Cryptography in the Multi-string Model

Jens Groth Rafail Ostrovsky

UCLA Computer Science Department
4732 Boelter Hall
Los Angeles, CA 90095-1596, USA

{ig,rafail }@s. ucl a. edu

Abstract

The common random string model permits the constructiomygftographic protocols that are prov-
ably impossible to realize in the standard model. In this ehcaltrusted party generates a random string
and gives it to all parties in the protocol. However, theadtiction of such a third party should set alarm
bells going off: Who is this trusted party? Why should we tiihsit the string is random? Even if the
string is uniformly random, how do we know it does not leakaté information to the trusted party? The
very point of doing cryptography in the first place is to preves from trusting the wrong people with
our secrets.

In this paper, we propose the more realistic multi-stringleiolnstead of having one trusted authority,
we have several authorities that generate random stringsddMot trust any single authority, we only
assume a majority of them generate the random string hgn&sd demonstrate the use of this model
for two fundamental cryptographic taks. We define non-extgve zero-knowledge in the multi-string
model and construct NIZK proofs in the multi-string modele \Also consider multi-party computation
and show that any functionality can be securely realizeti@mtulti-string model.

Keywords: Common random string model, multi-string model, non-iatéive zero-knowledge, multi-
party computation.

*Supported by NSF ITR/Cybertrust grant No. 0456717.
fSupported in part by a gift from Teradata, Intel equipmeangrNSF Cybertrust grant No. 0430254, OKAWA research award
B. John Garrick Foundation and Xerox Innovation Group Award

0

1 Introduction

THE PROBLEM. In the common random string model, a trusted party geremteniformly random bit-
string and makes it available to all parties. A generalaratof this model is the common reference string
(CRS) model, where the string may have a non-uniform digidln. Blum, Feldman and Micali [BFM88]
introduced the CRS model to construct non-interactive -kamwledge (NIZK) proofs. A relaxation of the
plain model was needed, since only languageBR¥ can have non-interactive or two-round NIZK proofs
in the plain model, [GO94]. There are other examples of ma®that cannot be realized in the standard
model but are possible in the CRS model, for instance urallgreomposable (UC) commitment [CFO1].
The CRS-model has therefore found wide-spread use in thiedielryptology.

Using the CRS-model to solve the tasks mentioned above ie semse just ignores a very real problem.
It remains to specify where the CRS comes from. One solutida have a trusted third party that generates
the CRS, but this raises a trust-issue. It is very possilaettte parties cannot find a party that they all trust.
Would Apple trust a CRS generated by Microsoft? Would US gavent agencies be willing to use a CRS
generated by their Russian counterparts?

Alternatively, the parties can generate the CRS themselvé®e beginning of the protocol. If a majority
is honest, they could for instance use multi-party comjnab generate a CRS. However, this kind of setup
makes the whole protocol much more complicated and reqthiera to have an initial round of interaction.
They could also trust a group of parties to jointly genera@Rs, however, this leaves them with the task
of finding a volunteer group to run a multi-party computatfmoetocol whenever a CRS is needed. Other
relaxations of the CRS-model found in the literature, sushh@ registered public key model that Barak
et al.[BCNPO04] use for multi-party computation also sufimm deficiencies. In the registered key model,
parties can register correctly generated public keys, laesktkeys can be used for multi-party computation.
However, now we need a trusted party to perform this veriioabf the keys.

THE MULTI-STRING MODEL. We propose the multi-string model as a solution to the aboeationed
problems. In this model we have a number of authorities teaisathe protocol execution by providing
random strings. If a majority of these authorities are homes protocol will be secure. There are two
reasons that the multi-string model is attractive. Fitsg &uthorities play a minimal role in the protocol.
They simply publish random strings, they do not need to perfany computation, be aware of each other
or any other parties, or have any knowledge about the spedifithe protocol to be executed. This permits
easy implementation, the parties wishing to execute a pobtecan for instance simply download a set of
random strings from agreed upon authorities on the inter8etond, the security of the protocols need to
rely only on a majority of the authorities being honest attihvee they created the strings. No matter how
untrustworthy the other parties in your protocol are, youw ttast the protocol if a majority of the authorities
are honest. In other words, the honesty of a small group dilgsazan be magnified and used by any set of
parties.

Now we have a new reasonable model for constructing secateqmis. The question remains, whether
we can actually securely realize protocols in this model? afewer this question in the affirmative by
defining and constructing non-interactive zero-knowledgmfs in the multi-string model and by securely
realizing general multi-party computation in the multiisg model.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof is a two-party protocol, where a pravies to convince a verifier about the truth
of some statement, typically membership of an NP-langu@ge.proof should only convince the verifier if
indeed the statement is true, however, at the same time tioé ginould reveal no extra information to the
verifier other than the truth of the statement, in particitishould not reveal the NP-witness known to the
prover. Interactive zero-knowledge proofs are known tataxi the standard model, however, as mentioned

before non-interactive and 2-round zero-knowledge proafg exist for trivial languages [GO94]. Instead,
much research has gone into constructing non-interactix@ knowledge proofs in the CRS-model.

We define multi-string NIZK proofs for NP-languages in SewstR. In this definition a proof is con-
structed using: common reference strings, which we imagine to be picked facset of strings generated
by some authorities. We further imagine that out of th&trings, a majority (or some threshold, see Section
2) of them have been honestly generated and no side-infammhaas been stored about them. In that case
we will have completeness, soundness and zero-knowledgedes respectively the prover being able to
convince the verifier if he knows a witness for the statemtietprover’s inability to prove a false statement
and the verifier's inability to learn anything else from theqf than the truth of the statement. We also
consider more complex notions of zero-knowledge such aslatian-soundness, proofs of knowledge and
simulation-sound extractability in the multi-string made

We will construct multi-string NIZK proofs for any NP-langge based on general cryptographic assump-
tions. This is a non-trivial task, since any of the commomemefice strings may be maliciously generated and
leak information, so for instance the trivial solution ohcatenating: NIZK proofs does not work.

We also construct very efficient multi-string NIZK proofg fircuit satisfiability, based on specific num-
ber theoretic assumption related to groups with bilineapsnaJsing groups with a bilinear map is harder
than one might expect at first glance, since all the commaeate strings are generated independently and
therefore we cannot assume the existence of a commonlydagpmmn group. Nonetheless, we manage to
construct such NIZK proofs and they are surprisingly effitie@ proof consists o®(n + |C|) group ele-
ments. Since in a typical setting, will be much smaller than the size of the circuit this matctresmost
efficient known constructions for the single common refeeentring case by Groth, Ostrovsky and Sahai
[GOS06b, GOS06a] where an NIZK proof consistsfC|) group elements.

1.2 Multi-party Computation

Canetti's UC framework [Can01] defines secure executiongrbtocol under concurrent execution of arbi-
trary protocols. We refer the reader to Section 5.1 for amaee and to Canetti’s paper for details, for now
let us just say that the essence of the definition is to congparetocol executing in the real world with an
ideal process where a trusted party takes inputs from th@epand hands them their outputs. A protocol
securely realizes the ideal functionality (the trustedysiprogram) if whatever the executing environment
sees in the real life execution can be simulated on top ofdéal ifunctionality.

It is known that in the plain model, any (well-formed) ideah€ttionality can be securely realized if
a majority of the parties are honest. On the other hand, if pnibhamay be corrupt, there are certain
functionalities that are provably impossible to realizeldRing the setting to the CRS-model, Canetti, et al.
showed that any (well-formed) ideal functionality can bewely realized in the CRS-model, even against
adversaries that can adaptively corrupt arbitrary padied where parties are not assumed to be able to
securely erase any of their data. However, it is an open igmesthere this CRS should come from, since
the parties provably cannot compute it themselves and itleayndesirable to trust one single authority to
create a CRS, and risk the compromise of all your confided#itd if the trust turns out to be unwarranted.

In this paper, we will show that any well-formed functiomaican be securely realized in the multi-string
model. This is a significant step forward, since even muguditrustful parties may still agree on a set
of authorities where they trust that some subset will be sbapough to generate good common reference
strings. Also, there is now much less incentive for any gigathority to cheat since to learn anything from
the protocol it would need to risk cooperation with otherthauities and face a higher risk of being caught.
For instance the honest-but-curious system administkalar in the single authority setup might generate
a common reference string that permitted decryption of #rtigs’ secrets, no longer learns anything and
therefore has less incentive to generate a fake commorereistring.

2 Definitions

Let R be an efficiently computable binary relation. For pditsw) € R we callz the statement anad the
witness. Letl be the NP-language consisting of statementB.in

A multi-string proof system for a relatioR consists of probabilistic polynomial time algorithris P,
which we will refer to as respectively the key generator,ghever and the verifier.

The key generation algorithm can be used to produce comnferenee strings. In the present paper,
we can implement our protocols with a key generator thatwdatp uniformly random string of polynomial
length¢(k), however, for the sake of generality, we include a key geoeia our definitions. Please note,
the key generator takes only the security parameter as, ivweutio not assume that the key generator has any
knowledge of the circumstances in which the common refersiring is going to be used.

The prover takes as input,,ts,t.,d,z,w), whered is a set onn common reference strings and
(z,w) € R, and produces a proof. The verifier takes as input., ts,t,,5,z,7) and outputs 1 if the
proof is acceptable and O if rejecting the proof. We ¢&ll, P, V') a (., ts,t,,n)-NIZK proof system for
R if it has the completeness, soundness and zero-knowledgpenpies described below. We remark that
(1,1,1,1)-NIZK proof systems correspond closely to the standarconatf NIZK proofs in the CRS-model.

(te,ts,t.,n)-COMPLETENESS For all non-uniform polynomial time adversarigswe have

Pr [S =0; (0, z,w) «— AR 7 — P(te,ts,ty, 0, x,w) :

V(teyts,ty,0,x,m) =0and(z,w) € Rand|5\ S| > t.| =~ 0,

whereK on queryi outputso; « K (1¥) and setsS := S U {c;}.

Our protocols will have perfect., ¢, t.,n)-completeness for all < ¢, < n. In other words, even if the
adversary chooses all common reference strings itselftilvease probability 1 of outputting an acceptable
proof.

(te,ts,t,,m)-SOUNDNESS The goal of the adversary in the soundness definition isrgefa proof using

n common reference strings, even ifof them are honestly generated. The adversary gets to seiblpos

choices of correctly generated common reference stringsam adaptively chooseof them, it may also in

thesen common reference strings include upite- ¢, fake common reference strings that it chooses itself.
We say(K, P,V) is (t¢,ts,t.,n)-sound if for all non-uniform polynomial time adversaridswve have

Pr|S = 0;(F,2,m) « A% i V(lo, o, b2, 5,0, m) = Landa ¢ Land|\ 8] > t,] ~0,
whereK is an oracle that on quetyoutputss; < K (1*) and setsS = S U {;}.

(te,ts,t.,n)-ZERO-KNOWLEDGE. We wish to formulate that if, common reference strings are correctly
generated, then the adversary learns nothing from the pAsaf standard in the zero-knowledge literature,
we will say this is the case, when we can simulate the proof.thereforeS; be an algorithm that outputs
(o,7), respectively a simulation reference string and a simutatiapdoor. Let furtermore§; be an algo-
rithm that takes inputt., ts, t.,d, 7, z,w) and simulates a proof if 7 containst, simulation trapdoors for
common reference strings &

We will strenghten the standard definition of zero-knowkdgy splitting the definition into two parts.
The first part simply says that the adversary cannot disisingeal common reference strings from simulation
reference strings. The second part, saysdiiah with access to the simulation trapdottrs adversary cannot
distinguish the prover from the simulator on a set of simadaeference strings. This kind of definition was

considered by Groth in [Gro06] in the common reference gtritodel and was proven to imply adaptive
multi-theorem zero-knowledge.

We say(K, P, V) is (t.,ts,t,,n)-composable zero-knowledge if there exiSts S, such that we have
both reference string indistinguishability and simulatiadistinguishability as described below. Either of
these come in computational, statistical and perfect flawdfe describe the computational flavor, since that
is the most relevant in this paper.

REFERENCE STRING INDISTINGUISHABILITY For all non-uniform polynomial time adversaridsve have
Pr [a — K1F): A(o) = 1} ~ Pr [(a,) — S (1%) : Ao) = 1.

(te,ts,tz,m)-SIMULATION INDISTINGUISHABILITY . For all non-uniform interactive polynomial time ad-
versaries4 we have

Pr [s = 0; (7,2, w) — A5 (%) 7w — Plte,ts,t., 6,2, w) : A(r) = 1 and(z,w) € Rand|d \ S| > tz]
~ Pr [s = 0; (&, 2, w) — AST(AF) i1 — So(tests,ts, 3,7 x) : A(r) = 1 and(z,w) € Rand| \ §] > tz},
where7 contains the simulation trapdoors corresponding;® generated by, .

LOWER BOUNDS FOR MULT+STRING NIZK PROOFS Soundness and zero-knowledge are complementary.
The intuition is that if an adversary controls enough ssitgsimulate a proof, then he can prove anything
and we can no longer have soundness.We capture this forinahg following theorem.

Theorem 1 If L is a language with a proof systefi’, P, V') that has(¢., ¢, t,, n)-completeness, soundness
and zero-knowledge thelh € P /poly or ts + t, > n.

Proof. Assume we have aft., t,t,,n)-NIZK proof system forR defining L andts + ¢,, < n. Given an
elementz, we wish to decide whether € L or not. We simulaté¢, common reference strings;, 7;) <
S1(1%) and generate — ¢, common reference strings; — K (1¥) settingr; = L. We then simulate the
proof m «— Sy(&, 7, x). OutputV (&, z, 7).

Let us analyze this algorithm. W < L, then by(¢.,ts,t,,n)-completeness a prover with access to
a witnessw would output a proof that the verifier accepts if all commofemence strings are generated
correctly. By reference string indistinguishability, wellvtherefore also accept the proof when some of
the common reference strings are simulated.(Byt, ., n)-simulation indistinguishability, where we give
(z,w) as non-uniform advice tal, we will output 1 with overwhelming probability on € L.

On the other hand, it ¢ L, then by the(t.,ts,t,,n)-soundness we output O with overwhelming
probability, sincen — t, > t, common reference strings have been generated correctig. sfibws that
L € BPP /poly. By [AdI78] we haveP /poly = BPP /poly, which concludes the proof. O

In general, we wish to minimizé, to make it more probable that the protocol is sound, and aténee
time we wish to minimize, to make it more probable that the protocol is zero-knowledgemany cases,
choosingn odd, and setting, = ¢, = "T“ will be a reasonable compromise. However, there are alsscas
where it might be relevant to have an eskewed setting. Censié case, where Alice wants to e-mail a NIZK
proof to Bob, but does not know Bob’s preferences with relsfpecommon reference strings. She may pick
a set of common reference strings and make a multi-stringfpBob did not participate in deciding which
common reference strings to use, however, if they came frastworthy authorities he may be willing to
accept that probably one of the authorities is honest. Ootiier hand, Alice gets to choose the authorities,
so she may be wiling to believe that all of them are honest. dpg@opriate choice in this situation, is a
multi-string proof witht, = 1,¢, = n.

(te,ts,t2,n)-KNOWLEDGE. Strenghtening the definition of soundness, we €All P, V) a (t¢,ts,t,,n)
proof of knowledge forR if there exists a knowledge extractér = (E;, E») with the properties described
below.

For all non-uniform polynomial time adversarigswe have

Pr [a — K1F): A(o) = 1} ~ Pr [(0, £) — E1(1F) : A(o) = 1]
For all non-uniform polynomial time adversarigswe have

Pr {S = 0; (&, x,7) — AP (1%); 0w — Eg(tc,ts,tz,&',g,w,ﬂ) :

V(te,ts,t., G, 2,m) = 1and|é \ S| > t, and(z, w) ¢ R] ~ 0,

whereE, is an oracle that return@, &) «— E; and setsS := S U {c¢}, and¢ is then element vector that
contains at least, ¢'s corresponding to the's in & generated by, .

(te,ts,t2,m)-SIMULATION-SOUNDNESS In security proofs, it is often useful to simulate a proaf éofalse
statement. However, seeing a simulated proof for a falteratnt might enable an adversary to generate
more proofs for false statements. We say an NIZK prodtists, t., n)-simulation-sound if an adversary
cannot prove any false statement even after seeing sirdypabefs of arbitrary statements.

More precisely, dt.,ts,t,,n)-NIZK proof system(K, P, V, S1,S2) IS (t¢, ts,t.,n)-simulation-sound if
for all non-uniform polynomial time adversaries we have

Pr [S =0;Q :=0;(d,x,m) «— Asl’sé("')(lk) :

(z,7) ¢ Qandz ¢ L andV (#,z,7) = 1 and|& \ S| > ts] ~ 0,

whereS; returns(o, 7) « S1(1%) and setsS := S U {o}, andSh(#,) returnst « So(te, ts,t., 7,7, x)
with 7 containing simulation trapdoors for thes generated bys; and set) := Q U {z, 7}.

(te,ts,tz,m)-SIMULATION-EXTRACTABILITY. Since we are working in the multi-string model, we assume
strings can be set up and used by anybody who comes along.l&agsvextraction and zero-knowledge may
both be very desirable properties, however, we may alsoimeagcurity proofs where we at the same time
need to extract withesses from some proofs and simulate ptbefs. This joint simulation/extraction is for
instance often seen in security proofs in the UC framework.

Combining simulation soundness and knowledge extractianmay therefore require that even after
seeing many simulated proofs, whenever the adversary raal@s proof we are able to extract a witness. We
call this property simulation-extractability. Simulati@xtractability implies simulation-soundness, because
if we can extract a witness from the adversary’s proof, theviausly the statement must belong to the
language in question.

Consider dt., ts,t,,n)-NIZK proof of knowledge(K, P, V, Sy, So, F1, Es). Let SE; be an algorithm
that outputs(c, 7, £) such that it is identical t&; when restricted to the first two parts, 7). We say the
NIZK proof is (t.,ts,t,, n)-simulation-extractable if for all non-uniform polynorhisme adversaries we
have

Pr($ = 0:Q = 0: (3,a,m) — AP (10— Bylteto b6,)

(x,m) ¢ Qand(z,w) ¢ RandV (t.,ts,t,,5,z,m) =1and|g \ S| > ts| =0,

where SE/ outputs (0,¢) from (o,7,&) « SE;(1*) and setsS = S U {0}, Sy outputs m «
So(te, ts, t., &, T, x), Wherer containg, 7's corresponding te’s generated by £ and sets) = QU{z, 7},
and¢ is a vector containing at least 's generated by E; corresponding te’s in &.

(te,ts,t,,m)-EXTRACTION ZERO-KNOWLEDGE. Combining simulation soundness and knowledge extrac-
tion, we may also require that even after seeing many ektragtit should still be hard to distinguish real
proofs and simulated proofs from one another. This defimitessembles the definition of chosen ciphertext
attack secure public key encryption.

Consider &t., ts,t,,n) NIZK proof of knowledge(K, P, V, S;, Sa, E1, E2). Let SE; be an algorithm
that outputs(o, 7, &) such that it is identical t&; when restricted to the first two parts, 7). We say the
NIZK proof is (t.,ts,t,, n)-extraction zero-knowledge if for all non-uniform intetae polynomial time
adversaries we have

Pr [S = 0; (7, x,w) «— .ASEQ’EQ("')(lk);ﬂ' — P(te,ts,t,, 0, x,w) :
AB2() (1) = 1 and (2, w) € R and|é \ S| > tz} ~
Pr [S = 0; (7, x,w) «— ASEQ’EQ("')(lk);W — So(teyts,ts, 0, T, x) :

AEz(-y')(ﬂ) =land(z,w) € Rand|5 \ S| > tz}7

where SE| outputs (o,7) from (o,7,6) «— SE;(1%) and setsS = S U {o}, E> outputsw «
Es(te,ts, t,, 0, &, x), when the query contains o’s generated bys £y andr is not the challenge proof.

3 Multi-string NIZK Proofs based on General Assumptions

MULTI-STRING NIZK PROOFS We start out with a simple construction of a multi-stringZIdl proof that
works fort. = 0 and all choices ot,,t,,n sots + ¢, > n. We use two tools in this construction, a
pseudorandom generator and a zap. Recall, a zap is a twd-paintic coin withess-indistinguishable proof,
where the verifier's first message is chosen at random and edixdal once and for all and be reused in
subsequent zaps.

A common reference string will consist of a random vatuend an initial message for the zap. Given
a statement € L, the prover makes zaps for

x € L or there arg, common reference strings wherés a pseudorandom value

In the simulation, we create simulation reference strirgys-a prg(7) enabling the simulator to make zaps
without knowing a witness for z € L.

Common reference string: Generate: — {0,1}%*; 0 « {0, 1}%=(*), Output® := (r, o).

Proof: Given inputt., (X4,...,%,), a statement and a witness so(z,w) € R, we wish to prover € L.
Using NP-reductions, we create a polynomial size cir€uihat is satisfiable if and only if

xeL or [{r]3r : r, =PRG(r)| > t..

Chosen appropriately, NP-reductions are witness preggrgd we also reduce to a withessV for
C being satisfiable. For alt common reference strings, generate— P,.,(0;, C, W). Return the
proof Il := (7y,..., 7).

Verification: Givenn common reference string%, ..., %,), a statement and a proofl = (my,...,m,)
returnl if and only if all of them satisty/,., (04, C, m;) = 1, whereC'is generated as in the proof.

Simulated reference string: Selectr — {0,1}*;r := PRG(7) ando « {0, 1}%=r(¥), Output((r, o), 7).

Simulated proof: Given input (X4,...,3,),(71,...,7,),z SO we have fort, reference strings; =
PRG(7;) we wish to simulate a prodfl. As in a proof, use NP-reductions to get a ciroGitthat
is satisfiable if and only it € L or [{r;|3r : r; = PRG(m)| > t,. Pick the firstt, common
reference string-;, wherer; = PRG(r;), and reduce this to a witne$¥ for the satisfiability of
C. For alln common reference strings, generate— P,,,(0;, C, W). Return the simulated proof
II:= (m1,...,m).

Theorem 2 The existence of one-way functions and zaps with perfegpleteness imply the existence of
(0,ts,t,,n) NIZK proofs for anyl < t¢4,t, < n withts + ¢, > n in the common random strings model
with statistical(0, s, t,, n)-soundness. In particular, enhanced trapdoor permutatiomply the existence of

NIZK proofs in the common random string model, which in tunplies the existence of zaps.

Proof. Trapdoor permutations imply one-way functions, which imtimply the existence of pseudorandom
generators [HILL99]. Dwork and Naor [DNO2] construct zapsni NIZK proofs in the random string
model, which can be built from trapdoor permutations. Thee a few details that are easy to resolve,
but worth mentioning. First, they allow completeness eimdhe zaps, however, it is easy to see that their
construction is actually perfectly complete if one uses dfKNproof with perfect completeness in their
construction. Second, their construction uses an initadsage that is polynomial in the statement size,
whereas we want the authorities to generate common refestrings without knowing the statement size in
advance. Plugging in any NIZK with common random string $im is independent of the statement size
circumvents this problem.

Direct verification reveals that we have perfect completeneven for, = 0. Let us prove that we
have(0, ts,t.,n)-soundness. Any honestly generated common referencg ssnegligible probability of
containing a pseudorandom valueWith ¢, honestly generated strings ahd> n — t,, there is negligible
probability that(>4,...,3,) havet, or more pseudorandom values. adf¢ L, the resulting circuit”' is
unsatisfiable. Also, at least one of the common referenaggsthas a correctly generated initial message
for the zap. By the statistical soundness of this zap it is thard to construct a valid proof, even for an
unbounded adversary 6f being satisfiable.

We now turn to the question df), ¢, t.,n)-zero-knowledge. Computational reference string inalisti
guishability follows from the pseudorandomnessPatG. With at leastt, simulated reference strings the
only difference between proofs using the withess:af L and simulated proofs using the simulation trap-
doors is the witnesses we are using in the zaps. Computhsipnalation indistinguishability follows from
a standard hybrid argument using the witness indistingibigity of the zaps. O

(0,ts,t,,m)-SIMULATION-EXTRACTABLE NIZK PROOF More advanced proofs, such as multi-string NIZK
proofs of knowledge that are simultaneoufllyt, t., n)-simulation-extractable and, ¢, t., n)-extraction
zero-knowledge can also be constructed in the multi-simiogel.

To permit the extraction of witnesses, we include a publig ke a CCA2-secure cryptosystem in the
common reference strings. In a proof, the prover will make,an)-threshold secret sharing of the witness
and encrypt the shares under thpublic keys. To extract the witness, we will decrypbf these ciphertexts
and combine the shares to get the witness.

To avoid tampering with the proof, we will use a strong omeetisignature scheme. The prover generates
a key (vksots, sksots) — Ksots(1%) that he will use to sign the proof. The implication is that tuversary,
who sees simulated proofs, must still use a differghits in his forged proof, because he cannot forge the
strong one-time signature.

The common reference string will contain a value, which innaugation string will be pseudorandom.
The prover will prove that he encryptedi, n)-secret sharing of the witness, or that he knows how to eval-
uatet, pseudorandom functions ke USINg the seeds of the respective common reference sti@mgsa
real common reference string, this seed is not known andfibrerhe cannot make such a proof. On the other
hand, in the simulation the simulator does know these saw®tlsan therefore simulate without knowing the
witness. Simulation soundness follows from the adversangbility to guess these pseudorandom functions
oNnvksoets, €ven if it knew the evaluations on many other verificatiopske

Zero-knowledge under extraction attack follows from theA2ecurity of the cryptosystem. Even after
having seen many extractions, the ciphertexts reveal mg#idbout the witness, or even whether the trapdoor
has been used to simulate a proof.

Common reference string/simulation string: Generate (pky, dk1), (pkz, dks) < Keeaz(1F);r
{0,1}%F; 0 « {0, 1}5“‘?’(]“). ReturnX := (pky, pka,r, o).

The simulators and extractofsy, £, S E, will generate the simulated reference strings in the same
way, except for choosing « {0, 1}*¥ andr := PRF,(0). We use the simulation trapdoerand the
extraction key := dk;.

Proof: P(0,ts,t.,(X1,...,%,),z,w) Where(z,w) € R runs as follows. First, generate a key pair for a
strong one-time signature schemMé, s, sksots) < Ksots(17). Use(ts, n)-threshold secret sharing to
get sharesuy, ..., w, of w. Encrypt the shares as = E,,, (w;, Vksots; 751). Also encrypt dummy
valuescjo «— Ep,(0). Consider the statement:y,..., ¢, all encryptvks.s, and furthermore
c11,- - - 5 Cp1 @re encryptions of shares ofia, n)-secret sharing of a withessso(z, w) € R or at least
t, of ther;'s on the common reference strings are on the foym PRF, (0) and the corresponding,
is an encryption oPRF ., (vksots). We can reduce this statement to a polynomial size cilcuand a
satisfiability witnesd¥V'. For alli's we create a zap; < P, (0;, C, W). Finally, we sign everything
using the strong one-time signatuséy «— Sign,, . (vksots, 21, C11,C12, 1, - - - , 2n, Clns C2n Tn)-
The pI’OOf isIl = (?)ksots, C11,C12, Ty -+ Cln,Con, Tn, sig).

Verification: To verify IT on the form described above, verify the strong one-timeatige and verify the
zZapsmy, ..., Ty,

Extraction: To extract a witness check that the proof is valid. Next, beefirstt, extraction keys irf to
decrypt the corresponding ciphertexts. Use Lagrange interpolation on the plaintext®cover the
withessw.

Simulated proof: To simulate a proof, pick the first, simulation trapdoors inF. These arer; so
r; = PRF,,(0). As in the proof generat€vksois, sksots) < Ksots(1¥). Createt, pseudorandom
valuesv; := PRF, (vksts). Encrypt the values ag, — Ep,,(v;). For the other reference strings,
just letcio — Epk,,(0). Letw,..., w, be a(ts,n)-threshold secret sharing of 0. We encrypt also
these values as;; — FEpy,, (w;, vksots). Let C' be the circuit corresponding to the statement that
€11, - - -, Cp1 CONtaiNvksots, @and alsacyy, . . ., ¢y CONtains &ts, n)-threshold secret sharing of a wit-
nessw so(z,w) € R or there are at least of the ciphertextss, . .., ¢,2 that contain pseudorandom
function evaluations onk,.ts. From the creation of the ciphertexts andc;, we have a witnesHd’ for
C being satisfiable. Create zaps«— P, (0s, C, W) for C being satisfiable. Finally, make a strong
one-time signature on everythingg < Sign; . (vVksots, 21, C11, €12, 15 - - - s Xns Cnls Cn2, Tp). The
simulated proof i9] := (vksots, C11, €12, T1y -« - 5 Cnl,y Cn2, Tn, STG).

Theorem 3 The above protocol is 0, t,t,,n)-NIZK proof for all choices of, + ¢, > n. It can be
securely implented if trapdoor permutations exist, andait @e implemented with random strings if dense
cryptosystems and enhanced trapdoor permutations exist.

8

Proof. Let us start with the latter part. Enhanced trapdoor pertiaums, imply the existence of zaps with
perfect completeness and pseudorandom functions andjstretime signatures. Enhanced trapdoor per-
mutations also imply the existence of CCA2-secure publicéwcryption with errorless decryption. In case
dense public key cryptosystems and enhanced trapdoor fsfoms exist, CCA2-secure encryption with
random strings as public keys exist.

Perfect completeness follows by direct verification. Commaference strings and simulated reference
strings are indistinguishable by the pseudorandomned®gfdeudorandom functid?RF.

Let us consider extraction-sound zero-knowledge. Theradwe knows the simulation trapdoors and
has access to an extraction oracle. He selects a stateraedta witness and has to distinguish a proof on
a simulated reference string using respectively the witimeghe simulator. We consider a series of hybrid
experiments.

Hybrid 1. This is the experiment, where we run the adversary on a sietlil@ference string and make
proofs using the real prover and witness

Hybrid 2: We modify hybrid 1 by encrypting, pseudorandom values ifo, . . . , ¢,2. We knowt, seeds;
such that; = PRF, (0). Instead of setting;o < E,,(0), we encryple;p < Epp, (PRF, (vksots).

By the semantic security of the cryptosystem, hybrid 1 aratidy?2 are computationally indistinguish-
able.

Hybrid 3: We modify hybrid 2, by reducing the pseudorandom values hadandomness used in forming
the ciphertexts:s, . .., c,o to form a withesg¥V for C being satisfiable. We use this witness in the
zaps, instead of the witneas

By the witness-indistinguishability of the zaps, hybriggekiments 2 and 3 are indistinguishable.

Hybrid 4: We modify hybrid 3 such that if the adversary ever recycles ohthe ciphertext;; from the
challenge proof in one of the encryption queries and thisvalid proof, then we abort.

There is negligible probability of aborting. To make a valiwof, the adversary has to sign the proof
using a verification keyk. .. By the existential forgeability of the strong one-timersiture scheme,
this verification key has to differ from the verification kek,.is used in the challenge. This means,
¢;1 contains the wrong verification key. However, in the zapsybich at least one is made using a
correctly generated initial message, the adversary pitbaes;; does contaimk, ... By the soundness

sots*
of the zap, there is negligible probability of the adverssugceeding in this.

Hybrid 5: We modify hybrid 4 by making dts, n)-threshold secret sharing, ..., w, of O instead of
secret sharing. We encrypt these sharesdn «— E,,, (w;, vksots). This hybrid is identical to the
simulation process.

Hybrid 4 and hybrid 5 are indistinguishable. We have rulettioat the adversary ever makes an extrac-
tion query, recycling &;; from the challenge. Using a hybrid argument on the chosdreciext attack
security of the cryptosystems, the adversary cannot digish encryptions of shares of a threshold
secret sharing oo from shares of a threshold secret sharing.ofThe remainingr — ¢, < t, shares
do not reveal anything.

Next, let us consider simulation-sound extractability. rédthe adversary sees extraction keys, but not
the simulation trapdoors of the common reference stringeigeed bySE;. It has access to a simulation
oracle, and in the end it outputs a statement and a proof. Byuttiorgeability of the strong one-time
signature scheme, it cannot reuse a strong verificationvkgys used in a simulated proof. Let us look at an
honestly generated simulated common reference stringe8idoes not know the seed for the pseudorandom
function, it cannot encrypt a pseudorandom function evaloeof vk..s. The zaps, of which at least one

uses a correctly generated initial message, then tellsatg:th ..., c,; contain a(ts, n)-threshold secret
sharing ofw. Decryptingt of these ciphertexts, permits us to reconstruct the witness

A similar proof, shows that we hawtatistical (0, ¢, ¢, n)-knowledge extraction. The point in this proof
is that with overwhelming probability a random string does econtain a pseudorandom valeeso therefore
11, - - -, Cp1 MUSt encrypt &t,, n)-threshold secret sharing of a witness foe L. O

4 Multi-string NIZK Proofs from Groups with a Bilinear Map

SETUP. We use group&s, G of orderp, wherep is a k-bit prime. We make use of a bilinear map:
G x G — Gr. le., forallu,v € G anda,b € Z we havee(u®,v®) = e(u,v)™. We require that(g, g)
is a generator ofs if g is a generator ofs. We require that group operations, group membership, aad th
bilinear map be efficiently computable. Such groups have ksdely used in cryptography in recent years.
Let G be an algorithm that takes a security parameter as input aipadits (p, G, Gr, e, g) such thatp
is prime, G, G are descriptions of groups of ordgre : G x G — Gp is an admissible bilinear map as
described above anglis a random generator 6.
We use the decisional linear assumption introduced by Bddeyen and Shacham [BBS04].

Definition 4 (Decisional Linear Assumption (DLIN)) We say the decisional linear assumption holds for
the bilinear group generatog if for all non-uniform polynomial time adversarie$ we have

Pr [(p,G, Gr,e.9) — G(1F);z,y,r, 8 — Zp : A(p,G,Gr,e,9,9%, 9%, 4", g*°, g %) = 1]

~ Pr [(p,G, Gr,e,g) « G(1%);2,y,r,5,d — Z, : A(p,G,Gr,e,9,9%,9%, 9", 9", g%) = 1]-

Throughout the paper, we work over a bilinear grogpsG, Gr,e,g) «— G(1*) generated such that the
DLIN assumption holds fo§. Honest parties always check group membershi@ d& when relevant and
halt if an element does not belong to a group that it was swggbtisaccording to the protocol.

We will make some further assumptions on the groups that we @iven a description of a group
(p,G,Gr, e, g) it should be possible to verify that indeed it is a group. Mwez, we will require that there
is a decoding algorithm that given a random stringrof 1)k bits interprets it ag random group elements.
The decoding algorithm should be reversible, such thatngivgroup elements we can create a random
(n + 1)k-bit string that will decode to the group elements.

When working in the random strings model, we will also reguhrat the group can be sampled from a
random string of-bit length?!

Example. We will offer a class of candidates for DLIN groups as desdilabove. Consider the elliptic

curvey? = 23 4+ 1 mod ¢, whereq = 2 mod 3 is a prime. It is straightforward to check that a paoint y)
is on the curve. Furthermore, picking € Z, at random and computing = (y? — 1)% mod ¢ gives

us a random point on the curve. The curve has a total-gfl points, including the point at infinity. When
generating such groups, we will pigkas a randoni-bit prime. We then leg be the smallest prime g9q+ 1
and definés to be the ordep subgroup of the curve. The target groufbis = IF;2 and the bilinear map is the
modified Weyl-pairing. Verification ofp, G, G, e, g) being a group with bilinear maps is straightforward,
since it corresponds to checking that are primes s@|¢ + 1 andg = 2 mod 3 andg is an orderp element
on the curve.

PSEUDORANDOM GENERATORS FROM THIDLIN AssumPTION. Consider a DLIN grougp, G, Gr, e, g).
Chooser,y « Z; at random and set = ¢g*,h = g¥. Given random elements v < G, we can compute

It is easy to modify our scheme to work with any group that carsfrecified by ad (k)-bit random string.

10

w = u'/*v'/¥, The DLIN assumption says thét, h, u, v, w) is indistinguishable fronif, h, u, v,), where
r is a random group elements fraéh In other words, we can create a pseudorandom funétion, u, v) —
(g%, g%, u,v,ut/*v!/¥) that strecthes our randomness with an extra group elemeatwilVneed to create
random looking strings that have hidden structure, thistaotion gives us exactly that. However, we need
to stretch our random group elements into more group elesnent

Let us pickm pairs(x;, y;) < Z;, x Z, and create correspondirfg = g, h; = g¥. We can now stretch

2n group elements,, vy, . .., uy, v, With mn extra group elements by computing; := ujl./“vjl./yi.
It turns out that if then pairs of group elements(u;,v;) are chosen at random, then
(f1sh1s ooy fony By U1, 01, ooy Upyy Upy W1, - ., Wiy,) 100KS like @ randon2m + 2n + mn-tuple of group

elements. To see this, consider the following hybrid expentE; ;, where we picky;; at random for pairs
(¢,7) wherei < IV (i = I A j < J)and compute the rest of the;;'s according to the method described
above. We need to prove that the;'s generated in respectively;; andE,, 41 are indistinguishable.

Consider first experiment&; j, Er, 741 for 1 < I < m,1 < J < n. In case there is a non-uniform
adversaryA that can distinguish these two experiments, then we cark heaDLIN assumption as follows.
We have a challengéf, h,u,v,w) and wish to know whethew = u!'/*v'/¥ or w is random. We let
fr :== f,hr := h and generate all the othg¥, h;'s according to the protocol. We sely := u,v; := v
andwry := w. Fori < I we pickw;; at random. Also, foi = I,j < J we pickw;; at random. For
i = 1,j > J we pickr;,s; at random and seu;,v;, wr;) = (f"7,h%,g""%). Forj < J we select
(uj,v;) at random. Finally, foi > I we compute alkv;; according to the protocol. Ifu,v,w) is a linear
tuple, we have the distribution from experimefit ;, whereas if(u, v, w) is a random tuple we have the
distribution from experimenkt’; ;.. An adversary distinguishing these two experiments, thegepermits
us to distinguish linear tuples from random tuples. We aatelthe proof by observingr i1 = Ern+1.

Observe, it is straightforward to provide a witness(forv, w) being a linear tuple. The witness consists
of 1 = w¥/*. (u,v,w) is a linear tuple if and only it(u,h) = e(f,n) ande(g, mv) = e(w,h). In other
words, we can provide? proofs;; for w;; being correct. Furthermore, all these proofs consist ofijgro
elements and can be verified by checking a set of pairing ptasijuations. It follows from Groth [Gro06]
that there exists a (simulation-sound) NIZK proof of si2émn) group elements for the;;'s having been
computed correctly.

MULTI-STRING NIZK PROOFS FROMDLIN GRouUPs We will construct a protocol that is@, ts,t.,n)-
simulation-sound NIZK proof for circuit satisfiability ceisting of O((n + |C|)k) bits, where|C| is the
number of gates in the circuit aridis the security parameter. Typically,will be much smaller thafC'|, so
the complexity matches the best known NIZK proofs for citaaitisfiability in the single common reference
string model [GOS06b, GOS06a] that have proofs of §ig° k).

One could hope that the construction from the previous @eaould be implemented efficiently using
groups with a bilinear map. This strategy does not work bee@ach common reference string is generated
at random and independently of the others. This means tleat iethe common reference strings contain
descriptions of groups with bilinear maps, most likely tlaeg different and incompatible groups.

In our construction, we accept that all the common referstriegs describe different groups and we also
let the prover pick a group with a bilinear map. Our solutioritte problem described above, is to translate
simulation reference strings into simulation referencings in the prover’s group. Consider a common
reference string with grou;, and the prover’s grouf. We will let the common reference string contain a
random string,. From the earlier discussion, we know that we can build pseudiom generators in each
group. Consider now the pair of strings, @ s, si). Since strings can be interpreted as group elements,
we have corresponding sets of group elements in respectiveland G. However, since;, is chosen at
random it is unlikely that both;, & s; corresponds to a pseudorandom valu&ijnand at the same time,
corresponds to a pseudorandom valué&inOf course, the prover has some degree of freedom in choosing
the groupG, but if one is careful and chooses sulfficient stretchingtleingthe pseudorandom function one

11

can use an entropy argument for it being unlikely that batihgs are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to hop asctios bridge between the two groups.

The prover will select, sor, @ sy, is a pseudorandom value @y, specified by the common reference string
and give an NIZK proof for this using that common referencengt In his own group, he gets values

S1, -

.., s and proves that, of those are pseudorandom @ris satisfiable. In the simulation, on the other

hand he knows the simulation trapdoors foreference strings and he can therefore simulate NIZK proofs
of r;, @ sj, being pseudorandom. This means, he can select the cordisgan’s as a pseudorandom values
and use this to prove that there are at leagtseudorandom values in his own group, so he does not need to
know the satisfiability withess to carry out the proof in his own group.

There are more technical details to consider. We want torgotidn to be efficient im. Therefore,

instead of proving directly that there argpseudorandom values 6fis satisfiable, we use a homomorphicly
encrypted counter. In the simulation, we set the counteretd for each pseudorandom value and totbe
for the rest of the values in the prover's group. The homoimiorproperty enables us to multiply these
ciphertexts and get an encrypted counttof It is straightforward to prove that the counttisor C is
satisfiable. As a further twist, we can set up the commoneafar strings such that they enable us to make
simulation-sound NIZK proofs. This way, with a few extra s we actually get €, ¢, ¢, n)-simulation-
sound NIZK proof for circuit satisfiability whety, + ¢, > n.

Common reference string/simulation reference string: Generate a DLIN group(p,G,Gr,e,g) <«

G(1%). Generate a common reference string for a simulation-sdUZA# proof on basis of this group
Y — Kgm—sound(p, G, Gr, €, g) as in [Gro06]. Also, pick a random string«— {0, 1}‘65(*), Qutput
E = (p7 G7GT76797 O’,’I")-

Provided one can sample groups and group elements frommastilimgs, this can all be set up in the
random string model.

When generating a simulation reference string, use thelaiorfor the simulation-sound NIZK proof
to generatéo, 7) < Ssim—sound (P, G, G, €, g). OutputX as described above and simulation trapdoor
T.

Proof: Given common reference string¥,...,3,), a circuit C and a satisfiability withess do the

following. Pick a group(p,G,Gr,e,g) « G(1¥). Pick also keys for a strong one-time signature
scheme vksots, Sksots) — Ksots(1¥). Encodevks,s as a tuple of)(1) group elements fror.?

For each common reference string do the following. Pick a pseudorandom value with 6 key pairs,
6 input pairs and 36 structured elements. This gives us 6@pgetements fronds,. Concatenate the
tuple of 60 group elements withk,.s to getO(1) group elements frorr,. Make a simulation-sound
NIZK proof, usingoy, for theseO(1) group elements being of a form such that the first 60 of them
constitute a pseudorandom value. From [Gro06] we know thatstze of this proof i€)(1) group
elements fronG. Defines;, € {0,1}5°* to be a random string such that @ s, parses to the 60
elements from the pseudorandom value.

From now on we will work in the grougp, G, G, e, g) chosen by the prover. Pigk := (f,h) as
two random group elements. This gives us a CPA-secure gygttem, encrypting a messagec G
with randomness, s € Z, asE,,(m;r,s) := (f",h*,¢""*m). For eachk = 1,...,n we encrypt
1 = g% asc, — Epi(1). Also, we takes; and parse it as 60 group elements. Call this tuple

Make a non-interactive zapusing the grougp, G, Gr, e, g) and combining techniques of [GOS06a]

2Observe, in DLIN groups the discrete logarithm problem igltend therefore we can construct collision-free hashtfans,
so there is no loss of generality in assuming the strong iome-gignature scheme consists of a constant number of gteneats.

12

and [Gro06] for the following statement:

C satisfiable v (]] e« encryptsy’
k=1
AVE : ¢ encryptsg® or gb A (2 is a pseudorandom structurec; encryptsg”)).

The zap consists @@ (n + |C|) group elements and has perfect soundness.
Sign everythingsig < Sign;, (vVksots, C, X1, 81,1, €1, - .., X, Spy Ty Cnu 0, G, Gy e, g, f, by).
The prOOf isIl := (vksotm $1,71,C1y -+ 380, Tn, Cn,y P, G> GTa €9, fa ha T, Slg)

Verification: Given common reference strings, .. ., X, a circuitC and a proof as described above, do the
following. For allk check the simulation-sound NIZK proofg, for r;, & s, encoding a pseudorandom
structure inGy, using common reference string.. Verify (p, G, Gr, e, g) is a group with a bilinear
map. Verify the zapr. Verify the strong one-time signature on everything. Ottpif all checks are
ok.

Simulated proof: We are given reference strinds, ..., %,. ¢, of them are simulation strings, where we
know the simulation trapdoots. for the simulation-sound NIZK proofs. We wish to simulateraqs
for a circuitC' being satisfiable.

We start by choosing a group, G, Gr, e, g) « G(1¥) and public keyf, h < G. We create ciphertexts
Cp — Epk(gl) for the t, simulation reference strings, where we know the trapdgopand set;, «—

Epk(go) for the rest. We also choose a strong one-time signature &eyuykots, sksots) «— K. (1%).

sots
Fort, of the common reference strings, we know the simulation7eyrhis permits us to choose an
arbitrary strings; and simulate a proaf; thatr; @ s, encodes &0 element pseudorandom structure.
This means, we are free to choose so it encodes a pseudorandom strutugein G5°. For the
remainingn — t, < t, reference strings, we selegt sor, @ s, does encode a pseudorandom struture
in G and carry out a real simulation-sound NIZK proof for it being a pseudorandom structure
concatenated withkis.

For all k we havec;, encryptingg?, whereb € {0, 1}. We have[] _, ¢, encryptingg’. We also have for
thet, simulation strings, where we knowy thats; encodes a pseudorandom structure, whereas for the
other common reference strings we hayencryptsg®. This means we can create the non-interactive
zap~ without knowingC’s satisfiability witness.

Slgn everythinQSig — Slgn (UkSOtS7 C7 Elv 51,71,C1,y. .. 72717 Sny Ty Cny P, G7 GT7 €4, f7 h‘7 7T)'

sksots

The simulated proof i$l := (vksots, S1, 71,1y« - - s Sn, Ty Cny P, G, Gy e, g, f, h,m, sig).

Theorem 5 Assuming we have a DLIN group as described above, then tharootion above gives us a
(0,ts,t,,n)-simulation-sound NIZK proof for circuit satisfiability,here the proofs have size((n + |C|)k)

bits. The proof has statisticdl, ¢, t,, n)-soundness. The scheme can be set up in the common random
string model if we can sample groups with bilinear maps armigrelements from random strings.

Proof. We have already argued in the construction that if we can Eagrpups and group elements from
random strings and vice versa given groups and group elsmsantple random strings that yield these group
elements, then the common reference strings can be sethupliaritdom strings model. Perfect completeness
follows by straightforward verification.

Let us prove that we have statisticd,¢s,t.,n)-soundness. Consider first an arbitrary group
(p,G,Gr,e,g) chosen by the prover. By assumption, it can be verified thatdescribes a group with
a bilinear map.

13

We will now bound the probability of both; @ s, and s, specifying pseudorandom values in their
respective groups for a random choicerpf Consider first the probability that a random stringspecifies
a pseudorandom value (&%, There are at mo*** pseudorandom strings, since the 12 péfish;) and
the 12 pairs(u;,v;) fully define the pseudorandom value. 60 random group elesrigmte ab9k bits of
entropy, so we get a probability of at mastt*—5% = 2735 of 5, specifying a pseudorandom value in
GY0, Similarly, for a random choice of, we have at most probability 3% thatr, & s, is a pseudorandom
value in the group specified by the common reference stringh ¥y, s both chosen at random, we have
a total maximal probability o2~7%% of bothr;, @ s;, ands;, specifying pseudorandom values. The prover
can choose the group freely, giving him at m@3kt different choices for the grou@ andg. He can also
chooses;, freely, giving him26°% possibilities. Since;, is chosen at random, there is at most probability
92k+65k—T0k — 9-3k of jt being possible to choose, and the groupG so bothr;, @ s; and s, specify
pseudorandom values. With overwhelming probability, we tteerefore assume that no honestly generated
common reference string exists such that bgtks s, ands;, specify pseudorandom values in respectively
G, andG.

Any common reference string;, that is honestly generated has overwhelming probabilithasing a
common reference stringy, for the simulation-sound NIZK with perfect soundness. Wévem the prover
makes a proof using this string, he must therefore picko r; & s; is pseudorandom. Consequently,
does not specify a pseudorandom value in the gfeufphe zap has perfect soundness, so it showsihat
satisfiable or;, containsg®. Similarly, for any string®;, that is not honestly generated, the zap demonstrates
thatC is satisfiable or;, containsg” or g'. Since at least, > n — ¢, strings are honestly generated, we see
that if C is unsatisfiable, thef];_, c, contains one of the valueg, .. ., g*==1. The zap therefore shows us
thatC' must be satisfiable.

To argue computation&l, ¢, t., n)-simulation-soundness, observe that simulated proofsigmed with
a strong one-time signature. Since the signature schemexigsntial unforgeability, the adversary must
choose a differentk,.is that it has not seen in a simulation. Recall, whenever we raaimulation-sound
NIZK using a particular common reference striiig, we concatenatek,.s to r & s to get the statement
we wish to prove. By the simulation-soundness of the NIZKofsmn honestly generated strings, we can
not forge such a proof even though we have already seen sedybaoofs. Therefore;, & s; must be a
pseudorandom string. We can now ardQef, ¢, n)-simulation-soundness just as we arguyed., t.,n)-
soundness.

It remains to prove computationdl, ¢, t.,n)-zero-knowledge. Reference string indistinguishability
follows from the reference string indistinguishability thfe simulation-sound NIZK proofs. We will now
consider simulation indistinguishability, so considerase where the adversary sees simulated reference
strings and gets the simulation trapdoors that allow thaukition of proofs for the reference strings. The
adversary, chooses a set of common reference strings agisleg@ proof generated with the satisfiability
witness forC' or alternatively a simulated proof and wants to distinguistween the two possibilities.

Let us start with a simulated proof and compare it with a hybxperiment, where we use the satisfiability
witness forC' in the non-interactive zap. By the computational witnegfistinguishability of the zap, the
adversary cannot tell these two experiments apart. Neixtslehoose alt;’s as encryptions of’. By
the semantic security of the cryptosystem, the adversamgataletect this change. We already sekgcso
r, @ s, specifies a pseudorandom value for the reference stringgematrated bys;. Let us switch to also
selectingsy sory @ s specify a pseudorandom value in the common reference stvithgre we do know
the simulation trapdoor. By the pseudorandomness of tirgsirthe adversary cannot detect this change
either. Finally, instead of simulating the proofs far @ s, specifying a pseudorandom value@h,, let us
make a real proof. By the composable zero-knowledge prppérthe simulated reference strings for the
simulation-sound NIZK proofs, the adversary cannot digtish here either. With this last modification, we
have actually ended up constructing proofs exactly as gresaér with access to a satisfiability witness does,
so we have0, t,,t,,n) composable zero-knowledge. O

14

5 Multi-party Computation

5.1 The UC Framework

The universal composability (UC) framework, see [Can0OX]dadetailed description, is a strong security
model capturing security of a protocol under concurrentesien of arbitrary protocols. We model every-
thing not directly related to the protocol through an emvinentZ. The environment can at its own choosing
give inputs to the parties running the protocol, and acecgyth the protocol specification, the parties can give
outputs to the environment. In addition, there is an advgrdahat attacks the protocald can communicate
freely with the environment. It can aadaptively corrupttigs:; in which case it learns the entire history of
that party and gains complete control over the actions effihity. The environment learns whenever a party
is corrupted.

To model security we use a simulation paradigm. We specé#yuhctionality 7 that the protocol should
realize. The functionality~ can be seen as a trusted party that handles the entire pret@mution and tells
the parties what they would output if they executed the maitaorrectly. In the ideal process, the parties
simply pass on inputs from the environmentAand whenever receiving a message frérthey output it to
the environment. In the ideal process, we have an ideal gsaadversans. S does not learn the content of
messages sent froff to the parties, but is in control of when, if ever, a messagmff is delivered to the
designated partyS can corrupt parties, at the time of corruption it will leathiaputs the party has received
and all outputs it has sent to the environment. As the realdnaaiversaryS can freely communicate with
the environment.

We now compare these two models and say that the protocaledgcaalizes? if no environment can
distinguish between the two worlds. This means, the préissecure, if for any polynomial timg running
in the real world, there exists a polynomial tilSerunning in the ideal process with, so no non-uniform
polynomial time environment can distinguish between the werlds.

Our goal in this section is to show that any well-formed fimuality can be securely realized in the
multi-string model. By well-formed functionality, we meanfunctionality that is oblivious of corruptions
of parties, runs in polynomial time, and in case all parties@rrupted it reveals the internal randomness
used by the functionality is revealed to the ideal processeiadry. This class contains all functionalities, we
can reasonably expect to implement with multi-party corapioih, because an adversary can always corrupt
a party and just have it follow the protocol, in which casedht®er parties in the protocol would never learn
that it was corrupted.

5.2 Tools

This section will present a number of tools we will need in constructions.

PSEUDORANDOM CRYPTOSYSTEM WITH PSEUDORANDOM KEY.S A cryptosystem(K pseudo, £, D) has
pseudorandom ciphertexts of lendth(k) if for all non-uniform polynomial time adversarie$ we have

P (ph, d) Kpnento 1) s AP0) = 1]
~ Pr [(pk, k) — Kpeenao(1) ARO (k) = 1], (1)

whereR,;(m) runsc « {0, 11¢2(k) and returns:. We require that the cryptosystem have errorless decryp-
tion.

Trapdoor permutations imply pseudorandom cryptosystsinse we can use the Goldreich-Levin hard-
core bit [GL89] of a trapdoor permutation to make a one-tirad.g-or setting up our scheme in the common
random string model, we will require that the cryptosysteams h pseudorandom public key as well. Pseu-
dorandom cryptosystems with pseudorandom keys can befamitvarious assumption such as RSA, DDH
and DLIN.

15

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT A tag-based commitment scheme has four
algorithms. The key generation algorithif),.; _..m produces a commitment key as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the ciomment keyck, a messager and any tag
tag and outputs a commitment= Com(tag; m;r). To open a commitment with tagtag we revealm
and the randomness Anybody can now verify: = Com,(tag; m;r). As usual, the commitment scheme
must be both hiding and binding.

In addition, to these two algorithms there are also a coupteapdoor algorithmsI'com, Topen that
allow us to create an equivocal commitment and later opendbimmitment to any value we prefer. We
create an equivocal commitment and an equivocation key,a&) «— Tcomy(tag). Later we can open it
to any message: asr < Topen,;(tag; m), such that = Comx(tag; m;r).

We require that equivocal commitments and openings arstinguishable from real openings. For all
non-uniform polynomial time adversarigswe have

Pr [(ck,tk) — Kiag—com(1%) : ARG (ck) = 1}
~ Pr [(ck,tk) — King—com(1F) : AP0 (ck) = 1}, @)

where R(m,tag) returns a randomly selected randomizer aé@dm,tag) computes (c,ek)
Tcomy(tag,m);r «— Topen,(tag,m) and returns-. Both oracles ignore tags that have already been
submitted once.

The tag-based simulation-soundness property means tioamitment usingag remains binding even
if we have made equivocations for commitments using diffetags. For all non-uniform polynomial time
adversariesA we have

Pr [(ckz,tk‘) — Ktag,com(lk); (tag,c,mg,ro,my, 1) .AO(')(ck:) :tag ¢ @ and 3)

¢ = Comeg(tag; mo; o) = Comeg(tag; my;r) andmg # ml] ~ 0,

where O(Com, tag) computes (c,ek) <« Tcomy(tag), returns ¢ and stores(c,tag,ek), and
O(Open, ¢, m, tag) returnsr «— Topen,(tag, ek,c,m) if (c,tag,ek) has been stored, and whefeis
the list of tags for which equivocal commitments have beedarizy O.

The term tag-based simulation commitment comes from GMagKenzie and Yang [GMYO03], while
the definition presented here is from MacKenzie and Yang [M]Y(O'he latter paper offers a construction
based on one-way functions. In addition, since we are wgrkiver random strings, we Wahf;,; _com t0
output public keys that are random or pseudorandom, i.ecameusepk « {0, 1}%as—com to generate the
public key.

EXTRACTABLE TRAPDOOR COMMITMENT SCHEME We will need something that is stronger than tag-
based simulation-sound commitments, namely a tag-basedagion-extractable commitment. This is a
tag-based simulation-sound trapdoor commitment schenteani additional algorithniixtract that given
the trapdoor is able to extract the message inside the conamit More precisely, with the trapdoor we can
make trapdoor commitments, however, for all other tagsathersary will end up making unconditionally
binding commitments.

A tag-based simulation-extractable commitment schemeistnof five polynomial time algorithms
(Kse—com, Com, Tcom, Topen, Extract), such that the first 4 constitute a tag-based trapdoor camenit
scheme, and such th&k..om, Com, Extract) is a semantically secure cryptosystem. It will have the
property that a non-uniform adversary with access to trapdpenings of commitments and the extraction
key, still cannot create a new commitment and opening tiigsaoh that the message it opens to differs from
the extracted message.

16

For all non-uniform polynomial time adversarigswe have

Pr[Q := 0; (0,7, &) — Kee—com(1%); (m,7) — A°V); ¢ := Comy, (tag;m;) :
Extracte(tag, c) # m andtag ¢ Q] = 0,

whereQ is an oracle that on inputag, m) runs(c, ek) < Tcom,(tag);r < Topen,,(tag, m), returnsr
and setg) := Q U {tag}.

We will construct a tag-based simulation-extractable ciment scheme from the tools in this section.
We use a tag-based simulation-sound trapdoor commitméense to commit to each bit ofi. If m has
length/ this gives us commitments, . . ., ¢,. When making trapdoor commitments, we can use the trapdoor
key tk to create equivocal commitments, . . ., ¢, that can be opened to any bit we like.

We still have an extraction problem, we may be unable to ek&ranessage from tag-based commitments
created by the adversary. To solve this problem we choosactyt the openings of the commitments. Now
we can extract messages, but we have reintroduced the praiblequivocation. In a trapdoor commitment
we may know two different openings of a commitmento respectively 0 and 1, however, if we encrypt the
opening then we are stuck with one possible opening. Thidherevthe pseudorandomness property of the
cryptosystem comes in handy. We can simply make two enanygtione of an opening to 0 and one of an
opening to 1. Since the ciphertexts are pseudorandom, wepeanthe ciphertext containing the opening we
want and claim that the other ciphertext was chosen as amastting. To recap, the idea so far to commit
to a bitb is to make a tag-based simulation-sound trapdoor commitméa this bit, and create a ciphertext
¢;,» containing an opening af; to b, while choosing:; ;_; as a random string.

These are the main ideas, we now present the protocol ind-igur

Theorem 6 Tag-based simulation-extractable commitment schemsswith pseudorandom keys if pseu-
dorandom cryptosystems with pseudorandom keys exist.

Proof. Tag-based simulation-sound trapdoor commitments withigg@ndom keys can be built from one-
way functions, so we have the tools needed in the construciibis also shows that we have pseudorandom
keys for the tag-based simulation-extractable commitraehéme.

We now need to prove that even after seeing trapdoor commigtaad openings, it is hard to come up
with a commitment with a different tag, where the opening artiaction are different. Consider first the
case, where the adversary for some indexeates:;, c;o, ¢;1 SO bothe;y and¢;; decrypt to valid openings
of ¢; to respectivelyd) and 1. Sincetag has not been used before, we have not used: in any com-
mitment we have trapdoor opened before, so we have brokesirthgation-sound binding property of the
tag-based simulation-sound trapdoor commitment. Thealea® decryption property of the pseudorandom
cryptosystem now tells us that if the adversary opens alletsic;, c;g, ¢;1 succesfully, then so must we get
these openings when decrypting.

We also need to prove that we have the trapdoor property. Wenadify the trapdoor oracle in several
steps and show thad cannot tell the difference. Let us start with the oracle trainput(tag, m) returns
a randomly chosen randomizer, R1 ,n,,C1,1—my»- - - 7¢, Re.my» €1,1—m, - INStead of making commitments
c; := Comey(tag, i;mq; 1), we may instead ruf;, ek;) < Tcomy(tag,i);r; < Topen,, (m;) and user;
as the randomizer. By the trapdoor property of the tag-basedlation-sound commitment the two oracles
are indistinguishable tal.

Next, consider the trapdoor oracle, where we make trapdpeniogs to bothr;y andr;; so¢; =
Comygg(tag, i;b;r;p) for bothb = 0 andb = 1. We encrypt(b, r; ;) with randomnessk; ;. We then return
iy Rim;, ci,i—m,. BY the pseudorandomness of the ciphertexts, this is indisishable from the previous
oracle. O

STRONG ONETIME SIGNATURES We remind the reader that strong one-time signatures alaven-
uniform polynomial time adversary to ask an oracle for a aigre on one arbitrary message. Under this

17

Random key: Returno := (ck, pk) « {0, 1}¢as—com (k) 5 £(), 1 }fpseudo (k)
Simulation-extraction key:

1. (ck,tk) < Kiag—com(1¥)
2. (pk:>xk) — pseudo(lk)
3. Returno = (ck, pk), 7 = (o0, tk), £ = (0, zk)

Commitment: On input(o, tag, m) and randomizers as described below do

1. Fori = 1to/ selectr; at random and let; := Comc(tag, i; m;;7;)

2. Fori =1to/{ selectR; ,,, at random and sef ,,,, = Epi(m4, 74; Ri m,;) @and choose; 1—m,
as a random string.

3. Returnc := (c1, ¢10, 11, - - - €, Cro, Co1)
Opening: On input(tag,c, m,r1, Rim,,--.,"re, Rem,) dO
1. Verify that for alli we havec; = Com(tag, i;m;;r;)

2. Verify that for alli we havec; ,,, = Epr(mi, 745 Rim,;)
3. Returnl if all checks work out, else return 0

Trapdoor commitment: On inputr = (tk, pk) do

1. Fori =1to/ let(c;,e;) < Tcomy(tag,i) and letr; o, r; 1 be equivocations so
¢; = Comey(tag, i;b;1;p) for b € {0,1}.
2. Fori = 1to (¢ select randomnesB; , and set; ;, := Ep, (b, 7;p; R;p).

3. Returnc := (01, C10,C11y - -+ 5 Ct, CQ, Cgl) andek := (O’, r1, RLO? R171, ey Ty, R&O, R&l).
Trapdoor opening: Oninput(tag, ek, c, m) return(ry, Ri m,,-..,7¢, Rom,)-

Extraction: On input(tag, (o, dk), c) use the decryption key to decrypt the ciphertexjsin case, we
for i have exactly one ciphertex}, that decrypts té, r;;, soc; = Com, (tag, i;b; r), we set
m; := b. In case all these processes succeed, we return the coalbaen, else we returnL.

Figure 1: Tag based simulation-extractable commitment.

attack, it must be infeasible to forge a signature on anyewifit message and infeasible to come up with
a different signature on the same message. Strong one-timatwres can be constructed from one-way
functions.

5.3 Multi-party Computation in the Multi-string Model

We will demonstrate that any well-formed functionalifycan be securely realized in the multi-string model.
In this proof, we build on a result by Canetti et al. [CLOSO0&hich demonstrates that for any well-formed
functionality F there is a non-trivial protocol that securely realizes itie common random string model.
Our task can therefore be simplified to securely realiziags in the multi-string model.

Let us first formalize the multi-string model in the UC frammw. Figure 2 gives an ideal multi-string
functionality Fynicrs. We will construct universally composable commitmentg Begure 3, in the multi-
string model. Next, we will show that the ideal common randstring generatof-crs, see Figure 4, can be

18

securely realized in theFL:J},)-hybrid model.

Functionality Fyicrs

Parametrized by polynomid},..s, and running with partie®’, ..., Py and adversang.

String generation: On input(crs, sid) from S, pick o « {0, 1}%mes(%) and store it. Senders, sid, o)
to A.

String selection: On input(vector, sid, o1, ... ,0,) Whereoy, ..., o, € {0,1}mes(%) from S check
that more than half of the strings, . . . , o, match stored strings. In that case output

(vector, sid, 01,...,0,) to all parties and halt.

Figure 2: The ideal multi-string generator.

Functionality F5d,
Parametrized by polynomid| and running with partie®’, ..., Py and adversang.

Commitment: On input(commit, sid, m) from party P; check thatmn € {0, 1}¢*%) and in that case
store(sid, P;,m) and sendcommit, sid, P;) to all parties and. Ignore future
(commit, sid, -) inputs fromP;.

Opening: On input(open, sid) from P; check thatsid, P;, m) has been stored, and in that case ser

nd

(open, sid, P;, m) to all parties and>.

Figure 3: The ideal commitment functionality.

Functionality Fcgrs

Parameterized with polynomiéland running with partie®, . .., P, and adversang.

CRS generation: Generate random «— {0, 1}*(*) and output(crs, sid, o) to all parties ands. Halt.

Figure 4: The ideal common random string generator.

We will assume the parties can broadcast messages, i.e.abagss to an ideal broadcast functionallity

Fsc, see Figure 5. We note that broadcast can be securely ghatize constant number of rounds if

au-

thenticated communication is available [GLO5]. Furtherey@authenticated communication can be securely

realized using digital signatures, so one possible setilyatthe parties somehow have managed to exc
verification keys for the digital signature scheme.

hange

Functionality Fpc

Running with partied,, ..., P, and adversang.

Broadcast: On input(broadcast, sid, ssid, m) from P;, send(broadcast, sid, ssid, P;,m) to all

parties andS. Ignore future(broadcast, sid, ssid, -) inputs fromP;.

Figure 5: The ideal authenticated broadcast fucntionality

19

5.4 Universally Composable Commitment in the Multi-string Model

In our security proof, the ideal process adversawyill interact with Fé:(])VM and make a black-box simulation

of A running with Fyycrs and Py, . .., Py. There are two general types of issues that can come up in the
ideal process simulation. First, whé‘r"ggM tells S a party has committed to some messaf§ejoes not
know which message it is. Therefore, we want to be able to riraReoor commitments and later open them
up. Second, when a corrupt party sends a commitment, $heeeds to input some messageﬁ@éVM. In

this case, we therefore need to have an extractable comniitméhe message. The tag-based simulation-
extractable commitments presented in Section 5.2 come tbofitting this description.

Our idea is to use each of thecommon random strings output Biicrs as a public key for such a
commitment scheme. This gives us a seb@ommitment schemes, of which at least [2+!] are secure.
Without loss of generality, we will from now on assume we haxactlyt secure commitments. In the ideal
process, the simulator gets to pick these keys and can ¢iengick them as simulation-extractable keys.

To commit to a message:, a party makes &, n)-threshold secret sharing of it and commits to each
secret share using a different commitment scheme. Whemgnakirapdoor commitment, we make honest
commitments ta — ¢t random shares for the adversarial keys, and trapdoor conanis with the simulation-
extractable keys. Since the adversary knows at mostt < ¢ shares, we can later open the commitment
to any message we want by fitting the remainirghares and trapdoor opening the commitments to these
shares. To extract a message we extractt shares from the simulation-extractable commitments. Vie ca
now combine the shares to get the adversarial message.

One remaining issue is when the adversary recycles a conemitan parts of it. This way, we may risk
that it uses a trapdoor commitment made by an honest paxtith case we are unable to extract a message.
To guard against this problem, we will let the tag for the datian-extractable commitment scheme contain
the identity of the sende®;, forcing the adversary to use a different tag, which in tural@es us to extract.

Another problem arises, when the adversary corrups a panigh enables it to send messages on behalf
of this party. Atthis point, however, we learn the messageesjust need to force it to reuse the same message
if it reuses parts of the trapdoor commitment. We therefom®duce a second trapdoor commitment scheme,
use this trapdoor commitment scheme to commit to the shétes message, and insert it in the tag as well.
Therefore, if reusing a tag, the adversary must also ressaime share given by this tag.

Commitment: On input(vector, sid, (ck1,01), ..., (ckn,0r)) from Fycrs and (commit, sid, m) from
Z, the party P, does the following. He makes (@, n)-threshold secret sharing,...,s, of m.
He picks randomizers; and makes commitmenis; := Com.(s;;7;). He also picks random-

izers R; and makes tag-based commitments := Com,;((F;,¢c;); s;; R;). The commitment is
c:=(c1,C4,...,cn,Cy). He broadcastsbroadcast, sid, c).

Receiving commitment: A party on input (vector, sid, (cki,01),...,(cky,0,)) from Fycrs and
(broadcast, sid, P;, c) from Fpc broadcast§broadcast, sid, P;, c).

Once it receives similar broadcasts from all parties, alhtaiming the sameP;, ¢, it outputs
(commit, sid, P;) to the environment.

Opening commitment: Party P, wishing to open the commitment broadcasts
(open, sid, s1,71, R1,. .., Sn,Tn, Rn).

Receiving opening: A party receiving an openingopen, sid, P;, s1,,71, R1,..., Sp,Tn, Ry) from Fpc
to a commitment it earlier received, checks that all comreitta are correctly formed; =
Comgy, (s5;75) andCy = Comy, (P, ¢j); s5;75). It also checks thaty, Idots, s,, all are valid shares
of a (¢, n)-threshold secret sharing of some messagén that case it output®pen, sid, P;, m).

20

Theorem 7 The protocol securely realiz%é:gM in the (Fpc, Fumcrs)-hybrid model, assuming simulation-
extractable commitment schemes exist in the common rantliogn model.

Sketch of proofWe describe the ideal-process adversand sketch why it is secure along the way. It will
run a black-box simulation oft and whatA4 sees. In particular, it will simulate the partiés, ..., Py and
the ideal functionalitiesticrs and Fgc. The dummy parties that are actually involved in the protecal
communicate withZ are written as?, ..., Py.

Communication: Forward all communication betweefiand Z. Also, wheneverd delivers a message to a
party P;, simulate this delivery.

Common random strings: WheneverA asks Fycrs for a common random string, sele@tk, tk) «—
Kirapdoor(1F) and (0,7,&) «— Kgm-com(1¥) and return (crs, sid, (ck,o)), while storing

(ck,tk,o,T,§).

When A inputs (vector, sid, (cky,01),...,(ck,,0,)) 10 Fucrs check that more than half
the pairs (cki,01),...,(ck,,0,) match the stored public keys. In that case, send
(vector, sid, (cky,01),. .., (ckn,0,)) to all parties and halt the simulation dfycrs. Note, we

only need: stored keys, so if there are more thiamonest key pairs, we just act as if we only kneof
the trapdoors.

Commitment by honest party: On receiving(commit, sid, P;) from F); we learn that’; has made a
commitment, albeit we do not know the message. We wait uhtias submitted reference strings to
Fumcrs and delivers them t@;.

We select gt,n)-threshold secret sharing, ..., s, of 0. For then — ¢ reference strings where we
do not know the keys, including the ones where we do not kn@asttret keys, we commit tg
asc; := Comy(s;;7;) andC; := Comy, (P, cj; s;; ;). For the remaining reference strings, we
make trapdoor commitments;, ek;) < Tcom(tk) and(C}j, EK;) < Topen, (P, ¢;). We simulate
broadcastingbroadcast, sid, ¢y, C1, ..., ¢y, Cy).

The process for receiving a commitment is exactly the sanetag protocol, when simulated parties
see the commitments they broadcast it. When everybody loasitast, they are supposed to output
(commit, sid, P;) to the environmentS therefore delivers the corresponding commitment message
from FJ; to the dummy party.

Opening: When S receives(open, sid, P;, m) from }‘égM it means thatP; has been instructed to open
the commitment, and it was a commitmentsta We recall then — ¢ shares that we committed
to honestly, and fit them into &, n)-threshold secret sharing, ..., s, of m. We open then — ¢
commitmentsc;, C; correctly. We then trapdoor open theommitments:;, C; where we know the
corresponding equivocation keys as < Topen, (s;) and R; « Topengg, ((F;,¢)),s;). We
broadcastbroadcast, sid, s1,71, R1, ..., Sn, 'n, Rp).

Receiving an opening: On receiving an opening of an earlier received commitmerd,civeck that the
commitments contains a consisténtn)-threshold secret sharing ef, ..., s, of a messagen and
for all j we havec; = Come(sj;7r5) andC; = Com,, (P, cj;55; Rj). In that case, we deliver
(open, sid, P;,m) from F;3},; to our dummy party that outputs the openingZo

Commitment by corrupt party: When a corrupt party makes a commitméat, C1, ..., c,, C,) with a
valid signature so our simulated party would outpthmmit, sid, P;), we need to input some mes-
sage tQFé:(])VM so we can make the correspodning dummy party output thisiidgmal process.

We use the extraction keys, to extracommitted values; « Extracte, ((P;, ¢;), C;). The only case,
where we cannot do this is when the 1@, c;) has been used before By, because then it may be

21

a trapdoor commitment we are looking at. However, this cdp bappen ifP; used(P;, ¢;) as a tag
when it was honest, and then upon corruption we have mad@dotva opening ot; to somes; and
therefore do not need to do any extraction.

We then reconstruct: from these shares and inp(tommit, sid, m) to FJy; on behalf of the
dummy party. In case we did not manage to extract a messageputsn := 0 to FééVM, which is ok

as long as we do not end up in a situation, where we need tﬁ“@é& to open the commitment. This
causesﬁé:(])vM to send oufcommit, sid, P;) messages to all dummy parties that we can deliver when
needed in the simulation.

Opening by corrupt party: When a corrupt party wants to open a commitment, we checkpbring and
if acceptable we inputopen, sid) to }‘éévM. If any honest party receives the opening, we deliver the
messagéopen, sid, P;, m) to the corresponding dummy parfy; that outputs it to the environment.

Corruption: In case a party?; is corrupted, we corrupt the corresponding dummy patty We need to
simulate the history of this party. If the party has not yetdma commitment, this is easy since there
is no history to simulate. If the party has already openedctiremitment, we just need to reveal the
randomness used in generating the one-time signature.

If the party has made a commitment but not yet opened it, wet similate an opening of it. On
corrupting P;, we learn the message it committed to, so we can use the gpsinilation for honest
parties described earlier.

To see that this gives us a good simulation, consider theviollg hybrid experiments for adversagy and
environmentz.

Hybrid 1: This is the protocol executed with and environmeng.

Hybrid 2: This is the protocol, where we stofek, tk,o,7,£) and return(ck, o), wheneverA queries
Fucrs for a common reference string.

Since both commitment scheme have pseudorandom keysdHyhrid 2 cannot be distinguished.

Hybrid 3: This is hybrid 2 modified such that honest pafyfor ¢ commitments where it knows the key,
creates equivocal commitments using the trapdoor keyseddsof making real commitments. To
produce the openings, it then uses the equivocation keysrtergte randomizers so the commitments
open to the relevant shares.

Hybrid 2 and hybrid 3 are indistinguishable due to the trapgwoperties of the commitment schemes.

Hybrid 4: We modify hybrid 3 such that when an honest paftymakes a commitment, it uses(an)-
threshold secret sharing ofinstead of a threshold secret sharingmef In the opening phase, it
opens then — t pairs(c;, C;) where it does not know the trapdoors honestly to 4hé committed
to. It reconstructs shares for the¢ equivocal commitments sq, . .., s, is a(t, n)-threshold secret
sharing ofm. It then opens the equivocal commitments to these values.

Hybrid 3 and hybrid 4 are perfectly indistinguishable, sinc-¢ < ¢ shares in &t, n)-threshold secret
sharing scheme do not reveal anything abeut

Hybrid 5: We now turn to modify the way we handle corrupt parties. Whkena corrupt party®; submits
a commitmen{cy, C1, ..., c,, Cy) to Fpc, we want to extract a message.

For any of thet C;'s where we know the key, there are two cases to consider. @se is where
(P, cj) has been used as a tag whigrwas still honest. In this case, we learned an opeging; of

22

¢; upon corruption, and will therefore considgrthe share. The second case is wi&n ¢;) has not
been used as a tag in a simulation-extractable commitmeithat case, we can extract a shaye

We now havet shares, so we can recombine them to get a possible messageNe input
(commit, sid, m) on behalf ofP;. In case anything fails, we input := 0 on behalf ofP;.

Hybrid 4 and hybrid 5 are indistinguishable. The problensesgiif the extracteech does not match the

opening. There are two ways this could happen. One posgilsilthatc; created by an honest party
that is later corrupted is opened to a different share thaindrsimulation. However, this would imply
a breach of the binding property of the commitment schemetter possibility is that the extraction
fails. However, this would imply breaking the simulatioxir@ctability of the commitment scheme.

We conclude the proof by observing that hybrid 5 is identioghe simulation.

5.5 Coin-Flipping
We will now generate a common random string. The partiesthglfollowing natural coin-flipping protocol.

Commitment: P; chooses at random « {0, 1}, It submits(commit, sid, ;) to FEdy. F&dy on
this input send$commit, sid, P;) to all parties.

Opening: OnceP; sees(commit, sid, ssid, P;) for all j, it sends(open, sid, ssid,r;) t0 FEdy. FEdu
on this input send§open, sid, ssid, P;, r;) to all parties.

Output: OnceP; seescommit, sid, ssid, P;,r;) for all j, it outputs(crs, sid, @jyzlrj) and halts.

Theorem 8 The protocol securely realizes (perfectly) the ideal commederence string generatofcrs in
the 7y, hybrid model.

Proof. Consider the following ideal process advers&yworking in the Fcrs-hybrid model, giving it a
common reference string. It runs a simulated copy 04, a simulated copy of-“é:(])VM and simulated parties
Py, ..., Py, notto be confused with the dummy partiés . . ., Py that interact withZ andFcrs. Whenever
A communicates with the environme#tit simply forwards those messages. We now list the eventctma
happen in the protocol.

On activation of P;, it simulates }‘égM receiving a commitment fromP; by outputting
(commit, sid, P;) to all parties and4.

On delivery of commitments from all parties to an honestypatt it selectsr; at random, subject to the
continued satisfiability of condition = @ff:lrj and stores it. It then simulateR.))}; receiving an opening
of P;’s commitment tor;.

In caseA corrupts a partyP;, we corrupt the corresponding dummy pafy If P, has made a com-
mitment but it has not yet been opened, we seteat random, subject to the continued satisfiability of the
conditiono = @yzlrj, and simulate that this was the commitméhimade. In all other cases of corruption,
eitherr; has not yet been selected, or the commitment has alreadyopeaed and4 already knows:;. The
two experimentsA running with parties;, . .., Py in thej—“(lj:(])VM—hybrid model, and running with dummy
partiesP;, ..., Py in the Fcrg-hybrid model are perfectly indistinguishable o To see this, consider a
hybrid experiment, where we run the simulation and choolse;'alat random and then set:= &N ;r;.
Inspection shows that this gives a perfect simulatio &fview of the protocol in the%:(f)VM-hybrid model.
At the same time, also here we get a uniform random distobuino and ther;’s subject to the condition
o= @é-vlej. O

23

5.6 Multi-party Computation

We are now ready to prove that any well-formed ideal funeiity can be securely realized in the multi-string
model.

Theorem 9 For any well-formed functionalityF there is a non-trivial protocol that securely realizes it in
the (Fsc, Fumcrs)-hybrid model, provided enhanced trapdoor permutationggraented non-committing
encryption and dense cryptosystems exists.

Proof. Canetti et al. [CLOS02] show that assuming the existencanbfieced trapdoor permitation, dense
cryptosystems and augmented non-committing encrypti@retis a non-trivial protocol that securely real-
izesF in the (Fpc, Fcrs)-hybrid model.
Theorem 8 shows that we can securely realizgzs in the J—“é:(])VM—hybrid model. Therefore, by the
universal composability theorem [Can01], we can secuejize F in the(}‘Bc,}‘é:(])VM)-hybrid model.
Theorem 7 shows that we can securely reaﬁ%%VM in the (Fac, Fumcrs)-hybrid model assuming the
existence of extractable trapdoor commitments. Recaihfitheorem 6 that dense cryptosystems imply the
existence of extractable trapdoor commitments. By thearadl composability theorem we get tlfatcan
be securely realized in theFpc, Fumcrs)-hybrid model under these assumptions. O

References

[AdI78] Leonard M. Adleman. Two theorems on random polyralntime. Inproceedings of FOCS '78
pages 75-83, 1978.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Shatmisignatures. Iproceedings of
CRYPTO '04, LNCS series, volume 31pages 41-55, 2004.

[BCNPO04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, af@deRPass. Universally composable proto-
cols with relaxed set-up assumptions.phoceedings of FOCS 'Q4ages 186—195, 2004.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Nomtéractive zero-knowledge and its appli-
cations. Inproceedings of STOC '8pages 103-112, 1988.

[Can01] Ran Canetti. Universally composable security: Avngaradigm for cryptographic pro-
tocols. In proceedings of FOCS 'Qlpages 136-145, 2001. Full paper available at
http://eprint.iacr.org/ 2000/ 067.

[CFO1] Ran Canetti and Marc Fischlin. Universally compdsabommitments. Inproceedings
of CRYPTO '01, LNCS series, volume 213fges 19-40, 2001. Full paper available at
http://eprint.iacr.org/ 2001/ 055.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovskydakmit Sahai. Universally composable two-
party and multi-party secure computation. groceedings of STOC 'Qpages 494-503, 2002.
Full paper available dit t p: // eprint.iacr. org/ 2002/ 140.

[DNO2] Ivan Damgard and Jesper Buus Nielsen. Perfect idamd perfect binding univer-
sally composable commitment schemes with constant exparfactor. Inproceedings of
CRYPTO '02, LNCS series, volume 244fhges 581-596, 2002. Full paper available at
http://ww. brics. dk/ RS/ 01/41/i ndex. htm .

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core pcade for all one-way functions. In
proceedings of STOC '8pages 25-32, 1989.

24

[GLO5]

Shafi Goldwasser and Yehuda Lindell. Secure muliiypeomputation without agreemertour-
nal of Cryptology 18(3):247-287, 2005.

[GMYO03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. 8tthening zero-knowledge protocols

[GO94]

using signatures. Iproceedings of EUROCRYPT '03, LNCS series, volume,26&ges 177—
194, 2003. Full paper availablefatt p: // eprint.iacr. org/ 2003/ 037.

Oded Goldreich and Yair Oren. Definitions and prapsrof zero-knowledge proof systems.
Journal of Cryptology7(1):1-32, 1994.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Mi@ractive zaps and new techniques for nizk.

In proceedings of CRYPTO '06, LNCS series, volume 4fgages 97-111, 2006.

[GOSO06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. é&trion-interactive zero-knowledge for np. In

[Gro06]

proceedings of EUROCRYPT '06, LNCS series, volume, 48#iges 339—-358, 2006.

Jens Groth. Simulation-sound nizk proofs for a pecat language and constant size group
signatures. Irproceedings of ASIACRYPT '06, LNCS seri2806. Full paper available at
http://ww. brics. dk/ ~j g/ Nl ZKG oupSi gnFul | . pdf .

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. lrexand Michael Luby. A pseudorandom gen-

IMYO04]

erator from any one-way functiorsIAM Journal of Computatiqr28(4):1364—1396, 1999.

Philip D. MacKenzie and Ke Yang. On simulation-soutndpdoor commitments. Iproceedings
of EUROCRYPT '04, LNCS series, volume 302ages 382—400, 2004. Full paper available at
http://eprint.iacr.org/2003/252.

25

