooses at randomri ← {0, 1}
ℓ(k). It submits(commit, sid, ri) to F1:N

COM. F1:N
COM on

this input sends(commit, sid, Pi) to all parties.

Opening: OncePi sees(commit, sid, ssid, Pj) for all j, it sends(open, sid, ssid, ri) to F1:N
COM. F1:N

COM

on this input sends(open, sid, ssid, Pi, ri) to all parties.

Output: OncePi sees(commit, sid, ssid, Pj , rj) for all j, it outputs(crs, sid,⊕N
j=1rj) and halts.

Theorem 8 The protocol securely realizes (perfectly) the ideal common reference string generatorFCRS in
theF1:N

COM hybrid model.

Proof. Consider the following ideal process adversaryS working in theFCRS-hybrid model, giving it a
common reference stringσ. It runs a simulated copy ofA, a simulated copy ofF1:N

COM and simulated parties
P1, . . . , PN , not to be confused with the dummy partiesP̃1, . . . , P̃N that interact withZ andFCRS. Whenever
A communicates with the environmentZ it simply forwards those messages. We now list the events that can
happen in the protocol.

On activation of Pi, it simulates F1:N
COM receiving a commitment fromPi by outputting

(commit, sid, Pi) to all parties andA.
On delivery of commitments from all parties to an honest party Pi, it selectsri at random, subject to the

continued satisfiability of conditionσ = ⊕N
j=1rj and stores it. It then simulatesF1:N

COM receiving an opening
of Pi’s commitment tori.

In caseA corrupts a partyPi, we corrupt the corresponding dummy partyP̃i. If Pi has made a com-
mitment but it has not yet been opened, we selectri at random, subject to the continued satisfiability of the
conditionσ = ⊕N

j=1rj, and simulate that this was the commitmentPi made. In all other cases of corruption,
eitherri has not yet been selected, or the commitment has already beenopened andA already knowsri. The
two experiments,A running with partiesP1, . . . , PN in theF1:N

COM-hybrid model, andS running with dummy
partiesP̃1, . . . , P̃N in theFCRS-hybrid model are perfectly indistinguishable toZ. To see this, consider a
hybrid experiment, where we run the simulation and choose all ri’s at random and then setσ := ⊕N

i=1ri.
Inspection shows that this gives a perfect simulation ofZ ’s view of the protocol in theF1:N

COM-hybrid model.
At the same time, also here we get a uniform random distribution onσ and therj ’s subject to the condition
σ = ⊕N

j=1rj. �
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5.6 Multi-party Computation

We are now ready to prove that any well-formed ideal functionality can be securely realized in the multi-string
model.

Theorem 9 For any well-formed functionalityF there is a non-trivial protocol that securely realizes it in
the (FBC,FMCRS)-hybrid model, provided enhanced trapdoor permutations, augmented non-committing
encryption and dense cryptosystems exists.

Proof. Canetti et al. [CLOS02] show that assuming the existence of enhanced trapdoor permitation, dense
cryptosystems and augmented non-committing encryption, there is a non-trivial protocol that securely real-
izesF in the(FBC,FCRS)-hybrid model.

Theorem 8 shows that we can securely realizeFCRS in theF1:N
COM-hybrid model. Therefore, by the

universal composability theorem [Can01], we can securely realizeF in the(FBC,F1:N
COM)-hybrid model.

Theorem 7 shows that we can securely realizeF1:N
COM in the(FBC,FMCRS)-hybrid model assuming the

existence of extractable trapdoor commitments. Recall from Theorem 6 that dense cryptosystems imply the
existence of extractable trapdoor commitments. By the universal composability theorem we get thatF can
be securely realized in the(FBC,FMCRS)-hybrid model under these assumptions. �
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