
Preimage Attack on Hashing with Polynomials

proposed at ICISC’06

Donghoon Chang

Center for Information Security Technologies(CIST),
Korea University, Korea

dhchang@cist.korea.ac.kr

Abstract. In this paper, we suggest a preimage attack on Hashing with
Polynomials [2]. The algorithm has n-bit hash output and n-bit inter-
mediate state. (for example, n = 163). The algorithm is very simple and
light so that it can be implement in low memory environment. Our attack
is based on the meet-in-the-middle attack. We show that we can find a
preimage with the time complexity 2n−t + 2t ∗ (n + 1/33) and the mem-
ory 2t even though the recursive formula H uses any f whose each term’s
degree in terms of x is 2a for a non-negative integer a. We recommend
that hash functions such as Hashing with Polynomials should have the
intermediate state size at least two times bigger than the output size.

Keywords : Hash Function, Polynomial, Preimage Attack.

1 Introduction.

Nowadays, since MD4-style hash function were broken, new style hash functions
are studied intensively. On the other hand, new style hash functions have little
security analysis. So, probably secure hash algorithms are more important. Since
hash functions are used practically, new hash functions must be efficient also.
This paper describe a preimage attack on Hashing with Polynomials which is
totally different from MD4-style hash functions. This means that the algorithm
must be modified. Frankly speaking, even though the algorithm is modified, we
can not have a confidence that the modified algorithm is secure. This means that
provably secure hash function is required.

2 Hashing with Polynomials

R = F2n = F2[x]/(p(x)) where p(x) is an irreducible polynomial of degree n.
α is a root of p(x). P (α) and Q(α) are two elements of R. For a bit ‘0’ or ‘1’,
H(0) = P (α) and H(1) = Q(α). ui(α), v(α) and vi(α) are fixed elements of R.
In [1], f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x·, v1(α) + y · v2(α). In
[2], f(x, y) = s = x ◦ y = x · y + x2 · u1(α) + y2 · u2(α) + v(α). (In this paper,
we show that we can find a preimage even when f of any degree is used.) The

recursive formula H is defined by H(S1S2) = f(H(S1), H(S2)). Then, Hashing
with Polynomials is defined like Fig. 1 and Fig. 2. For example, the author
[1, 2] suggests particular polynomials for Hashing with Polynomials as follows:
p(x) = x163 + x7 + x6 + x5 + x4 + x + 1, P (α) = α7 + 1, Q(α) = α8 + 1,
u1(α) = α2, u2(α) = α, v(α) = v1(α) = 1 and v2(α) = α. However, our attack
does not depend on p(x) and f, i.e. we can find a preimage for any polynomial
p(x) of any degree and f of any degree.

HashPoly(M) = O (n-bit hash output)
M is any bit length (at least 2 bits) message for which M = m0||m1|| · · · ||mt−1 and
each mi is 32-bit for 0 6 i 6 t − 2 and mt−1 has 32 bits at most.

1.Compute the hash hi of each block mi independently, going left to right bit by bit and
using the recursive formula H .
2.Compute the hash of M inductively, going left to right block by block and using the
recursive formula H .
3. Output O which is the final n-bit value.

Fig. 1. Hashing with Polynomials.
.

……

…

Fig. 2. Hashing with Polynomials.

3 Preimage Attack on Hashing with Polynomials

This section, we show a preimage attack on Hashing with Polynomials [1, 2].

Easy to Invert Function f in [1]

Here, we show that it is easy to invert f.

Fig. 3. In [2], f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x · v1(α) + y · v2(α).

f(x, y) = s = x ◦ y = (x + u1(α)) · (y + u2(α)) + x · v1(α) + y · v2(α)

Given any value s, we choose a y and then we can easily get x satisfying above
equation because all terms are fixed values except x.

Easy to Invert Function f in [2]

f(x, y) = s = x ◦ y = x · y + x2 · u1(α) + y2 · u2(α) + v(α)

Given any value s, we choose a y and then we want to get x satisfying above
equation. Since operations used in above equation are defined over F2[x]/(p(x)),
above equation is a linear transformation on x when y is fixed. So, above equation
can be expressed as the following matrix operation where x = (x0||x1||x2|| · · · ||xn−1)
and ci is 0 or 1 and M is a n × n matrix whose element is 0 or 1.

(x0||x1||x2|| · · · ||xn−1)M = (c0||c1||c2|| · · · ||cn−1)

Therefore, we can find x with bit operation complexity about n3 by using
Gaussian elimination method. If y is random, we can expect that we can find a
solution on average. Now we compute the complexity required to make a matrix
M and constants ci’s. We define the complexity 1 as the time of simulating
compression function including one f and one H processing one 32-bit message
block. H have to use f thirty two times for one 32-bit message block. So, we can
make a matrix M and constants ci’s with complexity 1/33. And f requires n2

bit operation complexity at least because f uses the multiplication. Therefore,
we can use the Gaussian elimination method with complexity n at most.

Easy to Invert the generalized Function f

We want to generalize our attack for any f whose each term’s degree in terms
of x is 2a for a non-negative integer a which makes xi, xj independent to each
other. For such any f, when y are fixed, f is a linear transformation on x. So we
can express f as the matrix operation. So, we can apply above result similarly.

the Meet-in-the-Middle Attack

Hashing with Polynomials [1, 2] uses Merkle-Damg̊ard-construction and use a
function f easy to invert. And the size of intermediate value is same as that of
the hash output value. This means we can apply the meet-in-the-middle attack
as follows.

……

Fig. 4. Merkle-Damg̊ard Construction : Meet-in-the-Middle Attack.

Given an output O, we choose any mi ∼ mt−1 and get hi ∼ ht−1 corre-
sponding to them by the recursive function H . Then we can know the value in
∗ in Fig. 4 and store it in a table. Like this, we repeat to choose mi ∼ mt−1

2t times and repeat to store the value in ∗ in Fig. 4 by inverting f as explained
above. Then we choose randomly m0 ∼ mi−1 and get the value in ∗ and then
check if the value is in the table. If there is the value in the table, we can know
a preimage of the hash output O. According to the birthday attack, it is enough
to repeat to choose m0 ∼ mi−1 2n−t times. Therefore, we can find a preimage
with the time complexity 2n−t + 2t ∗ (n + 1/33) and the memory 2t.

4 Conclusion

In this paper, we show a preimage attack on Hashing with Polynomials. Our
attack does not depend on f of any degree. We can find a preimage in case of
using f whose each term’s degree in terms of x is 2a for a non-negative integer a.
We comment that the size of the intermediate value should be at least two times
bigger than that of the hash output. Even though the algorithm is modified,
more careful analyses on it are required.

Acknowledgement

We thank prof. Jaechul Sung for his valuable comment.

References

1. V. Shpilrain, Hashing with Polynomials, http://www.sci.ccny.cuny.edu/ sh-
pil/hashpoly.pdf.

2. V. Shpilrain, Hashing with Polynomials, ICISC’06, LNCS 4296, pp. 22-28, 2006.

