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Abstract

In this paper, we propose a generic construction of chosen-ciphertext secure cryptosystems against
adversaries with a bounded number of decrytion queries from arbitrary semantically secure encryp-
tion in a black box manner. Our construction is not only an alternative to the previously known
technique, i.e. the Naor-Yung paradigm [37, 19, 42], but also has some interesting properties. Espe-
cially, (1) it does not require non-interactive zero-knowledge proof, and (2) its component ciphertexts
can be compressed into only one if the underlying encryption has a certain homomorphic property.
Consequently, when applying our construction to the ElGamal encryption, ciphertext overhead of the
resulting scheme will be only one group element which is considered optimal since it is the same as
the original ElGamal. Disadvantages to previous schemes are that the upper bound of the number of
decryption queries (e.g. 230) has to be known before set-up phase, and the size of public key is large.

1 Introduction

Background: Chosen-Ciphertext Secure Schemes. So far, construction methods for secure public
key encryption have been intensively studied, and chosen-ciphertext security (CCA security, for short)
[40, 19] is nowadays considered as a standard notion of security in practice. Furthermore, this security
also implies universally composable security [12].

However, there exist only several CCA-secure schemes whose security is proven in the standard model.
In particular, as generic constructions of CCA-secure schemes from arbitrary chosen-plaintext secure
(CPA-secure) schemes, only the Naor-Yung paradigm [37] and its variants, e.g. [19, 42, 34], are known.
Therefore, when (straightforwardly) designing a CCA-secure scheme from a given CPA-secure scheme
(which may be newly proposed one), it would be significantly affected by the restriction which is due
to the Naor-Yung paradigm. Namely, in the Naor-Yung paradigm, a sender has to encrypt a plaintext
by using two distinct keys which results in two distinct ciphertexts, and add a non-interactive zero-
knowledge proof (NIZKP) to guarantee the equivalence of the plaintexts of these two ciphertexts. Hence,
its ciphertext length will be significantly larger than that of the underlying encryption scheme (even if the
underlying scheme is homomorphic one such as ElGamal). Moreover, for constructing (general) NIZKP,
existence of trap-door permutations is required to be assumed. It should be noticed that existence of
CPA-secure schemes does not imply existence of trap-door permutations. Therefore, for flexibly designing
various types of CCA-secure cryptosystems, more generic transforms are desired.

On the other hand, when we focus on the ElGamal cryptosystem and its specific properties, it is
possible to have elegant and practical CCA-secure schemes, i.e. the Cramer-Shoup cryptosystem [17] and
its variants. Especially, a variant which is proposed by Kurosawa and Desmedt [33] is most efficient among
them, and its ciphertext overhead is two group elements and a message authentication tag (while the
original Cramer-Shoup’s is three group elements and more). This scheme is already practical in various
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aspects. However, it is preferable to further reduce the ciphertext overhead since one group element
and a message authentication tag are 1024-bit and 128-bit long, respectively (i.e. 2176 bits in total) if
the underlying group is standard one over a finite field. For investigating this issue, it is important to
know its lower bound in the first place. Especially, one may want to know if it is possible to construct
a CCA-secure scheme with only one group element (i.e. 1024 bits) of ciphertext overhead which is the
same as the plain ElGamal’s.

Our Contribution. In this paper, we propose a new generic method for converting an arbitrary CPA-
secure cryptosystem into another one with slightly weakened CCA security (which we call CCA- security)
in a black box manner. This can be considered as an alternative technique to the Naor-Yung paradigm for
proving certain feasibility results on CCA-secure schemes. Especially, it is remarkable that our method
does not require NIZKP nor any other computational assumptions if the upper bound of the number of
decryption queries is known before set-up phase. Furthermore, in our construction, component ciphertexts
can be compressed into only one if the underlying encryption scheme has a certain homomorphic property.
These two properties enable us to design CCA--secure schemes with short ciphertext length, and as an
example, we show that it is possible to construct a CCA--secure variant of the ElGamal whose ciphertext
overhead is only one group element under reasonable assumptions. This implies that CCA security can
be achieved without any ciphertext expansion from the plain ElGamal assuming that the upper bound
of the number of decryption queries is known. However, we stress that this scheme is not very practical
since its public key size is large.

Our approach is basically as follows. In the set-up phase, a user generates ℓ key pairs (dki, eki), 1 ≤
i ≤ ℓ of the underlying CPA-secure encryption scheme, where dki and eki are a decryption key and
its corresponding encryption key, respectively. The user publicizes E := {eki}1≤i≤ℓ while keeping D :=
{dki}1≤i≤ℓ as secret. When encrypting a plaintext M , a sender chooses Es ⊆ E by using unduplicatable

set selection [42] which does not allow others to pick the same subset, and then, generates a ciphertext
C by multiple encryption for M under all keys in Es. The user decrypts C by using the subset of D
which corresponds to Es. We note that if the underlying encryption scheme is homomorphic, component
ciphertexts for the multiple encryption can be unified into one ciphertext.

It is possible to provide unduplicatable set selection by using strong one-time signature, and this
can be generically obtained from any one-way function. However, it may cause additional ciphertext
overhead, and therefore, is not preferred for achieving short ciphertext size. In our ElGamal variant, we
further remove the one-time signature by using a specific property of the ElGamal encryption.

Interestingly, artificial abort, which is a new proof technique proposed by Waters [45], plays an
important role in the security proof of our proposed schemes. As far as we know, our schemes are the
first ones whose security proof require the artificial abort, except for [45] and its variants.

Related Works. The notion of CCA security was introduced by Naor and Yung [37], and this was
further extended by Rackoff and Simon [40] and Dolev, Dwork, and Naor [19]. Naor and Yung pro-
posed a generic construction of non-adaptively CCA-secure cryptosystems from any semantically secure
encryption [25] and NIZKP [7]. Dolev, Dwork, and Naor [19] and Sahai [42] later improved this idea and
proposed adaptively CCA-secure constructions. Recently, Gertner, Malkin, and Myers [24] showed that
for a large non-trivial class of constructions, it is impossible to construct a CCA-secure scheme from a
CPA-secure scheme in a black box manner. We note that this does not contradict to our result since in
our construction the upper bound of the number of decryption queries is assumed to be known, and this
setting is out of their scope. For the same setting as ours, independently to our work, Pass, shelat, and
Vaikuntanathan [39] showed a construction of non-malleable cryptosystems against chosen-ciphertext
adversaries from any CPA-secure encryption in a non black box manner. Their construction still requires
NIZKP and multiple component ciphertexts which may cause additional ciphertext overhead though their
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NIZKP does not require any additional complexity assumption. As another independent work, Cramer,
Hofheinz, and Kiltz [16] proposed the same generic construction as ours. However, they did not mention
its application to ElGamal with short ciphertext.

Cramer and Shoup [17] proposed the first practical CCA-secure scheme by using a specific property
of the ElGamal encryption. This was improved by Shoup [44] and Kurosawa and Desmedt [33]. Cramer
and Shoup [18] further applied their methodology to [25] and [38].

Canetti, Halevi, and Katz [15] proposed a generic method for converting a (weakly secure) identity-

based encryption scheme [43, 9] into a CCA-secure public key encryption scheme. Boneh and Katz [10]
imporved its efficiency, and Kiltz [31] discussed a more relaxed condition for achieving CCA security.
Boyen, Mei, and Waters [11] proposed practical CCA-secure schemes by using the basic idea of [15] and
specific properties of [45] and [8]. Ciphertext overhead of their best scheme is two group elements. It
should be noticed that these schemes are based on special types of groups called bilinear groups. The
basic concept of our proposed method is similar to [15] though our method does not depend on bilinear
groups.

Under the random oracle methodology [5], there exist many practical schemes, e.g. [6, 23]. However,
this methodology is known to be problematic [13], and hence, in this paper we do not consider it.

2 Definitions

Throughout this paper, we use the following notations. Define x
R
← X as x being picked uniformly from

a finite set X at random. If A is an algorithm, x←A means that the output of A is x. When y is not a
finite set nor an algorithm, x←y is an assignment operation. | · | is defined as the bit length if “·” is an
element of a finite set (respectively, the cardinality of the set if “·” is a finite set). When we say that ǫ(k)
is negligible, it means that for any constant c there exists k0 ∈ N, such that ǫ < (1/k)c for any k > k0.

Here, we review definitions for public key encryption (PKE), strong one-time signature (SOTS), target

collision resistant hash function (TCRHF), strong pseudorandom permutation (SPRP), cover-free family

(CFF), key derivation function (KDF), and the decisional Diffie-Hellman (DDH) assumption.

Public Key Encryption. A public key encryption (PKE) scheme Π consists of three probabilistic
polynomial time (PPT) algorithms: Π = (EGen,Enc,Dec). The key generation algorithm EGen takes
as inputs 1k, and generates decryption key dk and encryption key ek, where k is a security parameter.
The encryption algorithm Enc takes as inputs ek and M ∈ M, and outputs ciphertext C ∈ C, where
M and C are the plaintext and ciphertext spaces, respectively. The decryption algorithm Dec takes as
inputs dk and C, and outputs M or ⊥, where ⊥ is a distinguished symbol. We require that for all
(dk, ek)(= EGen(1k)), all M , and C(= Enc(ek,M)), Dec(dk,C) = M .

Semantic security [25] for PKE, i.e. IND-ATK [40, 19, 2] where ATK ∈ {CPA,CCA}, is defined
as follows. Let A = (A1,A2) and k be an adversary and the security parameter, respectively. For
atk ∈ {cpa, cca}, consider the following experiment:

Expind-atk
A,Π (k) : [(dk, ek) ← EGen(1k); (M0,M1, s)← AD

1 (ek); b
R
← {0, 1};

C⋆ ← Enc(ek,Mb); b
′ ← AD

2 (C⋆, s); return 1 if b′ = b, or 0 otherwise],

where D is a decryption oracle which for given C, returns M(or ⊥)(= Dec(dk,C)) if atk = cca, or a
random bit string if atk = cpa. The only restriction is that C⋆ is not allowed to submit to D. We define
ǫind-atk,A = |Pr[Expind-atk

A,Π (k) = 1]− 1/2|.

Definition 1 (IND-ATK). We say Π is (t, q, ǫ)-IND-CCA (resp. (t, ǫ)-IND-CPA) secure, if for any A in
time bound t with at most q queries to D, ǫind-cca,A ≤ ǫ (resp. ǫind-cpa,A ≤ ǫ). We say that Π is CCA-secure
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(resp. CPA-secure) if ǫ is negligible. In particular, we say that Π is CCA--secure if it is CCA-secure
under assumption that q is known a priori.

Strong One-Time Signature. A signature scheme Σ consists of three PPT algorithms: Σ = (SGen,Sig,Ver).
The key generation algorithm SGen takes as inputs 1k, and generates signing key sk and verification key
vk, where k is a security parameter. The signing algorithm Sig takes as inputs sk, m ∈ {0, 1}∗, and
outputs (σ,m), where m is a message to be signed. The verification algorithm Ver takes as inputs vk,
σ′, and m′, and outputs accept or reject. We require that for all (sk, vk)(= SGen(1k)), all m, all
(σ,m)(= Sig(sk,m)), we have Ver(vk, σ,m) = accept.

Here, we define strong unforgeability for (one-time) signature [26, 1]. Let A and k be an adversary
and the security parameter, respectively. Consider the following experiment:

Expsots
A,Σ(k) : [(sk, vk)← SGen(1k); (σ⋆,m⋆)← AS(vk); return Ver(vk, σ⋆,m⋆)],

where S is a signing oracle which for a given message m, returns (σ,m). A is allowed to submit a query to
S for only once, and (σ⋆,m⋆) is not allowed to be S’s response. We define ǫuf,A = Pr[Expsots

A,Σ(k) = accept].

Definition 2 (SOTS). We say Σ is (t, ǫ)-unforgeable if for any A in time bound t, ǫuf,A ≤ ǫ. We say
that Σ is a strong one-time signature scheme (SOTS) if ǫ is negligible.

Here, “strong” means that it is hard to forge a signature even if its corresponding message has been
asked to S. It is well known that SOTS can be derived from any one-way function [36, 41].

Cover Free Family. Let L be a finite set with |L| = u and F = {F1, ...,Fv} be a family of subsets of
L.

Definition 3 (CFF). We say (L,F) is a (u, v,w)-cover free family (CFF) if Fi 6⊆ ∪j∈Si
Fj for all i ∈

{1, ..., v} and for all Si ⊆ {1, ..., v}\{i} such that |Si| ≤ w.

There exist nontrivial constructions of CFF with u = O(w2 log2 v) and |Fi| = O(w log v) for all
i ∈ {1, ..., v}. This implies that there exists a (u, v,w)-CFF such that u = O(poly(k)) and v = Ω(exp(k))
if w = O(poly(k)) for a security parameter k. It should be noticed that for given L and index i, one
can efficiently genarate Fi. An example of concrete methods for generating CFF [21, 22] is as follows.
Consider a code C of length N on an alphabet Q with |Q| = t. Let a codeword c ∈ C be (c1, ..., cN ) ∈ QN ,
and Fc be {(i, ci)}1≤i≤N . Let F denote {Fc}c∈C , and L be {1, ...,N}×Q. When applying Reed-Solomon
code as C, (L,F) becomes a CFF.

Theorem 1. For given N , t and w where t is a prime power and N ≤ t+1, there exists a (tN, t⌈(N+w−1)/w⌉, w)-
CFF.

Target Collision Resistant Hash Function. Let h : {0, 1}k × {0, 1}ℓ → {0, 1}n be a family of
functions, where k is a security parameter. Let hK : {0, 1}ℓ → {0, 1}n be an instance of h, which is
indexed by K ∈ {0, 1}k , and A be an adversary. Then, consider the following experiment:

Exptcr
A,h(k) : [K

R
← {0, 1}k ;x

R
← {0, 1}ℓ;x′ ← A(K,x); return 1 if hK(x′) = hK(x), or 0 otherwise].

We define ǫtcr,A = Pr[Exptcr
A,h(k) = 1].

Definition 4 (TCRHF). We say h is (t, ǫ)-target collision resistant if for any A in time bound t,
ǫtcr,A ≤ ǫ. We say that h is a target collision resistant hash function (TCRHF) if ǫ is negligible.

TCRHF is a special case of universal one-way hash function, and can be constructed from any one-way
function [36, 41].
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Strong Pseudorandom Permutation. Let π : {0, 1}k×{0, 1}ℓ → {0, 1}ℓ be a family of permutations,
and πK : {0, 1}ℓ → {0, 1}ℓ be an instance of π, which is indexed by K ∈ {0, 1}k . Let P be the set of all
permutations for ℓ-bit strings, and A be an adversary. Then, consider the following experiments:

Expsprp
A,π (k) : [K

R
← {0, 1}k ; b← AπK ,π−1

K ; return b], Expreal
A,π(k) : [perm

R
← P; b← Aperm,perm−1

; return b],

where permutations πK , π−1
K , perm, and perm−1 are given to A as black boxes, and A can observe only

their outputs which corresond to A’s inputs. We define ǫsprp,A = 1
2 |Pr[Expsprp

A,π (k) = 1]−Pr[Expreal
A,π(k) = 1]|.

Definition 5 (SPRP). We say π is (t, ǫ)-strongly pseudorandom if for any A in time bound t, ǫsprp,A ≤ ǫ.
We say that π is a strong pseudorandom permutation (SPRP) if ǫ is negligible.

Luby and Rackoff [35] showed that an SPRP can be derived from any pseudorandom function (PRF)
by using the four-round Feistel construction, while the standard psuedorandom permutation can be
obtained from any PRF by the three-round Feistel construction.

Key Derivation Function. Let G be a cyclic group of prime order p. Let f : {0, 1}k ×G
2 → {0, 1}n

be a family of functions, and fK : G
2 → {0, 1}n be an instance of f , which is indexed by K ∈ {0, 1}k .

Let A be an adversary. Then, consider the following experiments:

Expkd
A,f (k) : [K

R
← {0, 1}k ;h1, h2

R
← G

2; b← A(h1, fK(h1, h2)); return b],

Exprnd
A,f (k) : [K

R
← {0, 1}k ;h1

R
← G; rnd

R
← {0, 1}n; b← A(h1, rnd); return b].

We define ǫkdf,A = 1
2 |Pr[Expkd

A,f (k) = 1]− Pr[Exprnd
A,f (k) = 1]|.

Definition 6 (KDF). We say f is (t, ǫ)-indistinguishable in G if for any A in time bound t, ǫkdf,A ≤ ǫ.
We say that f is a key derivation function (KDF) if ǫ is negligible.

It is possible to construct a KDF without any assumption by using the leftover hash lemma [29, 30]
if the underlying function family is pair-wise independent. In practice, one can simply assume that a
dedicated cryptographic hash function works as a KDF.

Decisional Diffie-Hellman Assumption. Let G be a multiplicative cyclic group of prime order p
and g be a generator of G. Let A and k be an adversary and the security parameter, respectively, where
k denotes |p|. Then, consider the following experiments:

Expdh
A,G (k) : [α, β

R
← Z

2
p; b← A(g, gα, gβ , gαβ); return b],

Exprnd
A,G (k) : [α, β, γ

R
← Z

3
p; b← A(g, gα, gβ , gγ); return b].

We define ǫddh,A = 1
2 |Pr[Expdh

A,G (k) = 1]− Pr[Exprnd
A,G (k) = 1]|.

Definition 7 (DDH). We say that the (t, ǫ)-decisional Diffie-Hellman (DDH) assumption holds in G if
for any A in time bound t, ǫddh,A ≤ ǫ.

3 Our Generic Constructions

In this section, we show our generic constructions of CCA--secure PKE schemes from arbitrary CPA-
secure PKE schemes without using NIZKP.

5



3.1 Basic Idea

The basic idea of our construction is as follows. For a given CPA-secure PKE scheme Π, a user generates
a (u, v, q)-CFF (L,F) and u pairs of keys (dki, eki)1≤i≤u of Π. A sender picks a Fj from F in the
unduplicatable set selection manner [42]. Then, he devided a plaintext M into |Fj | shares (Mi)i∈Fj

, and
encrypts Mi by using encryption key eki for all i ∈ Fj. The user decrypts the ciphertext by using dki for
i ∈ Fj .

Due to the property of (u, v, q)-CFF and unduplicatable set selection, even if an adversary submits
decryption queries for q times, it is guaranteed that there exists at least one dki which is not required
for responding to these queries. Hence, a simulator can embed a given instance of Π, which he wants to
break, to such dki. We note that there exists a (u, v, q)-CFF with u = O(poly(k)) and v = Ω(exp(k)) if
q = O(poly(k)) for a security parameter k.

3.2 Construction

Let Π = (EGen,Enc,Dec) be a PKE scheme and Σ = (SGen,Sig,Ver) be a signature scheme. Let
h : {0, 1}k ×{0, 1}|vk| → {1, ..., v} be a function family where the index space is {0, 1}k , and |vk| denotes
the size of verification key of Σ. In the security proof, Π, Σ, and h are viewed as a CPA-secure PKE, an
SOTS, and a TCRHF (or, simply, a family of injective maps). Our generic construction Π′ consists of
the following algorithms:

Our Generic Construction

Key generation: For a given security parameter k,

1. generate a (u, v, q)-CFF (L,F) such that L = {1, ..., u},

2. (dki, eki)← EGen(1k) for 1 ≤ i ≤ u, K
R
← {0, 1}k ,

3. output dk = ((dki)1≤i≤u, (L,F),K) and ek = ((eki)1≤i≤u, (L,F),K).

Encryption: For given ek and a plaintext M ∈M,

1. (sk, vk)← SGen(1k), j ← hK(vk),

2. devide M into (Mi)i∈Fj
such that

⊕
i∈Fj

Mi = M ,

3. Ci ← Enc(eki,Mi) for all i ∈ Fj , σ ← Sig(sk, (Ci)i∈Fj
),

4. output C = ((Ci)i∈Fj
, σ, vk).

Decryption: For given dk and C ′ = ((C ′
i)i∈Fj′

, σ′, vk′),

1. if Ver(vk′, σ′, (C ′
i)i∈Fj′

) = reject or hK(vk′) 6= j′, output “⊥”,

2. else, M ′
i ← Dec(dki, Ci) for all i ∈ Fj′ , M ′ ←

⊕
i∈Fj′

Mi,

3. output M ′.

The security of the above scheme is addressed as follows.

Theorem 2. The above scheme Π′ is (t, q, ǫ)-IND-CCA if Π is (t+τcff +(u−1)τegen +τsgen +O(u), 1
uǫ−

u+1
2u (ǫuf + ǫtcr))-IND-CPA, Σ is (t, ǫuf )-unforgeable, and h is (t, ǫtcr)-target collision resistant, where

τcff , τegen, and τsgen are computational time for CFF generation, EGen, and SGen, respectively.
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3.3 Proof of Theorem 2

Now, we give a proof of Theorem 2. Interestingly, the artificial abort technique, which was recently
proposed by Waters [45], plays an important role in our proof.

Construction of the Simulator. The goal of our simulator B is to break CPA security of Π by
using a chosen-ciphertext adversary A against the above scheme Π′. For a given public key ek0, B
generates a (u, v, q)-CFF (L,F) picks a random a from {1, ..., u}, and sets eka ← ek0. Then, B generates
(dki, eki) ← EGen(1k) for all i ∈ {1, ..., u}\{a}, and (sk⋆, vk⋆) ← SGen(1k). B also picks a random K
from {0, 1}k .

Next, B inputs ek = ((eki)1≤i≤u, (L,F),K) as an encryption key of the proposed scheme. B responds
to A’s decryption query C = ((Ci)i∈Fj

, σ, vk) as follows. If Ver(vk, σ, (Ci)i∈Fj
) = reject or hK(vk) 6= j,

B returns “⊥”. Else if a ∈ Fj , B aborts the simulation and outputs a random b′ ∈ {0, 1}. Otherwise, B
computes Mi ← Dec(dki, Ci) for all i ∈ Fj .

When A submits M0 and M1, B picks a random M ′ ∈M and submits M ′
0 and M ′

1 to its own encryption
oracle, where M ′

β = Mβ ⊕M ′ for β ∈ {0, 1}. Let the returned challenge ciphertext be C⋆
a . Then, B sets

j⋆ ← hK(vk⋆), and generates C⋆
i ← Enc(eki,Mi) for i ∈ Fj⋆\{a}, where

⊕
i∈Fj⋆\{a} Mi = M ′. B returns

C⋆ = ((C⋆
i )i∈Fj⋆ , σ⋆, vk⋆), where σ⋆ ← Sig(sk⋆, (C⋆

i )i∈Fj⋆ ).

Artificial Abort. Let Cℓ = ((Cℓ
i )i∈Fjℓ

, σℓ, vkℓ) (1 ≤ ℓ ≤ q) be A’s decryption queries, and we say

C = ((Ci)i∈Fj
, σ, vk) is valid if Ver(vk, σ, (Ci)i∈Fj

) = accept and j = hK(vk). Then, B calculates the
following value t:

t = |Fj⋆\ ∪j∈V Fj |, where V = {jℓ | ℓ ∈ {ℓ | Cℓ is valid}}.

When A outputs b′, then B outputs b′ with probability 1
t , or a random bit with probability t−1

t .

Estimating Probabilities. Now, we estimate Pr[Expind-cpa
B,Π (k) = 1]. Let win.cpa denote an event

that Expind-cpa
B,Π (k) = 1, win.cca denote an event that Expind-cca

A,Π′ (k) = 1, succeed denote an event that
B does not abort the simulation and a ∈ Fj⋆ , forge denote an event that A submits a valid decryption
query which forms C ′ = ((C ′

i)i∈Fj⋆ , σ′, vk⋆) such that (C ′
i)i∈Fj⋆ 6= (C⋆

i )i∈Fj⋆ or σ′ 6= σ⋆, find denote an
event that A submits a valid decryption query which forms C ′ = ((C ′

i)i∈Fj⋆ , σ′, vk′) such that vk′ 6= vk⋆,
and a.abort denote an event that B outputs a random bit in the artificial abort phase. We assume that
Pr[win.cca] = 1/2 + ǫcca. For simplicity, let ideal be an event that forge ∧ find. Then, we have that

Pr[win.cpa] ≥ Pr[win.cpa|ideal] Pr[ideal]

≥ Pr[b′ = b|succeed ∧ a.abort ∧ ideal] Pr[succeed ∧ a.abort|ideal] Pr[ideal]

+
1

2
Pr[succeed ∨ a.abort|ideal] Pr[ideal]. (1)

Let coin be A’s random coin, and R be the set of all possible values of coin. Then, we have the following
lemmas:

Lemma 1. For all R ∈ R, we have that

Pr[b′ = b|succeed ∧ a.abort ∧ ideal ∧ coin = R] = Pr[win.cca|ideal ∧ coin = R].

Proof. This is obvious since B’s simulation is perfect if succeed ∧ a.abort is true. ⊓⊔
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Lemma 2. For all R ∈ R, we have that

Pr[succeed ∧ a.abort|ideal ∧ coin = R] =
1

u
.

Proof. Let Suc(R) denote Pr[succeed|ideal∧coin = R], and t(R) be the value of t (see Artificial Abort.)
according to the decryption queries by A with coin R. If ideal is true, there always exists non-empty
subset D of {1, ..., u} such that D ⊆ Fj⋆ and |D ∩ ∪j∈VFj | = 0 due to the property of the (u, v, q)-
CFF. This implies that succeed occurs if a ∈ D, and therefore, Suc(R) = t(R)/u. On the other hand,
Pr[a.abort|succeed ∧ ideal ∧ coin = R] = 1/t(R) by definition. Then we have that

Pr[succeed ∧ a.abort|ideal ∧ coin = R] = Pr[a.abort|succeed ∧ ideal ∧ coin = R] · Suc(R)

=
1

t(R)
·
t(R)

u
=

1

u
,

which proves the lemma. ⊓⊔

From Lemmas 1 and 2, we have that

Pr[b′ = b|succeed ∧ a.abort ∧ ideal] Pr[succeed ∧ a.abort|ideal] Pr[ideal]

=
∑

R∈R

(Pr[b′ = b|succeed ∧ a.abort ∧ ideal ∧ coin = R]

·Pr[succeed ∧ a.abort|ideal ∧ coin = R] Pr[coin = R|ideal] Pr[ideal])

=
∑

R∈R

(Pr[win.cca|ideal ∧ coin = R] ·
1

u
· Pr[coin = R|ideal] Pr[ideal])

=
1

u
· Pr[win.cca|ideal] Pr[ideal]. (2)

Lemma 3. We have that Pr[succeed ∧ a.abort|ideal] = 1/u.

Proof. From Lemma 2, we have
∑

R∈R Pr[succeed ∧ a.abort|ideal ∧ coin = R] Pr[coin = R|ideal] = 1/u ·∑
R∈R Pr[coin = R|ideal] = 1/u. ⊓⊔

From Eqs. 1, 2 and Lemma 3, we have that

Pr[win.cpa] ≥
1

u
· Pr[win.cca|ideal] Pr[ideal] +

1

2
·
u− 1

u
· Pr[ideal]. (3)

Lemma 4. We have that Pr[ideal] ≥ 1− ǫuf − ǫtcr.

Proof. Event forge immediately implies forgery against SOTS Σ, and event find immediately implies
collision in TCRHF h (namley, for given K and vk⋆, vk′ such that hK(vk′) = hK(vk⋆) is found). Hence,
Pr[ideal] is at most ǫuf + ǫtcr. ⊓⊔

From Eq. 3 and Lemma 4, we have that

Pr[win.cpa] ≥
1

u
· (Pr[win.cca]− ǫuf − ǫtcr) +

1

2
·
u− 1

u
· (1− ǫuf − ǫtcr)

=
1

2
+

1

u
ǫcca −

u + 1

2u
(ǫuf + ǫtcr).

From the above discussions, it can be easily seen that the claimed bound of the running time of B holds
(notice that additional computational time of O(u) is required for calculating t). This completes the
proof of the theorem. ⊓⊔
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3.4 A Variant for Key-Homomorphic Encryption

If the underlying PKE scheme Π has a certain homomorphic property, which is formally defined below,
we can compress the component ciphertexts into one.

Definition 8 (Key Homomorphism). We say a PKE scheme Π is key-homomorphic for operations
〈+, ·〉 if for any two key pairs (dk1, ek1) and (dk2, ek2) of Π, (dk1 + dk2, ek1 · ek2) is also a key pair of Π.

Then, we can modify the encryption algorithm of the above scheme as follows: (sk, vk)← SGen(1k);
j ← hK(vk); C- ← Enc(

∏
i∈Fj

eki,M); σ ← Sig(sk,C-); output C = (C-, σ, vk). M can be recovered by

using
∑

i∈Fj
dki. By this modification, the size of ciphertext can be significantly reduced. ElGamal is

an example of key-homomorphic encryption schemes, and in Sec. 4, we further improve efficiency of the
ElGamal-based construction by removing σ and vk.

3.5 Remarks

Here, we give some remarks which are worth discussing.

Necessity of Artificial Abort. As mentioned before, the artificial abort technique plays an important
role in the security proof. This is primarily due to that we cannot calculate Pr[b′ = b|succeed∧ ideal] but
Pr[b′ = b|succeed ∧ a.abort ∧ ideal]. See Eq. 2 for details.

Injective Maps as TCRHF. It is obvious that there is no collision in injective maps, and therefore
a family of injective maps is considered a TCRHF without any assumption. More specifically, if h :
{0, 1}k × {0, 1}|vk| → {1, ..., v} is a family of such maps, it is (t, 0)-target collision resistant for any t.
However, it should be noted that v ≥ 2|vk| is a necessary condition for existence of injective maps.

Unsuitability of Trivial CFFs. In the above schemes, we notice that the underlying (u, v, q)-CFF is
necessary to satisfy u = O(poly(k)) due to its implementability. Recall that u is the number of key pairs
which are used in the scheme. On the other hand, one might think that v is not required to be Ω(exp(k)),
and that a trivial CFF (i.e. (q + 1, q + 1, q)-CFF) can be utilized. However, this is false. Namely, in our
schemes h : {0, 1}k × {0, 1}|vk| → {1, ..., v} has to be a TCRHF, and one can easily break its security if
v = O(poly(k)). This implies that trivial CFFs are not suitable.

Non-adaptively CCA-secure Construction. If only non-adaptive CCA security is required, the
proposed scheme can be modified into significantly simpler one. The encryption algorithm of the modified

scheme is as follows: j
R
← {1, ..., v}; devide M into (Mi)i∈Fj

such that
⊕

i∈Fj
Mi = M ; Ci ← Enc(eki,Mi)

for all i ∈ Fj ; output C = (j, (Ci)i∈Fj
). Furthermore, in this scheme a trivial CFF (i.e. (q + 1, q + 1, q)-

CFF) is available since security of h is not required to be taken into account. We should note that
artificial abort is still necessary for proving the security of this modified scheme.

Public Verifiablity. In the proposed scheme, validity of a ciphertext is publicly verifiable, and therefore
it is not difficult to extend this scheme to be a threshold cryptosystem. We note that Naor-Yung and its
variants are also publicly verifiable.
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4 Our ElGamal Variant with Optimal Ciphertext Length

In this section, we further reduce the ciphertext length of our proposed scheme by assuming more specific
properties of the underlying CPA-secure PKE schemes. This results in CCA--secure PKE schemes with
optimal ciphertext length, which means that its ciphertext size is the same as that for the underlying
PKE schemes. Especially, we demonstrate a concrete example of this method by using ElGamal as the
underlying PKE scheme, and show that the ciphertext overhead of the resulting scheme is only one group
element, which is the same as the plain ElGamal.

4.1 Basic Idea

Here, we address a general idea for reducing ciphertext overhead of our construction in the previous
section. As shown in Sec. 3.4, component ciphertexts can be compressed to be one if the underlying PKE
scheme is key-homomorphic. Hence, optimal ciphertext length can be achieved if σ and vk are further
removed. We notice that σ and vk are used to provide unduplicatable set selection, and therefore, they
may be removed if there exists another way for providing this functionality rather than SOTS. In our
proposed scheme, unduplicatable set selection without SOTS can be achieved by assuming additional
property of the underlying PKE scheme Π such that a ciphertext of Π consists of two parts C = (c1, c2),
and c1 and c2 are computed as functions of only randomness coin, and of ek, M and coin, respectively.
If Π has this property as well as key-homomorphism, then unduplicatable set selection can be provided
by using c1 part. ElGamal is an example of such an encryption scheme, and we next show a concrete
construction.

4.2 Our ElGamal Variant

In this subsection, we propose a variant of ElGamal encryption which is CCA--secure under the DDH
assumption in the standard model. Ciphertext overhead of the proposed scheme is only one group element
which is considered optimal.

Let G be a multiplicative cyclic group of prime order p and g be a generator of G. Let h : {0, 1}k×G→
{1, ..., v} be a function family where the index space is {0, 1}k , π : {0, 1}k × {0, 1}ℓ → {0, 1}ℓ be a
permutation family where the index space is {0, 1}k , and f : {0, 1}k ×G

2 → {0, 1}k be a function family
where the index space is {0, 1}k . In the security proof, h, π and f are viewed as a TCRHF (or, simply,
a family of injective maps), an SPRP, and a KDF, respectively. Our ElGamal variant Π′ consists of the
following algorithms:

Our ElGamal Variant with Optimal Ciphertext Length

Key generation: For a given security parameter k,

1. generate a (u, v, q)-CFF (L,F) such that L = {1, ..., u},

2. generate G, p and g,

3. xi ← Zp and yi ← gxi for 1 ≤ i ≤ u, K,K ′ R
← {0, 1}k ,

4. output dk = ((xi)1≤i≤u, G, p, g, (L,F),K,K ′) and ek = ((yi)1≤i≤u, G, p, g, (L,F),K,K ′).

Encryption: For given ek and a plaintext M ∈ {0, 1}ℓ,

1. r
R
← Zp, c1 ← gr, j ← hK(c1), y ←

∏
i∈Fj

yi,

2. K ← fK ′(c1, y
r), c2 ← πK(M),

10



3. output C = (c1, c2).

Decryption: For given dk and a ciphertext C ′ = (c′1, c
′
2),

1. j′ ← hK(c′1), x←
∑

i∈Fj′
xi,

2. K
′
← fK ′(c′1, c

′
1
x), M ′ ← π

K
′(c′2),

3. output M ′.

The security of the above scheme is addressed as follows.

Theorem 3. The above scheme Π′ is (t− u · τexp, q, 4(u · ǫddh + ǫkdf + u+1
2 ǫtcr + ǫsprp))-IND-CCA if (t +

τcff +(u−1)τexp+O(u), ǫddh)-DDH assumption holds, h is (t, ǫtcr)-target collision resistant, f is (t, ǫkdf )-
indistinguishable, and π is (t, ǫsprp)-strongly pseudorandom, where τcff and τexp are computational time

for CFF generation and exponentiation over G, respectively.

4.3 Proof of Theorem 3

Now, we give a proof of Theorem 3. The proof idea is basically similar to Theorem 2, but the details
are totally different. Actually, the proof consists of the following two steps: (1) first, we prove that the
above scheme Π′ is secure if K is totally unknown to any adversary and π is an SPRP, and (2) then, we
prove that any adversary cannot obtain any partial knowledge of K.

Security of Session Key. Now, we formally address adversary A’s inability of extracting partial
knowledge of K as follows. Let Expkem

A,Π′(k) denote the following experiment. For a randomly generated

(dk, ek) of the above scheme Π′, ek is given to an adversary A. For c1 ∈ G, let K(c1) be fK ′(c1, c
x
1) where

x =
∑

i∈Fj
xi and j = hK(c1). For a random b ∈ {0, 1}, (c⋆

1,K
⋆
) is given to A where K

⋆
= K(c⋆

1) if

b = 1, or K
⋆

is a random k-bit string otherwise. The adversary is allowed to access a decryption oracle D
which for given c1, returns K(c1). The only restriction is that c⋆

1 is not allowed to submit to D. Finally,
A outputs his guess b′. Define Expkem

A,Π′(k) = 1 if and only if b′ = b. We assume that for any A in time

bound t with at most q queries to D, Expkem
A,Π′(k) = 1 with probability at most 1

2 + ǫkem. We notice that
this is based on the standard security definition of key encapsulation mechanism (KEM) [44].

Then, Theorem 3 can be immediately proved from the following lemmas.

Lemma 5. The above scheme Π′ is (t − u · τexp, q, 4ǫkem + 4ǫsprp)-IND-CCA if π is (t, ǫsprp)-strongly

pseudorandom.

Lemma 6. In the above scheme Π′, ǫkem ≤ u · ǫddh + ǫkdf + u+1
2 ǫtcr if (t+ τcff +(u−1)τexp +O(u), ǫddh)-

DDH assumption holds, h is (t, ǫtcr)-target collision resistant, and f is (t, ǫkdf )-indistinguishable.

4.4 Proof of Lemma 5

Construction of the Simulator. The goal of our simulator B is to distinguish real session key K
from a random key, or to distinguish an instance πK

⋆ of permutation family π from a random permuta-
tion perm. B interacts with a chosen-ciphertext adversary A against the above scheme Π′. Before the
simulation, B flips a random coin COIN ∈ {0, 1}. If COIN = 0, B tries to break security of session key,
or else, B tries to break security of π.

If COIN = 0, B works as follows. For a given public key ek of Π′, B passes it to A. Challenge
(c⋆

1,K
⋆
) is also given to B. For A’s decryption query C = (c1(6= c⋆

1), c2), B asks K = K(c1) to B’s own
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decryption oracle, and returns M such that M = π−1
K

(c2). Also, for A’s decryption query C = (c⋆
1, c2), B

returns M such that M = π−1

K
⋆(c2). When A submits M0 and M1, B picks a random β ∈ {0, 1}, computes

c⋆
2 = πK

⋆(Mβ), and returns C⋆ = (c⋆
1, c

⋆
2) as a challenge ciphertext. B outputs 1 if A’s output is identical

to β, or 0 otherwise.
If COIN = 1, B works as follows. B generates key pair (dk, ek) of Π′, B passes ek to A. B also picks

a random c⋆
1 from G. B responds to A’s decryption query C = (c1(6= c⋆

1), c2) by decrypting it with dk.
Also, for A’s decryption query C = (c⋆

1, c2), B submits c2 to B’s own permutation oracle, which is π−1

K
⋆ or

perm−1. B returns the oracle’s answer to A. When A submits M0 and M1, B picks a random β ∈ {0, 1},
and sends Mβ to B’s own permutation oracle, which is πK

⋆ or perm. Let the oracle’s answer be c⋆
2. B

returns C⋆ = (c⋆
1, c

⋆
2) as a challenge ciphertext. B outputs 1 if A’s output is identical to β, or 0 otherwise.

Estimating Probabilities. In the above simulation, B’s views for [K
⋆

is random ∧ COIN = 0] and
[given permutation is πK

⋆ ∧ COIN = 1] are identical. Let Pr[Expkem
B,Π′(k) = 0|K

⋆
is random ∧ COIN =

0] = Pr[Expsprp
B,π (k) = 1|COIN = 1] = 1

2 + λ. Then, the probability of Expkem
B,Π′(k) = 1 is estimated as

follows.

Pr[Expkem
B,Π′(k) = 1] =

1

2
· Pr[Expkem

B,Π′(k) = 1|COIN = 0] +
1

2
·
1

2

=
1

4
· Pr[Expkem

B,Π′(k) = 1|K
⋆

= K(c⋆
1) ∧ COIN = 0]

+
1

4
· Pr[Expkem

B,Π′(k) = 1|K
⋆

is random ∧ COIN = 0] +
1

4

≤
1

4
· (

1

2
+ ǫcca) +

1

4
· (

1

2
− λ) +

1

4

=
1

2
+

1

4
(ǫcca − λ).

Similarly, the probability of Expsprp
B,π (k) = 1 is estimated as follows.

Pr[Expsprp
B,π (k) = 1] =

1

2
· Pr[Expsprp

B,π (k) = 1|COIN = 1] +
1

2
·
1

2

=
1

2
· (

1

2
+ λ) +

1

4
=

1

2
+

1

2
λ.

Since Pr[Exprnd
B,π(k) = 1] = 1

2 , we have that

ǫsprp,B =
1

2
|Pr[Expsprp

B,π (k) = 1]− Pr[Exprnd
B,π(k) = 1]|

=
1

2
|
1

2
+

1

2
λ−

1

2
| =

1

4
|λ|.

From the assumptions, we have that

ǫkem ≥
1

4
(ǫcca − λ), ǫsprp ≥

1

4
|λ|.

Consequently, we have that

ǫcca ≤ 4ǫkem + λ ≤ 4ǫkem + 4ǫsprp.

From the above discussions, it can be easily seen that the claimed bound of the running time of B holds.
This completes the proof of the lemma. ⊓⊔
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4.5 Proof of Lemma 6

Construction of the Simulator. The goal of our simulator B is to distinguish a Diffie-Hellman tuple
from random one by using a chosen-ciphertext adversary A which can distinguish a valid session key K of
Π′ from a random one. For a given DDH instance (g, gα, gβ , gγ) ∈ G

4, B generates a (u, v, q)-CFF (L,F)
picks a random a from {1, ..., u}, and sets ya ← gα. Then, B generates (xi, yi) for all i ∈ {1, ..., u}\{a}
such that yi = gxi . B also picks randoms K,K ′ from {0, 1}k .

Next, B passes ek = ((yi)1≤i≤u, G, p, g, (L,F),K,K ′) to A as an encryption key of Π′. B also gives
challenge (c⋆

1,K
⋆
) to A, where

c⋆
1 = gβ , K

⋆
= fK ′(gβ , gγ ·

∏

i∈Fj⋆\{a}

(gβ)xi),

and j⋆ = hK(c⋆
1). B responds to A’s decryption query c1 as follows. If a ∈ Fj such that j = hK(c1),

B aborts the simulation and outputs a random b′ ∈ {0, 1}. For c1 ∈ G, let K(c1) be fK ′(c1, c
x
1) where

x =
∑

i∈Fj
xi and j = hK(c1). If a 6∈ Fj , B computes K(c1) and returns it to A.

Artificial Abort. Let cℓ
1 (1 ≤ ℓ ≤ q) be A’s decryption queries, and jℓ be hK(cℓ

1). Then, B calculates
the following value t:

t = |Fj⋆\ ∪ℓ∈{1,...,q} Fjℓ |.

When A outputs b′, then B outputs b′ with probability 1
t , or a random bit with probability t−1

t .

Estimating Probabilities. Now, we estimate ǫddh,B = 1
2 |Pr[Expdh

B,G (k) = 1] − Pr[Exprnd
B,G (k) = 1]|.

Let real denote an event that real session key K is given to A, random denote an event that a random
k-bit string is given to A, fake denote an event that fK(gβ , h1) is given to A (instead of a random k-bit

string) where h1
R
← G, succeed denote an event that B does not abort the simulation and a ∈ Fj⋆ , find

denote an event that A submits a decryption query c1(6= c⋆
1) such that hK(c1) = hK(c⋆

1), and a.abort
denote an event that B outputs a random bit in the artificial abort phase. Then, we have that

Pr[Expdh
B,G (k) = 1] ≥ Pr[Expdh

B,G (k) = 1|find] Pr[find]

≥ Pr[b′ = 1|succeed ∧ a.abort ∧ real ∧ find]

·Pr[succeed ∧ a.abort|real ∧ find] Pr[find]

+
1

2
Pr[succeed ∨ a.abort|real ∧ find] Pr[find]. (4)

Let coin be A’s random coin, and R be the set of all possible values of coin. Then, we have the following
lemmas:

Lemma 7. For all R ∈ R, we have that

Pr[b′ = 1|succeed ∧ a.abort ∧ real ∧ find ∧ coin = R] = Pr[Expkem
A,Π′(k) = 1|real ∧ find ∧ coin = R].

Proof. This is obvious since B’s simulation is perfect if succeed ∧ a.abort is true. ⊓⊔

Lemma 8. For all R ∈ R, we have that

Pr[succeed ∧ a.abort|real ∧ find ∧ coin = R] =
1

u
.
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Proof. Let Suc(R) denote Pr[succeed|real ∧ find ∧ coin = R], and t(R) be the value of t (see Artificial
Abort.) according to the decryption queries by A with coin R. If find is true, there always exists non-
empty subset D of {1, ..., u} such that D ⊆ Fj⋆ and |D ∩ ∪ℓ∈{1,...,q}Fjℓ | = 0 due to the property of the
(u, v, q)-CFF. This implies that succeed occurs if a ∈ D, and therefore, Suc(R) = t(R)/u. On the other
hand, Pr[a.abort|succeed ∧ ideal ∧ coin = R] = 1/t(R) by definition. Then we have that

Pr[succeed ∧ a.abort|real ∧ find ∧ coin = R] =
1

t(R)
·
t(R)

u
=

1

u
,

which proves the lemma. ⊓⊔

From Lemmas 7 and 8, we have that

Pr[b′ = 1|succeed ∧ a.abort ∧ real ∧ find] Pr[succeed ∧ a.abort|real ∧ find] Pr[find]

=
∑

R∈R

(Pr[b′ = 1|succeed ∧ a.abort ∧ real ∧ find ∧ coin = R]

·Pr[succeed ∧ a.abort|real ∧ find ∧ coin = R] Pr[coin = R|real ∧ find] Pr[find])

=
∑

R∈R

(Pr[Expkem
A,Π′(k) = 1|real ∧ find ∧ coin = R] ·

1

u
· Pr[coin = R|real ∧ find] Pr[find])

=
1

u
· Pr[Expkem

A,Π′(k) = 1|real ∧ find] Pr[find]. (5)

Lemma 9. We have that Pr[succeed ∧ a.abort|real ∧ find] = 1/u.

Proof. From Lemma 8, we have
∑

R∈R Pr[succeed∧a.abort|real∧find∧coin = R] Pr[coin = R|real∧find] =
1/u ·

∑
R∈R Pr[coin = R|real ∧ find] = 1/u. ⊓⊔

From Eqs. 4, 5 and Lemma 9, we have that

Pr[Expdh
B,G (k) = 1] ≥

1

u
· Pr[Expkem

A,Π′(k) = 1|real ∧ find] Pr[find] +
1

2
·
u− 1

u
· Pr[find]

≥
1

u
· (Pr[Expkem

A,Π′(k) = 1|real]− ǫtcr) +
1

2
·
u− 1

u
· (1− ǫtcr)

=
1

u
· Pr[Expkem

A,Π′(k) = 1|real] +
u− 1

2u
−

u + 1

2u
ǫtcr. (6)

By a similar discussion as the above, we also have that

Pr[Exprnd
B,G (k) = 0] ≥

1

u
· Pr[Expkem

A,Π′(k) = 0|fake] +
u− 1

2u
−

u + 1

2u
ǫtcr. (7)

Lemma 10. We have that 1
2 |Pr[Expkem

A,Π′(k) = 0|random]− Pr[Expkem
A,Π′(k) = 0|fake]| ≤ ǫkdf .

Proof. It is easy to construct an algorithm which can distinguish an output of fK from a random string
by using A with advantage more than ǫkdf if the above statement is not true. ⊓⊔

From Eqs. 6, 7 and Lemma 10, we have that

1

2
|Pr[Expdh

B,G (k) = 1]− Pr[Exprnd
B,G (k) = 1]|

≥
1

2
|
1

u
· Pr[Expkem

A,Π′(k) = 1|real] +
u− 1

2u
−

u + 1

2u
ǫtcr

−(1−
1

u
· Pr[Expkem

A,Π′(k) = 0|fake]−
u− 1

2u
+

u + 1

2u
ǫtcr)|

≥
1

u
ǫkem −

1

u
ǫkdf −

u + 1

2u
ǫtcr.
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Consequently, we have that ǫkem ≤ u · ǫddh + ǫkdf + u+1
2 ǫtcr.

From the above discussions, it can be easily seen that the claimed bound of the running time of B
holds (notice that additional computational time of O(u) is required for calculating t). This completes
the proof of the theorem. ⊓⊔

4.6 Remarks

Here, we give some remarks on our ElGamal variant.

Reasonability of Assumptions. As discussed above, our ElGamal variant is secure under the DDH
assumption, and existence of a TCRHF, an SPRP, and a KDF. The DDH assumption is widely believed
to be reasonable, and many other schemes, e.g. [20, 17, 33], are based on this assumption. A TCRHF can
be derived from any one-way function. An SPRP can be derived from any PRF by using the four-round
Feistel construction. A KDF can be constructed without any computational assumption by using leftover
hash lemma. (In practice, one can simply assume that a dedicated cryptographic hash function works as
a KDF.) Hence, assumptions that are required in our scheme are considered reasonable.

Compressing Keys. Though the proposed scheme is optimal in terms of ciphertext overhead, the
sizes of both decryption and encryption keys are large. However, the size of a decryption key can be

significantly reduced as follows. Let f : {0, 1}k ×{1, ..., u} → Zp be a PRF, mst
R
← {0, 1}k be a “master”

decryption key, and fmst be an instance of f indexed by mst. Let xi ← fmst(i). Then, (xi)1≤i≤u can be
used as (a part of) the decryption key of the proposed scheme. By this modification, a user has to keep
only mst as his decryption key. On the other hand, it is difficult to compress an encryption key, and this
is still an open problem. In Sec. 6, we show a partial solution for it in which a sender does not need to
store the receiver’s public key but a short state instead [3].

Extending Message Space. For a plaintext M with |M | = n · ℓ for arbitrary n ≥ 2, it is possible to
extend the message space by using the CMC mode of operation [27]. This method does not require any
additional assumption.

5 Comparison

Here, we discuss comparison among ElGamal variants in terms of ciphertext size, and it is summarized
in Table 1. So far, under the DDH assumption the Kurosawa-Desmedt scheme [33] is considered as the
most efficient scheme, and its ciphertext overhead is two group elements and an authentication tag. We
note that it is difficult to remove the authentication tag from the Kurosawa-Desmedt scheme even if an
SPRP is used for the data encapsulation part (like our proposed scheme). This is primarily due to that
the key encapsulation part of the Kurosawa-Desmedt scheme is not CCA-secure [28]. Under stronger
assumptions, e.g. the DBDH assumption [14] or the square-DBDH assumption [32], the authentication
tag can be removed [11, 32]. However, even in these schemes there are still two group elements as
ciphertext overhead. Furthremore, these schemes require bilinear groups. In our ElGamal variant, its
ciphertext overhead is only one group element which can be considered as optimal since this is the same
as the original ElGamal scheme. Moreover, its underlying assumption is the DDH assumption, and it
does not require bilinear groups. This result implies that it is possible to construct a CCA-secure scheme
from an underlying CPA-secure scheme in the standard model without redundancy if the upper bound
of the number of decryption queries is known, e.g. 230.
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Table 1: Efficiency comparison for ElGamal variants in terms of ciphertext size, where |g|, |mac|, and
|M | are sizes for a group element, an authentication tag, and a plaintext, respectively. For concreteness,
one can think of |mac| = 128. DBDH and square-DBDH means the decisional bilinear Diffie-Hellman

assumption [14] and the decisional square bilinear Diffie-Hellman assumption [32], respectively.

ciphertext size assumption security bilinear group

ElGamal [20] 2|g| (|M | ≤ |g|) DDH CPA-secure −

Cramer-Shoup [17] 4|g| (|M | ≤ |g|) DDH CCA-secure −
Shoup [44] 3|g|+ |mac|+ |M | DDH CCA-secure −
Kurosawa-Desmedt [33] 2|g|+ |mac|+ |M | DDH CCA-secure −
Boyen-Mei-Waters [11] 2|g| + |M | DBDH CCA-secure necessary

Kiltz [32] 2|g| + |M | square-DBDH CCA-secure necessary

Proposed (Sec. 4) |g|+ |M | DDH CCA--secure −

6 Compressing Public Key: a Partial Solution

In our ElGamal variant, the size of a public key is large, and hence it is not very practical. However,
this problem can be partially solved by the stateful public key encryption technique [3]. Notice that the
main motivation of [3] is to reduce computational costs for encryption, but in our scheme we apply this
technique for compressing a public key. As a result, a sender only needs to generate and store a short
private state which is significantly compressed from a receiver’s public key.

6.1 Basic Idea

In our ElGamal variant, a sender picks a random r and generates K which is computed as a function of
r and a receiver’s public key. Our basic idea is to store gr and K as the sender’s private state, and re-use
them for multiple times. Then, the sender does not need to store nor read the huge public key any more
by securely keeping his state. However, we should note that the resulting scheme is totally insecure if the
above idea is straightforwardly applied, and therefore a careful discussion is required. We deal with this
issue by replacing an SPRP with a randomized symmetric key encryption which is secure against both

chosen-plaintext and chosen-ciphertext attacks [4] (like [3]).

6.2 Definitions

IND-CCA for Stateful Setting. Due to the existance of the private state, the security definition is
required to be slightly modified. Namely, in addition to the original CCA environment, an adversary is
also given an encryption oracle which for a given plaintext M , returns its corresponding ciphertext C
under a fixed state. The challenge ciphertext C⋆ is also generated under the same state. For details of
the definition, see [3]. We note that the authors of [3] also consider multi-sender setting, but for our
scheme it is sufficient to investigate a simpler setting where we can assume there exists only one sender.

CPA&CCA-Secure Symmetric Key Encryption. A symmetric key encryption (SKE) scheme Π
consists of two PPT algorithms: Π = (SEnc,SDec). The encryption algorithm SEnc takes as inputs
K ∈ {0, 1}k and M ∈M, and outputs ciphertext C ∈ C, where k is a security parameter, and M and C
are the plaintext and ciphertext spaces, respectively. The decryption algorithm SDec takes as inputs K
and C, and outputs M or ⊥, where ⊥ is a distinguished symbol. We require that for all K ∈ {0, 1}k , all
M , and C(= SEnc(K,M)), SDec(K,C) = M .

16



CPA&CCA-security of SKE [4] is defined as follows. Let A = (A1,A2) and k be an adversary and the
security parameter, respectively. Consider the following experiment:

Expske
A,Π(k) : [K

R
← {0, 1}k ; (M0,M1, s)← AD,E

1 ; b
R
← {0, 1};C⋆ ← SEnc(K,Mb);

b′ ← AD,E
2 (C⋆, s); return 1 if b′ = b, or 0 otherwise],

where D is a decryption oracle which for given C, returns M(or ⊥)(= SDec(K,C)), and E is an encryption
oracle which for given M , returns C(= SEnc(K,M)). The only restriction is that C⋆ is not allowed to
submit to D. We define ǫske,A = |Pr[Expske

A,Π(k) = 1]− 1/2|.

Definition 9 (IND-CPA&CCA). We say Π is (t, qd, qe, ǫ)-IND-CPA&CCA secure, if for any A in time
bound t with at most qd and qe queries to D and E, respectively, ǫske,A ≤ ǫ. We say that Π is CPA&CCA-

secure if ǫ is negligible.

It is easy to construct a CPA&CCA-secure SKE by a generic encrypt-then-mac composition [4] with,
for example, AES and HMAC. In this case, its ciphertext overhead will be 80 bits (for IV of AES) + 128
bits (for MAC).

6.3 Construction

Construction of the stateful scheme is the same as our ElGamal variant except for that

• SPRP π is replaced with CPA&CCA-secure SKE (SEnc,SDec). Namely, Encryption algorithm is
modified as c2 ← SEnc(K,M), and Decryption algorithm is modified as M ′ ← SDec(K ′, c′2).

• In Encryption algorithm, r is picked from Zp uniformly at random for the first time. Then, the
sender keeps only (gr,K) as his private state, and erases ek from his storage. From the second
time, for encrypting a message M ′, he only computes c2 ← SEnc(K,M ′) and outputs C = (c1, c2)
where c1 = gr.

Security of the above scheme can be easily proven by a straightforward combination of proofs of Theorem
3 of this paper and Theorem 4.1 of [3]. More specifically, for proving IND-CCA for stateful setting, it
is necessary to simulate an encryption oracle under a fixed state (see Sec. 6.2), and this can not be
straightforwardly done since a given DDH instance is embedded to the state and therefore the simulator
does not know it. However, we can cope with this problem by using properties of a CPA&CCA-secure
SKE with the same proof technique as [3].

6.4 Performance

In the above scheme, a huge public key ek is significantly compressed into a short private state (gr,K)
by each sender. Notice that a sender does not need to keep “gr” part as secret, and can store it even in
a public storage. Due to the use of a CPA&CCA-secure SKE, ciphertext overhead increases for 208 bits
from the original (stateless) scheme. However, the total size of a ciphertext is still shorter than that of
Kurosawa-Desmedt.
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