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Abstract. We propose public-key cryptosystems with public key
a system of polynomial equations and private key an ideal.

1. Introduction

This paper focuses on Hidden Monomial Cryptosystems, a class of
public key (PK) cryptosystems first proposed by Imai and Matsumoto
[3]. In this class, the PK is a system of polynomial nonlinear equa-
tions. The private key is the set of parameters that the user chooses
to construct the equations. Before we discuss our variations, we re-
view briefly a simplified version of the original cryptosystem, better
described in [5].

Throughout this paper the parties committed to the tasks are:

• Alice who wants to receive secure messages;
• Bob who wants to send her secure messages;
• Eve, the eavesdropper.

Alice takes two finite fields Fq ⊂ K, q a power of 2, and β1, β2, . . . , βn

a basis of K as an Fq-vector space. Next she takes 0 < h < qn such
that h = qθ + 1, and gcd(h, qn − 1) = 1. Then she takes two generic
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) upon Fq, and sets:

(1) v = uqθ

u.

The condition gcd(h, qn − 1) = 1 is equivalent to requiring that the
map u 7−→ uh on K is 1↔1 ; its inverse is the map u 7−→ uh′

, where
h′ is the inverse multiplicative of h modulo qn − 1.

In addition, Alice chooses two secret affine transformations, i.e., two
invertible matrices A and B with entries in Fq, and two constant vectors
c = (c1, . . . , cn) and d = (d1, . . . , dn), and sets:

(2) u = Ax + c and v = By + d.
1
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Recall that the operation of raising to the qk-th power in K is an

Fq-linear transformation. Let P (k) = {p(k)
ij } be the matrix of this linear

transformation in the basis β1, β2, . . . , βn, i.e.:

(3) βqk

i =
n∑

j=1

p
(k)
ij βj, p

(k)
ij ∈ Fq,

for 1 ≤ i, k ≤ n. Alice also writes all products of basis elements in
terms of the basis, i.e.:

(4) βiβj =
n∑

`=1

mij`β`, mij` ∈ Fq,

for each 1 ≤ i, j ≤ n. Now she expands the equation (1). Equalizing
to zero the coefficients of the βi, she obtains a system of n equations,
explicit in the v, and quadratic in the u. She uses now her affine
relations (2) to replace the u, v by the x, y. She obtains n equations,
linear in the y, and of degree 2 in the x. Using linear algebra, she can
get n explicit equations, one for each y as polynomials of degree 2 in
the x. Alice makes these equations public.

In order to send her a message (x1, x2, . . . , xn), Bob substitutes it
into the public equations. He obtains a linear system of equations in
the y. He solves it, and sends y = (y1, y2, . . . , yn) to Alice.

To eavesdrop, Eve has to substitute (y1, y2, . . . , yn) into the pub-
lic equations, and solve the nonlinear system of equations for the un-
knowns x.

When Alice receives y, she decrypts:

y1, y2, . . . , yn

⇓
v = By + d

⇓
v =

∑
viβi

⇓
u = vh′

⇓
x = A−1(u− c).

In Eurocrypt ′88 [4], Imai and Matsumoto proposed a digital signa-
ture algorithm for their cryptosystem.

At Crypto ′95, Jacques Patarin [7] showed how to break this cryp-

tosystem. He noticed that if one takes the equation v = uqθ+1, raises
both sides on the (qθ − 1)-th power, and multiplies both sides by uv,
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he gets the equation uvqθ
= uq2θ

v that leads to equations in the x,
y, linear in both sets of variables. Essentially the equations may not
suffice to identify uniquely the cleartext, but now even an exhaustive
search will be feasible.

The system was definitively insecure and breakable, but its ideas
inspired a whole class of PK cryptosystems and digital signatures based
on structural identities for finite field operations [1, 5, 8, 9, 2]. The
security of this class rests on the difficulty of the problem of solving
systems of randomly chosen nonlinear polynomial equations.

If a system were indeed random, Alice too would have no priviledge
on solving it. Therefore she chooses the system in such a way that she
can solve it in virtue of some private information and renders it public
resembling a random system as much as possible.

This paper is organized as follows. In the next section we develop
an our own, new cryptosystem. Alice builds her PK by manipulations
as above, starting from a certain private system of equations.

In the third section we make some due observations, and discuss
some security issues. In the fourth one we provide another, new, cryp-
tosystem.

2. A New Cryptosystem

Fix one finite field F, we will not need extensions. It can be anything,
to fix ideas take it F2. We set a limit 2m to the complexity of Alice, for
example, 210 or less. For a row vector x, xt denotes the column vector
transposed x.

Alice is going to build a cryptosystem with public key a quadratic
system of n equations in n variables x1, x2, . . . xn. She does the follow-
ing.

(1) for (int i from 1 to b n
m
c)

Randomly generate a quadratic system of m equations vm(i−1)+1,
. . . vmi in the i ·m variables u1, u2, . . . ui·m.

(2) Randomly generate a quadratic system of n%m equations vb n
m

c+1,
. . . vn in n variables u1, u2, . . . un.

(3) Put all n equations together: v = (v1, v2, . . . vn).
(4) Randomly generate two n× n invertible matrices A and B.
(5) Set

(5) u = Axt

(6) v = Byt

for x = (x1, x2, . . . xn) and y = (y1, y2, . . . yn).
(6) Explicitely solve with respect to the y.
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The system y is Alice’s public key. Her private key is A, B, v.
Bob to encrypt a string x = (x1, x2, . . . xn) simply substitutes it to

the public key and sends the result y = (y1, y2, . . . yn) to Alice.
Alice to decrypt does the following.

(1) Substitute the received ciphertext in the righthand of her public
key yi = p(x1, x2, . . . xn).

(2) Recover a system of equations in the u by means of equation 6.
(3) Solve this system by means of Buchberger algorithm.
(4) Recover x by means of equation 5.

3. Remarks

It is a commonplace in Commutative Computer Algebra community
that systems of equations with few solutions are easier to solve, and
those with no solutions at all are still easier. Nonetheless, theoretically
both tasks remains of exponential complexity in n if the system is
randomly generated.

Solving the system v by Buchberger is easy. We start from calcu-
lating the Groebner basis of the block of m equations in m variables,
it will take about 2m bit operations. The m being small, this poses no
problem. Then replace the solutions found in the remainder of the sys-
tem and go forth solving the second block, until the end. Branching is
likely when some block has more than one solutions. Some branchess
are expected to die out before the end as some blocks will not have
solutions for some partial solutions of the system.

The system will have at least one solution, the cleartext. It may
have more than one. A random system in n equations in n variables
over a finite field has one solution with probability 1. Handling the
problem of more than one solution can be done either by adding few
more equations to the system y or by means of Coding Theory, as it is
often done at present.

The overall size of the public key is O(n3) because writing down
a random quadratic system of n equations and n variables is cubic.
Nonetheless, encryption is extremely fast.

In decryption, the complexity of the Gröbner basis calculation is
bounded by n

m
· 2m. Therefore it grows linearly with n.

One may choose blocks of various lengths in the system v. This is
counterproductive since solving two systems of k equations each will
take 2 · 2k bit operations while solving two systems of k + 1 and k − 1
equations will take 2k−1 + 2k+1 bit operations.

Taking m very small is inviting. In the limit case m = 1 we fall
within a (generally bad) case of the cryptosystem in the next Section.

Thus, in general blocklengths of the private system will differ by at
most one. In order to have the private system as random as possible,
it is better to order the smaller blocks in the beginning (with less
variables).
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The constant part of the equations in the private system may be
erased for being useless. Indeed, from Eve’s viewpoint there exists
another private system v’ without constant part.

The main data to Eve is the public key. By brute force she may
take (y1, y2, . . . , yn), substitute it in the public key equations, solve the
system within the base field, and take the sensate solution. Supposedly,
the solution of the system will pass through the complete calculus of a
Gröbner basis. It is known to be an NP-complete problem.

4. Yet Another Cryptosystem

Wishing to make the cryptosystem more deterministic, we have the
following choices. Alice fixes a base field F. She builds a random system
of equations as follows.

(1) Build the system of equations:

(7)



v1 = p1,1(u1)
v2 = p2,1(u2) + p2,2(u1)
v3 = p3,1(u3) + p3,2(u1, u2)
v4 = p4,1(u4) + p4,2(u1, u2, u3)
. . . . . . . . .
vn = pn,1(un) + pn,2(u1, u2, u3, . . . un−1)

(2) Set

(8) u = Axt

(9) v = Byt

(3) Explicitely solve the system with respect to the yi.

Again the system y is Alice’s public key and A, B and the system v
are her private key. Encryption is identic to the previous cryptosystem.
Decryption will provide for solution of low-degree univariate polynomi-
als in order to recover u.

All the pi,j polynomials are taken quadratic or pseudoquadratic over
F. The pi,1 are furthermore chosen to be permutation polynomials. For
the rest they are randomly chosen.

Though the public key system can be with coefficients from any field,
the system in the u and the v must be with coefficients not from F2

and F4.
Consider first the case F = F2. There are only linear polynomials

with roots in F2. Therefore Eve knows that the variety generated by
the public key system rests on a hyperplane in the space F2n

2 . She can
calculate this hyperplane by evaluating many enough cleartexts and
knowing that the tuples (x,y) rest there. Having calculated it and
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added it to the public key, by means of this linear equation Eve can
get rid of a variable from the public key.

Now again she knows that the whole variety rests upon a hyperplane.
Again she can calculate it and so forth by finite induction she recovers
the linear system that the reduced Gröbner basis that the system v
hides.

The case F = F4 is similar. In F4 inversion is elevation in power 2,
therefore a linear operation. All permutation polynomials over a finite
field are compositions of translations and inversion [6]. Therefore, all
permutation polynomials represent affine transformations. Again Eve
will know that the public key variety will rest upon some hyperplane
and we are brought to the case F2.

All the other finite fields appear to be good.
These restrictions apply only to the private key system. The public

key equations can be over any field. Indeed, once Alice generates the
public key system, she may write it as a system over the prime field.

Combinations and variations of the two cryptosystems can be done
in many fashions. All of this information can be kept private but the
security of the cryptosystem does not rely on it.
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