
Long-term Security and Universal Composability∗

Jörn Müller-Quade

IKS, Universität Karlsruhe

m e l r @ r . k . eu l e q i a u a d

Dominique Unruh

Saarland University

u r h m c . n - a r a d dn u @ m i u i s a l n . e

April 28, 2010

Abstract

Algorithmic progress and future technological advances threaten today’s cryptographic
protocols. This may allow adversaries to break a protocol retrospectively by breaking
the underlying complexity assumptions long after the execution of the protocol. Long-
term secure protocols, protocols that after the end of the execution do not reveal
any information to a then possibly unlimited adversary, could meet this threat. On
the other hand, in many applications, it is necessary that a protocol is secure not
only when executed alone, but within arbitrary contexts. The established notion of
universal composability (UC) captures this requirement.

This is the first paper to study protocols which are simultaneously long-term secure
and universally composable. We show that the usual set-up assumptions used for UC
protocols (e.g., a common reference string) are not sufficient to achieve long-term
secure and composable protocols for commitments or zero-knowledge protocols.

We give practical alternatives (e.g., signature cards) to these usual setup-
assumptions and show that these enable the implementation of the important primi-
tives commitment and zero-knowledge protocols.

Keywords: Universal Composability, long-term security, zero-knowledge, commit-
ment schemes.

∗A short version of this paper appeared at TCC 2007 [MQU07].

Contents

1 Introduction 3
1.1 The notion of long-term UC security . 3
1.2 Impossibility results . 5
1.3 Possibility results. 9
1.4 Related work . 10
1.5 Organisation . 12

2 Preliminaries 12
2.1 Notation . 12
2.2 Cryptographic tools . 13

3 Modelling composable long-term security 13
3.1 UC framework . 13
3.2 Long-term UC . 17
3.3 Conventions . 21
3.4 Functionalities . 22

4 Commitments 23
4.1 Impossibility results . 23
4.2 Commitments from zero-knowledge protocols 27
4.3 Commitment protocols from a PKI . 29
4.4 Statistically hiding UC commitments are not always long-term UC 32

5 Zero-knowledge protocols 36
5.1 Impossibility when using LTR functionalities 36
5.2 Impossibility when using offline functionalities 47
5.3 Generalising LTR . 52

6 Possibility results from non-standard setup assumptions 55
6.1 Trusted devices implementing a random oracle 55
6.2 Signature cards . 59

7 Conclusions 68

A Technical lemmas 69

References 77

Index 82

2

1 Introduction

Computers and algorithms improve over time and so does the ability of an adversary to
break cryptographic protocols. The VENONA project is an example where the NSA (USA)
and the GCHQ (U.K.) stored Russian ciphertexts over years until these ciphertexts could
eventually be cryptanalysed. Official key length recommendations, e.g., by the Federal
Office for Information Security (BSI) in Germany, are valid for no more than six years,
and future technology like quantum computers could render even paranoid choices for the
key length obsolete. This threatens in particular data that is required to remain confiden-
tial for many years (e.g., medical data or government secrets). In other words, while we
can be reasonably confident that cryptographic assumptions are indeed valid for today’s
adversaries, it is very uncertain what computational problems will still be considered hard
a decade from now. This leads to the requirement of long-term security (a.k.a. everlasting
security). A long-term secure protocol is based on temporary assumptions, assumptions
that only have to hold during the execution of the protocol. These protocols should be
secure even if the adversary becomes computationally unlimited after the protocol execu-
tion. However, in contrast to unconditional security, which is not based on computational
assumptions at all, for long-term security, computational assumptions need to hold during
the execution of the protocol. This reflects the fact that we can judge more or less precisely
what the current state of the art is. A long-term secure protocol will be robust against
future technological advances on the part of the adversary.

However, when considering protocol executions in complex environments (the Internet
being the foremost example), long-term security alone will not be enough to guarantee
the integrity and confidentiality of one’s data. It may happen that a protocol is long-term
secure when executed in isolation, but becomes insecure when executed in larger contexts,
e.g., as a subprotocol of some other protocol or concurrently with instances of the same or
other protocols. This is also bothersome if one tries to modularly build up a protocol from
smaller ones and wants to prove the security of the separate building blocks individually.
Therefore a strong notion of long-term security should also have strong composability
properties that guarantee the (long-term) security of the protocol even if this protocol is
executed in a larger context.

While long-term security has been (explicitly or implicitly) considered in a number
of works (see Section 1.4), to the best of our knowledge, so far there have been no gen-
eral definitions of long-term security (i.e., not specific to a particular protocol task like
commitment or key-exchange) and no positive composability results. In this paper, we
investigate the requirements resulting from such a strong notion and give both positive
and negative results for two important cryptographic building blocks, commitments and
zero-knowledge protocols.

1.1 The notion of long-term UC security

In order to explain our definition of long-term UC security, we briefly recall the main
idea behind the notion of computational UC security as presented in [Can01]. In the UC
model, security is defined by comparison of a so-called real protocol π with its specification,
the so-called ideal functionality F . The ideal functionality F is a trusted machine that

3

(usually) performs the desired protocol task directly, without involving any cryptography.
For example, a functionality FCOM for commitments would take a value m from the
sender in the commit-phase and notify the recipient that some value has been committed
to (without revealing m). In the unveil-phase, the functionality FCOM would send m
to the recipient (without allowing the sender to change m). Obviously, FCOM is a secure
commitment by definition. We say π computationally UC emulates F if for any polynomial-
time adversary A (attacking the real protocol π) there is a polynomial-time simulator S
(attacking the ideal functionality F) such that for any polynomial-time machine Z (called
the environment) the outputs of Z in an execution of the network π + A + Z (the real
model) and in an execution of the network F+S+Z (the ideal model) are computationally
indistinguishable. If π computationally UC emulates F , any attack performed by A can be
mimicked by S, hence intuitively π is as secure as F which in turn is secure by definition
(as it is the specification of the protocol task at hand).

The notion of computational UC security has the advantage of giving strong compo-
sitionality guarantees: If π computationally UC emulates F , then a protocol σπ using π
as a subprotocol computationally UC emulates the protocol σF which invokes F instead
of π (this is the so-called universal composition theorem [Can01]). Hence it is enough to
analyse the (partially idealised) protocol σF (which in most cases will be much simpler).
Then, the security properties of σF carry over to the more complex protocol σπ.

However, computational UC security does not guarantee long-term security: Since all
machines (the adversary, the simulator, and the environment) are polynomially bounded,
it is not excluded that the real protocol π can be broken by investing a superpolynomial
amount of work after the protocol execution. This threat can be covered by requiring
statistical UC security: The real protocol π statistically UC emulates the ideal functionality
F if for any possibly unbounded adversary A there is a simulator S (whose running time
is polynomially bounded in that of A) such that for any possibly unbounded environment
Z the outputs of Z in an execution of the network π +A+ Z and in an execution of the
network F + S + Z are statistically indistinguishable. This definition is certainly strong
enough to give long-term security guarantees. Yet, as this definition does not allow us to
use any computational assumptions, it is too strong for most applications. For example,
a commitment scheme satisfying this definition would have to be both statistically hiding
and statistically binding; this is well-known to be impossible.

In order to extend the UC definition to encompass long-term security, we need to allow
adversary, simulator, and environment to be computationally unlimited after the protocol
execution (but not during the protocol execution). This could be modelled by explicitly
introducing two execution phases, one in which the protocol runs and adversary, simulator,
and environment are polynomially-bounded, and a second phase in which no protocol
machine is allowed to run and adversary, simulator, and environment are unbounded.1

Furthermore, the output of the environment should be statistically indistinguishable in the
real and the ideal model. Yet, introducing these two phases unnecessarily complicates the
details of the model. Instead, we can make use of a simple observation: It is a well-known
fact that without loss of generality, we can assume that the adversary only passes messages

1One might, as in the case of statistical UC, restrict the simulator to be polynomially bounded in the
running time of the adversary in the second phase. However, this does not make a difference for the
argument below and leads to the same security definition.

4

between the protocol and the environment, but does not perform any computations on
its own (a so-called dummy-adversary [Can01]). Hence, when the protocol stops, we may
assume that the dummy-adversary stops execution, too. If the dummy-adversary does not
send any messages anymore, the simulator may also stop execution (since there is nothing
to simulate). Thus, we may assume that after protocol execution, neither adversary nor
simulator runs, and the environment only applies a (possibly inefficient) function to its
output, but is polynomially bounded otherwise. Yet, applying such a function to the
output of the environment cannot increase the statistical distance between the output in
the real and in the ideal model, so we can even omit this post-protocol computation and
get the following definition of long-term UC security :

Definition 1.1 (Long-term UC security – informal). A real protocol π long-term
UC emulates the ideal functionality F if for any polynomial-time adversary A there is
a polynomial-time simulator S such that for any polynomial-time environment Z the
outputs of Z in an execution of the network π +A+Z and in an execution of the network
F + S +Z are statistically indistinguishable.

Summarising, the definition of long-term UC security captures the intuitive requirement
of being secure against attacks of unbounded computational power after the protocol
execution. It is not hard to see that long-term UC security is strictly stronger than com-
putational UC security and strictly weaker than statistical UC security (see Section 3.2).
Yet, the universal composition theorem also holds for long-term UC security (with an
almost unmodified proof, see Section 3.2).

1.2 Impossibility results

1.2.1 Impossibility results for commitments.

We investigate whether it is possible to give long-term UC secure implementations of
commitments; more precisely, whether there are protocols that long-term UC emulate the
functionality FCOM for commitments. (Note that long-term UC secure commitments are
something stronger than statistically hiding, computationally UC secure commitments;
cf. Section 1.2.3 below.) It is well-known that even with respect to computational UC,
it is impossible to implement commitments without using any special setup assumptions
[CF01, CKL03]. Instead, one has to assume that the real protocol has access to an ideal
functionality like a common reference string (CRS) or a public key infrastructure (PKI).

We show that even with these (standard) setup assumptions, it is impossible to imple-
ment a long-term UC secure commitment protocol. To give a rough idea for the reason
of this impossibility, we sketch why it is impossible to implement a long-term UC secure
commitment using a CRS: Assume a protocol π that long-term UC emulates a commit-
ment between a sender and a recipient. Assume that the sender commits to a random
bit b. Then, because a long-term UC secure commitment must be statistically hiding, the
view of the recipient is almost independent of b. Since the CRS-functionality gives the
same random value to the sender and the recipient, the view of the sender equals the view
of the recipient, hence also the view of the sender is independent of b (here by view we
mean the sequence of messages sent and received by the sender, not including its input b
or its randomness). Furthermore, to satisfy the UC definition, the protocol π needs to be

5

extractable (this holds even for computational UC). That is, when interacting with the
sender, the simulator needs to be able to extract b from the messages sent by the sender.
However, since the view of the sender is independent of b, this is impossible.

The only property of the CRS functionality that we actually used was that the com-
munication from the functionality to the sender could be computed from the interaction
from the functionality to the recipient. Furthermore, although in the case of the CRS,
this computation is efficient, we did not use this fact. Hence, the above argument can be
generalised to cover a large class of setup assumptions, which we call long-term revealing
(LTR).

Definition 1.2 (Long-term revealing – informal). Let P be a party identifier. A
functionality F is called long-term revealing (LTR) for P if the following holds: In any
protocol (where the protocol includes F , and specifies some implementation of the party
P , and possibly other machines), the communication2 between P and F can be derived
(possibly by applying a inefficient function) from the communication between F and all
parties except P .

If a functionality F is LTR for P , any secrets that P and F have established during
the protocol run will eventually be learned by a adversary that is unbounded after the
protocol execution. (Note that the definition does not imply that any such secrets between
P and F are established. If no such secrets are established, the definition holds vacuously.)

Thus, using a similar argument as in the case of the CRS, we get the following theorem:

Theorem 1.3 (Impossibility of commitments using LTR functionalities – infor-
mal). No long-term UC secure protocol for commitments with sender C can be imple-
mented using a functionality that is LTR for C.

Many commonly used setup assumptions are LTR functionalities. Indeed:

• The CRS is LTR for all parties because all parties get the same value.

• For the same reason, a coin-toss is LTR for all parties.

• A PKI is LTR for all parties assuming that the public key uniquely determines the
corresponding secret key.

• The commitment functionality is LTR for the recipient.

As a corollary we get that, with respect to long-term UC security, commitments cannot
be “turned around”: Since a commitment from R to C is LTR for C, it cannot be used to
implement a long-term UC secure commitment from C to R.

2We stress that this refers to the bi-directional communication between P and F . In the case of the
CRS, there was only communication from F = FCRS to P .

6

1.2.2 Impossibility results for zero-knowledge protocols.

We then show that, in general, it is impossible to implement long-term UC secure zero-
knowledge protocols3 using LTR functionalities. In order to describe the impossibility
result, we first need to define a certain class of relations:

Definition 1.4 (Essentially unique witnesses – informal). A relation R has essen-
tially unique witnesses if there is a polynomial-time algorithm UR (the witness unifier)
with the following two properties: On input (x,w) ∈ R, UR outputs a witness w′ with
(x,w′) ∈ R. For (x,w1), (x,w2) ∈ R, the distributions of UR(x,w1) and UR(x,w2) are
statistically indistinguishable.

In other words, for a relation with essentially unique witnesses it is possible to efficiently
produce a “normal form”w′ = UR(x,w) of a witness w in such a way that it is information-
theoretically impossible to find out from which of x’s witnesses the witness w′ was derived.

A special case are relations where each statement has at most one witness (relations
with unique witnesses). In this case, if UR(x,w) just outputs w, UR fulfils Definition 1.4.
Hence relations with unique witnesses are a special case of relations with essentially unique
witnesses.

For relations that do not have essentially unique witnesses, we get the following im-
possibility result:

Theorem 1.5 (Impossibility of zero-knowledge protocols using LTR function-
alities – informal). If R does not have essentially unique witnesses, no long-term UC
secure zero-knowledge protocol for the relation R with prover P can be implemented using
a functionality that is LTR for P .

The reader might wonder whether Theorem 1.5 can be strengthened to show that for any
nontrivial relation R, long-term UC secure zero-knowledge protocols using LTR function-
alities are impossible. However, this is not the case: We present a long-term UC secure
zero-knowledge protocol for showing the knowledge of the factorisation of a Blum-integer
using an LTR functionality. Assuming that the factorisation of Blum-integers is a hard
problem, this constitutes a long-term UC secure zero-knowledge protocol for a nontrivial
relation. Thus, although it is not clear whether this protocol has practical applications, it
at least shows that the condition on R in Theorem 1.5 is necessary.

Yet, we can weaken the condition on R if we strengthen the conditions on the func-
tionality: We call a functionality offline if it distributes some values to all parties at the
very start of the protocol and then stops. Examples for offline functionalities are the CRS
(which sends the same random value to all parties and then stops) and the PKI (which
sends the secret key to a single party and the public key to all parties and then stops).
We have the following theorem:

Theorem 1.6 (Impossibility of zero-knowledge protocols using offline LTR func-
tionalities – informal). Let R be a nontrivial relation.4 Then no long-term UC secure

3By a long-term UC secure zero-knowledge protocol we mean a protocol that long-term UC securely
implements the zero-knowledge functionality FZK. This functionality takes a pair (x, w) from the prover,
and if w is a witness for x, then the functionality gives x to the verifier.

4That is, a relation that cannot be decided in non-uniform polynomial time.

7

zero-knowledge protocol for the relation R with prover P can be implemented using an
offline functionality that is LTR for P .

This rules out any useful long-term UC secure zero-knowledge protocol that uses only a
CRS or a PKI.

1.2.3 Statistically hiding, computationally UC secure commitments.

Intuitively, a long-term UC secure commitment scheme gives the following two guaran-
tees: First, it guarantees that the committed value stays secret even in the presence of
adversaries that are computationally unbounded after the protocol execution; this would
also be guaranteed if the protocol was statistically hiding. Second, long-term UC security
guarantees composability within arbitrary protocols; this would also be guaranteed by
computational UC security. This observation may lead to the following conjecture:

Conjecture (false): If a commitment scheme is statistically hiding, and also
computationally UC secure,5 then it is long-term UC secure.

Indeed, commitment schemes that are both statistically hiding and computationally UC
secure are known [DN02] (based on a CRS). So if this conjecture was true, it would imme-
diately give us long-term UC secure commitment schemes based on a CRS. Unfortunately,
from our impossibility results it follows that such schemes do not exist, hence the conjec-
ture must be false.

In order to give a better intuition about why a statistically hiding, computationally
UC secure commitment scheme may fail to be long-term UC secure, we roughly sketch
why the scheme from [DN02] (called the DN-commitment hereafter) fails to be long-term
UC secure:

The basic idea behind the DN-commitment is very roughly the following: The set of
possible values of the CRS is partitioned into two computationally indistinguishable sets
E and E∁. The DN-commitment scheme is designed in such a way that if the CRS is
in E, then the commitment is statistically hiding. However, if the CRS is in E∁, then
the commitment is extractable (given a certain trapdoor, the committed message can
be extracted) and equivocable (given a certain trapdoor, the committed message can be
changed after the commit phase). In particular, if the CRS is in E∁, the DN-commitment
scheme is only computationally hiding. In a normal execution, the CRS will always be
chosen from E, hence the scheme is statistically hiding. To show the computational UC
property, however, one constructs a simulator that chooses the CRS from E∁. In this case,
the simulator is able to use the extractability and equivocability to perform its simulation.

Since the simulator chooses the CRS from a different set E∁ than the CRS in the
real execution, the simulated protocol execution is not statistically indistinguishable from

5To avoid confusion, note that this is a different notion than requiring that the commitment scheme is
both long-term stand-alone secure and computationally UC secure. Long-term stand-alone security would
be defined in terms of the stand-alone model in secure multi-party computation (in which no interaction
between the adversary and the environment takes place; see, e.g., [Gol04, Chap. 7]) with the only modi-
fication that the simulation in the ideal model must be statistically indistinguishable from the outputs in
the real model (instead of computationally indistinguishable). We leave it as an open question what the
implications of long-term stand-alone secure, computationally UC secure commitments are.

8

the real execution. Hence the DN-commitment is not long-term UC secure in the sense
of Definition 1.1 although it is both computationally UC secure and statistically hiding
individually. The intuitive reason is that the DN-commitment is not simultaneously sta-
tistically hiding and computationally UC secure within a single execution.

This shows that the above conjecture is false in general. One might still argue that this
is a problem of our definition (i.e., that long-term UC security is too strong a notion), and
that statistically hiding, computationally UC secure commitment schemes are good enough
for all purposes. To show that this is not the case, we present a simple (though contrived)
protocol π with the following property: When π uses ideal commitments, Alice’s input m
is kept secret even in the presence of unbounded adversaries. Yet, when we instantiate the
ideal commitments in π with the DN-commitment scheme, then m can be extracted by an
adversary that is computationally bounded during the protocol execution, but unbounded
afterwards. In other words, the DN-commitment scheme looses its long-term security
when composed.

1.3 Possibility results.

As the commonly used setup assumptions do not allow us to construct long-term UC
secure commitments and zero-knowledge protocols, we present two practically motivated
setup assumptions (based on [HUMQ07]) which do allow us to construct such protocols.

The first of these setup assumptions is a trusted pseudorandom function (TPF). A TPF
represents a piece of trusted hardware that computes a pseudorandom function [GGM86]
but does not (explicitly) reveal the seed of that function. Of course, the seed may be
implicitly determined by the answers to sufficiently many queries to the TPF, but finding
the seed based on these answers is infeasible. We assume that all parties have access to
TPFs implementing the same function.

The second setup assumption is a signature card. A signature card represents a piece of
trusted hardware that computes signatures on arbitrary messages for its owner, but never
(explicitly) reveals its signing key (as in the case of TPFs). The corresponding verification
key, however, is publicly known. The practical advantage of assuming signature cards is
that such signature cards are commercially available.

In the following exposition, we concentrate on signature cards, but analogous reasoning
and results hold for TPFs.

At the first glance, it seems that signature cards are LTR for all parties and thus cannot
be used to construct long-term UC secure commitments or zero-knowledge protocols: A
computationally unbounded machine can compute the the signature card’s signing key
from the verification key, and thus compute the answers to any query made by the owner
of the signature card. However, upon closer inspection, it turns out that signature cards
are not LTR for their owner: Although an unbounded machine could compute the answers
to all queries made to the signature card, it cannot determine which queries were actually
made.

We give a long-term UC secure zero-knowledge protocol π that uses signature cards.
On input a statement x and a corresponding witness w, the prover obtains a signature σ on
w from the signature card and then proves using a statistically witness indistinguishable
argument of knowledge (not necessarily UC secure) that one of the following is true:

9

(a) The prover knows strings σ and w such that σ is a valid signature on w, and w is a
witness for x, or

(b) the prover knows the secret signing key of the signature card.

We can show that this protocol is long-term UC secure even if polynomially many
instances of the protocol are run concurrently, sharing a single signature card.6 This is
very important for practical applications as it would be impractical to expect the user to
use a fresh signature card for each and every zero-knowledge protocol he executes.

Given long-term UC secure zero-knowledge protocols, we can construct long-term UC
secure commitments using standard techniques.

Combining these results, we get the following theorem:

Theorem 1.7 (Long-term UC secure protocols from signature cards – informal).
Using a single signature card (and assuming the existence of one-way functions), we can ex-
ecute an arbitrary (polynomially-bounded) number of long-term UC secure zero-knowledge
protocols and commitments.

The protocol is also guaranteed to stay secure if the adversary retrieves the signing
key from the signature card after the protocol execution (e.g., by opening it).

Similar ideas are used to construct long-term UC secure zero-knowledge protocols and
commitments schemes from TPFs. However, the resulting protocol is somewhat more
complicated than in the case of signature cards.

1.4 Related work

1.4.1 Related to long-term security

Memory bounded adversaries. The idea of long-term or everlasting security has been
considered with respect to memory bounded adversaries. Key exchange protocols and
protocols for oblivious transfer have been developed in the bounded storage model [CM97,
CCM02]. These protocols can be broken by an adversary with more memory than assumed,
however they cannot be broken in retrospect even by an unlimited adversary. [Rab03]
presents a scheme using distributed servers of randomness (virtual satellites) to achieve
everlasting security; in this scheme the access of the adversary to the communication
between the parties and the distributed servers is limited during the key exchange. It was
shown by [DM04] protocols in the bounded storage model do not necessarily stay secure
when composed with other protocols.

Quantum cryptography. Long-term security has been investigated in quantum cryptog-
raphy. It is generally accepted (even though not formally proven) that a computationally
secure authentication of a quantum key exchange yields a long-term secure key. Quan-
tum protocols for bit commitment and oblivious transfer which become unconditionally

6This is not automatically guaranteed by the universal composition theorem since that theorem requires
that the individual instances of a composed protocol do not share any functionalities. See [CR03] for a
detailed discussion of this issue.

10

secure, but rely on temporary computational assumptions were investigated and found to
be impossible7 (see, e.g. [BCMS99]).

Zero-knowledge, commitments, function evaluation. Statistical zero-knowledge
arguments [BCC88] are in fact long-term secure zero-knowledge protocols (but not nec-
essarily UC secure, of course). As soon as the protocol terminates, an adversary cannot
profit from additional computational power; an unbounded verifier cannot learn anything
because the argument system is statistical zero-knowledge, and an unbounded prover can-
not cheat because the proof is already finished.

Similarly, statistically hiding commitments [NOVY98] are actually long-term secure
commitments since after the end of the protocol, even with unlimited computational power,
no party can learn the committed value (unless an unveil is performed) and no party can
change the committed value (since the protocol has already ended).

[MQ05] stated protocols for secure function evaluation achieving long-term security;
however, they only considered secure function evaluation with constant input size. Their
protocols do not allow for universal composition (they do, however, compose sequentially).

Forward security. Another related topic is that of forward security, which was intro-
duced in the context of key exchange in [DvOW92, Gün90]. Forward security requires that
past session keys remain computationally secure even if some long-term secret is revealed
to the adversary. This notion is related to and seems to be implied by long-term UC
because in most protocols the session keys can be computed by unlimited adversaries and
can therefore be considered to be known after the protocol execution.

1.4.2 Related to composition

Composition of general (not long-term secure) protocols as well as particular classes of
protocols like zero-knowledge has been extensively studied. For example, [FS90] presented
a zero knowledge scheme that does not compose in parallel and introduced the notion of
witness indistinguishable proofs. This security property is weaker than zero-knowledge
but closed under parallel composition. More general impossibility results regarding the
both sequential and parallel composability of zero-knowledge protocols were independently
shown in [GK96].

The work [CK01] provides a security definition for key exchange which allows us to
build secure channels from key exchange, which was not guaranteed by earlier definitions.
The security requirement of non-malleability of cryptographic protocols [DDN91] becomes
necessary when the protocols are to be used in certain larger applications.

Composition theorems which are independent of the surrounding application were given
in [Can00] for sequential composition and in [BPW07, Can01] for universal composition
(UC).

To the best of our knowledge, with exception of the negative result [DM04], previous
work on long-term security did not take the problem of composability into account.8

7Unless additional assumptions are made, such as bounded quantum storage [DFSS05] or the availability
of a piece of trusted hardware.

8[WW08] investigates sequential composition in the quantum bounded storage model. Their construc-
tions, however, do not allow for composition with protocols that are based on computational assumptions
(because the simulator in their constructions is not polynomial-time). Thus their work does not apply

11

1.5 Organisation

Section 2 (Preliminaries). We present elementary notation and nomenclature (Sec-
tion 2.1) and list the cryptographic tools used throughout this work (Section 2.2).

Section 3 (Modelling composable long-term security). We develop the definition
of long-term UC. First, we review the UC framework on which our definition is based (Sec-
tion 3.1). In Section 3.1, we introduce and motivate our definition of long-term UC security.
Further, we state a few implicit conventions used in the rest of the paper (Section 3.3) and
define the functionalities used in the rest of this work (Section 3.4).

Section 4 (Commitments). In this section, we discuss long-term UC secure commit-
ments. We introduce long-term revealing setup assumptions and show the impossibility
of realising long-term UC secure commitments from these (Section 4.1). Then we show
that given a long-term UC zero-knowledge scheme, long-term UC commitments can be
realised (Section 4.2). In Section 4.4 we explain why statistically hiding, computationally
UC secure commitment schemes are not necessarily long-term UC secure.

Section 5 (Zero-knowledge protocols). We discuss long-term UC secure zero-
knowledge protocols. In Section 5.1 we introduce the class of relations with essentially
unique witnesses and show that using long-term revealing setup assumptions, relations
without essentially unique witnesses cannot have long-term UC secure zero-knowledge
protocols. In Section 5.2 we extend our impossibility result by showing that if a long-
term revealing setup assumption is used offline, we can only construct long-term UC
zero-knowledge protocols for (almost) trivial relations. In Section 4.3 we investigate in
more detail whether a PKI can be used for constructing long-term UC zero-knowledge
protocols.

Section 6 (Possibility results from non-standard setup assumptions). We inves-
tigate non-standard (but practically motivated) setup assumptions that enables the imple-
mentation of long-term UC secure commitments and zero-knowledge schemes. Namely, in
Section 6.1 we show how to do this using trusted hardware that evaluates pseudorandom
functions, and in Section 6.2 we show how to use signature cards.

Section 7 (Conclusions). We conclude the paper and propose directions for further
research.

2 Preliminaries

2.1 Notation

We call a function f negligible, if for any positive polynomial p and sufficiently large k,
f(k) ≤ 1/p(k). We call f overwhelming , when 1− f is negligible. We call f non-negligible
if it is not negligible. We call f noticeable if there is a positive polynomial such that for
sufficiently large k we have f(k) ≥ 1/p(k).

to long-term security in our sense, namely as a combination of computational assumptions during and
unlimited security after the protocol execution.

12

A PPT-algorithm (probabilistic polynomial time) is a uniform probabilistic algorithm
that runs in polynomial-time in the length of its inputs.

We call a relation R on {0, 1}∗ × {0, 1}∗ poly-balanced if there is a polynomial p, such
that |w| ≤ p(|x|) for all x,w with xRw. We call R an NP-relation if it is poly-balanced
and deciding (x,w) ∈ R is in P. The language LR associated with R is LR := {x ∈ {0, 1}∗ :
∃w : xRw}. We usually call x the statement and w with xRw the witness for x. We call
an NP-relation R (uniformly) trivial if there is a PPT-algorithm that upon input x ∈ LR

outputs a witness for x with overwhelming probability. We call R nonuniformly trivial
there is a nonuniform deterministic polynomial-time algorithm that upon input x ∈ LR

outputs a witness for x.
An integer n > 0 is called a Blum-integer , if n = pq for two primes p, q with p ≡ q ≡

3 mod 4. An integer p ≥ 3 is called a safe prime if both p and p−1
2 are prime.

An EF-CMA secure signature scheme is a scheme that has existential unforgeability
under chosen message attacks [GMR88]. We do not require perfect completeness (i.e., when
choosing a key pair, signing and then verifying, the probability of a successful verification
is overwhelming but not necessarily 1).

Unless otherwise stated, all security assumptions are against nonuniform adversaries
(e.g., EF-CMA security means EF-CMA security with respect to nonuniform adversaries).

2.2 Cryptographic tools

In [HR07], it is shown that assuming the existence of a one-way function, a statistically
hiding commitment scheme exists. This scheme has the additional properties that the
unveil-phase consists of only one message, and that given the message, the committed
value v, and the transcript of the interaction in the commit phase, there is a deterministic
polynomial-time algorithm that checks whether the verifier accepts the value v. If both
parties are honest, the verification succeeds with probability 1 (perfect correctness).

Using that commitment-scheme in the zero-knowledge argument-system for graph-3-
colourability from [GMW91], we get a statistically witness indistinguishable argument of
knowledgestatistically witness indistinguishable argument of knowledgefor any NP-relation
given any one-way function.9

For some results, we will need the existence of EF-CMA secure signature schemes.
These also exist under the assumption that one-way functions exist [Rom90].

3 Modelling composable long-term security

3.1 UC framework

Since our work builds on the UC framework [Can01], in this section we revisit the main
points of that model. The reader familiar with the UC framework can safely skip this
section and proceed to Section 3.2 on page 17.

In general, the fact that a protocol is secure with respect to some security notion does
not necessarily imply that the protocol stays secure with respect to that notion when com-

9The resulting scheme is of course even zero-knowledge, not only witness-indistinguishable, but we do
not need that property here.

13

posed with other (secure) protocols. Therefore, an important property of security notions
is the ability to guarantee secure composition. One security notion that gives very strong
composability guarantees is the Universal Composability framework (UC) from [Can01].
(As well as the independently proposed and essentially identical Reactive Simulatability
framework [BPW07].)

Overview. Security in the UC framework is defined by comparison of a real protocol π
with some ideal protocol ρ. In most cases, this ideal protocol ρ will consist of a single
machine, a so-called ideal functionality. Such a functionality can been seen as a trusted
machine that implements the intended behaviour of the protocol. For example, a func-
tionality F for commitment would expect a value m from a party C. Upon receipt of that
value, the recipient R would be notified by F that C has committed to some value (but
F would not reveal that value). When C sends an unveil request to F , the value m will
be sent to R (but F will not allow C to unveil a different value). For more examples of
functionalities, see Section 3.4 or [Can01].

Given a real protocol π and an ideal protocol ρ, we say that π realises ρ (also called
“implements”, “emulates”, or “is as secure as”) if for any adversary A attacking the pro-
tocol π there is a simulator S performing an attack on the ideal protocol ρ such that no
environment Z can distinguish between π running with A and ρ running with Z. Here Z
may choose the protocol inputs and read the protocol outputs and may communicate with
the adversary or simulator (but Z is, of course, not informed whether it communicates
with the adversary or the simulator). There are two important differences between the UC
model and the so-called stand-alone model for secure multiparty computation (see, e.g.,
[Gol04, Chapter 7]). First, the environment may communicate with the adversary during
the protocol execution, and second, the environment does not need to choose the inputs
at the beginning of the protocol execution; it may adaptively send inputs to the protocol
parties at any time, and it may choose these inputs depending upon the outputs and the
communication with the adversary. These modifications are the reason for the very strong
composability properties of the UC model.

Definitions. In order to formulate these properties, let us first give more detail on
the above intuition. In the UC framework, all protocol machines and functionalities,
as well as the adversary, the simulator and the environment are modelled as interactive
Turing machines (ITM). Throughout a protocol execution, an integer k called the security
parameter is accessible to all parties. At the beginning of the execution of a network
consisting of π, A, and Z, the environment Z is invoked with an initial input z. From then
on, every machine M that is activated can send a message m to a single other machine M ′.
Then that machine M ′ is activated and given the message m and the id of the originator
M ′. If in some activation a machine does not send a message, the environment Z is
activated again. Additionally the environment may issue corruption requests for some
party P . From then on, the machines corresponding to the party P are controlled by
the adversary (i.e., it can send and receive messages in the name of that machine, and it
can read the internal state of that machine). Finally, at some point the environment Z
gives some output m which can be an arbitrary string. By EXECπ,A,Z(k, z) we denote the
distribution of that output m on security parameter k and initial input z. Analogously,
we define EXECρ,S,Z(k, z) for an execution involving the protocol ρ, the simulator S, and

14

the environment Z.
We distinguish two different flavours of corruption. We speak of static corruption if

the environment Z may only send corruption requests before the begin of the protocol,
and of adaptive corruption if Z may send corruption requests at any time in the protocol,
even depending on messages learned during the execution. In this paper, we will restrict
our attention to the less strict security model using static corruption.

If the ideal protocol ρ consists of an ideal functionality F , for technical reasons we
assume the presence of so-called dummy parties that forward messages between the en-
vironment Z and the functionality F . For example, assume that F is a commitment
functionality. In an ideal execution, Z would send a value m to the party C (since it
does not know of F and therefore will not send to F directly). Then C would forward
m to F . Then F notifies R that a commitment has been performed. This notification is
then forwarded to Z. With these dummy parties we have, at least syntactically, the same
messages as in the real execution: Z sends m to C and receives a commit notification
from R. Second, the dummy-parties allow a meaningful corruption in the ideal model. If
Z corrupts some party P , in the ideal model the effect would be that the simulator controls
the corresponding dummy party P and thus can read and modify messages to and from
the functionality F in the name of P . Thus if we write EXECF ,S,Z , this is essentially an
abbreviation for EXECρ,S,Z where the ideal protocol ρ consists of the functionality F and
the dummy-parties.

For full details see [Can01].
Having defined the families of random variables EXECπ,A,Z(k, z) and EXECρ,S,Z(k, z)

we can now define security via indistinguishability.

Definition 3.1 (Universal Composability [Can01]). A protocol π UC realises a pro-
tocol ρ, if for any polynomial-time adversary A there exists a polynomial-time simula-
tor S, such that for any polynomial-time environment Z the families of random vari-
ables {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) and {EXECρ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) are com-
putationally indistinguishable.

Note that in this definition, it is also possible to only consider environments Z that
give a single bit of output. As demonstrated in [Can01], this gives rise to an equivalent
definition. However, in the case of long-term UC below, this will not be the case, so we
stress the fact that we allow Z to output arbitrary strings. In particular an environment
machine can output its complete view.

Natural variants of this definition are statistical UC, where all machines (environment,
adversary, simulator) are computationally unbounded and the families of random variables
are required to be statistically indistinguishable, and perfect UC, where all machines are
computationally unbounded and the families of random variables are required to have the
same distribution. In these cases one often additionally requires that if the adversary is
polynomial-time, so is the simulator.

Composition. For some protocol σ, and some protocol π, by σπ we denote the protocol
where σ invokes (up to polynomially many) instances of π.10 That is, in σπ the machines

10For simplicity, we assume throughout this work that the session ids assigned to these instances are
{1, . . . , p} for some polynomial p.

15

from σ and from π run together in one network, and the machines from σ access the inputs
and outputs of π. (In particular, Z then talks only to σ and not to the subprotocol π
directly.) See [Can01] for details. A typical situation would be that σF is some protocol
that makes use of some ideal functionality F (say, a commitment) and then σπ would be
the protocol resulting from implementing that functionality by some protocol π (say, a
commitment protocol). One would hope that such an implementation results in a secure
protocol σπ. That is, if π realises F and σF realises G, then σπ realises G. Fortunately,
this is the case:

Theorem 3.2 (Universal Composition Theorem [Can01]). Let π, ρ, and σ be
polynomial-time protocols. Assume that π UC realises ρ. Then σπ UC realises σρ.

For a proof see [Can01] or our proof sketch of Theorem 3.4 below. The intuitive reason
for this theorem is that σ can be considered as an environment for π or ρ, respectively.
Since Definition 3.1 guarantees that π and ρ are indistinguishable by any environment,
security follows.

In a typical application of this theorem one would first show that π realises F and
that σF realises G. Then using the composition theorem one gets that σπ realises σF

which in turn realises G. Since the realises-relation is transitive (as can be easily seen from
Definition 3.1), it follows that σπ realises G.

This composition theorem is the main feature of the UC framework. It allows us to
build up protocols from elementary building blocks. This greatly increases the manage-
ability of security proofs for large protocols. Furthermore it guarantees that the protocol
can be used in arbitrary contexts.

Analogous theorems also hold for statistical and perfect UC.

Dummy-adversary. When proving the security of a given protocol in the UC setting, a
useful tool is the so-called dummy-adversary. The dummy-adversary Ã is the adversary
that simply forwards messages between the environment Z and the protocol (i.e., it is a
puppet of the environment that does whatever Z instructs it to do). In [Can01] it is shown
that UC security with respect to the dummy-adversary implies UC security. The intuitive
reason is that since Ã does whatever Z instructs it to do, it can perform arbitrary attacks
and is therefore the worst-case adversary given the right environment (remember that we
quantify over all environments).

We very roughly sketch the proof idea. Let protocols π and ρ and some adversary A
be given. Assume that π UC realises ρ with respect to the dummy-adversary Ã. We want
to show that π UC realises ρ with respect to A. Given an environment Z, we construct
an environment ZA which simulates Z and A. Note that an execution of EXECπ,Ã,ZA

is essentially the same as EXECπ,A,Z (up to a regrouping of machines). Then there is
a simulator S̃ such that EXECπ,Ã,ZA

and EXECρ,S̃,ZA
are indistinguishable. Let S be

the simulator that internally simulates the machines A and S̃ and forwards all actions
performed by A as instructions to S̃ (remember that S̃ simulates Ã, so it expects such
instructions). Then EXECρ,S̃,ZA

is again the same as EXECρ,S,Z up to a regrouping of
machines. Summarising, we have that EXECπ,A,Z and EXECρ,S,Z are indistinguishable.
For details, see, e.g., [Can01].

A nice property of this technique is that it is quite robust with respect to changes in
the definition of UC security. For example, it also holds with respect to statistical and

16

perfect UC security, as well as with respect to our notion of long-term UC that is defined
below (in all cases the proof is virtually unmodified).

3.2 Long-term UC

We now present our model of universally composable long-term security (long-term UC).
We build on the Universal Composability framework [Can01] described in the preceding
section. In that modelling, a computationally limited entity called the environment has to
distinguish between an execution of the protocol (with some adversary) and an execution
of an ideal functionality (with some simulator). To define long-term security, we have to
add the requirement that even if some entity gets unlimited computational power after
the execution of the protocol, security is maintained.

The most immediate solution would be to introduce two phases in the execution of the
network. In the first phase, all machines are computationally limited, and the protocol
runs normally. In the second phase, the environment, the adversary, and the simulator
are allowed to be computationally unlimited, but the protocol machines are not allowed
to send any more messages. Thus the first phase models the protocol execution, and the
second phase models the time after the protocol execution during which the data retrieved
in the protocol may be analysed and computational assumptions may be broken. Finally,
the output of the environment is required to be statistically indistinguishable in the real
and the ideal model. (The choice of statistical instead of computational indistinguishability
is because the distinction also happens after the protocol execution.)

Although this approach would probably work and give a reasonable model of long-
term UC security, the introduction of different phases introduces major changes to the
technical parts of the UC framework. For example, a machine model must be defined
that allows us to switch the computational power from polynomial to unlimited, it must
be specified who decides when the first phase ends (does the protocol have an output
that it has finished execution, does the environment decide?), scheduling issues must be
solved (when the second phase begins, how are the machines notified of this fact, in which
order are they activated by the notification?), etc. We believe that all these issues can
be solved. However, changes in scheduling or the definition of running-time have shown
to interact nontrivially with other parts of the definition of UC and with the composition
theorem (see, e.g., [BHMQU05, HMQU05]). And many of the design decisions might be
quite arbitrary or hard to motivate. Therefore, instead of using this two-phase model, we
strive for a simpler definition of long-term UC security that introduces minimal changes
with respect to the original UC framework and that in particular does not need to change
the network, machine or running-time model.

First observe that in the two-phase model, we can assume the adversary to be the
dummy-adversary that only forwards messages between the environment and the protocol
(cf. the discussion on the preceding page). The intuitive reason for this is that any attack
performed by the adversary itself can also be“remote-controlled”by the environment using
a dummy-adversary. This argument is not invalidated by the fact that the adversary
becomes unlimited at some point since the environment will become unlimited at that
point, too, and will therefore still be able to simulate the adversary’s behaviour. Since in
the second phase, the protocol will not send any messages or receive any messages, we can

17

assume without loss of generality that the dummy-adversary stops communicating after
the first phase, too. Since the simulator has to mimic the behaviour of the adversary, the
simulator will also stop communicating after the first phase. So we have arrived at a model,
where in the second phase the only machine that actually performs any computations is the
environment, and no communication takes place. Then any post-protocol computation of
the environment would be nothing more than the application of a function to the view, so
the statistical distance between the environment’s output in the real and the ideal model
will be maximal for the environment that just outputs its unmodified view. Thus we can
even get rid of the environment’s internal computation in the second phase by allowing
the environment to output its complete view.

By this argument, we have found a very simple way of adding the long-term security
requirement to the UC framework: We simply require that after the execution of the
protocol (which is still performed against computationally limited adversaries and envi-
ronments) even an unlimited entity could not distinguish between an execution of the
real protocol or of the functionality, i.e., we require that the output of the environment
is statistically indistinguishable in the real and ideal model.11 Note that this is the only
modification with respect to the original UC framework and the modification is actually
smaller than that between computational and statistical UC. In particular, we can ex-
pect many properties derived for the original UC framework to easily carry over to the
long-term UC framework.

In the following definition, let EXECπ,A,Z(k, z) denote the output of Z in an execution
of the protocol π with adversary A and environment Z, where k is the security parameter
and z the auxiliary input of the environment Z. EXECF ,A,Z(k, z) is defined analogously.
See Section 3.1 for details.

Definition 3.3 (Long-term UC). A protocol π long-term UC realises an ideal pro-
tocol ρ, if for any polynomial-time adversary A there exists a polynomial-time simula-
tor S, such that for any polynomial-time environment12 Z the families of random variables
{EXECπ,A,Z(k, z)}k∈N,z∈{0,1}poly(k) and {EXECρ,S,Z(k, z)}k∈N,z∈{0,1}poly(k) are statistically
indistinguishable.

Relation to other UC variants. Obviously, this definition is stronger than computa-
tional UC as in Definition 3.1 because we replaced computational by statistical indistin-
guishability. Furthermore, statistical security (following [Can01] we assume the variant
that requires the simulator to be polynomial-time if the adversary is, see page 15) implies
long-term UC security: In the case of statistical security, statistical indistinguishability
holds for all environments and simulators, thus in particular for polynomial-time ones.
And for polynomial-time adversaries, the simulator is guaranteed to be polynomial-time,
too. Thus the conditions for long-term UC security are fulfilled.

Thus long-term UC lies between computational and statistical UC. Indeed, these im-
plications are strict (assuming, e.g., the existence of one-way functions) as shown by the
following examples: Let π be a protocol that expects a message m from the environment

11Here it is important that we are using the formulation of the UC framework where the environment is
not restricted to outputting a single bit.

12Not limited to environments with single bit output.

18

(I)

Z

A
σ

π1
...

πn

(II)

Z

A
σ

S̃1
ρ1

...
...

S̃n
ρn

S

(III)

Z

A
σ

π1
...

πi−1

Ã πi

S̃i+1
ρi+1

...
...

S̃n
ρn

Zσ,i

Figure 1: Networks occurring in the proof sketch of Theorem 3.4. Network (I) represents
the real model, (II) the ideal model, and (III) the hybrid case. For simplicity, not all
connections between machines are depicted. E.g., A also has connections to the instances
of π, and σ also has direct connections to the instances of ρ.

and passes that message to the adversary if and only if the adversary solves some com-
putationally hard puzzle (e.g., inverting a one-way function). Let ρ be a protocol that
expects m from the environment but does not give m to the adversary. Then π long-term
UC realises ρ but does not statistically UC realise ρ.

Furthermore, let π′ be a protocol that outputs a pseudorandom string, and let ρ′ be a
protocol that outputs a truly random string. Then π′ computationally UC realises ρ′ but
does not long-term UC realise ρ′.

The fact that statistical UC implies long-term UC is useful since one can use statistical
UC results and combine them with long-term UC results using the composition theorem
(see Theorem 3.4 below) to construct a larger long-term UC secure protocol. For example,
from a commitment functionality, it is easy to construct a statistically secure coin toss.13

Combined with a long-term UC secure protocol for commitment, we get a long-term UC
secure coin toss protocol.

Composition. Due to the minimal change in the security definition, the composition
theorem from [Can01] (Theorem 3.2 above) carries over to our Definition 3.3:

Theorem 3.4 (Universal Composition Theorem). Let π, ρ, and σ be polynomial-time
protocols. Assume that π long-term UC realises ρ. Then σπ long-term UC realises σρ.

For the full proof, we refer to [Can01], the only modification that needs to be made to
their proof of the composition theorem is to replace all occurrences of terms of the form
|Pr[EXEC... = 1] − Pr[EXEC... = 1]| (comparing the probability of the environment

outputting 1) by ∆(EXEC...,EXEC...) where ∆ denotes the statistical distance (comparing
the actual distributions of environment’s output). Except for this modification, the proof
from [Can01] is unchanged. However, for completeness we give a short proof sketch of
Theorem 3.4.

Proof sketch. Our goal is to prove that under the assumptions of Theorem 3.4, σπ long-
term UC realises σρ. Assume that σ invokes at most n instances of the respective sub-

13Alice commits to a random string r1; Bob sends a random strings r2 to Alice; Alice unveils. The result
is r1 ⊕ r2.

19

protocol π or ρ. Since π long-term UC realises ρ, there is a polynomial-time simulator S̃
such that for any environment Z we have that EXECπ,Ã,Z and EXECρ,S̃,Z are statistically

indistinguishable. Here Ã is the dummy-adversary that just forwards messages between
the environment and the protocol (see Section 3.1, page 16). In the following, we will call
this simulator S̃ the dummy-simulator.

Let a polynomial-time adversary A be given (that is supposed to attack σπ). We
construct a simulator S that simulates the adversary A and n instances S̃1, . . . , S̃n of the
dummy-simulator S̃. The simulated adversary A is connected to the environment and
to the protocol σ, but all messages between A and the i-th instance πi of π are routed
through the corresponding dummy-simulator Si (which is then supposed to transform
these messages into a form suitable for instances of ρ). The simulator S is depicted by the
dashed box in network (II) in Figure 1.

We have to show that for any environment Z we have that EXECσπ ,A,Z and
EXECσρ,S,Z are statistically indistinguishable, i.e., that the output of Z in the networks
(I) and (II) in Figure 1 is statistically indistinguishable.

For this, we construct a hybrid environment Zσ,i. (It is depicted as the dashed box in
network (III) in Figure 1.) This environment simulates the machines Z, A, the protocol σ,
instances π1, . . . , πi−1 of the real protocol π, and instances S̃i+1, . . . , S̃n and ρi+1, . . . , ρn of
the dummy-simulator and the ideal protocol ρ, respectively. The communication between
Z, A, and σ is forwarded. Communication between one of these and the j-th protocol
instance is forwarded as follows: If j < i, the communication is simply forwarded to πj.
If j > i, the communication is routed through the corresponding dummy-simulator S̃j

(which is then supposed to transform these messages into a form suitable for ρi). And
finally, if j = i, the communication is passed to the outside of Zσ,i (where it then will be
passed to some adversary/simulator or to a protocol instance, depending on whether it
was a message from A or σ).

We will now show that there is a negligible function µ such that the statistical dis-
tance between EXECZσ,i,Ã,π(k, z) and EXECZσ,i,S̃,ρ(k, z) is bounded by µ(k) for any

security parameter k and any i = 1, . . . , n. For this, construct an environment Zσ

which expects as its initial input a pair (i, z) with i ∈ {1, . . . , n}, and then runs
Zσ,i with input z. Since the dummy-simulator S̃ is a good simulator for the dummy-
adversary A, we have that EXECZσ,Ã,π(k, (i, z)) and EXECZσ,S̃,ρ(k, (i, z)) are statisti-
cally indistinguishable, so there exists a negligible function µ such that the statistical
distance between EXECZσ,Ã,π(k, (i, z)) = EXECZσ,i,Ã,π(k, z) and EXECZσ,Ã,π(k, (i, z)) =

EXECZσ,i,S̃,ρ(k, z) is bounded by µ(k) for all i.14

The game EXECZσ,i,Ã,π(k, z) is depicted as network (III) in Figure 1 (except that

we denoted the external copy of π with πi). Observe that EXECZσ,i+1,S̃,ρ(k, z) (note

the changed index i + 1) contains the same machines (when unfolding the simulation
performed by Zσ,i into individual machines) up to the fact that the communication with
the i-th instance of π is routed through the dummy-adversary Ã. However, the latter just
forwards messages, so EXECZσ,i,Ã,π(k, z) = EXECZσ,i+1,S̃,ρ(k, z).

14Here we explicitly used the auxiliary input of Z. The composition theorem, however, also holds if
no auxiliary input is used. In this case, we let Zσ choose the value i randomly. See, e.g., [HMQS06] for
details.

20

Since the triangle inequality holds for the statistical distance, it follows that the statis-
tical distance between EXECZσ,n,Ã,π(k, z) and EXECZσ,1,S̃,σ(k, z) is bounded by n · µ(k)
which is negligible. Thus these two families of distributions are statistically indistinguish-
able. Moreover, EXECZσ,n,Ã,π(k, z) and EXECZ,A,σπ describe the same game (up to

unfolding of simulated submachines and up to one instance of the dummy-adversary).
Similarly, EXECZσ,1,S̃,σ(k, z) and EXECZ,S,σρ describe the same game (up to unfolding

of simulated submachines). Thus EXECZ,A,σπ and EXECZ,S,σρ are statistically indistin-
guishable. Since the construction of S does not depend on Z, we have that σπ long-term
UC realises σρ.

On the minimality of the security notion. At this point one might wonder whether
this definition is possibly stricter than necessary, especially in view of the various impos-
sibility results presented below. However, if one is willing to accept stand-alone security
(i.e., simulation-based security without an environment, see e.g. [Gol04]), with the extra
requirement that the outputs of the parties and of the adversary/simulator are statistically
indistinguishable in real and ideal model (long-term stand-alone security), as a minimal
security requirement, we can argue as follows: If we want to fulfil this minimal security re-
quirement and simultaneously get universal composability, the proof from [Lin03] states15

that the minimal security notion satisfying these two requirements is a security notion
similar to Definition 3.3, with the only difference that the simulator is allowed to depend
on the environment (specialised-simulator long-term UC). Since all our impossibility re-
sults also apply for this weaker notion (we never use the fact that the simulator does not
depend on the environment), we see that we cannot find an essentially more lenient secu-
rity notion than Definition 3.3 if we accept long-term stand-alone security as a minimal
security notion.

3.3 Conventions

In all our results we assume that secure channels are given for free (i.e., we are in the secure-
channel network-model).16 Further, security always denotes security with respect to static
adversaries, i.e. parties are not corrupted during the protocol execution. Obviously, our
negative results also apply to the stricter setting with adaptive adversaries. However, we
believe that even our positive results can be adapted to that setting.

We consider the case without an honest majority , since given an honest majority we
could use information-theoretically secure protocols.

15With minor modifications: simply replace computational indistinguishability by statistical indistin-
guishability.

16This much simplifies the presentation. Since all our results concern the two-party case, it is easy to
adapt our results to authenticated channels, if one adapts the definitions of the functionalities accordingly
(e.g., the commitment functionality would then send the value of an unveil to the adversary as well as
to the recipient). However, we cannot expect to use a key exchange protocol to make the authenticated
channels secure, since such an approach would not be long-term secure.

21

3.4 Functionalities

In this section, we define some commonly used functionalities that we will investigate in
the course of this paper.

We assume the following conventions in specifying functionalities:
We always assume that the adversary is informed of every invocation of the function-

ality, and the functionality only delivers its output when the adversary has triggered that
delivery. So a phrase like“upon input x from P1, F sends y to P2” should be understood as
“upon input x from P1, F sends (i-th input from P1) to the adversary, and upon a message
(deliver i) from the adversary, F sends y to P2”. For better readability, we use the shorter
formulation.

Most of the functionalities defined here are parametrised by a function m giving the
length of their input and outputs. We will often omit explicitly stating this m if it is clear
from the context.

When a functionality receives an invalid input from some party, it simply forwards
that input to the adversary.

The first functionality used in this paper is the common reference string (CRS). Intu-
itively, the CRS denotes a random string that has been chosen by some trusted party or
by some natural process, and that is known to all parties prior to the start of the protocol.

Definition 3.5 (Common reference string (CRS)). Let Dk (k ∈ N) be an efficiently
samplable distribution on {0, 1}∗. At the beginning of the protocol, the functionality FD

CRS

chooses a value r according to the distribution Dk (k being the security parameter) and
sends r to the adversary and all parties Pi.

17

If Dk is the uniform distribution on {0, 1}m(k) for any k, we speak of a uniform CRS
of length m. We then write Fm

CRS instead of FDk

CRS.

The second functionality is the coin toss. At a first glance, the coin toss looks very
similar to the CRS, since also the coin toss consists of a random string that is given to
both parties involved (and to the adversary). However, the coin toss guarantees that no
party can learn the coin toss before both parties agree to toss the coin.18 As we will see
below, a coin toss is more powerful than a CRS in the context of long-term UC.19

Definition 3.6 (Coin Toss (CT)). When both P1 and P2 have given some input, the
functionality Fm

CT chooses a uniformly distributed r ∈ {0, 1}m(k) and sends r to the adver-
sary, to P1, and to P2.

Note that here we differ in notation from [Can01]. [Can01] defines the coin-toss to be a
one-bit CRS (i.e., as FU

CRS where U is the uniform distribution on {0, 1}). In particular, all

17Here, we are slightly inexact: Strictly speaking, in the UC framework, a functionality cannot generate
output without being explicitly activated. Instead, the functionality would choose and send r when first
activated by some party. For simplicity, however, we use the slightly more inexact formulation here and in
Definitions 3.7 and 5.8.

18This can be illustrated by the following example: Alice and Bob want to know which of them pays the
bill. So Alice and Bob agree: “We toss a coin, if the outcome is 1, Bob pays, otherwise Alice pays.” Of
course, if they were to use a CRS instead of a coin toss they could not use this simple protocol, because
the outcome of the CRS is known before the start of the protocol.

19Although, in contrast, a UC secure (without long-term) coin toss can be realised using a CRS under
reasonable complexity assumptions, see [CF01].

22

parties learn the result of the coin-toss at the beginning of the protocol. In contrast, with
our functionality FCT the result of the coin-toss stays secret until both P1 and P2 explicitly
allow it to be released. This make the coin-toss functionality much more powerful than
the CRS, see, e.g., [HMQU06].

The next functionality models the setup assumption that there is a trusted (predis-
tributed) public key infrastructure, which provides each party with a secret key and attests
the corresponding public key to any interested party.

Definition 3.7 (Public Key Infrastructure (PKI)). Let G be a PPT-algorithm that
upon input 1k outputs two string sk and pk.20 When FG

PKI runs with parties P1, . . . , Pn, at
the beginning of the protocol, FG

PKI chooses independent key pairs (sk i, pk i) ← G(1k) for
i = 1, . . . , n and sends (pk1, . . . , pkn) to the adversary, and it sends (sk i, pk 1, . . . , pkn) to
the party Pi for i = 1, . . . , n.

The next two functionalities are well-known cryptographic building blocks that find
application in the construction of many protocols.

Definition 3.8 (Commitment (COM)). Let C and R be two parties. The functionality
FC→R,m

COM behaves as follows: Upon (the first) input x ∈ {0, 1}m(k) from C send (committed)
to R. Upon input (unveil) from C send x to R.

We call C the sender and R the recipient.

Definition 3.9 (Zero-Knowledge (ZK)). Let R be an NP-relation, and let P and V be
two parties. The functionality FR,P→V,m

ZK behaves as follows: Upon the first input of (x,w)
from P satisfying xRw and |x| ≤ m(k), send x to V .

We call P the prover and V the verifier.

4 Commitments

4.1 Impossibility results

In this section we will examine the possibility of long-term UC realising commitments.
It will turn out that commitments cannot be long-term UC realised using CRS or coin-
toss, nor with an arbitrary PKI. Note that the incompleteness of the CRS stands in stark
contrast to the situation of (non-long-term) UC. In [CLOS02] it was shown that given a
CRS, any functionality has a UC secure realisation. Furthermore, in [BCNP04] it was
shown that the same holds for a PKI.21 However, given a ZK functionality, commitments
can be realised even with respect to long-term UC.

To state the impossibility results in a more general fashion, we first need the following
definition:

Definition 4.1 (Long-term revealing). Let P be a party identifier. For a given network
S, let transS denote the transcript of all communication between a functionality F and all

20I.e., G is a key generation algorithm.
21Their definition Fkrk of a PKI is somewhat different to ours. However, their proof directly carries over

to FPKI.

23

other machines (including the adversary) in an execution of S ∪F . Let transS \P denote
the transcript of all communication between F and all machines except P .

We say a functionality F is long-term revealing (LTR) for party P if the following
holds for any network S: There is a deterministic function fS (not necessarily efficiently
computable) such that with overwhelming probability we have transS = fS(k, transS \ P).

The intuition behind this definition is that if F is long-term revealing (LTR) for P ,
then any secrets that P and F share may eventually become public. The following lemma
gives some examples:

Lemma 4.2. Coin toss (FCT) and CRS (FD
CRS with any D) are LTR for all parties.

Commitment (FCOM) and ZK (FZK) are LTR for the recipient/verifier. If G is a key
generation algorithm, such that the secret key depends deterministically on the public key
(e.g., RSA, ElGamal22), the PKI FG

PKI is LTR for all parties.23

Proof. In the case of coin toss and CRS the adversary learns the random value r when
some party learns it, so all communication can be deduced from the communication with
the adversary. In the case of commitment and ZK the communication with the recip-
ient/verifier can be deduced from the communication with the sender. (In these cases,
the function f is even efficiently computable.) All secret keys chosen by FG

PKI can be
calculated from the public keys pk1, . . . , pkn sent to the adversary.

Using this definition, we can prove that using a CRS, coin-toss or other functionalities
that are LTR for the sender, one cannot long-term UC realise a commitment:

Theorem 4.3 (Impossibility of commitment with LTR functionalities). Let F be
a functionality that is LTR for party C. Then there is no nontrivial,24 polynomial-time25

protocol that long-term UC realises commitment with sender C (FC→R
COM) in the F-hybrid

model.

If one is willing to assume NP 6⊆ P/poly, this theorem is an immediate consequence
of Lemma 5.7 stating that FSAT,C→R

ZK (ZK for SAT with the sender C being the prover)

can be realised with FC→R
COM , and Corollary 5.4 stating that FSAT,C→R

ZK cannot be realised
using F (both shown in Section 5 below). However, we instead give a direct proof (similar
in spirit to that of Theorem 5.3 below) for this theorem that does not depend on the
assumption NP 6⊆ P/poly.

Proof of Theorem 4.3. For this proof, let us first introduce some notation. If Ak,z and
Bk,z are families of random variables, we write A ⊳ B, if there is some probabilistic
function G (not necessarily an efficiently computable one) such that Ak,z and G(k,Bk,z)
are statistically indistinguishable. Note that G knows k, but does not have direct access to
z. (Intuitively A⊳B means, that A does not contain (noticeably) more information about

22Under the condition that group elements in the secret key are always given using a unique representative
(e.g., the secret exponent e in RSA is chosen smaller than ϕ(n)). See also Section 4.3.

23More exactly, for any P , FG
PKI is LTR for P .

24A protocol is called nontrivial if it always gives output if all messages are delivered and no party is
corrupted. See [BHMQU05] for details and more exact definitions.

25If F is not polynomial-time, we call π polynomial-time if all machines except F are polynomial-time.

24

Z0

C

F

R

b

(com
)

(I)

ZC

Z0

C
ÃC

F

R

b

(com)

(II)

ZC

Z0

C
SC

FCOM

b b̃

(com)

(III)

Figure 2: Networks from the proof of Theorem 4.3.

z than B). Obviously, ⊳ is transitive. We will investigate different networks of machines

(cf. Figure 2). To facilitate calculation, we use the following notation: comk,z
X (AB,CD, . . .)

denotes the transcript of the communication between machines A and B, between machines
C and D etc. in a run of the network X on security parameter k when the environment
gets auxiliary input z. E.g., comk,z

II (RZC , RÃC , RF) denotes all communication of party
R in network II.

To produce a contradiction, we assume that there is a nontrivial protocol π that long-
term UC realises FC→R,1

COM (i.e., one-bit commitment with sender C and recipient R). First,
consider the following network I (depicted in Figure 2, the adversary Ã has been omitted for
simplicity): The uncorrupted sender C and recipient R run together with the environment
Z0 and the dummy-adversary Ã (see Section 3.1, page 16). The environment Z0 behaves
as follows: It takes an auxiliary input of the form (b, hold) or (b, unveil) where b ∈ {0, 1}.
Then it sends b to the sender C (i.e., instructs C to commit to b) and waits for the
(committed)-message from the recipient R. If the auxiliary input was of the form (b, unveil),
it then sends (unveil) to C and waits for the bit b̃ sent by the recipient. During the
protocol run, it instructs the dummy-adversary Ã to deliver all messages. We assume that
all environments constructed in this proof simply output their view (i.e., the transcript of
all messages they sent or got and of all their internal states).

Since π is long-term UC secure, for auxiliary input (b, hold) (i.e., in the case that Z0

does not instruct C to unveil) the communication observed by the adversary Ã and the
recipient R is statistically indistinguishable in the cases b = 0 and b = 1, i.e.,

comk,0
I (Z0Ã, CR,RF) ≈ comk,1

I (Z0Ã, CR,RF) (1)

where ≈ means statistical indistinguishability. (To see this, let the environment corrupt
and honestly simulate the recipient R. Then all communication of R and Ã is known to
the environment.)

We now make use of the fact that F is LTR for C. So, by Definition 4.1, the com-
munication of F with C can be (inefficiently) calculated from the communication of F
with R and with the dummy-adversary Ã. The communication of F with Ã again can be
calculated from the communication between Ã and Z0 (since Ã simply forwards messages
for Z0). Summarising these facts, we have

comk,z
I (Z0Ã, CR,CF) ⊳ comk,z

I (Z0Ã, CR,RF).

25

Now we corrupt C and simulate it honestly, i.e., we construct an environment ZC that
simulates Z0 and C, and forwards all messages C generates through the dummy-adversary
ÃC . The resulting network II is given in Figure 2. Then the communication between ZC

and ÃC consists of the following: (i) the communication of the simulated C with R and
F and (ii) the communication of the simulated Z0 with the adversary. Therefore

comk,z
II (ZCÃC) ⊳ comk,z

I (Z0Ã, CR,CF).

Now, since π is long-term UC secure, there is a simulator SC , such that in the network III

depicted in Figure 2 the environment ZC has a statistically indistinguishable output from
ZC in network II. Since the communication between ZC and the adversary/simulator is
output by ZC , we get

comk,z
III (ZCSC) ⊳ comk,z

II (ZCÃC).

Since Z0 gets the (committed) from R in network I, it also gets that message from FCOM in
network III (since the view of Z0 is indistinguishable in all three networks). Furthermore,
if the auxiliary input is (b, unveil), Z0 receives b with overwhelming probability from the
FCOM after having sent (unveil) to C. So the bit b̃ that SC sends to FCOM in network III

fulfils b̃ = b with overwhelming probability. This even holds if the auxiliary input had the
form (b, hold), since SC cannot learn whether (unveil) is going to be sent until after it has
sent b̃ (since Z0 waits until it receives (committed) before sending (unveil)). Therefore,
if Bk,z denotes the bit b̃ the simulator SC sends in a run of network III with security
parameter k and auxiliary input z, we have Bk,b = b with overwhelming probability (for
b ∈ {0, 1}).

Note however, that in network III, the bit b̃ sent from SC to FCOM depends on b only
through the communication between ZC and SC . So

Bk,z
⊳ comk,z

III (ZCSC).

Combining all ⊳-inequalities above, we get

Bk,b
⊳ comk,z

I (Z0Ã, CR,RF).

By definition of ⊳ and (1), there is a probabilistic function G such that

Bk,0 ≈ G
(

comk,0
I (Z0Ã, CR,RF)

)

≈ G
(

comk,1
I (Z0Ã, CR,RF)

)

≈ Bk,1,

which is a contradiction to Bk,b = b.

An interesting corollary of Theorem 4.3 is that long-term UC commitments cannot be
turned around, i.e. using one (or even multiple) long-term UC commitments from A to B,
one cannot long-term UC realise a commitment from B to A.

Corollary 4.4 (Commitments cannot be turned around). There is no nontrivial,
polynomial-time protocol long-term UC realising FA→B

COM using any number of instances of
FB→A

COM .

Proof. Immediate from Lemma 4.2 and Theorem 4.3.

26

4.2 Commitments from zero-knowledge protocols

In contrast to the impossibility results above, it is possible to get long-term UC secure
commitments using a ZK functionality:

Lemma 4.5 (Commitment from ZK). Assume that a one-way function exists. Then
there is a nontrivial, polynomial-time protocol π that long-term UC realises FC→R

COM (com-

mitment with sender C) and that uses two instances of FSAT,C→R
ZK (ZK for SAT with the

sender C being the prover).

The (simplified) protocol π is the following:

• To commit to v, the sender C first commits to v using a statistically hiding
commitment scheme. Then C proves (using the first instance of FSAT

ZK) that he
knows the content of the commitment.

• To unveil, the sender C sends v to the recipient and proves (using the second
instance of FZK) that he can unveil the commitment as v.

Intuitively, the long-term UC security of this protocol stems from the following two
facts. Equivocality: the simulator can unveil to any value v′ since he controls the second
instance of FSAT

ZK . Extractability: due to the binding property of the commitment, the
sender must send unveil information for the same value v to both instances of FSAT

ZK . Since
the simulator controls the first instance of FSAT

ZK , he can extract the committed value v
from the witness that is sent to the first instance of FSAT

ZK .

Proof of Lemma 4.5. Given one-way functions, there exists a computationally binding and
statistically hiding commitment COM with a non-interactive, deterministic unveil phase
(see Section 2). Let V (c, v, u) denote the output of the unveil phase’s verification algorithm
when c is the transcript of the commit phase, v the (claimed) committed value, and u the
unveil information.

Given a transcript c of the commit phase and a value v, we defined the circuit V c by
V c(v′, u′) := V (c, v′, u′), and the circuit V c,v by V c,v(u′) := V (c, v′, u′). (Informally, the
satisfiability of V c shows that the commitment c can be unveiled, and the satisfiability of
V c,v shows that c can be unveiled as v.)

We use the following protocol π:

• Commit phase: When the sender C receives a value v from the environment, the
sender C and the recipient R execute the commit phase of COM on value v. Let c
denote the transcript of the commit phase (known to C and R), and u the unveil
information (only known to C).

• The sender C sends (V c, (u, v)) to the first instance of FSAT
ZK . (That is, he proves

that the commitment c can be unveiled.) When the recipient R receives V c from
the first instance of FSAT

ZK , he outputs (committed) to the environment.
• Unveil phase: When receiving (unveil) from the environment, the sender C

sends v to the recipient R and sends (V c,v, u) to the second instance of FSAT
ZK .

When the recipient R receives v from C and V c,v from FSAT
ZK , he outputs v to the

environment (i.e., he accepts the unveiled value v).

27

We have to show that π long-term UC realises FC→R
COM in the following three cases:

Sender and recipient are uncorrupted. If all messages are delivered, when the
sender C gets input v, the recipient R will output (committed), and when C gets input
(unveil), R will output v. Thus π is a nontrivial protocol.

The sender C is corrupted, the recipient R is uncorrupted. Without loss of
generality, we can assume the dummy-adversary (see page 16). Then, in the real model,
the environment Z will send and receive protocol messages to and from R (through the
dummy-adversary) and provide inputs to the instances of FSAT

ZK (through the dummy-
adversary), and get the outputs from R. In the ideal model, the environment Z will send
and receive the protocol messages to and from the simulator S and provide the inputs
for FSAT

ZK to the simulator S. The simulator provides the inputs to the ideal functionality
FC→R

COM (in the name of the corrupted party C), and Z receives the outputs of FC→R
COM

(through the dummy-party R).
We construct the following simulator S:

• Commit phase: To simulate the protocol interaction between R and Z, it executes
the recipient’s part of COM . Let c denote the transcript of that interaction.

• When receiving (V c, (v′, u′)) from Z (intended for the first instance of FSAT
ZK), if

V c(v′, u′) = 1, the simulator sends v′ to FC→R
COM . (Which then sends (committed)

to Z.)
• Unveil phase: When receiving v from Z (intended for the recipient R), and receiv-

ing (V c,v, u) from Z (intended for the second instance of FSAT
ZK), if V c,v(u) = 1,

the simulator sends (unveil) to FC→R
COM . (Which then sends v′ to Z, not v.)

To see that with this simulator, the real and the ideal model are statistically indis-
tinguishable for any polynomial-time environment Z, we introduce an intermediate game
(called the intermediate model): This game proceeds like the ideal model, with the only
difference that FC→R

COM outputs the value v to Z instead of v′. By comparing the construc-
tions of the real model and of the intermediate model, we see that even an unbounded
environment Z has zero probability of distinguishing the real model and of the intermedi-
ate model.

We are left to show that the intermediate model and the ideal model are statistically
indistinguishable for any polynomial-time environment Z. The probability that Z dis-
tinguishes is bounded by the probability P0 of the following event: V c(v′, u′) = 1 and
V c,v(u) = 1 and v 6= v′ where v′, u′, v, u are chosen by Z and c is the transcript of the
commit phase of COM . However, a polynomial-time environment Z producing such val-
ues v′, u′, v, u contradicts the binding property of COM . Thus P0 is negligible, and the
intermediate and the ideal model are indistinguishable.

This shows that for the case of a corrupted sender, π long-term UC realises FC→R
COM .

The recipient R is corrupted, the sender C is uncorrupted. Without loss of
generality, we can assume the dummy-adversary (see page 16). Then, in the real model,
the environment Z will send and receive protocol messages to and from C (through the
dummy-adversary) and get the outputs from the instances of FSAT

ZK (through the dummy-
adversary), and provide the inputs for C. In the ideal model, the environment Z will

28

send and receive the protocol messages to and from the simulator S and get the (claimed)
outputs of FSAT

ZK from the simulator S. The simulator gets the outputs of the ideal func-
tionality FC→R

COM (in the name of the corrupted party R), and Z provides the inputs for
FC→R

COM (through the dummy-party C).
We construct the following simulator S:

• Commit phase: When receiving (committed) from FC→R
COM , the simulator S simu-

lates the protocol interaction between C and Z by executing the sender’s part of
COM on value v′ := 0 (instead of the value v which was sent to FC→R

COM but not
revealed to S). Let c denote the transcript of that interaction.

• Then S sends V c to Z (in the name of the first instance of FSAT
ZK).

• Unveil phase: When receiving v from FC→R
COM , the simulator S sends V c,v to Z.

To see that with this simulator, the real and the ideal model are statistically indis-
tinguishable for any polynomial-time environment Z, we introduce an intermediate game
(called the intermediate model): This game proceeds like the ideal model, with the only
difference that the simulator S runs the commit phase of COM on value v′ := v (where v
is the value sent to the FC→R

COM by Z). By comparing the constructions of the real model
and of the intermediate model, we see that even an unbounded environment Z has zero
probability of distinguishing the real model and of the intermediate model.

Since the intermediate and the ideal model only differ in the value that is used in the
commit phase of COM , and since the unveil information produced by COM is never used,
it follows directly from the statistical hiding property of COM that the intermediate and
the ideal model are indistinguishable.

This shows that for the case of a corrupted recipient, π long-term UC realises FC→R
COM .

4.3 Commitment protocols from a PKI

Lemma 4.2 tells us that at least for some commonly used encryption schemes, FG
PKI is

LTR for all parties (here and in the following G denotes the key generation algorithm)
and therefore cannot be used for long-term UC realising commitment or zero-knowledge26.
However, in general this is not necessarily the case. So the question arises whether there are
encryption schemes so that FG

PKI can be used to realise, say, a commitment. In this section,
we specify an encryption scheme (or more to the point, its key generator G) and give a
protocol that using FG

PKI implements a commitment. Surprisingly, the encryption scheme
we use is not a pathological construction, but a relatively natural variant of ElGamal in
the RSA group. So we cannot expect a generalisation of Theorems 4.3 and 5.10 that
covers all PKIs with “natural” encryption schemes. (Notice, however, that our example
relies on the fact that our ElGamal variant does not include the full randomness used
during key generation in the secret key. It can be argued that it would be more natural
to use encryption schemes that do not erase their randomness during key generation.)

The ElGamal-Variant we consider has the following key generation algorithm Gamal :
Upon input 1k, Gamal chooses a random n of length k as the product of two safe primes.

26Except for nonuniformly trivial relations, see Theorem 5.10.

29

Further it chooses a random x ∈ {0, . . . , 22k − 1},27 and a random invertible g ∈ Zn (note
that then with overwhelming probability g has high order). Then it outputs the secret
key (n, g, x) and the public key (n, g, gx).

Lemma 4.6. Assume that random safe primes can be efficiently chosen and that factoring
the product of two random safe primes is hard (for nonuniform adversaries). Then there
is a protocol π using one instance of FGamal

PKI that long-term UC realises FC→R,1
COM (a 1-bit

commitment from C to R).

The protocol π is quite simple:

• Let (n, g, x) be sender C’s secret key and (n, g, h) the corresponding public key
(as provided by FGamal

PKI).
• To commit to a bit b ∈ {0, 1}, the sender C sends c := x+b mod 3 to the recipient

R. Upon receipt of that message the recipient outputs (committed).
• To unveil b, the sender C sends (b, x) to the recipient R. The recipient R checks

that x + b ≡ c mod 3 and that h ≡ gx mod n. If that check succeeds, the verifier
outputs b.

The rough intuition behind this protocol is the following: The protocol is binding,
because it is hard to find an x′ 6= x satisfying h = gx′

mod n without knowledge of the
factorisation of n. The protocol is statistically hiding, because there are many different x′

of length 2k satisfying h = gx′
mod n, and for a random such x′, we have that x′ mod 3

is almost uniformly distributed on {0, 1, 2} (note that this does not hold modulo 2, since
2 | ϕ(n)). The scheme is equivocable (i.e., the simulator can choose b after committing),
since the simulator knows the factorisation of n, and therefore can choose a random x′

with gx′ ≡ h mod n and b + x′ ≡ c mod 3. The scheme is extractable (i.e., the simulator
can learn the bit b before unveil), since the simulator knows the x that will be sent by C
and thus calculates b := c− x mod 3.

Proof of Lemma 4.6. We use the protocol π given in the proof sketch above (directly after
the statement of Lemma 4.6). Obviously, an honest sender C always succeeds in unveiling
with an honest recipient R. So the protocol is nontrivial.

Consider the case that the sender C is corrupted. In this case, the simulator SC has
to interact with the environment in such a way that the interaction with the simulator
is indistinguishable from an interaction with the honest recipient R. Further, when the
verifier accepts the commit-phase, the simulator has to enter a bit b̃ into the ideal function-
ality F1

COM. When the verifier accepts the unveil-phase and outputs bit b, the simulator
SC has to unveil b̃ using F1

COM. In order for SC to be successful, it must be b̃ = b with
overwhelming probability. We achieve this as follows: The simulator honestly simulates
the recipient R and the PKI FGamal

PKI . In particular, SC learns x and c (as defined in the
description of the protocol).

When the recipient R outputs (committed), the simulator sets b̃ := c − x mod 3 and
uses this value to commit using F1

COM.

27This is probably the most uncanonical choice in our construction, since an x of length k and not 2k

would usually be used for ElGamal.

30

Obviously, the interaction with SV and with the real recipient R are statistically in-
distinguishable (since SV performs an honest simulation). It remains to check that b = b̃
with overwhelming probability. If b 6= b̃, the value x′ received from the sender C during
unveil fulfils x′ 6= x, but x′ ≡ x mod ϕ(n) (otherwise h 6= gx′

and the recipient would not
have accepted). But then 4(x′ − x) is a multiple of 4 ord g, which again is a multiple of
ϕ(n) with high probability.28 Since g, x and gx can be chosen without knowledge of the
factorisation of n, this implies that there is a PPT-algorithm that finds a multiple of ϕ(n)
given n. By [Bon99, Fact 1] this implies the possibility to factor n and thus contradicts
the complexity assumption in the lemma.

Now, we come to the case where the recipient R is corrupted. In this case, the simulator
SR has to interact with the environment in a way that its communication is indistinguish-
able from an interaction with the honest sender C. However, the simulator learns the bit
b to be unveiled only at the beginning of the unveil phase (in contrast to the sender that
knows b already during commit, because it has to commit to b).

We construct this simulator SR as follows:

• The PKI FGamal

PKI is simulated honestly. However, the simulator stores the factori-
sation n = pq.

• To commit, the simulator sends a random c′ ∈ {0, 1, 2}.
• To unveil to b, the simulator chooses a random x′ ∈ {0, . . . , 22k − 1} subject to

the conditions x′ + b ≡ c′ mod 3 and x′ ≡ x mod ord g (here x is part of the secret
key chosen by FGamal

PKI , and ord g can be efficiently calculated using p, q).

Since n is a safe prime, ϕ(n) = 4p′q′ where p′, q′ are primes greater 3 with overwhelming
probability. So 3 ∤ ϕ(n). Therefore for a random solution x of h ≡ gx mod n it holds that
x mod 3 is almost uniformly distributed over {0, 1, 2} (since x is chosen from a set of size
at least 2kn). So also the c chosen by the honest sender C is almost uniformly distributed
on {0, 1, 2}. It follows that c and c′ have statistically indistinguishable distributions. So,
given some fixed value of c, x is a uniformly random element subject to x + b ≡ c′ mod 3
and gx ≡ h mod n. But this is precisely how the simulator chooses x′, so the distribution
of (c, x) and of (c′, x′) are statistically indistinguishable (given only the public key). So
SR is successful in presenting an indistinguishable interaction.

Summarising, we have that π long-term UC realises F1
COM.

Note that the protocol given here only shows that we cannot expect a generalisation
of Theorem 4.3 to general PKIs, it does not show that it is practicable to use PKIs for
implementing long-term UC secure commitments. The reason for this is that during the
unveil phase, the secret key is transmitted and the PKI thus rendered useless for further
use, not even further commitments are possible. It would be interesting to know whether
this is an artifact of our particular example, or whether for any PKI there is a fixed upper
bound on the number of long-term UC secure commitments that can be realised from it.
In contrast to this situation, in Section 6 we present functionalities that can be used for
an arbitrary number of commitments/ZK protocols.

From Lemma 4.6 we additionally get the following result:

28Here we use that n is a product of safe primes: In this case, ϕ(n) = 4p′q′ for large primes p′, q′, and
the probability that ord g | 4 or that only one of p′, q′ is a factor of ord g is negligible.

31

Corollary 4.7. Assume that factoring the product of two random safe primes is hard
(w.r.t. nonuniform adversaries), and let A and B be two parties. Then there is an offline
functionality F that is LTR for B, such that there are long-term UC protocols using F
for: commitment with recipient B (FA→B,m

COM), zero-knowledge for any NP-relation R with

prover A (FR,A→B
ZK), m-bit coin-toss (Fm

CT) and zero-knowledge for some nonuniformly

nontrivial NP-relation R with prover B (FR,B→A
ZK).

Proof. Let F consist of m copies of FGamal

PKI .29 Since the protocol π from Lemma 4.6 does
not uses the recipient’s secret key, we can assume that F chooses a public/secret key pair
only for A, so that F is LTR for B. Then using π we can implement m instances of
FA→B,1

COM . From this, FA→B,m
COM can be trivially realised. Further, by Lemma 5.7 we get

FA→B
ZK from sufficiently many instances of FA→B,1

COM . From FA→B,m
COM we easily get Fm

CT.30

By Theorem 5.5 we get FR,B→A
ZK for the NP-relation R from Theorem 5.5. Since by

assumption factoring the product of two random safe primes is hard, R is nonuniformly
nontrivial.

4.4 Statistically hiding UC commitments are not always long-term UC

In Theorem 4.3 we showed that no long-term UC secure commitment schemes exist that use
only a CRS. On the other hand, Damg̊ard and Nielsen [DN02] give a commitment scheme
based on a CRS which is both computationally UC secure (in the sense of Definition 3.1)
and statistically hiding. The latter property seems to imply some form of long-term
security. Therefore the commitment both securely composes and is long-term secure; we
would hence intuitively expect it to be long-term UC secure. In this section we resolve
this seeming contradiction by explaining why the commitment scheme from [DN02] (DN-
commitment for short) is not long-term UC and by arguing that the long-term security of
that scheme actually gets lost when composing the protocol. Note that the present section
is only aimed at giving an intuition about the problem of long-term UC commitments, it
does not contain any formal statements or proofs.

The DN-commitment. We first give a highly simplified presentation of the DN-
commitment scheme. This presentation contains many omissions, but it should be suf-
ficient to understand both the idea underlying the DN-commitment scheme and the dis-
cussions in this section. The DN-commitment builds upon another commitment scheme
called the mixed commitment. This is a non-interactive commitment COM K parametrised
by a public key K ∈ K and a system key N that has the following properties:
• For a uniformly chosen key K ∈ K, COM K is a computationally binding and hiding

commitment scheme.
• There is a subset E ⊆ K of keys such that for a uniformly chosen key K ∈ E, we

have that COM K is a statistically hiding, equivocable commitment scheme. More
precisely, the party choosing K ∈ E can choose it together with a trapdoor that
enables the sender to unveil to any value.

29I.e., m public/secret key pairs are generated for each party.
30A commits to a random string r′ of length m. B sends a random string r′′ to A. A unveils. r′ ⊕ r′′ is

the result of the coin-toss.

32

Sender C Recipient RCRS = (N, K1, K2)

Commit:
c1 := COM K1

(KC)
KC rnd.

KR
KR rnd.

unveil c1
K := KC ⊕ KR

c2 := COM K(m ⊕ r), c3 := COM K2
(r)

r rnd.

Unveil:
unveil c2, unveil c3

Figure 3: The DN-commitment scheme.

• For a uniformly chosen key K ∈ K \ E, we have that COM K is an extractable
commitment scheme, more precisely, a party knowing the trapdoor for the system
key N can extract the message.

• Keys chosen uniformly from E are indistinguishable from keys chosen uniformly from
K. The size of E is only a negligible fraction of the size of K (i.e., random keys are
almost always in K \ E).

Then a DN-commitment to a message m is performed as follows (see also Figure 3):

• The CRS is assumed to contain the system key N and two uniformly chosen keys
K1,K2 ∈ E.

• Commit phase. The sender C chooses a uniform key KC and sends a message
c1 := COM K1(KC) to the recipient R.

• The recipient chooses a uniform key KR and sends it to the sender.
• The sender unveils c1.
• Let K := KC⊕KR. The sender chooses a uniform r and sends c2 := COM K(m⊕r)

and c3 := COM K2(r) to the recipient.
• Unveil phase. The sender unveils c2 and c3.

Security of the DN-commitment. To see that this scheme is indeed UC secure, let
us first assume a corrupted sender. In this case, the simulator will have to simulate the
messages of the recipient R in such a manner that it can extract the message m already
during the commit phase. For this, the simulator chooses the CRS differently: It chooses
K2 ∈ K \ E (instead of K2 ∈ E). From the properties of mixed commitments it follows
that this CRS is indistinguishable from the original one. Further, note that the first three
messages constitute a secure coin-toss, so K will be uniformly distributed over K, and
therefore will be in K \ E with overwhelming probability. Thus both K,K2 ∈ K \ E and
therefore the simulator can extract (using the trapdoor for the system key N) the messages
from c2 and c3 and compute m.

Now consider a corrupted recipient. In this case, the simulator will have to simulate
the messages of the sender C in such a manner that it can unveil to any message m (which

33

it may only learn after the commit phase). For this, the sender cheats during the coin
toss (the first three messages) to get a key K ∈ E. The simulator can do this because
he knows the trapdoor for K1 and can therefore unveil c1 to any KC after learning KR.
Since K ∈ E, the simulator can unveil c2 to any value m̃ during the unveil phase. And
since the unveiled value m is then computed as m̃ ⊕ r by the recipient, this implies that
the simulator can unveil to any value m.

Finally, we observe that the DN-commitment is statistically hiding: Since K2 ∈ E, the
commitment c3 is statistically hiding. Therefore even an unbounded recipient might learn
m⊕ r from c2, but it cannot learn r from c3, thus it will not learn m.

DN-commitments are not long-term UC. We know from Theorem 4.3 that the DN-
commitment cannot be long-term UC secure since it only uses a CRS. However, a deduction
from general principles is not so instructive when considering a concrete protocol. We
therefore ask why this particular protocol is not long-term UC. The answer turns out to
be simple: Although the protocol is statistically hiding, the simulator described above
does one of the following:
• If the sender is corrupted, the simulator chooses the key K2 contained in the CRS

uniformly from K \ E instead of E. This gives a statistically distinguishable distri-
bution of the CRS.

• If the recipient is corrupted, the simulator cheats when performing the coin toss such
that the key K will always be chosen from E. Since in the real execution K would
be uniformly distributed from K, this leads to statistically distinguishable protocol
executions in the real and the ideal model.

In other words, although the DN-commitment is statistically hiding, it is not possible to
extract or to unveil to a different value (equivocation) without producing a statistically
distinguishable view. Therefore the DN-commitment is not long-term UC secure.

An alternative intuition is that both an extraction and an equivocation trapdoor need
to be simultaneously present in a protocol execution. (Otherwise the environment could
distinguish between executions with and without these trapdoors.) But the existence of
an extraction trapdoor implies that the committed value is information-theoretically fixed,
which in turn contradicts the equivocality.

Long-term security is lost under composition. The fact that the DN-commitment is
not long-term UC secure may be interpreted in two ways. The first interpretation is that
the DN-commitment it too weak for guaranteeing long-term security under composition.
The second interpretation is that the DN-commitment has all properties we want, but
the notion of long-term UC security is too restrictive. We will now argue that the first
interpretation is the right one by giving an example where the DN-commitment looses
its long-term security under composition. More precisely, we present a protocol π that
statistically hides Alice’s input m when using an ideal commitment functionality, but that
completely reveals m to an unbounded adversary when using the DN-commitment instead
of the ideal functionality. (The adversary needs to be unbounded only after the protocol
execution, of course).

In [DN02], all proposed instantiation of the mixed commitments schemes are of the
following form: The system key N contains two groups G and H, a homomorphism f :
G → H, and an element g ∈ H. Let F := f(G) and let ordF g be the smallest positive

34

integer with gi ∈ F . (I.e., ordF g is the order of gF in the quotient group H/F .). The
system key satisfies that H = {gif(r) : i ∈ Z, r ∈ G} (in other words, gF generates H/F)
and that the smallest prime factor of ordF g is superpolynomial in the security parameter.
In the following, we will assume for simplicity that ordF g is actually prime.31 A public
key is an element K of K := H. A commitment to m is computed as COM N

K(m) :=
Kmf(r) for random r ∈ G; to unveil, we reveal m and r. The set E of keys suitable for
equivocation is E = F , hence all keys K ∈ K \ E are of the form gif(r) for some r ∈ G
and i ∈ {1, . . . , ordF g − 1}. We omit further details of the scheme (like the structure of
an extraction or equivocation trapdoor) as they are not necessary for understanding the
example.

Consider the following protocol π in the FCOM-hybrid model:
• Alice has an input m.
• Bob chooses a system key Ñ and a public key K̃ ∈ K\E (together with an extraction

trapdoor). We denote by G,H, f, g the various components of the system key Ñ .
Then Bob sends (Ñ , K̃) to Alice.
• Alice chooses v in the message space of the commitment at random.32 Then Alice

sends c∗ := COM Ñ
K̃

(v) to Bob.
• Bob extracts v from c∗ using the extraction trapdoor.
• Bob commits to v using FCOM.
• Alice unveils c∗.
• Bob unveils FCOM.
• Alice checks whether the message received from FCOM is v. If so, Alice picks t ∈
{0, . . . , ordF g}33 and u ∈ G and sends γ := gmK̃tf(u) to Bob.

We claim that in the protocol π, Alice’s input m is statistically hidden, even given an
unbounded Bob. (More, π statistically UC emulates the functionality Fnull that takes an
input from Alice and erases it.) To see this, consider a malicious Bob. If Alice does not
send γ, her input m is obviously hidden (as it is never used). Thus we can concentrate
on the case where Bob lets FCOM unveil as v. However, even an unlimited Bob can only

do this if c∗ is not statistically hiding. However, if K̃ ∈ E, then COM Ñ
K̃

is equivocable

and hence statistically hiding. Thus FCOM will only unveil as v if K̃ ∈ K \ E (except
for negligible probability). But in this case, K̃ = gif(r) for some i ∈ {1, . . . , ordF g − 1}
and r ∈ G. Hence every element of H can be expressed as K̃tf(u) and gmK̃tf(u) is
independent of m for random t and u. Thus π statistically hides m.

Now assume that FCOM is implemented using a DN-commitment. We claim that the
resulting protocol πDN is not unconditionally hiding any more. Instead, m mod ordF g can
be (inefficiently) computed from the view of an efficient malicious Bob. This malicious Bob
performs the following steps. Let (N,K1,K2) denote the CRS used in the DN-commitment.
Then Bob sets Ñ := N and K̃ := K2 and sends (Ñ , K̃) to Alice. Bob then receives

c∗ = COM Ñ
K̃

(v) = COM N
K2

(v). However, Bob cannot extract v from c∗. Then Bob

31The construction below also works if ordF g is not a prime (but is guaranteed to have superpolynomial
prime factors). Yet, to keep things simple, we assume in the following that ordF g is prime.

32We assume that the message space of the commitment is superpolynomially large. Some of the instan-
tiations in [DN02] to not have large message spaces, in this case, we extend the message space by sending
several commitments in parallel.

33If ordF g cannot be efficiently computed, a sufficiently large random t ≫ ordF g can be chosen instead.

35

performs the DN-commitment as in Figure 3, except that he uses c2 := COM K(0) and
c3 := c∗. Then Alice unveils c∗ as v (as prescribed by the protocol π). Bob can now open
c2 as 0 and c3 = c∗ as v. Since 0⊕v = v, this means that Bob unveils the DN-commitment
as v. Thus Alice sends γ = gmK̃tf(u) = gmKt

2f(u). Since K2 is chosen to lie in E (by
definition of the DN-commitment), we have that Kt

2f(u) ∈ E = F . Thus γ = gmKt
2f(u)

determines m modulo ordF g (by definition of ordF g). Since γ is in the view of Bob, an
unlimited machine can extract m mod ordF q from the view of Bob. Thus πDN is not
long-term secure in any reasonable sense.

5 Zero-knowledge protocols

In the present section we examine to what extent long-term UC secure zero-knowledge
arguments can be implemented using various functionalities. Besides several impossibility
results, we also find a quite surprising possibility result (Theorem 5.5).

5.1 Impossibility when using LTR functionalities

First, analogous to our investigations concerning commitments in Section 4, we will now
examine whether long-term UC secure zero-knowledge protocols can be implemented using
functionalities that are LTR for one of the parties.

Whether long-term UC realising zero-knowledge protocols for some relation R exist
strongly depends on the relation R under consideration. For example, for trivial re-
lations R, such zero-knowledge protocols do, of course, exist. The following definition
specifies a class of relations which is going to play an important role in our results:

Definition 5.1 (Essentially unique witnesses). An NP-relation R has essentially
unique witnesses if there is a PPT-algorithm UR (the witness unifier), that has the follow-
ing properties:
• If w is a witness for x, UR(1k, x, w) outputs a witness for x with overwhelm-

ing probability, formally: for sequences wk, xk with (xk, wk) ∈ R the probability
P ((xk, UR(1k, xk, wk)) ∈ R) is overwhelming in k.

• If w is a witness for x, the output of UR(1k, x, w) is almost independent of w, for-
mally: for sequences w1

k, w
2
k, xk with (xk, w

1
k) ∈ R and (xk, w

2
k) ∈ R, the families

of random variables UR(1k, xk, w
1
k) and UR(1k, xk, w2

k) are statistically indistinguish-
able.

The notion of essentially unique witnesses can best be illustrated by considering the
example of the discrete logarithm: Given a group G = 〈g〉, for some x ∈ G a witness is
some w ∈ Z such that x = gw. Such a witness is not unique, since any w′ = w + n ord g is
a witness. However, in a sense all these witnesses are equivalent, since from one witness
we can efficiently compute any other witness (assuming we know ord g). So essentially
the witness for x is unique. Therefore the relation xRw :⇐⇒ x = gw has essentially
unique witnesses. The above definition slightly generalises this example by also allowing
negligible error probabilities.

36

A possible way to interpret the witness unifier is as a statistically witness indistinguish-
able argument that simply sends a witness in the clear, so relations with essentially unique
witnesses are relations with trivial statistically witness indistinguishable arguments.

Our impossibility result below holds only for relations without essentially unique wit-
nesses. Since this result would trivialise if there were no such relations, we first show that
relations without essentially unique witnesses are indeed likely to exist:

Lemma 5.2. If one-way-functions (secure against uniform adversaries) exist, or if NP 6⊆
P/poly, then SAT does not have essentially unique witnesses.

Proof. Assume that SAT has essentially unique witnesses. Let R be the following relation:
For two circuits f1, f2, it is (f1, f2)Rw iff f1(w) = 1 or f2(w) = 1. Since SAT has essentially
unique witnesses, so has R. Then let UR be as in Definition 5.1.

We first assume that there is a one-way-function h (secure against uniform adversaries).
Consider the following algorithm A that, upon input (1n, y), behaves as follows:

• Choose a random w′ ∈ {0, 1}n and let y′ := h(w′).
• Let f be the circuit that upon input w outputs 1 iff h(w) = y.
• Let f ′ be the circuit that upon input w outputs 1 iff h(w) = y′.
• Let w be the result of evaluating UR(1n, f , w′) where f is (f, f ′) or (f ′, f) (randomly

chosen).
• If h(w) = y, output w.

By the properties of UR, w is a witness for f with overwhelming probability (in n).
Thus w is a witness of f or of f ′. Further, when the input of A is h(w̃) for a uniformly
chosen w̃ ∈ {0, 1}n, the circuits f and f ′ will have the same distribution. Therefore, again
by the properties of UR, the probability that w is indeed a witness for f is negligibly far
from 1

2 . So A(1n, h(w̃)) returns a preimage of h(w̃) for random w̃ ∈ {0, 1}n with noticeable
probability, in contradiction to the fact that h is a one-way-function.

We come to the second part of the statement and assume that NP 6⊆ P/poly. Let R
and UR be as above. Let Lk be the set of all satisfiable circuits of length k and L the
set of all satisfiable circuits. For any M ⊆ Lk let Ū(M) be a distribution, that returns
a pair (f,w), such that f is uniformly chosen from M and f(w) = 1. Note that these
distributions are not necessarily efficiently samplable.

Consider the (non-efficient) algorithm A that upon input of a circuit f and a set M
behaves as follows:

• Choose (f ′, w′)← Ū(M).
• Let w be the result of evaluating UR(|f |, f , w′) where f is (f, f ′) or (f ′, f) (randomly

chosen).
• If f(w) = 1, output w.

Analogously to the reasoning in the case of one-way-functions, we see that for any M ∈ Lk,
the probability that A(f,M) outputs a w with f(w) = 1 for w uniformly chosen from M
is negligibly close to 1

2 (in the length of f). In particular, for sufficiently large f that
probability is greater than 7

16 . Then, for at least 1
4 of all f ∈ M the output A(f,M)

satisfies f with probability at least 1
4 , since otherwise the probability for a random x ∈M

to be solved would be bounded by 1
4 · 1 + 3

4 · 1
4 = 7

16 .

37

Let S(M) be the set of the f ∈ M , such that f(A(f,M)) = 1 with probability less
than 1

4 . By the above, #S(M) ≤ 3
4#M . We then define inductively: M0

k := Lk, M i+1
k :=

S(M i
k). Then #M3k ≤ (3

4)3k#Ln ≤ (3
4)3k2k < 1, so M3k

n = ∅.
Consider the (inefficient) algorithm A∗ that upon input of a circuit f of length k

behaves as follows:

• For each i = 0, . . . , 3k − 1, let wi ← A(Mk, f).
• If one of the wi fulfils f(wi) = 1, output w := wi.

Since any f lies in some M i
k \ S(M i

k) with i < 3k, this algorithm outputs a satisfying w
with probability at least 1

4 .

Let now Ū∗
k be the distribution Ū(M0

k) × · · · × Ū(M3k−1
k). Then A∗ can be rewritten

as (with k := |f |):

• Let (f ′
0, w

′
0, . . . , f

′
3k−1, w

′
3k−1)← Ū∗

k .
• For each i = 0, . . . , 3k − 1, let w ← UR(k, f , w′

i) where f is (f, f ′
i) or (f ′

i , f) (ran-
domly chosen).

• If f(wi) = 1 for some i, output w := wi.

Since the only inefficient step of that algorithm is sampling Ū∗
k , there is a PPT-algorithm

A∗∗ such that for sufficiently long f ∈ Lk, A(f, Ū∗
k) outputs some w satisfying f with proba-

bility at least 1
4 . Then, by Lemma A.1 there is a nonuniform deterministic polynomial-time

algorithm Ã that finds witnesses for SAT, so SAT ∈ P/poly and therefore NP ⊆ P/poly,
which stands in contradiction to our assumption.

We are now ready to present the first impossibility result concerning long-term UC secure
zero-knowledge protocols:

Theorem 5.3 (Impossibility of zero-knowledge with LTR functionalities). Let R
be an NP-relation without essentially unique witnesses. Let F be a functionality that is
LTR for party P . Then there is no nontrivial, polynomial-time34 protocol that long-term
UC realises zero-knowledge for the relation R with prover P (FR,P→V

ZK) in the F-hybrid
model.

The rough idea of the proof is as follows: Clearly, if π was to be long-term UC secure,
the interaction between prover P and verifier V must be (almost) statistically independent
from the witness V received from the environment. Further, a simulator that is able
to simulate convincingly in the case of a corrupted prover must be able to extract a
witness w̃ from the communication with that prover, which is then (almost) statistically
independent from the witness w. So in particular, w̃ is (almost) statistically independent
from w. Therefore, combining the prover and the simulator into one algorithm, we get
an algorithm that given one witness w returns another almost independent one, in other
words, a witness unifier in the sense of Definition 5.1. Therefore R must have essentially
unique witnesses, which gives the desired contradiction. The details are given in the
following proof.

34If F is not polynomial-time, we call π polynomial-time if all machines except F are polynomial-time.

38

Z0

P

F

V

(x
,w

)

x̃

(I)

ZP

Z0

P
ÃP

F

V

(x
,w

)

x̃

(II)

ZP

Z0

P
SP

FZK

(x
,w

) (x̃
,w̃

)

x̃

(III)

ZV

V

Z0
P

F

ÃV

x̃

(x,w)

(IV)

ZV

V

Z0

FZK

SV

x̃

(x,w)

x

(V)

Figure 4: Networks from the proof of Theorem 5.3.

Proof of Theorem 5.3. In this proof, we again use the ⊳-notation and the comk,z
X (. . .)-

notation presented in the proof of Theorem 4.3: If Ak,z and Bk,z are families of random
variables, we write A ⊳ B, if there is some probabilistic function G (not necessarily an
efficiently computable one) such that Ak,z and G(k,Bk,z) are statistically indistinguishable.
Note that G knows k, but does not have direct access to z. (Intuitively A⊳ B means that
A does not contain (noticeably) more information about z than B). Obviously, ⊳ is
transitive. We will investigate different networks of machines (cf. Figure 4). To facilitate

calculation, we use the following notation: comk,z
X (AB,CD, . . .) denotes the transcript of

the communication between machines A and B, between machines C and D etc. in a run
of the network X on security parameter k when the environment gets auxiliary input z.
E.g., comk,z

II (V ZP , V ÃP , V F) denotes all communication of party V in network II.
To produce a contradiction, we assume that there is a nontrivial protocol π that long-

term UC realises FR,P→V,m
ZK for some polynomially-bounded m(k) ≥ k (i.e. ZK for the

relation R with prover P and Verifier V and with support for statements of length ≤ m(k)).
First consider the following network I (depicted in Figure 4, the adversary Ã has been
omitted for simplicity): The uncorrupted prover P and verifier V run together with the
environment Z0 and the dummy-adversary Ã (see Section 3.1, page 16). The environment
Z0 behaves as follows: It takes its auxiliary input (x,w) and sends that auxiliary input to
P . Then it instructs the dummy-adversary Ã to deliver all messages. A message x from
V is simply recorded. We assume that all environments constructed in this proof simply
output their view (i.e., the transcript of all messages it sent or got and of all its internal
states).

We will from now on assume that the auxiliary input of the environment is always of
the form (x,w) with xRw and |x| ≤ m(k). Then, since the protocol π is nontrivial, V will
eventually send some x̃ to Z0 with overwhelming probability.

We now corrupt P and simulate it honestly. That is, we consider an environment ZP

39

that simulates Z0 and P , and forwards all messages P generates through the dummy-
adversary ÃP . The resulting network II is shown in Figure 4. Then the communication
between ZP and ÃP consists of the following: (i) the communication of the simulated
P with V and F and (ii) the communication of the simulated Z0 with the adversary.
Therefore

comk,x,w
II (ZP ÃP) ⊳ comk,x,w

I (Z0Ã, PV, PF).

Now, since π is long-term UC secure, there is a simulator SP , such that in the network III

depicted in Figure 4 the environment ZP has a statistically indistinguishable output from
ZP in network II. Since the communication between ZP and the adversary/simulator is

output by ZP we have that comk,x,w
III (ZPSP) and comk,x,w

II (ZP ÃP) are statistically indistin-
guishable and hence

comk,x,w
III (ZPSP) ⊳ comk,x,w

II (ZP ÃP).

Note that the following fact holds with overwhelming probability in network III (since
otherwise Z0 would not have indistinguishable view in networks I, II and III): A statement
x̃ is sent from FZK to ZP that is equal to the x from ZP ’s auxiliary input. Therefore,
by definition of FZK, the w̃ sent from SP to FZK is a witness for x (but not necessarily
w = w̃).

Let W̃ k,x,w be the random variable denoting the distribution of w̃ in a run of network III.
Since all machines in network III are polynomially-bounded, there is a PPT-algorithm Ū ,
so that Ū(k, x,w) has the same distribution as W̃ k,x,w. That algorithm has the property,
that for xRw and |x| ≤ m(k), its output is a witness for x with overwhelming probability.
To show that R has essentially unique witnesses, we have to show further that Ū ’s output
is almost independent of w.

Note that in network III, the witness w̃ sent from SP to FZK depends on w only through
the communication between ZP and SP . In other words,

W k,x,w
⊳ comk,x,w

III (ZPSP).

To show that W k,x,w is almost independent of w, we have to got back to network I and
make use of the fact that F is LTR for P . Then, by Definition 4.1, the communication
of F with P can be (inefficiently) calculated from the communication of F with V and
with the dummy-adversary Ã. The communication of F with Ã again can be calculated
from the communication between Ã and Z0 (since Ã simply forwards messages for Z0).
Summarising these facts, we have

comk,x,w
I (Z0Ã, PV, PF) ⊳ comk,x,w

I (Z0Ã, PV, V F).

Now, let us consider yet another network. Assume that V is corrupted and simulated
honestly by the environment ZV , i.e. ZV simulates both Z0 and V . V ’s communication
is routed through ÃV . The resulting network IV is depicted in Figure 4. Since the com-
munication of the simulated V with P and F is routed through ÃV and therefore part of
the latter’s communication, we get

comk,x,w
I (Z0Ã, PV, V F) ⊳ comk,x,w

IV (ZV ÃV).

40

Finally, since π is long-term UC secure, there is a simulator SV , such that the output of
ZV in networks IVand V(cf. Figure 4) are statistically indistinguishable. It follows

comk,x,w
IV (ZV ÃV) ⊳ comk,x,w

V (ZV SV).

Combining all ⊳-inequalities so far, we get

W k,x,w
⊳ comk,x,w

V (ZV SV). (2)

Let now xk, w
1
k, w

2
k be sequences with xkRw1

k and xkRw2
k. Assume further that |xk| ≤ m(k).

Since in network V for such x,w the functionality FZK behaves independently of w (it
only checks, whether w is indeed a witness), the communication between ZV and SV is
independent of w. More formally,

com
k,xk,w1

k

V (ZV SV) and com
k,xk,w2

k

V (ZV SV)

are identically distributed. By definition of ⊳ and (2), there is a probabilistic function G
such that

W k,xk,w1
k ≈ G

(

com
k,xk,w1

k

V (ZV SV)
)

≈ G
(

com
k,xk,w2

k

V (ZV SV)
)

≈W k,xk,w2
k ,

where ≈ denotes statistical indistinguishability. So W k,x,w and therefore also Ū(k, x,w) is
independent of w in the sense of Definition 5.1. However, Ū does not completely fulfil the
conditions for a witness unifier, since we have shown the above only for xk with |xk| ≤ m(k).
But by defining UR(k, x,w) := Ū(max{k, |x|}, x, w) we get a witness unifier in the sense
of Definition 5.1 (since m(k) ≥ k and thus |xk| ≤ m(max{|xk|, k})). So R has essentially
unique witnesses, which leads to a contradiction and therefore shows the theorem.

Note that we cannot expect a result analogous to Theorem 5.3 in the case that F is LTR
for the verifier V , since commitments are LTR for the recipient and Lemma 5.7 shows
that FR,P→V

ZK can be long-term UC implemented using commitments with the verifier V
as recipient.

Combining the results in this section, we get the impossibility of long-term UC secure
zero-knowledge protocols for SAT:

Corollary 5.4. Let F be a functionality that is LTR for party P . If one-way-functions
(secure against uniform adversaries) exist, or if NP 6⊆ P/poly, then there is no nontrivial,
polynomial-time long-term UC secure protocol for zero-knowledge with prover P for SAT
(FSAT,P→V

ZK) in the F-hybrid model.

Proof. Immediate from Lemma 5.2 and Theorem 5.3.

At this point one might ask why our impossibility result from Theorem 5.3 needs the
restriction to relations without essentially unique witnesses. Would not the following
argumentation show that given a, say, coin-toss, there is no long-term UC zero-knowledge
protocol π for any nontrivial relation: The simulator is able to extract a witness w from
the interaction with the prover. Therefore w must information-theoretically already be
“contained” in the interaction. On the other hand, in an interaction between simulator and

41

verifier, the witness w cannot be“contained”in the interaction, since the simulator does not
know w. However, since the interaction in both cases must be statistically indistinguishable
from the interaction in the uncorrupted case, so that interaction both “contains” and does
not “contain” w, which gives a contradiction. Surprisingly, this intuition is not sound as
shows the following possibility result. It implies that in Theorem 5.3, the condition that
the relation does not have essentially unique witnesses is indeed necessary.

Theorem 5.5 (Long-term UC ZK for Blum-integers using coin toss). Assume that
a one-way permutation exists. Let nR(p, q) if n = pq, p, q prime and p ≡ q ≡ 3 mod 4.
There is a nontrivial, polynomial-time protocol π using two instances of FCT that long-term
UC emulates FR

ZK.

Note that the main intent of this theorem is to show that our impossibility result from
Theorem 5.3 cannot be strengthened. We do not claim that a protocol for FR

ZK (with R
as in Theorem 5.5) has many applications: Since FR

ZK can be implemented using a func-
tionality that is LTR, nothing can be implemented from FR

ZK that cannot be implemented
from functionalities that are LTR. (It is, however, conceivable that FR

ZK might have some
applications for implementing long-term UC secure identification schemes.)
To construct a protocol π as in Theorem 5.5, we have to achieve two seemingly contradic-
tory goals simultaneously. If the prover or verifier is corrupted, the simulator may choose
the value r the coin-toss functionality returns. First, since the simulator should be able
to extract a witness (p, q) (i.e., a factorisation of n in this case) in case of the corrupted
prover, the simulator should be able to choose r having a trapdoor X such that it is possi-
ble to extract (p, q) under knowledge of that trapdoor. However, in the case of long-term
UC the value r should be statistically indistinguishable from uniform randomness. So the
trapdoor should be present (but possibly unknown) even if r is chosen randomly. Further,
if the verifier is corrupted, the simulator should be able to simulate the proof without
knowing a witness. However, since also in this case r is almost uniformly distributed, the
trapdoor X is also present. So by finding that trapdoor X we could extract a witness
from the proof although the simulator never used that witness in constructing the proof.
This can only be realised if finding the witness can be reduced to finding the trapdoor.

In the case of factoring n, an example for such a trapdoor is the knowledge of random
square roots modulo n. Given an oracle that finds square roots modulo n, we can factor n.
So if the trapdoor X consists of the square roots of r (when we consider r as a sequence
of integers modulo n) finding the trapdoor is as hard as factoring n, so there is no con-
tradiction in the fact that by finding the trapdoor we can extract a witness (p, q) from an
interaction that was produced without knowledge of (p, q).

This leads us to the following simplified version of our protocol:

• The prover sends n to the verifier.
• Prover and verifier invoke the coin-toss. The result r of that coin-toss is considered

as a sequence r1, . . . , rk of integers modulo n.
• For each i, the prover chooses a random si with s2

i = ri. It sets si := ⊥ if ri does
not have a square root.35

• The prover sends s1, . . . , sk to the verifier.
• The verifier checks whether s2

i = ri for all si 6= ⊥, and whether at least 1
5 of all

si 6= ⊥.

42

This protocol is not yet a long-term UC realisation of FR
ZK, since it fails if n is not a

Blum-integer, but it will demonstrate the main point. So why is this protocol long-term
UC secure if we guarantee that n is a Blum-integer? First, we see that if prover and
verifier are both honest, the verifier will always accept. This is due to the fact that for a
Blum-integer n, a random residue is a square with probability at least 1

4 .
Now we consider the case that the verifier is corrupted. In this case, the simulator

has to produce coin-toss values r1, . . . , rn that are statistically indistinguishable from the
uniform distribution, and a proof that is statistically indistinguishable from the proof given
by the prover. In other words, the simulator needs to simultaneously produce (almost)
uniformly distributed r1, . . . , rn, and for each ri a random square root si modulo n if such
si exists. Fortunately, if n is a Blum-integer, there is an efficient algorithm Q for choosing
such ri and si (Lemma A.2). So the simulator can successfully simulate by simply choosing
the ri and si using Q. Note that for this, it is vital that the simulator knows n before
having to send the coin-toss result r1, . . . , rn to the environment. This is why we let the
prover send n to the verifier before they invoke the coin-toss. In particular, we could
not use a CRS here, because then the simulator might have to choose the ri before the
environment sends n to the prover.

Now for the case that the prover is corrupted. In this case, the simulator needs to inter-
act with the environment incorporating the prover and to extract the witness (p, q) if the
prover’s proof would convince the honest verifier. To do this, the simulator again chooses
the coin-toss r1, . . . , rn using the algorithm Q and therefore knows random square roots s̃i

of all ri that are quadratic residues. Now the environment sends si to the simulator. The
uncorrupted verifier would only accept if at least k/5 of these si satisfy s2

i = ri. Therefore
after receiving the si from the environment, the simulator knows k/5 independently chosen
pairs (si, s̃i) of square roots of ri. For each such pair the probability of si 6≡ s̃i mod n is
1
2 (we ignore the finer detail of non-invertible ri at this point), and in this case we get a
factor of n by evaluating gcd(si ± s̃i, n). This happens with overwhelming probability, so
the simulator is successful in extracting a factor and therefore the witness (p, q).

However, the protocol as described so far has a major flaw: If n is not a Blum-integer,
the above security proof does not work. So we must ensure that n is in fact a Blum-integer.
If the verifier is corrupted, the simulator gets n from the functionality FR

ZK which ensures
(by definition of R) that n is a Blum-integer. So in this case there is no problem. However,
if the prover is corrupted, the simulator will have to choose the coin-toss r1, . . . , rn. If
n is not a Blum-integer, he might learn this later on (since he learns (p, q) in case of a
successful proof), but then it might already be too late, because the simulator sends the
ri to the environment before the end of the proof (the algorithm Q does not guarantee
r1, . . . , rn to be (almost) uniformly distributed if n is not a Blum-integer). To overcome
this difficulty, we add an additional step to the beginning of the protocol. Before the coin-
toss is invoked, the prover proves that n is indeed a Blum-integer. If the prover succeeds in
this proof, the simulator can use the algorithm Q without danger, otherwise the simulator
may abort (since the verifier would have done so, too). However, this introduces the
additional difficulty that in case of a corrupted verifier, the simulator has to perform that
proof, too, and without knowledge of the witness. To achieve this, we make use of the

35This is feasible given the factorisation of n.

43

FLS-technique [FLS99]: Prover and verifier first invoke another instance of the coin-toss
functionality (in this case, a CRS would be sufficient, too) and then the prover proves
using a statistically witness indistinguishable argument of knowledge to the verifier that
either n is a Blum-integer or that he knows the preimage of the coin-toss t under a one-way
permutation f . Then the simulator can simulate this proof by simply choosing t = f(u)
for uniform u. Since f(u) is uniformly distributed, this is indistinguishable from what an
honest prover knowing the witness would produce. After having successfully performed
this first step, prover and verifier proceed with the protocol as described above. The
following proof gives the full details.

Proof of Theorem 5.5. Let fk be a one-way permutation on {0, 1}k . Let SWIAOK be a
statistically witness indistinguishable argument of knowledge (such argument systems exist
for any NP-relation under the assumptions of the theorem, cf. Section 2). By R we denote
the relation specified in the theorem. Then the protocol π between P and V using two
instances of FCT is defined as follows:

1. P is invoked with input (p, q, n).
2. P checks whether nR(p, q). Otherwise he aborts.
3. P and V invoke the first instance of FCT and receive a random k bit string r̄.
4. P sends n to V .
5. P proves using the SWIAOK the knowledge of p, q, r̄∗, such that nR(p, q) or fk(r̄

∗) =
r̄.

6. P and V invoke the second instance of FCT and receive a random bit string r of
length k · (|n|+ k). They split r into strings r1, . . . , rk of length |n|+ k.

7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a
uniformly distributed si ∈ {si ∈ {0, . . . , n − 1} : s2

i ≡ ri mod n}. If for some i no
such si exists, let si := ⊥.36

8. P sends s1, . . . , sn to V .
9. V checks whether s2

i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.
If so, V outputs n.

To show that this protocol π long-term UC realises FR
ZK for the relation R given in the

theorem, we have to prove the following three claims:
• The protocol is nontrivial, i.e., on input (p, q, n) with nR(p, q) for the prover, the

verifier outputs n if all messages are scheduled and both parties are uncorrupted
(this roughly corresponds to the completeness of the ZK-protocol)
• There is a simulator for the case that the prover P is corrupted (this roughly corre-

sponds to the knowledge-soundness of the ZK-protocol).
• There is a simulator for the case that the verifier V is corrupted (this roughly corre-

sponds to the zero-knowledge-property of the ZK-protocol).
We start by showing that if the prover gets input (p, q, n) with nR(p, q), the verifier

outputs n (in the uncorrupted case). The protocol contains only two steps in which the
verifier might abort, during the SWIAOK (Step 5) and during the checks at the end (Step 9).
Because of the completeness of the SWIAOK, and since indeed nR(p, q), the verifier will

36This can easily be done efficiently using the factorisation of n.

44

abort only with negligible probability during Step 5. To see that the verifier accepts in
Step 9, it is necessary to see that with overwhelming probability, more than k/5 of the
ri are squares modulo n. Since n = pq is a Blum-integer, we have p, q ≥ 3. For random
r′ ∈ Zn, r′ mod p and r′ mod q are independently uniformly distributed. At least 1/2 of all
r′ mod p ∈ Zp are squares (because 0 and half of the invertible elements are squares), the
same holds for q. Since r′ is a square modulo n if and only if it is a square modulo p and
modulo q, it follows that r′ is a square with probability at least 1/4. Further, for random
ri of length |n|+k, ri mod n is almost uniformly distributed on Zn. So the probability that
ri is a square modulo n is at least 1

4 − µ for some negligible µ. Therefore the probability,
that at least k/5 of k independently chosen ri are squares is overwhelming. This concludes
the proof of the nontriviality of π.

Without loss of generality, we can assume a dummy-adversary (see Section 3.1,
page 16).

We now consider the case that the prover P is corrupted. Then we have to find a
simulator SP , such that the interaction between the environment (posing as the prover
and relaying through the dummy-adversary) and the simulator SP is indistinguishable
from the interaction between the environment and the verifier. Furthermore, when the
verifier would output n, the simulator has to send (p, q, n) to the ideal functionality FR

ZK

so that it will output n.
We construct the simulator SP as follows:

• SP simulates an honest and unmodified instance of the verifier V .
• When prover and verifier invoke the first coin-toss, the resulting value r̄ is chosen

uniformly from {0, 1}k (as would FCT is the real model).
• When prover and verifier invoke the second coin-toss, the resulting value r is

chosen as the concatenation of r1, . . . , rk. To chose the ri, the algorithm Q from
Lemma A.2 is invoked and returns (ri, s̃i) where s̃i is a random root of ri if ri is
a square modulo n.

• When the verifier V outputs n in Step 9, the simulator checks the following:
– Is n a square? Then

√
n is a nontrivial factor of n.

– Is ri not invertible modulo n for some i? Then gcd(ri, n) is a nontrivial factor
of n.

– Is gcd(si − s̃i, n) a nontrivial factor of n for some i with si 6= ⊥?
If one these tests succeed, the simulator knows a nontrivial factor of n and can
send (p, q, n) to FZK (which fulfil nR(p, q) if n is a Blum-integer).

By the knowledge-soundness of the SWIAOK and using the fact that no polynomially-
bound machine can find an r̄∗ = f−1

k (r̄), for polynomially-bounded environments, we can
assume that if the simulated verifier does not abort in Step 5, then the number n given
by the environment machine to the simulator is a Blum-integer. So, by Lemma A.2, the
ri are almost uniformly distributed on {0, 1}|n|+k. So r (as chosen by the simulator) is
statistically indistinguishable from a uniform r of length k(|n| + k). Since the verifier
behaves as would an honest verifier, it follows that the interaction with the real V is
statistically indistinguishable from that with the simulator.

It is left to show that with overwhelming probability the simulator SP sends (p, q, n)
with nR(p, q) to FZK when the simulated verifier V outputs n. By the soundness of the

45

SWIAOK, we can assume that n is a Blum-integer. Therefore it is left to show that the
probability is negligible that the three tests performed by SP fail. This would mean that
all ri are invertible modulo n, and that n is not a square. Since n is a Blum-integer, each ri

then has four roots, and since the s̃i are chosen (almost) independently of si (Lemma A.2
guarantees that s̃i is an almost uniformly distributed root of ri), for each si 6= ⊥ with
probability 1

2 it is si 6= ±s̃i. So with overwhelming probability for at least one si we have
si 6= ±s̃i, and in consequence gcd(si − s̃i, n) is a nontrivial factor of n. So the simulator
SP successfully simulates.

We now come to the case that the verifier V is corrupted. In this case, the simulator
SV gets an n from the functionality FZK which is guaranteed to be a Blum-integer, but the
simulator does not get the factorisation of n. Now the simulator SV has to interact with
the environment in a way that is statistically indistinguishable from the interaction of the
honest verifier with the environment (through the dummy-adversary). We construct the
simulator SV as follows:

• When the first coin-toss is requested, the simulator chooses its value r̄ as r̄ :=
fk(r̄

∗) for uniformly chosen r̄∗ ∈ {0, 1}k .
• When the second coin-toss is requested, the simulator invokes the algorithm Q

from Lemma A.2 k times and gets r1, . . . , rk and s1, . . . , sk. The value r of the
second coin-toss is then the concatenation of the ri.

• SV simulates the prover P with the following modifications:
– When performing the SWIAOK in Step 5 of the protocol, instead of using p, q

as the witness (which is unknown), we use r̄∗ as chosen above as a witness
(for the rhs r̄ = fk(r̄

∗) of the statement to be proven).
– Instead of trying to find square roots of the ri in Step 7 (which is infeasible

without the factorisation of n) we use the si returned by the algorithm Q.

Since fk is a permutation, the value r̄ has the same distribution as the value r̄ produced in
the real model. Since n is always a Blum-integer, Lemma A.2 guarantees that the ri and
si have an indistinguishable distribution from that in an interaction with the real prover
(since in the latter case the ri would be uniformly distributed and the si would be random
roots of the ri or si = ⊥ if no such root exists). Further, since the SWIAOK is statistically
witness indistinguishable, the proof of the honest prover (which uses witness p, q) and the
proof of the simulated prover (which uses witness r̄∗) are statistically indistinguishable.
Combining these facts, it is straightforward to see that the interaction between with the
real and with the simulated prover are statistically indistinguishable.

So π long-term UC realises FR
ZK.

Actually, we can somewhat strengthen the result from Theorem 5.5 and get a long-term UC
secure zero-knowledge protocol that does not only show the existence of a factorisation of
n, but can also show that the factorisation satisfies some predicate. Such a zero-knowledge
protocol might for example be useful when proving statements about RSA-based encryp-
tions or signatures.

Corollary 5.6. Assume that a one-way permutation exists. Let X be any predicate
that can be decided in deterministic polynomial time. Let R be as in Theorem 5.5. Let

46

(p, q)R′(n, x) if (p, q)Rn and X(p, q, n, x) evaluates to true. Then there is a protocol using
two instances of FCT that realises FR′

ZK in the coin toss hybrid model.

Proof. This protocol construction is almost identical to that of Theorem 5.5. The only
difference is the following: Instead of proving that n is a Blum-integer (using the statis-
tically witness indistinguishable argument of knowledge), the prover proves that n = pq
is a Blum-integer and that X(p, q, n, x) evaluates to true. The rest of the protocol is
unmodified. The security proof is completely analogous.

Furthermore, given a commitment, long-term UC secure ZK for any NP-relation is (un-
surprisingly) possible:

Lemma 5.7 (ZK from commitment). Let R be an NP-relation. Then there is a long-
term UC secure protocol π for zero-knowledge with relation R (i.e., realising FR,P→V

ZK)
using a polynomial number of commitments from prover P to verifier V (i.e., FP→V

COM).

Proof. [CF01] gives a UC secure protocol that realises FR,P→V
ZK using FP→V

COM where R
is the relation for the Hamilton cycle problem. Their result even holds unconditionally
(i.e., even when the environment is unlimited during the execution of the protocol) and
therefore in particular with respect to long-term UC. Since the Hamilton cycle problem is
NP-complete, the lemma follows.

Note that we cannot expect a similar result using commitments from verifier to prover,
since FCOM is LTR for the recipient and thus Theorem 5.3 applies.

5.2 Impossibility when using offline functionalities

In the preceding section, we saw that using a coin toss, long-term UC secure zero-
knowledge protocols for the factorisation of Blum-integer can be realised. It is therefore a
natural question to ask whether something similar is also possible using a CRS, which can
be seen as the offline variant of a coin-toss. Unfortunately, the answer is no. To state this
result in greater generality, let us first formalise what we mean by an offline functionality.

Definition 5.8 (Offline functionalities). We call a functionality F offline, if it has the
following form: When F runs with parties P1, . . . , Pn, at the beginning of the protocol, F
chooses values (c, cP1 , . . . , cPn) according to a fixed distribution (that may depend on the
security parameter) and sends c to the adversary and sends cPi

to Pi for i = 1, . . . , n.

Lemma 5.9. CRS and PKI are offline functionalities.

Proof. For FCRS, set c := ci := r (cf. Definition 3.5), and for FPKI, set c := (pk 1, . . . , pkn)
and ci := (sk i, pk1, . . . , pkn) (cf. Definition 3.7).

The following result shows that a CRS as well as a PKI where the secret key is
information-theoretically determined by the public key (cf. Lemma 4.2) cannot be used for
long-term UC secure ZK for any relation R unless that relation is trivial for nonuniform
algorithms anyway.

47

Theorem 5.10 (Impossibility of ZK with LTR offline functionalities). Let R be
a nonuniformly nontrivial NP-relation.37 Let F be an offline functionality that is LTR
for party P and for party V . Then there is no nontrivial, polynomial-time protocol that
long-term UC realises ZK for relation R with prover P and verifier V (i.e., FR,P→V

ZK) in
the F-hybrid model.

To understand the proof idea, assume that F is a CRS. Assume that there is a protocol
π for FR

ZK. Then there is a simulator S1 that is able to choose the CRS r1 and calculate a
corresponding trapdoor T1, such that he can simulate the prover and convince the verifier
using this trapdoor (without knowledge of a witness). Furthermore, there is another
simulator S2 that is able to choose the CRS r2 and calculate a corresponding trapdoor T2,
such that he can simulate the verifier and—if the verifier accepts—extract a witness w.
Since both r1 and r2 must, in the case of long-term UC, be statistically indistinguishable
from an honestly chosen CRS, it follows that an honestly chosen CRS always already
“contains” such trapdoors T1 and T2 (however, given a CRS it can be infeasible to find
these trapdoors). Therefore, if we provide S1 and S2 with a CRS and with trapdoors T1

and T2, S1 will be able to produce a convincing proof (due to trapdoor T1), and S2 will be
able to extract a witness from this convincing proof. Since S1 and S2 are polynomial-time,
and CRS and trapdoors can be given as an auxiliary input, it follows that a nonuniform
polynomial-time algorithm can find witnesses for R in contradiction to the nontriviality
of R. Functionalities other than a CRS are handled almost identically, see the full proof.

Proof of Theorem 5.10. To show the theorem, we assume that there is a protocol π con-
sisting of prover P and verifier V that nontrivially long-term UC realises FR,P→V,m

ZK with
m(k) ≥ k using the offline functionality F , and that F is LTR for party P and for party
V .

Since F is an offline functionality, we can assume without loss of generality that each
party accesses F only once, and that this is done upon its first activation. We call the
value P gets cP and the value V gets cV . Without loss of generality we can assume that
the value c that the adversary gets is always the empty string (since if the protocol is
secure and nontrivial using an F that gives some information to the adversary, it certainly
is so, if that information is not given to the adversary).

Consider the following network I (shown in Figure 5, the dummy-adversary is omitted
for simplicity): The parties P and V run uncorrupted with an environment Z0 and the
dummy-adversary Ã (see Section 3.1, page 16). The environment Z0 takes its auxiliary
input (x,w) and sends (x,w) to the prover P . Then it instructs the dummy-adversary Ã
to deliver all messages. We assume that all environments constructed in this proof simply
output their view (i.e., the transcript of all messages they sent or got and of all their
internal states). Since the protocol is nontrivial, the verifier V eventually gives output if
xRw and |x| ≤ m(k).

Now we corrupt P and simulate it honestly, i.e., we construct an environment ZP that
simulates Z0 and P and routes all messages from and to P through the dummy-adversary.
The resulting network II is depicted in Figure 5. Since π is long-term UC secure, there is
a simulator SP , such that the output of ZP is statistically indistinguishable in networks II

37I.e., there is no nonuniform deterministic polynomial-time algorithm that finds witnesses for R.

48

Z0 P
(x,w)

V FcV

c
P

x̃

(I)

Z0 P
(x,w)

V ÃP FcV

c
P

x̃

ZP

(II)

Z0 P
(x,w)

SPFZK

c
P

(x̃,w̃)x̃

ZP

(III)

Z0 FZK SV

(x,w) x

V
x̃

c
V

ZV

(IV)

Z0 FZK S̄V

(x,w) x

V FcV

c
P

x̃

ZV

(V)

Z0 FZK S̄V

(x,w) x

SPFZK

c
P

(x̃,w̃)x̃

(VI)

Figure 5: Networks from the proof of Theorem 5.10.

and III (cf. Figure 5). Call the machines in the upper half of network I U , those in the lower
half L. The upper half of network III consists of the same machines as that of network I,
so we also call it U . The lower half of III we call L̃. Since ZP consists of the machines U ,
the communication between U and L̃ is contained in ZP ’s output, so the communication
between U and L is statistically indistinguishable from that between U and L̃.

We can consider U , L and L̃ as single machines with security parameter k and auxiliary
input x,w. Let then 〈U,L〉k,x,w denote the transcript of the communication between these
machines. Then

〈U,L〉k,x,w ≈ 〈U, L̃〉k,x,w,

where ≈ means statistical indistinguishability.
Now we go back to network I, corrupt V and simulate it honestly, i.e., we construct

an environment ZV simulating Z0 and V , and routing the communication through the
dummy-adversary ÃV . Without loss of generality, we assume that ZV queries the value
cV from the dummy-adversary ÃV in its first activation, i.e., before invoking Z0 and in
particular before using its auxiliary input. Then we construct the corresponding simulator
SV . So we get the network IV shown in Figure 5. The communication of V and Z0 with
the rest of the network is statistically indistinguishable for networks I and IV.

The simulator SV has to provide the value cV at its first activation, i.e., the choice of cV

and the internal state t of the simulator SV after that step are chosen independently of the
environment’s auxiliary input x,w. So there is a family of probability distributionsDk such
that the (t, cV) are distributed according to Dk. Let Ek denote the distribution of (cP , cV)
as chosen by F . Since cV is part of the communication observed by ZV , the distributions
of cV in as chosen by Ek and by Dk are statistically indistinguishable. Therefore, there is a
probabilistic function Dk (not necessarily efficiently computable) such that when choosing
(cP , cV) ← Ek, the pair (Dk(cV), cV) has statistically indistinguishable distribution from
Ek. Further, since F is LTR for V , there is a function f such that cV = f(cP). Therefore,
(Dk(f(cP)), cV) is statistically indistinguishable from Dk. So instead of using a simulator
SV that chooses (t, cV) according to Dk and then sends cV to V and keeps t for itself, we
can use a modified simulator S̄V that instead receives cP as chosen by an instance F and

49

calculates t := Dk(f(cP)). The machine V gets cV from F . The resulting network V is
depicted in Figure 5. The communication of V and Z0 with the rest of the network is
statistically indistinguishable for networks IV and V (and I, as seen above). Note that S̄V

is not necessarily a polynomial-time machine.
When cV and cP are chosen by F , cP can be deterministically calculated from cV ,

since F is LTR for P . Therefore the communication of V , Z0 and F with the rest of
the network is statistically indistinguishable for networks I and V. So if we call the upper
half of V Ũ , and the lower half L (it consists of the same machines as the lower half L of
network I), we get

〈U,L〉k,x,w ≈ 〈Ũ , L〉k,x,w.

Since all machines send only a polynomial number of messages, by Lemma A.3 it
follows that

〈U,L〉k,x,w ≈ 〈Ũ , L̃〉k,x,w.

Let network VI be the network consisting of Ũ and L̃ (i.e., the upper half of network V

and the lower half of network III). Since in network I the statement x̃ send from V to Z0

fulfils x̃ = x with overwhelming probability, the same holds for network VI. So the w̃ sent
from SP to FZK in network VI is a witness for x with overwhelming probability (i.e., xRw̃)
as long as xRw and |x| ≤ m(k). So the following algorithm finds witnesses for x with
overwhelming probability (assuming x has a witness).

1. Simulate network VI up to the point where S̄V has evaluated t := Dk(f(cP)) with
security parameter k := |x|. Call the state of the network s0. (This step is not
efficient. Note that the auxiliary input of Z0 has not been used so far, so this step
depends only on the length of x but not on its value.)

2. Continue the simulation of network VI from state s0 using (x,w) as auxiliary input
for Z0 where w is some witness for x. (Note that for this simulation, we do not need
to explicitly find such a w, since the FZK in the upper half of network VI will not use
the value of w as long as it fulfils xRw. So this step can be performed efficiently.)

3. Extract the w̃ sent by SV to FZK from this simulation and output w̃.
Obviously, the output of this algorithm is a witness for x with overwhelming probability.
However, Step 1 is not efficient. But since the auxiliary input of Z0 is not used in that
step, the distribution Gk of s0 only depends on k := |x|. So there is an algorithm A taking
inputs x, s0 (consisting simply of Steps 2 and 3) that has the following property: A(x,G|x|)
is a witness for x with overwhelming probability. So by Lemma A.1 witnesses for R can
be found by a nonuniform deterministic polynomial-time algorithm, so R is nonuniformly
trivial, which gives us a contradiction and proves the theorem.

A natural question arising in this context is whether the impossibility result from Theo-
rem 5.10 can be made stronger. In particular, one might ask whether such an impossibility
result already holds if F is LTR for P or for V . This however is refuted by Corollary 4.7
below. Further one might ask, whether the theorem can be strengthened to state impos-
sibility of ZK for uniformly nontrivial relations. The following gives strong evidence that
this cannot be done without new results about integer-factorisation.

Corollary 5.11. Assume that a one-way permutation exists. Let γ be an efficiently com-
putable function from Σ∗ to N∪ {⊥}, such that γ(x) depends only on the length of x, and

50

γ(x) is a Blum-Integer or ⊥ for all x. Let R be as in Theorem 5.5. Let (n, x)Rγ(p, q)

iff nR(p, q) and γ(x) = n. Then there is a protocol that long-term UC realises FRγ

ZK with
prover P in the CRS-hybrid model.

It is not an unreasonable (although strong) assumption that such a γ exists, such that
Rγ is uniformly nontrivial. So to strengthen Theorem 5.10, one would have to disprove
the existence of such a γ. Since such a γ exists relative to an oracle if factoring Blum-
integers is hard,38 we get an alternative interpretation of Corollary 5.11: A strengthening
of Theorem 5.10 to uniformly nontrivial relations would be non-relativizing or show that
factoring is not hard.

We wish to stress that Corollary 5.11 should not be seen as a positive result since there
is no candidate for γ. Also, it does not seem that a protocol realising FRγ

ZK would have any
applications. The purpose of the result is solely to show the limitations of Theorem 5.10.

The rough proof idea for Corollary 5.11 is the following: Recall why protocol π from
Theorem 5.5 needs a coin-toss instead of a CRS. The simulator had to choose the value
r = (r1, . . . , rk) of the second invocation of the coin-toss functionality in a manner so that
it knew the square roots of ri modulo n. Therefore, it was necessary for the simulator to
know n before choosing r. In the case of Rγ however, there are only polynomially many
n = γ(x) since γ(x) depends only on the length of x. So we can modify the protocol π as

follows: Instead of using a coin-toss, we use a different CRS r(|x|) = (r
|x|
1 , . . . , r

|x|
k) for each

length |x|. Then the simulator can choose the CRS r(|x|) before the start of the protocol,
since the n for which the CRS r(|x|) is to be used is already known (n = γ(0|x|)). The
following proof makes these ideas more concrete.

Proof of Corollary 5.11. To implement FRγ ,P→V,m

ZK using a CRS we use the following pro-
tocol π (the notation is as in the proof of Theorem 5.5):

1. A CRS r = (r̄, r(0), . . . , r(m(k))) is provided by the functionality FCRS, where r̄ has
length k, and r(i) has length k · (|γ(0i)|+ k) (and |r(i)| := 0 for γ(0i) = ⊥).

2. P is invoked with input (p, q, n, x).
3. P checks whether (n, x)Rγ(p, q). Otherwise he aborts.
4. P sends (n, x) to V .
5. P proves using the SWIAOK the knowledge of p, q, r̄∗, such that (n, x)Rγ(p, q) or

fk(r̄
∗) = r̄.

6. r(|x|) is split into r1, . . . , rk, each of length |n| + k (note that the lengths match,
since |r(|x|)| = k · (|γ(0|x|)|+ k) = k · (|n|+ k)).

7. For each ri, the prover selects a random square root si of ri modulo n, i.e. a
uniformly distributed si ∈ {si ∈ {0, . . . , n − 1} : s2

i ≡ ri mod n}. If for some i no
such si exists, let si := ⊥.39

8. P sends s1, . . . , sn to V .
9. V checks whether s2

i ≡ ri mod n for all si 6= ⊥, and whether #{i : si 6= ⊥} > k/5.
If so, V outputs n.

38This follows from Lemma A.4 with Dn being the uniform distribution on n-bit Blum-integers and xRw

denoting that w is a nontrivial factor of x. Note however that this construction of γ is not constructive;
we know of no concrete candidate.

39This can easily be done efficiently using the factorisation of n.

51

We only describe how the simulator chooses the CRS r: Like in the proof of Theo-
rem 5.5, the first component r̄ is chosen randomly if P is corrupted, and r̄ = fk(r̄

∗) for
random r̄∗ if V is corrupted.

For µ = 0, . . . ,m(k), the simulator (both in case of a corrupted V and of a corrupted P)
invokes the algorithm Q from Lemma A.2 on input n := γ(0µ). Then Q outputs r1, . . . , rk

of length |n|+k together with random square roots s1, . . . , sk (or si = ⊥, if no root exists).
Then r(µ) is chosen as the concatenation of r1, . . . , rk. The si are stored. Finally, the CRS
is set to r := (r, r(0), . . . , r(m(k))).

Except for this modification, the simulators are constructed analogously to the sim-
ulators in the proof of Theorem 5.5, and the proof of security is analogous to that of
Theorem 5.5 (note that for any (n, x) ∈ LRγ , the r(|x|) used in the protocol will have been

constructed using Q with argument ñ := γ(0|x|), which satisfies n = ñ, since γ depends
only on the length of its argument).

5.3 Generalising LTR

In Section 4.1, we have introduced the notion of long-term revealing (LTR) functionalities
(Definition 4.1). We have shown that the cryptographic power of such functionalities is very
limited in the long-term UC setting; they cannot even be used to implement a commitment
or a ZK protocol for SAT. It seems, however, that the notion of LTR functionalities can
be further generalised. For example, assume that a functionality F̂ is LTR for Alice, and
that F behaves like F̂ , except that it additionally tosses a random coin b and sends b to
Alice. Then F is not LTR for Alice because given the view of Bob, one cannot compute
b. It does seem, however, that the fact that Alice gets a bit b from F does not have any
impact on the cryptographic power of F . Alice could have chosen b herself.

Indeed, it is easy to show that F cannot be used to implement commitments or ZK pro-
tocols for SAT. There is a protocol π in the F̂-hybrid model that long-term UC realises F .
Namely, π picks b at random, sends b to Alice, and forwards all other communication to
F̂ . Thus, if there were a protocol σ long-term UC realising, say, a commitment in the
F-hybrid model, then the composition theorem (Theorem 3.2) would give us a protocol
σπ realising a commitment in the F̂-hybrid model. This would contradict Theorem 4.3
since F̂ is LTR for Alice.

To formulate this reasoning in a more general fashion, we introduce the following
notation: Given a functionality F and a polynomial p, let Fp denote the multi-session
variant of F . That is, Fp internally simulates p copies of F . When Fp receives a message
(i,m) with i ∈ {1, . . . , p} from a machine M , it forwards m to the i-th copy of F . When
the i-th copy of F sends a message m′ to M , Fp sends that message as (i,m) to M .

Definition 5.12 (Generalised LTR). We say a functionality F is generalised LTR
for a party P if for every polynomial p, there exists a functionality F̂ that is LTR for
P and there exists a nontrivial, polynomial-time40 protocol π in the F̂-hybrid model that
long-term UC realises Fp.

Note that if F and F̂ are polynomial-time, it is sufficient to show that F can be realised
from F̂ ; the realisability of Fp follows from the composition theorem (Theorem 3.4).

40If F̂ is not polynomial-time, we call π polynomial-time if all machines except F̂ are polynomial-time.

52

Examples for functionalities that are generalised LTR for a party P are the function-
alities FR

ZK, FR′

ZK and FRγ

ZK (with prover P) as defined in Theorem 5.5, Corollary 5.6, and
Corollary 5.11 (the ZK functionalities for Blum-integers). These functionalities are not
LTR for P : If (p, q) is a witness for the factorisation of a Blum-integer, so is (q, p). Thus
one cannot compute which of these two witnesses was used. Lemma 5.15 below shows that
these functionalities are generalised LTR.

We stress that Definition 5.12 only deals with the case of being generalised LTR for
a single party P . In a multi-party setting, it is not clear what it would mean for a
functionality F to be generalised LTR for, say, parties P1 and P2 simultaneously. Does
it mean that F is individually generalised LTR for P1 and generalised LTR for P2? Or
should the functionality F̂ and the protocol π from Definition 5.12 be the same in both
cases? Fortunately, for our results, we only need the notion of being generalised LTR for
a single party P , so the issue does not arise.

Corollary 5.13. Let F be a functionality that is generalised LTR for party P1. Let
R be an NP-relation without essentially unique witnesses. Then there is no nontrivial,
polynomial-time protocol that long-term UC realises commitment with sender P1 (FP1→P2

COM)

or zero-knowledge for the relation R with prover P1 (FR,P1→P2

ZK) in the F-hybrid model.

To show the corollary, we first need the following variant of the universal composition
theorem (Theorem 3.4):

Lemma 5.14. Let π, ρ, and σ be protocols. Assume that σ is polynomial-time and invokes
exactly one instance of its subprotocol. Assume that π long-term UC realises ρ. Then σπ

long-term UC realises σρ.

Proof. Note that in comparison to Theorem 3.4, we do not require that π and ρ are
polynomial-time, but instead we require that σ invokes only one subprotocol instance. In
the proof of Theorem 3.4, we have only used that π and ρ are polynomial-time to show
that the hybrid environment Zσ is polynomial-time. In the case that σ invokes only one
subprotocol instance, we have n = 1 in the notation of the proof of Theorem 3.4, and thus
Zσ expects an auxiliary input (i, z) with i ∈ {1, . . . , n}, i.e., with i = 1. Then Zσ behaves
like Zσ,i = Zσ,1, and Zσ,1 does not simulate any instances of the protocols π or ρ (note
again that n = 1). Thus Zσ is polynomial-time if σ is, and we do not need that π and ρ
are polynomial-time.

Proof (of Corollary 5.13). Assume for contradiction that there is a nontrivial, polynomial-
time protocol σ̃F that long-term UC realises G ∈ {FP1→P2

COM ,FR,P1→P2

ZK } in the F-hybrid
model.

Then, since σ̃F is polynomial-time, it invokes only a polynomial number p of instances
of F . Thus there is a protocol σFp

in the Fp-hybrid model that long-term UC realises G
and that invokes only one instance of Fp.41

Since F is generalised LTR for P1, by Definition 5.12 there is a functionality F that is

LTR, and there is a nontrivial, polynomial-time protocol πF̂ that long-term UC realises
Fp in the F̂-hybrid model.

41Here we use the fact that we assume the instances of F in σ̃F to be numbered sequentially (cf. foot-
note 10). Hence only the session ids 1, . . . , p are used; this matches the session ids supported by Fp.

53

By Lemma 5.14, σπF̂
long-term UC realises σFp

. Since furthermore σFp
long-term UC

realises G, we have that σπF̂
long-term UC realises G. This contradicts Theorem 4.3 or

Theorem 5.3.

The notion of generalised LTR allows us, for example, to show that ZK protocols for
relations with essentially unique witnesses cannot be used to construct commitments or
ZK protocols for relations without essentially unique witnesses:

Lemma 5.15. If R has essentially unique witnesses, then FR,P→V,m
ZK is generalised LTR

for P .

Proof. Let UR be the witness unifier for R. Let LR := {x : ∃w : xRw}. For x ∈ LR, let
wx denote the lexicographically smallest witness for x. Let Dx,k denote the distribution
of w in the following experiment: w′ ← UR(1k, x, wx), w := if xRw′ then w′ else wx.
Note that the support of Dx,k consists only of witnesses for x. From the properties of the
witness unifier UR (Definition 5.1) we have that Dx,k is statistically indistinguishable from
UR(1k, x, w) for all x,w with xRw.

Let Fx,k be a function such that Fx,k(w, r) with w ← Dx,k, r ← {0, 1}q and the uni-
form distribution on {0, 1}t have statistical distance at most 2−k (for some polynomially
bounded q and t), and such that Fx,k(w, r) 6= Fx,k(w

′, r′) for all w,w′, r, r′ with w 6= w′.
Such a function exists by Lemma A.5.

We define the functionality F̂ as follows: Upon the first input (x,w) from party P
satisfying xRw and |x| ≤ m(k), compute r ← {0, 1}q , f := Fx,k(w, r) and send (x, f) to
party V .

Then F̂ is LTR for P : the values (x,w) are determined by (x, f). Similarly, F̂p is LTR
for P for all polynomials p. Note that F̂ is not polynomial-time.

Consider the following protocol π in the F̂p-hybrid model: Upon input (sid , x, w),
party P computes w′ ← UR(1k, x, w) and sends (sid , x, w′) to F̂p. When party V receives
(sid , x, f) from F̂p, V outputs (sid , x).

We claim that π long-term UC realises Fp with F := FR,P→V,m
ZK . In the case that both

P and V are uncorrupted, this follows from the fact that UR(1k, x, w) outputs a witness
for x with overwhelming probability. In the case that P is corrupted, the additional output
f sent by Fp is ignored by V , and the output x sent by F̂p is computed in the same way
as Fp would have done.

The interesting case is when V is corrupted. The value f output by F̂p in the real
model is computed as w ← UR(1k, x, w), r ← {0, 1}q , f := Fx,k(w, r) for some x,w with
xRw. Since Dx,w and UR(1k, x, w) are statistically indistinguishable, computing f in this
way is statistically indistinguishable from computing f by w ← Dx,k, r ← {0, 1}q , f :=
Fx,k(w, r). By construction of Fx,k, the distribution of f in this latter game is statistically
indistinguishable from the uniform distribution on {0, 1}t. Thus the distribution of the
value f , as sent by F̂p in the real model, is statistically indistinguishable from a uniformly
chosen f ∈ {0, 1}t, even given x,w. Thus, in the case that V is corrupted, we can
use the following simulator (assuming the dummy-adversary in the real model): Upon
receiving (sid , x) from Fp, pick f ∈ {0, 1}t uniformly at random and send (sid , x, f) to
the environment.

54

Thus π long-term (and even statistically) UC realises Fp in the F̂p-hybrid model.
Since F̂p is LTR and π is polynomial-time (i.e., P and V but not F̂p are polynomial-time),
F = FR,P→V,m

ZK is generalised LTR.

6 Possibility results from non-standard setup assumptions

As the preceding sections have shown, trying to design long-term UC secure protocols
using a CRS, coin toss or PKI is a futile endeavour. Therefore, in the following sections
we will investigate alternative setup assumptions that are more fruitful in the context of
long-term UC.

6.1 Trusted devices implementing a random oracle

A very powerful assumption in the context of universally composable security is the random
oracle. It may therefore seem worthwhile to investigate whether a random oracle can be
used to realise long-term UC secure commitment and ZK. However, a closer look shows
that in the context of long-term UC security the random oracle is a very unrealistic
assumption because in real-life the random oracle must be implemented by some efficiently
computable function (e.g., using trusted hardware that calculates some pseudorandom
function with a secret seed). In the context of long-term UC, this function could be
“broken” by an unlimited adversary after protocol execution. In contrast, a random oracle
functionality ensures, that even for an unlimited adversary, the function looks completely
random. Therefore, we advocate that in the context of long-term UC, instead of a random
oracle one should use a functionality that evaluates a pseudorandom function with a secret
seed (representing e.g. a (temporarily) trusted device).

We now give a definition of such a functionalityFTPF. Note however, that all possibility
results given in this section also hold (with identical proofs) when using a random oracle
instead of FTPF.

Definition 6.1 (Trusted pseudorandom function (TPF)). Let fs be an efficiently
computable family of deterministic functions fs : {0, 1}l(|s|) → {0, 1}l(|s|) with polynomially
bounded efficiently computable l.

Then the functionality trusted pseudorandom function (TPF) Ff
TPF is defined as fol-

lows: Upon its first activation, it chooses a uniformly random s ∈ {0, 1}k. When receiving
a message x ∈ {0, 1}l(k) from a party P or the adversary, it sends fs(x) to P or the
adversary, respectively.

At this point, one should note that the UC definition (and therefore our variant, too)
implicitly assumes that when using a TPF, that TPF is accessed only by the protocol
(and the adversary), but that it cannot be directly accessed by the environment. This in
particular rules out that different protocols share a single TPF. A more detailed analysis of
the consequences of this assumption can be found in [HUMQ07, CDPW07]. However, we
show that using a single TPF we can run an arbitrary number of zero-knowledge protocols
or commitments, so that at least we do not need a large number of TPFs when constructing
a larger protocol that executes many ZK protocols or commitments.

55

Theorem 6.2 (Zero-knowledge from TPF). Assume that a one-way function exists.
Let fs be a pseudorandom function, and R an NP-relation. Then there is a nontrivial,
polynomial-time protocol π using one instance of Ff

TPF that long-term UC realises an
unlimited number of instances of FR

ZK (i.e., ZK for the relation R).

We give the proof idea first. First a commitment scheme is constructed which is
computationally binding, statistically hiding and extractable (however, this commitment is
not necessarily UC). The extractable commitment is constructed from a given commitment
which is statistically hiding. To commit to a value v one first commits to (v, fs(v)). Then
one commits to (u, fs(u)) where u is the unveil information for the first commitment. As
the function fs(.) can only be evaluated by using the functionality FTPF, a simulator can
extract the committed value v from the calls which are placed to FTPF.

Using this extractable commitment we modify the zero-knowledge argument for graph-
3-colourability of [GMW91]. Instead of letting the prover commit to a colouring and then
let the verifier choose a random edge e for which the colours are unveiled and checked we
let the verifier commit to e before the prover commits to the colouring.

In this protocol the simulator can, if the prover is corrupted, extract a witness from
the commitments of the simulated real adversary or the protocol will fail and is then easily
simulated. In the case of a corrupted verifier the simulator can extract the edge which
will later be investigated before committing to the colouring. So the simulator can easily
commit to a fake colouring and still pass the test at the edge in question.

In both cases the communication between the parties, the adversary, and the environ-
ment are statistically indistinguishable in the real protocol and in this simulation and we
achieve a long-term UC zero knowledge protocol for graph-3-colouring and hence for all
NP-statements. The following proof gives the details of this approach.

Proof of Theorem 6.2. The proof proceeds in two steps. First we construct from FTPF

a (not necessarily long-term UC secure) commitment which is computationally binding,
unconditionally hiding, and extractable. In the second step we construct a simple zero-
knowledge protocol using this extractable commitment.

Constructing an extractable commitment. Given the prerequisite that one-way func-
tions exist there also exists a bit commitment scheme COM 0 which is computationally
binding, unconditionally hiding, and where the unveil information can deterministically be
verified, see Subsection 2. Partially following the construction from [HMQ04] we turn this
commitment scheme into a commitment scheme COM 1 which has the additional property
of extractability, i.e., if an uncorrupted recipient accepts the commit phase then the sim-
ulator can extract a value v from the information the environment gives to the adversary
and the probability that a value different from v can later be unveiled is negligible. (Note
that the newly constructed commitment need not be long-term UC secure as it may not
be equivocable).

The protocol COM 1 looks as follows:

56

• To commit to v, the sender C calls FTPF with value v and receives fs(v). Then
C commits to (v, fs(v)) using COM 0 and obtains unveil information u. Next C
calls FTPF with value u and commits to (u, fs(u)) using COM 0.

• The recipient outputs (commit) after having received two commitments.
• To unveil, the sender sends v, u and the unveil information for the second commit-

ment.
• The recipient checks if u is the correct unveil information for (v, fs(v)) and verifies

if the second commitment was correctly unveiled to (u, fs(u)). If the checks were
successful R outputs (unveil, v).

To extract the value v from a valid commitment the simulator keeps a list of all calls
placed to the FTPF functionality. The values v and u must be in this list, because it
is infeasible to generate a commitment (which can be unveiled) without querying FTPF.
As all machines are polynomially limited during the protocol execution there are only
polynomially many candidates for v and u. By trying to unveil the first instance of COM 0

with all possible candidates for u the simulator can identify the value v or the commitment
cannot be unveiled.

Long-term UC zero-knowledge based on extractable commitments. It is suffi-
cient to prove the existence of a long-term UC ZK protocol for graph-3-colourability, which
we will construct using the above computationally binding, unconditionally hiding, and ex-
tractable commitment. We modify the zero-knowledge protocol for graph-3-colourability
from [GMW91] to obtain the following long-term UC protocol π (one instance of that
protocol is run for each instance of FR

ZK).

• The prover P gets as input a graph with m edges and a colouring and aborts if it
is not a valid 3-colouring.

• The prover sends the graph to the verifier V .
• Perform the following m · k times in parallel

– The verifier commits (using COM 1) to a randomly chosen edge (v1, v2) of
the graph.

– The prover chooses a random permutation π of the three colours in his witness
and commits (using COM 1) to (v, π(cv)) for each vertex v with colour cv .

– The verifier unveils the edge (v1, v2).
– The prover unveils the two corresponding vertices (v1, π(cv1)), (v2, π(cv2)).
– The verifier checks if π(cv1) 6= π(cv2).

• The verifier outputs (accept) if all m · k parallel checks were successful.

The protocol always works for uncorrupted parties and is hence nontrivial. Next we
consider the two cases of a corrupted verifier and of a corrupted prover.

The verifier V is corrupted : We construct a simulator S as follows:

57

• The simulator S runs a simulated copy of the real adversary A which he connects
– to the environment Z,
– to a simulated honest prover P (one for each instance of π) with a modifica-

tion as detailed below, and
– to a simulated functionality FTPF.

• When S receives a message from (an instance of) FZK that a graph G is 3-
colourable then S starts the simulation of the corresponding honest prover P .

• In each of the m · k parallel executions
– Whenever the simulated prover accepted a commitment from A the simulator
S extracts (if possible) the edge (v1, v2) from this commitment.

– The simulated prover is modified to commit to a random colouring (not
necessarily a 3-colouring) with cv1 6= cv2 (if an edge could be extracted).

In case the environment does not give a valid witness to the uncorrupted prover the
simulation is clearly statistically indistinguishable from the real protocol. We can in the
following assume that the graph in question is 3-colourable.

As the commitment scheme used in the protocol is extractable the simulator can ei-
ther extract an edge (v1, v2) from the commitment of the simulated real adversary or the
commitment cannot (can only with negligible probability) be unveiled to an edge. So
far the communication of the environment with the protocol is statistically indistinguish-
able for the real and the ideal model. Next the prover commits to a random colouring
instead of a true 3-colouring, but still the communication with the environment remains
statistically indistinguishable for the real and the ideal model, because the commitment
scheme is unconditionally hiding. If the simulated real adversary fails to unveil the com-
mitment then the protocol will abort and the simulation is statistically indistinguishable
from the real protocol. Else the extracted edge (v1, v2) must equal the unveiled edge
(v′1, v

′
2), because of the extractability of the commitment. Then the simulated prover will

unveil (v1, cv1), (v2, cv2) with the colours being random, but unequal and hence statistically
indistinguishable from what is unveiled by the uncorrupted real prover.

The prover is corrupted : We construct a simulator S as follows:

• The simulator S runs a simulated copy of the real adversary A which he connects
– to the environment Z,
– to a simulated unmodified honest verifier V (one for each instance of π), and
– to a simulated functionality FTPF.

• Whenever the simulated verifier V accepts a commit phase the simulator extracts
the values of the commitments of the simulated real adversary.

• As soon as the simulated honest verifier accepts the proof, the simulator enters a
witness for the 3-colouring into (the corresponding instance of) the functionality
FZK if one of the m ·k colourings extracted from the commitments is a 3-colouring.

The communication of the environment Z with the adversary is clearly statistically
indistinguishable in the real and in the ideal model, as the simulator runs a faithful sim-
ulation of the real model. It remains only to be proven that the simulator can enter
(with overwhelming probability) a witness to the ideal zero-knowledge functionality if the
simulated honest verifier accepts the proof. Lets assume no proper 3-colouring could be

58

extracted, then (with overwhelming probability) there exists at least one edge in each of
the m ·k parallel executions where the colours cannot be unveiled to be unequal, because it
is infeasible to unveil something different from the extractable value. Then the probability
that the protocol will not abort is negligible, namely at most (1−1/m)m·k ∈ O(e−k). Hence
the probability that the simulator can extract a witness if the simulated verifier accepted
is overwhelming and the protocol is proven long-term UC for a corrupted prover.

According to Lemma 4.5 one commitment can be obtained from two invocations of a
zero-knowledge scheme and we can hence conclude:

Corollary 6.3 (Commitments from TPF). Assume that a one-way function exists.
Let fs be a pseudorandom function. Then there is a nontrivial, polynomial-time protocol π
using one instance of Ff

TPF that long-term UC realises an unlimited number of instances
of FCOM (i.e., commitments).

Proof. Immediate from Lemma 4.5 and Theorem 6.2.

6.2 Signature cards

One disadvantage of the TPF-assumption from the previous section is that trusted hard-
ware implementing a pseudorandom function are unlikely to be available for practical
use.42 However, another kind of trusted device is already commercially available today:
the signature card. A signature card is a tamperproof device with a built-in signing key.
Upon request, this card signs an arbitrary document, but never reveals the signing key.
The corresponding verification key can be obtained from some certification authority by
any party (including the adversary). These properties are required, e.g., from the German
signature law [Sig01].

These properties are captured by the following ideal functionality (based
on [HUMQ07]):

Definition 6.4 (Signature Card (SC)). Let S = (KeyGen ,Sign,Verify) be a signa-

ture scheme. Let H be a party. Then the functionality FS,H
SC (signature card for scheme

S with holder H) behaves as follows: Upon the first activation, FS,H
SC chooses a verifi-

cation/signing key pair (pk , sk) using the key generation algorithm KeyGen(1k). Upon a
message (pk) from a party P or the adversary, send pk to that party or the adversary,
resp. Upon a message (sign,m) from the holder H, produce a signature σ for m using
the signing key sk and send σ to H.

Note that the definition from [HUMQ07] additionally provides the possibility of locking
the card (called seize and release there). These however are not needed in our protocols,
so we omit them from the definition of signature cards.

As was the case with TPFs, our definition implicitly assumes that the environment has
no direct access to the signature card. See the discussion after Definition 6.1. However,
in [HUMQ07] techniques were introduced that allow to share a single signature card in
different protocols. It would be interesting to explore whether their approach can be
combined with our techniques.

42Not because of technical difficulties, but simply and plainly due to the forces of supply and demand.

59

It was shown in [HUMQ07] that signature cards are powerful assumptions in the con-
text of universal composability. Using an adaption of their technique, we can show that
these signature cards are also very useful for long-term UC security:

Theorem 6.5 (Zero-knowledge from a signature card). Assume that a one-way
function exists. Let S be an EF-CMA secure signature scheme. Let R be any NP-relation.
Then there is a nontrivial, polynomial-time protocol π that long-term UC realises an un-
bounded number of instances of FR,P→V

ZK (i.e., ZK for the relation R with prover P) using

a single instance of FS,P
SC (i.e., a signature card for S with P as the holder).

The idea of the proof is as follows: To prove the existence of a witness w for some
statement x, the prover P signs w using his signature card (resulting in a signature σ) and
then performs a statistically witness indistinguishable argument of knowledge that one of
the following holds: (i) he knows a w and a σ, so that xRw and σ is a valid signature
for w, or (ii) he knows a signing key sk ′ matching the verification key pk provided by the
signature card functionality.

Consider the case of a corrupted prover. Since S is EF-CMA secure, it is infeasible to
get a signing key sk ′ matching the verification key pk chosen by the signature card (since
the signature card allows only black-box access to the signing algorithm). So the prover
has to show the knowledge of a signature σ of the witness w. The only way to obtain such
a signature σ is to sign the witness w using the signature card. Since in the ideal model,
the signature card FSC is simulated by the simulator, the simulator learns that witness w.
So the simulator is able to extract w while honestly simulating verifier and FSC.

In case the verifier is corrupted, the simulator knows the signing key sk matching the
verification key pk . So the simulator can prove (ii) instead of (i). Since the argument sys-
tem we use is statistically witness indistinguishable, the resulting interaction is statistically
indistinguishable. We proceed to give the details of this approach.

Proof of Theorem 6.5. Let S = (KeyGen,Sign,Verify) be an EF-CMA secure signature
scheme, where KeyGen(1k) returns a key pair (pk , sk), Sign(sk ,m) returns a signature
for m using signing key sk , and Verify(pk ,m, σ) returns 1 if σ is a valid signature for m
with verification key pk (possibly only with overwhelming probability). KeyGen(1k; r),
Sign(sk ,m; r) and Verify(pk ,m, σ; r) denote the output of the respective algorithms upon
randomness r. Let R be an NP-relation. By SWIAOK, we mean the statistically witness
indistinguishable argument of knowledge described in Section 2 (which exists under the
assumptions of the theorem).

The simplified case. Before showing the theorem in full generality, we assume some
additional properties from the signature scheme S. These conditions are fulfilled by most
practical signature schemes and lead to a much simpler protocol and proof. We give this
simplified proof first since it already contains the main ideas of the proof below and since
for most applications the slightly less general result will probably suffice. The additional
conditions are:
• The verification algorithm is deterministic.
• The verification succeeds with probability 1 (and not only with overwhelming

probability). That is, for all m ∈ {0, 1}∗, k ∈ N we have that Pr[(pk , sk) ←
KeyGen(1k), σ ← Sign(sk ,m) : Verify(pk ,m, σ) = 1] = 1.

60

Note that the latter condition implies that given a verification key pk (chosen by KeyGen)
and given access to a corresponding signing oracle, it is hard to find some r such that
KeyGen(1k; r) = (pk , sk ′) for some sk ′. Otherwise the signing key sk ′ (although it is not
necessarily the one originally generated with pk) would allow to produce arbitrary signa-
tures since KeyGen(1k; r) is guaranteed to output a valid key pair for all randomnesses.

We now give the protocol π for the simplified case (one instance of that protocol is run
for each instance of FR

ZK):

• The prover P is activated with input (x,w).
• P checks whether xRw. Otherwise, he aborts.
• P sends x to V .
• P obtains a signature σ for w from FS,P

SC .
• P proves using the SWIAOK the knowledge of strings σ,w, r such that one of the

following conditions holds:
(i) Verify(pk , w, σ) = 1 and xRw, or
(ii) KeyGen(1k; r) = (pk , sk ′) for some sk ′.

The prover P can perform this proof using σ,w as obtained above.
• If the verifier V accepts the SWIAOK, it outputs x.

We now proceed to show that π indeed is a nontrivial protocol that long-term UC
realises an unbounded number of instances of FR,P→V

ZK .
Obviously, if no-one is corrupted and xRw, and all messages are delivered, the verifier

V outputs x with overwhelming probability, so the protocol π is nontrivial.
Without loss of generality, we can assume a dummy-adversary (see Section 3.1,

page 16).
Let us first consider the case that the verifier V is corrupted. In this case, the simulator

SV has to interact with the environment in a way that is statistically indistinguishable
from the interaction of the honest prover with the environment (through the dummy-
adversary). In contrast to the prover, the simulator does not have access to a witness.

However, the simulator is allowed to simulate the functionality FS,P
SC in an arbitrary way.

The simulator SV is constructed as follows:

• Simulate FS,P
SC honestly but store the randomness r used to generate the key pair

of P .
• For each protocol instance, upon input x from the ideal functionality FR

ZK (i.e.,
when the environment has sent some (x,w) to the functionality with xRw), sim-
ulate an honest prover P with input (x, 0) with the following modification:

• The simulated prover P does not perform the check whether xRw holds, and as
witness for the SWIAOK, the simulated prover P uses r (i.e., the prover proves (ii)
instead of (i)).

For a witness w that does not satisfy xRw, the original prover and the modified sim-
ulated prover behave identically (namely, the original prover aborts and the modified
simulated prover is never activated). If xRw, the original prover will use a witness σ,w
with Verify(pk , w, σ) for the SWIAOK with probability 1 (since the signature scheme out-
puts valid signatures with probability 1) and the modified simulated prover uses some r

61

such that KeyGen(1k; r) = (pk , sk ′) for some sk ′ with probability 1. Since the SWIAOK

is statistically witness indistinguishable, the interaction between the prover P and the
environment is statistically indistinguishable in both situations. This even holds if multi-
ple instances of the protocol are executed concurrently since witness indistinguishability
composes concurrently. Thus the view of the environment is statistically indistinguishable
in a run of the real and the ideal model.

Now we consider the case that the prover P is corrupted. In this case, the simulator SP

has to interact with the environment in a way that is statistically indistinguishable from
the interaction of an honest verifier with the environment (through the dummy-adversary).
Additionally however, if the honest verifier would output x, the simulator has to send (x,w)
with xRw to the ideal functionality FR

ZK. We construct the simulator SP as follows:

• Simulate FS,P
SC honestly. However, whenever a string m is signed, store m in a

list M .
• For each instance of the protocol, simulate the verifier V honestly.
• When the simulated verifier V outputs x, check whether xRw for some w ∈ M .

If so, send (x,w) to FR
ZK. Otherwise abort.

Obviously, as long as SP does not abort, this interaction is statistically indistinguish-
able from an interaction with the real verifier. We therefore only have to show that SP

aborts with negligible probability. Therefore assume that for some environment, SP aborts
with non-negligible probability. In this case the environment can be transformed into a
nonuniform polynomial-time ITM M1 with access to a signing oracle and the verification
key pk that performs the SWIAOK specified in the description of the protocol π. With
non-negligible probability, the proof succeeds (for some x chosen by M1) and M1 never
sends a query w̃ with xRw̃ to the signing oracle. (Otherwise the simulator would not
abort.) By applying the knowledge-extractor of the SWIAOK to M1, we get a machine M2

which queries the signing oracle and that with non-negligible probability outputs a witness
for (i) or (ii) while never querying some w̃ with xRw̃ (the latter condition is preserved since
the knowledge-extractor uses M1 as a black-box and therefore does not access the signing
oracle directly). Since finding an r satisfying (ii) is hard (as discussed above), and finding
σ,w satisfying (i) would break the EF-CMA property of S (as w with xRw is not queried
from the signing oracle), we have a contradiction. Thus SP aborts only with negligible
probability, and therefore the view of the environment is statistically indistinguishable in
the real and in the ideal model.

Thus π is a nontrivial protocol that long-term UC realises an unbounded number of
instances of FR,P→V

ZK .

The general case. In addition to the notation given at the beginning of the proof,
we use the following notation. For a given security parameter k and a given input x,
let l1 − 1 be a polynomial upper bound on |sk|, l2 − 1 a polynomial upper bound on
|w| for any witness w with xRw, and l3 − 1 a polynomial upper bound on the length of
σ = Sign(sk , w) for any witness w with xRw. Such bounds always exist since the signature
scheme is efficiently computable and R is polynomially-balanced. In the following, we will
always tacitly assume that that sk , σ and w (and similarly named variables) are padded
in an efficiently invertible fashion to lengths l1, l2, and l3, respectively, when used in a

62

commitment or as a witness for an ZK-protocol. Let l4 be a polynomial upper bound on
the length of the randomness used in computing Verify(pk , w,Sign(sk , w)).

Let COM be the statistically hiding commitment scheme from [HR07] mentioned in
Section 2 (that scheme exists under the assumptions of this theorem). Let VCOM be the
corresponding deterministic verification algorithm such that VCOM (c, v, u) = 1 if the re-
cipient accepts the unveil phase. Here c denotes the messages sent during the commit
phase, v the value the commitment supposedly contains, and u the unveil message. We
further assume that COM has a property that we call corruption-correctness. This prop-
erty states that when the committing party is honest but the recipient is dishonest, and
the commit phase completes successfully (i.e., the committing party does not abort during
the commit), then with probability 1 we have that VCOM (c, v, u) = 1.43 The commitment
scheme from [HR07] is easily seen to be corruption-correct.

We now describe the protocol π for implementing FR
ZK (one instance of that protocol π

is run for each instance of FR
ZK, all instances of π share a single instance of FS,P

SC):

43One might think that any commitment scheme with a deterministic verification function can be directly
transformed into a corruption-correct commitment scheme by letting the committer C check directly after
the commit whether VCOM (c, v, u) = 1. However, an example for a commitment protocol that is not
corruption-correct and that becomes insecure after this transformation is the following scheme COM ′: Let
f : {0, 1}k → {0, 1}k be a one-way permutation such that the first bit of its input is hardcore. To commit to
v, perform COM (v) and then expect a value circuit y ∈ {0, 1}k from the recipient R. An honest recipient
chooses y := f(1‖r) for random r. Define VCOM ′(c, v, u) := (VCOM (c1, v, u)∧f(0‖v) = y) where c =: (c1, y).
This scheme is not corruption-correct. Further, if the committer aborts when VCOM ′(c, v, u) 6= 1, then R

could send y := f(1‖v′) and thus find out whether the committed value is v′, so the resulting scheme would
not be hiding any more. This shows that this naive transformation does not work.

A transformation that works in general would be to first commit to random data r, then to check whether
VCOM succeeds, and only then to send an r′ with r ⊕ r′ = v.

Note that with a slight modification, the scheme COM ′ is an example for a commitment scheme with

which our protocol π given below becomes insecure. Namely, instead of y
?

= f(0‖v) we check y
?

= f(0‖w)
where v =: (w, σ). Then the verifier could send a value y such that one particular witness w′ is not accepted
any more. Then the SWIAOK in the protocol below fails iff this witness w′ is used, so the protocol is not
even computationally witness-indistinguishable any more.

63

• The prover P is activated with input (x,w).
• P checks whether xRw. Otherwise, it aborts.
• P sends x to V .
• P obtains a signature σ for w from FS,P

SC .
• Using COM , P commits to (r1

Sign , r1
Verify) where r1

Sign , r1
Verify are both uniformly

chosen from {0, 1}l4 . Let c1 denote the messages sent during the commitment.
• Using COM , P commits to 0l1 . Let c2 denote the messages sent during the

commitment.
• Using COM , P commits to (w, σ). Let c3 denote the messages sent during the

commitment.
• V sends (r2

Sign , r2
Verify ,m) where r2

Sign , r2
Verify are both uniformly chosen from

{0, 1}l4 and m from {0, 1}k .
• P proves using the SWIAOK the knowledge of strings

(sk , r1
Sign , r1

Verify , w, σ, u1, u2, u3) such that one of the following conditions
holds:

(i) VCOM (c1, (r
1
Sign , r1

Verify), u1) = 1, and VCOM (c3, (w, σ), u3) = 1, and
Verify(pk , w, σ; rVerify) = 1, and xRw, or

(ii) VCOM (c1, (r
1
Sign , r1

Verify), u1) = 1, and VCOM (c2, sk , u2) = 1, and
Verify(pk ,m,Sign(sk ,m; rSign); rVerify) = 1

where rSign := r1
Sign ⊕ r2

Sign and rVerify := r1
Verify ⊕ r2

Verify . The honest prover P

performs this proof using r1
Sign , r1

Verify , w, σ, u1, u3 as obtained above as its witness.
• If the verifier V accepts the SWIAOK, it outputs x.

Note that in this protocol, much of the complexity (namely, having to perform the
commitments and to send m and r2

Sign , r2
Verify) arises from the need to show the knowledge

of a signing key in (ii) and from the fact that the verification algorithm is probabilistic. For
most signature schemes, the verification is deterministic and deciding whether a given sk is
a signing key for some given verification key pk can be decided in deterministic polynomial
time. Then (ii) can be replaced by the statement “sk is a signing key for the verification
key pk”, and additional messages can be omitted, resulting in a much simpler protocol
(and proof) like the one presented for the simplified case above. In general, however, such
a deterministic check is not possible, so the protocol has to be constructed as described
above.

We now proceed to show that π indeed is a nontrivial protocol that long-term UC
realises an unbounded number of instances of FR,P→V

ZK .
Obviously, if no-one is corrupted and xRw holds, and all messages are delivered, the

verifier V outputs x with overwhelming probability, so the protocol π is nontrivial.
Without loss of generality, we can assume a dummy-adversary (see Section 3.1,

page 16).
Let us first consider the case that the verifier V is corrupted. In this case, the simulator

SV has to interact with the environment in a way that is statistically indistinguishable from
the interaction of the honest prover with the environment (through the dummy-adversary).
In contrast to the prover, the simulator does not have access to a witness. However, the
simulator is allowed to simulate the functionality FS,P

SC in an arbitrary way. To construct
the simulator SV , we first define several variants of the honest prover P . These differ from

64

P in the values they commit to in commitments c2 and c3, and whether they prove (i) or
(ii) in the SWIAOK. In the following table, we give these provers, and for comparison, also

the original prover P . By sk we denote the signing key chosen by FS,P
SC .

Prover Value in c2 Value in c3 Witness in SWIAOK

P 0l1 (w, σ) r1
Sign , r1

Verify , w, σ, u1, u3 for (i)

P1 sk (w, σ) r1
Sign , r1

Verify , w, σ, u1, u3 for (i)

P2 sk (w, σ) sk , r1
Sign , r1

Verify , u1, u2 for (ii)

P3 sk (0l2 , 0l3) sk , r1
Sign , r1

Verify , u1, u2 for (ii)

Note that P1, P2, P3 are not valid provers in the real model since they use the signing key
sk of FS,P

SC . However, we only use them in the simulation and in intermediate games. Let
further P ′

3 be constructed like P3, except that P ′
3 does not check whether xRw holds for

its input.
The simulator SV is constructed as follows:

• Simulate FS,P
SC honestly.

• For each protocol instance, upon input x from the ideal functionality FR
ZK (i.e.,

when the environment has sent some (x,w) to the functionality with xRw), sim-
ulate the prover P ′

3 with input (x, 0).

Note that SV knows the signing key used by FS,P
SC since it simulates FS,P

SC . Therefore
it can simulate P ′

3.
Since P3 does not use the witness w except for checking xRw, and since SV invokes

P ′
3 only if xRw holds, we have that the view of the environment is the same in the ideal

model with SV and in the real model with P3.
44 (Even when multiple instances of P ′

3 or
P3, respectively, are executed concurrently.)

Since COM is statistically hiding, and since P3 never uses the unveil information u3

for c3, we have that the view of the environment is statistically indistinguishable in the
real model with P3 and in the real model with P2.

Note that in an execution of the real model with prover P2, we always have that
VCOM (c1, (r

1
Sign , r1

Verify), u1) = 1, and VCOM (c2, sk , u2) = 1, and VCOM (c3, (w, σ), u3) = 1
(since COM is corruption-correct). Further, since (pk , sk) is an honestly generated key
pair, we have that for any message m, Verify(pk ,m,Sign(sk ,m)) = 1 holds with over-
whelming probability. Since rSign and rVerify are produced by a coin-toss, we have
with overwhelming probability that Verify(pk ,m,Sign(sk ,m; rSign); rVerify) = 1 holds.
With analogous reasoning and using the fact that σ is an honestly generated signature
on w, also Verify(pk , w, σ; rVerify) = 1 holds with overwhelming probability. Further-
more, since P2 aborts unless xRw holds, we also have that xRw holds. Thus when
P2 executes the SWIAOK, with overwhelming probability both r1

Sign , r1
Verify , sk , u1, u2 and

r1
Sign , r1

Verify , w, σ, u1, u3 are valid witnesses for the SWIAOK, thus the environment’s view
in the real model with P2 and with P1 is statistically indistinguishable (since the SWIAOK

is statistically witness indistinguishable).

44Note that P3 is not a valid protocol machine since it accesses the signing key sk . The execution of the
real model with P3 is well-defined, nevertheless.

65

Since COM is statistically hiding, and since P1 never uses the unveil information u2

for c2, we have that the view of the environment is statistically indistinguishable in the
real model with P1 and in the real model with P .

It follows that the environment’s view is statistically indistinguishable between the real
model with honest prover P and the ideal model with the simulator SV .

Now we consider the case that the prover P is corrupted. In this case, the simulator
SP has to interact with the environment in a way that is statistically indistinguishable
from the interaction of an honest verifier with the environment (through the dummy-
adversary). Additionally, however, if the honest verifier would output x, the simulator has
to send (x,w) with xRw to the ideal functionality FR

ZK. We construct the simulator SP

as follows:

• Simulate FS

SC honestly. However, whenever a string m is signed, store m in a
list M .

• For each instance of the protocol, simulate the verifier V honestly.
• When the simulated verifier V outputs x, check whether xRw for some w ∈ M .

If so, send (x,w) to FR
ZK. Otherwise, abort.

Obviously, as long as SP does not abort, this interaction is statistically indistinguish-
able from an interaction with the real verifier. We therefore only have to show that SP

aborts with negligible probability. Assume therefore that for some environment, SP aborts
with non-negligible probability. In this case, the environment can be transformed into a
nonuniform polynomial-time ITM M1 with access to a signing oracle and the verification
key pk such that M1 has the following properties:
• It outputs some x and commits to three values (resulting in communications

c1, c2, c3), then it waits for a tuple (r2
Sign , r2

Verify ,m) and then it performs the SWIAOK

specified in the description of the protocol π.
• If (r2

Sign , r2
Verify ,m) is uniformly distributed, with non-negligible probability the

SWIAOK is accepted by the verifier and the machine does not send any query w̃
with xRw̃ to the signing oracle. (Otherwise the simulator would not abort.)

Since the SWIAOK is an argument of knowledge, we can apply the knowledge-extractor
to M1 and transform the residual prover45 performing the SWIAOK into a machine that
outputs a witness for the SWIAOK. This results in a nonuniform polynomial-time ITM M2

with the following properties:
• It outputs some x and commits to three values (resulting in communications

c1, c2, c3), then it waits for a tuple (r2
Sign , r2

Verify ,m) and then it outputs a tuple

(sk , r1
Sign , r1

Verify , w, σ, u1, u2, u3).

• If (r2
Sign , r2

Verify ,m) is uniformly distributed, one of the following holds:
– With non-negligible probability we have that (i) is fulfilled and the machine

M2 does not send any query w̃ with xRw̃ to the signing oracle.
– With non-negligible probability we have that (ii) holds.

The property that the machine never queries a w̃ with xRw̃ is preserved because the
knowledge-extractor performs a black-box reduction: As long as the residual prover given

45By the residual prover we mean the machine that gets as input the state s (including the random tape)
of M1 immediately before M1 performs the SWIAOK and that then performs only the SWIAOK as M1

would have done on that state s.

66

as an oracle to the knowledge-extractor does not query a given value w̃, the knowledge-
extractor does not either.

We now construct a machine M3 that performs the following steps:
• It executes M2, and when M2 expects a tuple (r2

Sign , r2
Verify ,m), the machine M3 uni-

formly chooses values (r2′
Sign , r2′

Verify ,m
′) and passes these to M2. When M2 outputs

a tuple (sk ′, r1′
Sign , r1′

Verify , w
′, σ′, u′

1, u
′
2, u

′
3), the machine M3 stores these values.

• Then M3 chooses randomly r̃Sign ,m.
• Then M3 chooses randomly r̃Verify .
• Then M3 rewinds M2 to the point where it waits for a pair (r2

Sign , r2
Verify ,m), then it

sets r2
Sign := r̃Sign ⊕ r1′

Sign and r2
Verify := r̃Verify ⊕ r1′

Verify and passes (r2
Sign , r2

Verify ,m)

to M2. Then M3 waits for M2 to output a tuple (sk , r1
Sign , r1

Verify , w, σ, u1, u2, u3).
Let (i′) and (ii′) be defined like (i) and (ii) but with respect to the variables
sk ′, r1′

Sign , r1′
Verify , w

′, σ′, u′
1, u

′
2, u

′
3 instead of sk , r1

Sign , r1
Verify , w, σ, u1, u2, u3. Since in both

executions of M2, the inputs (r2′
Sign , r2′

Verify ,m
′) and (r2

Sign , r2
Verify ,m) are uniformly dis-

tributed, one of the following holds with non-negligible probability:
• Both (i) and (i′) are fulfilled and during the first execution of M2, the value w′ is

not queried from the signing oracle.
• Both (ii) and (ii′) are fulfilled and during the first execution of M2, the value m is

not queried from the signing oracle.
The fact that M3 does not query m during the first execution of M2 (except with negligible
probability) stems from the fact that m is chosen randomly after the first execution of M2.

Since COM is computationally binding, the probability is negligible that (i) and (i′) are
fulfilled and (r1′

Sign , r1′
Verify , w

′, σ′) 6= (r1
Sign , r1

Verify , w, σ) holds. Similarly, the probability is

negligible that (ii) and (ii′) are fulfilled and (sk ′, r1′
Sign , r1′

Verify) 6= (sk , r1
Sign , r1

Verify) holds.
Thus one of the following holds with non-negligible probability:
• Case 1: Both (i) and (i′) are fulfilled, and (r1′

Sign , r1′
Verify , w

′, σ′) = (r1
Sign , r1

Verify , w, σ),
and during the first execution of M2, the value w′ is not queried from the signing
oracle.

• Case 2: Both (ii) and (ii′) are fulfilled, and (sk ′, r1′
Sign , r1′

Verify) = (sk , r1
Sign , r1

Verify),
and during the first execution of M2, the value m is not queried from the signing
oracle.

Let σm := Sign(sk ′,m; r̃Sign). In case 1, we have with non-negligible probability that
w′ is not queried during the first execution of M2 and

Verify(pk , w′, σ′; r̃Verify) = Verify(pk , w′, σ′; r1′
Verify ⊕ r2

Verify)

(i)
= Verify(pk , w, σ; r1

Verify ⊕ r2
Verify) = 1.

In case 2, we have with non-negligible probability that m is not queried during the first
execution of M2 and

Verify(pk ,m, σm; r̃Verify) = Verify(pk ,m,Sign(sk ′,m; r̃Sign); r̃Verify)

= Verify(pk ,m,Sign(sk ′,m; r1′
Sign ⊕ r2

Sign); r1′
Verify ⊕ r2

Verify)

(ii)
= Verify(pk ,m,Sign(sk ,m; r1

Sign ⊕ r2
Sign); r1

Verify ⊕ r2
Verify) = 1.

67

Thus, if we let M3 terminate with output (m,σm), (w′, σ′) directly after choosing r̃Sign ,m,
we have that with non-negligible probability one of σm, σ′ will be successfully verified
and the corresponding message m or w′, respectively, will not have been queried from the
signing oracle. Since M3 is a nonuniform polynomial-time machine, this contradicts the EF-
CMA security of S. Thus the assumption that SP aborts with non-negligible probability
was false, and thus the environment’s view is statistically indistinguishable between the
real model with the honest verifier V and the ideal model with the simulator SP . Thus π
is a nontrivial protocol that long-term UC realises an unbounded number of instances of
FR,P→V

ZK .

From Theorem 6.5 we can also easily deduce that longterm UC secure commitments can
be realised using a signature card:

Corollary 6.6 (Commitments from a signature card). Assume that a one-way func-
tion exists. Let S be an EF-CMA secure signature scheme. Then there is a nontrivial,
polynomial-time protocol π that long-term UC realises an unbounded number of instances of
FC→R

COM (i.e., commitment with sender C) using a single instance of FS,P
SC (i.e., a signature

card for S with P as the holder).

Proof. This is an immediate consequence of Theorem 6.5 and Lemma 4.5.

Note also that the results in this section also cover the case that the adversary retrieves
the signing key of the signature card (e.g., by opening it) after the protocol execution.
Since we assume the adversary to be computationally unbounded after the execution, he
could determine the signing key from the verification key after the protocol execution.
Thus by retrieving the signing key, he gains no additional information.46

7 Conclusions

We have examined the notion of long-term UC which allows us to combine the advantages
of long-term security (i.e., security that allows for unlimited adversaries after the end of the
protocol) and Universal Composability. We saw that the usual set-up assumptions used
for UC protocols (e.g., CRS) are not sufficient for long-term UC. However, there are other
practical alternatives to these setup assumptions (e.g., signature cards) that permit the
implementation of the important primitives: commitments and zero-knowledge protocols.

Avenues for future research include:
• Characterise which protocol tasks can be long-term UC realised using commitments

and/or the zero-knowledge functionality. Note that the result that any functionality
can be realised from a commitment or a zero-knowledge functionality [CLOS02] has
been proven under computational assumptions and thus does not necessarily carry
over to the setting of longterm UC security.

• As seen in Section 4.4 statistically hiding UC-commitments are not necessarliy long-
term UC secure. However, they seem to provide some kind of long-term security
which could provide limited compositional guarantees. It is an open problem to

46Similar reasoning also applies to TPFs: Here the secret seed is information-theoretically determined
by the answer to sufficiently many random queries.

68

formalize the additional security guarantees a protocol composed from statistically
hiding commitments has.

• Find other setup assumptions that are useful in the context of long-term UC. In par-
ticular, determine under which assumptions oblivious transfer (OT), and therefore
any functionality, can be realised?

• Our investigations were in the secure-channels communication-model. If only au-
thenticated channels are present, the important issue of key exchange occurs. Hence,
it is necessary to identify setup assumptions that allow to implement key exchange.

• The protocols presented here were not optimised for efficiency. For practical ap-
plicability, we need efficient protocols for the tasks discussed in this work. For
example, the Camenisch-Lysyanskaya signature scheme [CL02] allows for very effi-
cient (non-UC) zero-knowledge protocols. Thus efficient variants of our protocols
from Section 6.2 might be possible.

• In [HUMQ07] techniques were presented that enable different protocols to share a
single signature card. This techniques might be applicable in our setting, too.

• Find a transformation for converting a protocol that is passively secure against un-
bounded adversaries into a long-term UC secure protocol based on signature cards
or TPFs. This might be achieved by using ZK-protocols to prove the correctness of
each message (as in the GMW compiler [GMW87]). The ZK-protocols could then
be implemented using our constructions.

• Much work on unconditional and long-term security has been done in the field of
quantum cryptography. Investigate how long-term UC behaves in the presence of
quantum communication. This may allow to avoid some of the impossibility re-
sults presented in this work. In particular, quantum communication could solve the
problem of key exchange mentioned above.

Acknowledgements. We thank Oana Ciobotaru, Yevgeniy Dodis, Oded Goldreich, and
Dennis Hofheinz as well as the anonymous referees of TCC 2007 and the Journal of Cryp-
tology for valuable discussions and many helpful suggestions. We thank Catherine Howell
for proof reading and helping to improve our English. Part of this work has been funded
by the Cluster of Excellence “Multimodal Computing and Interaction” (MMCI).

A Technical lemmas

In this appendix, we prove five technical lemmas that are used in several of the proofs in
the main part of this paper.

In the proof of Theorem 5.10 we need to turn a specific non-efficient algorithm into
an efficient nonuniform algorithm. For this we need the construction from the following
lemma.

Lemma A.1. Let R be an NP-relation. Let A be a PPT-algorithm, and Dk a family
of distributions over strings of polynomial length (not necessarily an efficiently samplable
one). Let P > 0. Assume that for sufficiently large x ∈ LR, A(x,D|x|) outputs some
witness w with xRw with probability at least P .

Then there is a nonuniform deterministic polynomial-time algorithm Ã that upon input
x outputs a witness w with xRw.

69

Proof. Without loss of generality we assume that all x ∈ {0, 1}∗.
From A, we can construct a deterministic polynomial-time algorithm that takes its

random tape as input, i.e., for sufficiently long x ∈ LR, A(x,D|x|,T) outputs a witness
with probability at least P if T is the uniform distribution on strings polynomial in |x|.
Further, since there are only finitely many x that are not solved with probability at least
P , we can assume that A′ solves these by table-lookup.

We can amplify the probability of yielding a witness by repeating A′, so there is a
deterministic polynomial-time algorithm Ã and a family of distributions Ek of strings of
polynomial length p(k) (constructed as sufficiently many copies of Dk,T , padded to length
p(k)), such that Ã(x, E|x|) outputs a witness w for x with probability greater than 1−2−|x|.

Let G(x, e) := 1 iff xRÃ(x, e). Let Lk := LR ∩ {0, 1}k . For each k, let ek ∈ {0, 1}p(k)

be the string maximising P (G(x, ek) = 1) for randomly chosen x ∈ Lk. For contradiction,
we assume that there is an xk ∈ Lk, such that G(xk, ek) 6= 1. Then for random x ∈ Lk

and e← Ek we would have

2−n > P (G(x, e) 6= 1)

=
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, e′) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (G(x, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′)P (x = xk)P (G(xk, ek) 6= 1)

≥
∑

e′∈{0,1}p(k)

P (e = e′) · 2−#Lk · 1

= 2−#Lk ≥ 2−n.

So for all x ∈ Lk, G(x, ek) = 1, i.e., for all x ∈ Lk, Ã(x, ek) gives a witness for x. But
Ã(·, ek) is a deterministic nonuniform polynomial-time algorithm with auxiliary input ek,
which concludes the proof.

In Theorem 5.5 the existence of a long-term UC zero-knowledge proof for Blum-integers
is stated. To prove this there must be a simulator able to generate random square roots
modulo this Blum-integer. The following lemma gives an efficient algorithm for this task.

Lemma A.2. There is a PPT-algorithm Q such that Q(1k, n) outputs two values r ∈
{0, . . . , 2k|n| − 1}, s ∈ {0, . . . , n − 1} ∪ {⊥}, such that the following holds if n is a Blum-
integer
• The distribution of r is almost uniformly distributed on {0, . . . , 2k|n| − 1}.47
• If r is a quadratic residue mod n, then s is a almost uniformly distributed root of r

modulo n (and s = ⊥ otherwise).

47I.e., the distribution of r is statistically indistinguishable (in k) from the uniform distribution on
{0, . . . , 2k|n| − 1}.

70

Proof. First, we remind the reader of some facts: The Legendre-symbol
(

a
p

)

for prime p

is defined as
(

a
p

)

= +1 if a is a quadratic residue modulo p,
(

a
p

)

= −1 if a is a quadratic

non-residue modulo p, and
(

a
p

)

= 0 if a ≡ 0 mod p. The Jacobi-symbol
(

a
pq

)

for different

primes p, q is defined as
(

a
pq

)

:=
(

a
p

)(

a
q

)

. If n = pq is a Blum-integer and not a square,
−1 is a quadratic non-residue modulo p, modulo q and modulo n. There is an efficient
algorithm R, so that R(p, q, r) returns a random square root of r modulo pq (or ⊥ if r is
not a square) if p, q are primes.

We now define an auxiliary algorithm Q′ as follows:

• Input: a Blum-integer n = pq with p 6= q, and an r0 ∈ Zn.
• Calculate the Jacobi symbol J :=

(

r0
n

)

.
• If J = −1, output (r0,⊥).
• If J = 0 and r0 6= 0, factor n.48 Output (r0, R(p, q, r0)).
• If r0 = 0, return (0, 0).
• If J = +1, choose a uniformly random invertible s ∈ Zn,49 and with probability

1
2 , output (s2, s), otherwise (−s2,⊥).

Let n = pq with p 6= q.
Let S1 ⊆ Zn be the set of all r0 with

(

r0
n

)

∈ {−1, 0}. Then given a Blum-integer n, for
uniformly chosen r0 ∈ S1 and (r, s) ← Q′(n, r0), we have that r is uniformly distributed
on S1 (since r = r0 for r0 ∈ S1). If r0 is not a square, s = ⊥ (since 0 is a square, and by
the definition of R). If r0 is a square, s is a uniformly distributed root of r (since 0 has
only one root, and by the definition of R).

Let S2 ⊆ Zn be the set of all r0 with
(

r0
n

)

= +1. All elements of S2 are invertible.
Let further Q be the set of all invertible squares in Zn. Then Q ⊆ S2, and S2 \Q is the
set of all invertible elements that are neither quadratic residues modulo p nor modulo q.
For a uniformly random invertible s ∈ Zn, s2 is uniformly distributed over Q, and s is a
uniformly random root of s2. Since also −1 has that property (see above), multiplying an
element of Q with −1 gives an element of S2 \Q and vice versa. So #Q = #(S2 \Q) and
−s2 is uniformly distributed on S2 \Q.

Therefore for any r0 ∈ S2, Q′(n, r0) outputs (r, s), such that r is uniformly distributed
on S2, and if r is a square, s is a uniformly chosen root (and s = ⊥ otherwise).

It follows that for uniformly chosen r0 ∈ Zn, Q′(n, r0) outputs (r, s), such that r is
uniformly distributed on Zn, and if r is a square, s is a uniformly chosen root (and s = ⊥
otherwise).

Now we define algorithm Q′′:

• Input: a Blum-integer n.
• Check whether n is a square. If so, let p, q :=

√
n, choose a random r ∈ Zn and

output (r,R(p, q, r)).
• Otherwise, choose a random r0 ∈ Zn, let (r, s)← Q′(n, r0) and output (r, s).

Obviously, if n is a Blum-integer (possibly with identical prime factors), Q′′(n) outputs

48This can be done efficiently, since if
`

r0

n

´

= 0 we have that gcd(r0, n) is a factor of n.
49How to do this is discussed later.

71

(r, s), such that r is uniformly distributed on Zn, and if r is a square, s is a uniformly
chosen root (and s = ⊥ otherwise).

Now, consider the following algorithm Q:

• Input: a parameter 1k and a Blum-integer n.
• Let (r, s)← Q′′(n).
• Let r̄ ∈ {0, . . . , n− 1} be a representative of r ∈ Zn.
• Let d := ⌊2k|n|/n⌋, and choose a uniformly random e ∈ {0, . . . , d− 1}.
• Return (r̄ + en, s).

Obviously, for uniform r ∈ Zn, r̄+en is almost uniformly distributed on {0, . . . , 2k|n|−
1}. So if n is a Blum-integer, Q(k, n) outputs (r, s), such that r is almost uniformly
distributed on {0, . . . , 2k|n| − 1}, and if r is a square, s is a uniformly chosen root (and
s = ⊥ otherwise), so Q has the properties stated in the lemma.

However, algorithm Q′ (which again is called by Q) contains the instruction “choose a
uniformly random invertible s ∈ Zn”. We have to check whether we can do this efficiently
(with some error probability negligible in k). If n is a Blum-integer with different prime
factors p, q, a random element s is invertible if it is nonzero modulo p and modulo q. Since
p, q ≥ 3, the probability for this is at least (2

3)2. So we can choose an invertible s ∈ Zn by
choosing random s ∈ Zn and check whether it is invertible (e.g., using Euclid’s algorithm).
If we repeat this up to k times, the probability of failure is negligible.

The next lemma shows that it is impossible to construct machines U and L with the
following property: U can deviate from its normal program in a way that is not noticed
when running with L. L can deviate in a way that is not noticed when running with U . Yet
if both machines deviate simultaneously, this will be noticed. (This roughly corresponds to
the fact that the AND function cannot be computed privately in the presence of semi-honest
adversaries.) Doing the calculations here shortens the proof of Theorem 5.10.

Lemma A.3. Let U , Ũ , L, L̃ be interactive machines that send only a polynomially-
bounded number of messages. Let 〈U,L〉k,z denote the transcript of the communication in
an interaction of U and L where both machines get input k, z. Assume

〈U,L〉k,z ≈ 〈Ũ , L〉k,z ≈ 〈U, L̃〉k,z

where ≈ denotes statistical indistinguishability (in k). Then

〈U,L〉k,z ≈ 〈Ũ , L̃〉k,z.

Note that at a first glance this lemma looks like a special case of Theorem 1 of [MPR07].
However, [MPR07] assumes 〈U,L〉k,z = 〈Ũ , L〉k,z = 〈U, L̃〉k,z while we will need the lemma
to hold also in the case of statistical indistinguishability.

Proof. In the following, we omit k, z for readability. Without loss of generality we can
assume that in a run of 〈U,L〉 the machines alternatingly send messages to each other,
with the first message sent by U . Analogously for the other networks. Let U(vi) denote
the distribution of the messages sent by machine U under the condition that the commu-
nication has been vi so far. Note that this distribution does not depend on which other

72

machine U is communicating with. Define L, Ũ , L̃ analogously. Let 〈U,L〉i denote the
communication of U and L up to the i-th message. Then if, e.g., i is odd, U(〈U,L〉i−1)
has the same distribution as 〈U,L〉i. If i is even, the same holds for L (since U sends the
odd and L the even messages). Let p(k) be the polynomial upper bound on the number
of messages sent by the machines.

Let ∆ denote the statistical distance of random variables, and let

ui := ∆(〈U,L〉i, 〈Ũ , L〉i), li := ∆(〈U,L〉i, 〈U, L̃〉i),
and di := ∆(〈U,L〉i, 〈Ũ , L̃〉i)

Further, δ := max{up(k), lp(k)}. By assumption, δ is negligible in k. To show the lemma,
it is sufficient to show that dp(k) is negligible, too. Assume that i is odd (i.e. it is the U ’s

or Ũ ’s turn to send a message).

di = ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

U(〈U,L〉i−1), Ũ (〈Ũ , L〉i−1)
)

+ ∆
(

Ũ(〈Ũ , L〉i−1), Ũ (〈U,L〉i−1)
)

+ ∆
(

Ũ(〈U,L〉i−1), Ũ (〈Ũ , L̃〉i−1)
)

≤ ∆
(

〈U,L〉i), 〈Ũ , L〉i
)

+ ∆
(

〈Ũ , L〉i−1, 〈U,L〉i−1

)

+ ∆
(

〈U,L〉i−1, 〈Ũ , L̃〉i−1

)

= ui + ui−1 + di−1 ≤ 2δ + di−1.

An analogous calculation (with L(. . .) and L̃(. . .) instead of U(. . .) and Ũ(. . .), and
with 〈U, L̃〉 instead of 〈Ũ , L〉) gives di ≤ li + li−1 + di−1 ≤ 2δ + di−1 for even i. Since
obviously d0 = 0, we have dp(k) ≤ 2p(k)δ which is negligible, since δ is negligible and p
polynomial.

The following lemma gives a criterion for the existence of oracles relative to which a
certain hardness assumption holds.

Lemma A.4. Let Dn be an efficiently computable distribution on bitstrings, i.e., there is a
probabilistic algorithm that on input n samples an element of Dn in time polynomial in n.
Let R be a relation. Assume that for any PPT algorithm A, we have that Pr[xR(A(1n, x)) :
x ← Dn] is negligible in n. Then there is a function f : N → {0, 1}∗ such that for any
PPT oracle algorithm B, we have that Pr[(f(n))R(Bf (1n, f(n)))] is negligible in n. (We
assume that the input to f in an oracle query is encoded in unary.)

Proof. Let F be the distribution of functions f : N → {0, 1}∗ resulting from choosing
each image f(n) independently according to Dn. Then for any PPT oracle algorithm B,
we have that Pr[(f(n))R(Bf (1n, f(n))) : f ← F] is negligible in n. If this were not the
case for some B, we could construct a PPT algorithm A from B as follows: A expects
inputs (1n, x). When B queries f(n), A uses the value x instead. When B queries f(i)
with i 6= n, A chooses a random y ← Di (which is then reused for subsequent queries f(i)
with the same i). Then Pr[xR(A(1n, x)) : x← Dn] = Pr[(f(n))R(Bf (1n, f(n))) : f ← F]
is not negligible in contradiction to the assumption in the statement of the lemma.

73

Fix some PPT oracle algorithm B and some c ∈ N. Since Pr[(f(n))R(Bf (1n, f(n))) :
f ← F] is negligible, for any α > 0, there is an nα ∈ N such that for all n ≥ nα,

Pr[(f(n))R(Bf (1n, f(n))) : f ← F] ≤ αn−c−2

∑∞
i≥1

1
i2

. (3)

With PB
n (f) := Pr[(f(n))R(Bf (1n, f(n)))] we have that Pr[(f(n))R(Bf (1n, f(n))) :

f ← F] = Ef [PB
n (f)] where Ef denotes the expectation over choices f ← F . From

Markov’s inequality, it follows that

Pr[PB
n (f) ≥ n−c : f ← F] ≤ Ef [PB

n (f)]

n−c

(3)

≤ α

n2
∑∞

i≥1
1
i2

(4)

for all α > 0 and all n ≥ nα.
Then we have for any α > 0,

Pr[(∀m ≥ 1. ∃n ≥ m. PB
n (f) ≥ n−c) : f ← F]

≤ Pr[(∃n ≥ nα. PB
n (f) ≥ n−c) : f ← F]

≤
∑

n≥nα

Pr[PB
n (f) ≥ n−c : f ← F]

(4)

≤
∑

n≥nα

α

n2
∑

i−2
≤ α.

Since this holds for any α > 0, we have Pr[(∀m ≥ 1. ∃n ≥ m. PB
n (f) ≥ n−c) : f ← F] = 0.

Pr[(∃B. PB
n (f) not negligible : f ← F)]

≤
∑

B

Pr[PB
n (f) not negligible : f ← F]

=
∑

B

Pr[(∃c ∈ N. ∀m ≥ 1. ∃n ≥ m. PB
n (f) ≥ n−c) : f ← F]

≤
∑

B

∑

c

Pr[(∀m ≥ 1. ∃n ≥ m. PB
n (f) ≥ n−c) : f ← F]

=
∑

B

∑

c

0 = 0.

Here we quantify over PPT oracle machines B. For the last equality, note that there are
only countably many B, c.

Thus, when choosing f ← F , with probability 1, for all PPT B, PB
n (f) is negligible.

In particular, there exists an f such that for all PPT B, PB
n (f) is negligible. This shows

the claim.

The following lemma allows us to encode an arbitrarily distributed random variable in
an almost uniformly distributed one.

74

Lemma A.5. Let W be a random variable with range D. Fix k > 0 and m ≥ log #D. Let
t := m + k + 1, and q := t + k + 1. Let R and U be uniformly distributed random variables
with ranges {0, 1}q and {0, 1}t, respectively. Assume that R is independent of W .

Then there is a function F such that ∆(F (W,R), U) ≤ 2−k where ∆ denote the statis-
tical distance, and such that F (w, r) 6= F (w′, r′) for all w,w′, r, r′ with w 6= w′.

Proof. We identify the bitstrings in the ranges of R and U with integers {0, . . . , 2t−1} and
{0, . . . , 2q−1}, respectively. We identify D with {0, . . . ,#D−1}. Let T := 2t and Q := 2q.
We abbreviate Pr[W = w] as Pw. For w ∈ D, let lw := PwT and sw :=

∑

w′<w⌈lw′⌉ and
s∗ :=

∑

w∈D⌈lw⌉.
For an integer n > 0, let fn(r) := r mod n if 0 ≤ r < n⌊Q

n
⌋ and fn(r) := ⊥ otherwise.

Then for any n, fn(R) is uniformly distributed on {0, . . . , n− 1} under the condition that
fn(R) 6= ⊥, and Pr[fn(R) = ⊥] = 1− n

Q
⌊Q

n
⌋ = n

Q
(Q

n
− ⌊Q

n
⌋) ≤ n

Q
.

We define the function F as follows:

F (w, r) :=

{

sw + f⌈lw⌉(r) if f⌈lw⌉(r) 6= ⊥ and sw + f⌈lw⌉(r) < T,

⊥ otherwise.

The requirement that F (w, r) 6= F (w′, r′) for all w,w′, r, r′ with w 6= w′ is satisfied because
sw ≤ sw + f⌈lw⌉(r) < sw + ⌈lw⌉ = sw+1 for all w, r.

For any z ∈ {0, . . . , s∗ − 1}, we have

Pr[F (W,R) = z] = Pr[W = w] Pr[f⌈lw⌉(R) = z − sw] ≤ Pw/⌈lw⌉ ≤ Pw/lw = 2−t

where w is the unique value such that sw ≤ z < sw+1. For z ≥ s∗ we have Pr[F (W,R) =
z] = 0 ≤ 2−t. Hence for any z 6= ⊥, we have that Pr[F (W,R) = z] ≤ Pr[U = z].

To compute an upper bound on ∆(F (W,R), U), note the following general fact for any
random variables X,Y with countable ranges: ∆(X,Y) =

∑

z∈B(Pr[X = z]− Pr[Y = z])
where B := {z : Pr[X = z] > Pr[Y = z]}. Applying this fact to F (W,R) and U , we have
B = {⊥} and

∆(F (W,R), U) =
∑

z∈B

(Pr[F (W,R) = z]− Pr[U = z]) = Pr[F (W,R) = ⊥]. (5)

Moreover, we have

Pr[F (W,R) = ⊥] ≤ Pr[f⌈lW ⌉(R) = ⊥] + Pr[sW + f⌈lW ⌉(R) ≥ T ∧ f⌈lW ⌉(R) 6= ⊥].

Since Pr[fn(R) = ⊥] ≤ n
Q

for any n, we have

Pr[f⌈lW ⌉(R) = ⊥] ≤
∑

w∈D

Pw
⌈lw⌉
Q
≤ max

w∈D

⌈lw⌉
Q
≤ T

Q
. (6)

We proceed to bound Pr[sW + f⌈lW ⌉(R) ≥ T ∧ f⌈lW ⌉(R) 6= ⊥]. First, remember that
for any w ∈ D, f⌈lw⌉(R) is uniformly distributed on {0, . . . , ⌈lw⌉} under the condition

75

f⌈lw⌉(R) 6= ⊥. Let Ib denote the uniform distribution on the real interval [0, b). Then if b
is an integer, ⌊Ib⌋ is the uniform distribution on {0, . . . , b− 1}. Hence

Pr[sw + f⌈lw⌉(R) ≥ T ∧ f⌈lw⌉(R) 6= ⊥]

≤ Pr[sw + f⌈lw⌉(R) ≥ T |f⌈lw⌉(R) 6= ⊥]

= Pr[sw + ⌊I⌈lw⌉⌋ ≥ T] ≤ Pr[sw + I⌈lw⌉ ≥ T]

≤ Pr[sw + Ilw+1 ≥ T] ≤ Pr[sw + Ilw ≥ T − 1]

≤ Pr[s′w + Ilw ≥ T − 1−#D]

with s′w :=
∑

w′<w lw′ . Thus

Pr[sW + f⌈lW ⌉(R) ≥ T ∧ f⌈lW ⌉(R) 6= ⊥] ≤ Pr[s′W + IlW ≥ T − 1−#D]. (7)

But s′W + IlW is the uniform distribution on [0, T) (note for this that Pw is proportional

to lw = PwT). Hence Pr[s′W + IlW (R) ≥ T − 1−#D] = 1+#D
T

and thus

Pr[sW + f⌈lW ⌉(R) ≥ T ∧ f⌈lW ⌉(R) 6= ⊥]
(7)

≤ 1 + #D

T
. (8)

Summarizing,

∆(F (W,R), U) = Pr[F (W,R) = ⊥]
(5)

≤ Pr[f⌈lW ⌉(R) = ⊥] + Pr[sW + f⌈lW ⌉(R) ≥ T |f⌈lW ⌉(R) 6= ⊥]

(6,8)

≤ T

Q
+

1 + #D

T
≤ 2−k.

76

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge, 1988. JCSS, 37:156-189.

[BCMS99] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. De-
feating classical bit commitments with a quantum computer. Los Alamos
preprint archive quant-ph/9806031, http://arxiv.org/abs/quant-ph/

9806031, May 1999.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In 45th Symposium
on Foundations of Computer Science, Proceedings of FOCS 2004, 17-19 Oc-
tober 2004, Rome, Italy, pages 186–195. IEEE Computer Society, October
2004.

[BHMQU05] Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and Dominique Un-
ruh. On fairness in simulatability-based cryptographic systems. In Pro-
ceedings of the 2005 ACM Workshop on Formal Methods in Security En-
gineering, pages 13–22. ACM Press, 2005. Full version online available at
http://eprint.iacr.org/2005/294. The definition of nontrivial protocols
is only contained in the full version.

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosys-
tem. Notices of the American Mathematical Society (AMS), 46(2):203–
213, 1999. Online available at http://crypto.stanford.edu/~dabo/

abstracts/RSAattack-survey.html.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive sim-
ulatability (RSIM) framework for asynchronous systems. Information and
Computation, 2007. Prelimininary version available at http://eprint.iacr.
org/2004/082.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer
Science, Proceedings of FOCS 2001, pages 136–145. IEEE Computer Society,
2001. Full and revised version is online available at http://eprint.iacr.

org/2000/067.

[CCM02] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In 34th Annual ACM Symposium on The-
ory of Computing, Proceedings of STOC 2002, pages 493–502. ACM Press,
2002.

77

http://arxiv.org/abs/quant-ph/9806031
http://eprint.iacr.org/2005/294
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html
http://eprint.iacr.org/2004/082
http://eprint.iacr.org/2000/067

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Theory of Cryptography, Proceed-
ings of TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, March
2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO ’01,
volume 2139 of LNCS, pages 19–40. Springer, 2001. Full version online
available at http://eprint.iacr.org/2001/055.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, Advances
in Cryptology - EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474.
Springer, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of
universally composable two-party computation without set-up assumptions.
In Eli Biham, editor, Advances in Cryptology, Proceedings of EUROCRYPT
’03, volume 2656 of LNCS, pages 68–86. Springer, 2003. Full version online
available at http://eprint.iacr.org/2004/116.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In Proc. 3rd International Conference on Security in Commu-
nication Networks (SCN), volume 2576 of LNCS, pages 268–289. Springer,
2002.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In 34th Annual
ACM Symposium on Theory of Computing, Proceedings of STOC 2002, pages
494–503. ACM Press, 2002. Extended abstract, full version online available
at http://eprint.iacr.org/2002/140.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-
bounded adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryp-
tology, Proceedings of CRYPTO ’97, volume 1294 of LNCS, pages 292–306.
Springer, 1997.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In
Advances in Cryptology: CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 265–281. Springer, 2003.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptogra-
phy (extended abstract). In Proceedings of the Twenty Third Annual ACM
Symposium on Theory of Computing, pages 542–552. ACM, 1991.

[DFSS05] Ivan B. Damg̊ard, Serge Fehr, Louis Salvail, and Christian Schaffner. Cryp-
tography in the bounded quantum-storage model. In Proceedings of FOCS
2005, pages 449–458, 2005. A full version is available at http://arxiv.org/
abs/quant-ph/0508222.

78

http://eprint.iacr.org/2001/055
http://eprint.iacr.org/2004/116
http://eprint.iacr.org/2002/140
http://arxiv.org/abs/quant-ph/0508222

[DM04] Stefan Dziembowski and Ueli Maurer. On generating the initial key in the
bounded-storage model. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology, Proceedings of EUROCRYPT ’04, volume 3027 of
LNCS, pages 126–137. Springer, 2004.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding
universally composable commitment schemes with constant expansion factor.
In Moti Yung, editor, Advances in Cryptology, Proceedings of CRYPTO ’02,
volume 2442 of LNCS, pages 581–596. Springer, 2002. Full version online
available at http://eprint.iacr.org/2001/091.

[DvOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authenti-
cation and authenticated key exchanges. Designs, Codes and Cryptography,
2(2):107–125, June 1992.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs under general assumptions. SIAM Journal on Computing,
29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In Proceedings of the Twenty Second Annual ACM Symposium on
Theory of Computing, pages 416–426. ACM, 1990.

[GGM86] Oded Goldreich, Shari Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, 1986.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM J. Comput., 25(1):169–192, 1996.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message attacks. SIAM
Journal on Computing, 17(2):281–308, 1988. Online available at
http://theory.lcs.mit.edu/~rivest/GoldwasserMicaliRivest-

ADigitalSignatureSchemeSecureAgainstAdaptiveChosenMessage

Attacks.ps.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game—a completeness theorem for protocols with honest majority. In
Nineteenth Annual ACM Symposium on Theory of Computing, Proceedings
of STOC 1987, pages 218–229. ACM Press, 1987. Extended abstract.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):690–728, 1991. Online available at http://www.

wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf.

[Gol04] Oded Goldreich. Foundations of Cryptography – Volume 2 (Basic Applica-
tions). Cambridge University Press, May 2004. Preliminary version online
available at http://www.wisdom.weizmann.ac.il/~oded/frag.html.

79

http://eprint.iacr.org/2001/091
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf
http://www.wisdom.weizmann.ac.il/~oded/frag.html

[Gün90] Christoph Günther. An identity-based key-exchange protocol. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology -
EUROCRYPT ’89, volume 434, pages 29–37. Springer, 1990.

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. Universally composable commit-
ments using random oracles. In Moni Naor, editor, Theory of Cryptography,
Proceedings of TCC 2004, volume 2951 of LNCS, pages 58–76. Springer,
2004.

[HMQS06] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On modeling
IND-CCA security in cryptographic protocols. Tatra Mountains Mathemat-
ical Publications, 33:83–97, 2006. Full version available at http://eprint.

iacr.org/2003/024.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Polynomial
runtime in simulatability definitions. In 18th IEEE Computer Security Foun-
dations Workshop, Proceedings of CSFW 2005, pages 156–169. IEEE Com-
puter Society, 2005. Online available at http://iaks-www.ira.uka.de/

home/unruh/publications/hofheinz05polynomial.html.

[HMQU06] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On the
(im)possibility of extending coin toss. In Serge Vaudenay, editor, Advances in
Cryptology, Proceedings of EUROCRYPT ’06, volume 4004 of LNCS, pages
504–521. Springer, 2006. Full version available at http://eprint.iacr.org/
2006/177.

[HR07] Iftach Haitner and Omer Reingold. Statistically-hiding commitment from
any one-way function. In STOC ’07: Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 1–10, New York, NY, USA,
2007. ACM.

[HUMQ07] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Universally
composable zero-knowledge arguments and commitments from signature
cards. Tatra Mt. Math. Publ., 37:93–103, 2007.

[Lin03] Yehuda Lindell. General composition and universal composability in secure
multi-party computation. In 44th Annual Symposium on Foundations of
Computer Science, Proceedings of FOCS 2003, pages 394–403. IEEE Com-
puter Society, 2003. Online available at http://eprint.iacr.org/2003/

141.

[MPR07] Ueli M. Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability
amplification. In Alfred Menezes, editor, Proceedings of Crypto’07, volume
4622 of LNCS, pages 130–149. Springer, 2007.

[MQ05] Jörn Müller-Quade. Temporary assumptions—quantum and classical. In
The 2005 IEEE Information Theory Workshop On Theory and Practice in
Information-Theoretic Security, 2005. Abstract.

80

http://eprint.iacr.org/2003/024
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05polynomial.html
http://eprint.iacr.org/2006/177
http://eprint.iacr.org/2003/141

[MQU07] Jörn Müller-Quade and Dominique Unruh. Long-term security and universal
composability. In Theory of Cryptography, Proceedings of TCC 2007, volume
4392 of LNCS, pages 41–60. Springer, March 2007.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung.
Perfect zero-knowledge arguments for NP using any one-way permutation.
Journal of Cryptology, 11(2):87–108, March 1998.

[Rab03] Michael O. Rabin. Hyper-encryption by virtual satellite. Science Center
Research Lecture Series, December 2003. Online available at http://athome.
harvard.edu/programs/hvs/.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In Twenty-Second Annual ACM Symposium on Theory of Com-
puting, Proceedings of STOC 1990, pages 387–394. ACM Press, 1990.

[Sig01] Gesetz über Rahmenbedingungen für elektronische Signaturen. Bundesge-
setzblatt I 2001, 876, May 2001. Online available at http://bundesrecht.

juris.de/sigg_2001/index.html.

[WW08] Stephanie Wehner and Jörg Wullschleger. Composable security in the
bounded-quantum-storage model. In ICALP 2008, track C, LNCS, pages
604–615. Springer, 2008. Full version available at http://arxiv.org/abs/

0709.0492v1.

81

http://athome.harvard.edu/programs/hvs/
http://bundesrecht.juris.de/sigg_2001/index.html
http://arxiv.org/abs/0709.0492v1

Index

acknowledgements, 69
adversary

dummy, 16
static, 21

argument of knowledge
statistically witness indistinguishable,

13

Blum-integer, 13
zero-knowledge, 42, 46, 50

bounded storage, 10

channel
secure, 21

coin toss
functionality, 22

COM, see commitment
commitment

from PKI, 30
from signature cards, 68
from TPF, 59
from ZK, 27
functionality, 23
impossibility, 24, 26
statistically hiding UC, 32
statistically hiding, 13

common reference string, see CRS
composition

universal, 16, 19
CRS

functionality, 22
CT, see coin toss

DN-commitment, 32
dummy party, 15
dummy-adversary, 16

EF-CMA, 13
essentially unique witnesses, 36
existential unforgeability, see EF-CMA

forward security, 11
functionality, 3, 15, 22

coin toss, 22
commitment, 23

CRS, 22
generalised long-term revealing, 52
long-term revealing, 23
multi-session variant, 52
offline, 47
PKI, 23
signature card, 59
TPF, 55
zero-knowledge, 23

generalised LTR, 52

honest majority, 21

ideal functionality, see functionality
impossibility

commitment, 24, 26
zero-knowledge, 38, 41, 48

long-term revealing functionality, 23
generalised, 52

long-term UC, 3, 18
LTR, see long-term revealing

majority
honest, 21

memory bound, 10
minimality of long-term UC, 21
multi-session variant

(functionality), 52

negligible, 12
non-negligible, 12
nonuniformly trivial, 13
noticeable, 12
NP-relation, 13

oblivious transfer, 69
offline functionality, 47
OT, 69
overwhelming, 12

PKI functionality, 23
poly-balanced, 13
PPT, see probabilistic polynomial time
probabilistic polynomial time, 13

82

public key infrastructure, see PKI

quantum cryptography, 10, 69

safe prime, 13
SC, see signature card
secure channel, 21
signature card

functionality, 59
statement

of an NP-relation, 13
static adversary, 21
statistically hiding UC commitment, 32

TPF, see trusted pseudorandom function
TPF functionality, 55
trivial

nonuniformly, 13
uniformly, 13

UC, 15
long-term, 3, 18

UC commitment
statistically hiding, 32

UC realise, 15
uniformly trivial, 13
universal composition, 16, 19
Universal Composability, see UC, see UC

witness
essentially unique, 36
of an NP-relation, 13

witness indistinguishable argument of
knowledge

statistical, 13
witness unifier, 36

zero-knowledge
for Blum-integers, 42, 46
for Blum-integers, 50
from coin-toss, 42, 46
from commitment, 47
from signature cards, 60
from TPF, 56
functionality, 23
impossibility, 38, 41, 48

ZK, see zero-knowledge

83

	Introduction
	The notion of long-term UC security
	Impossibility results
	Possibility results.
	Related work
	Organisation

	Preliminaries
	Notation
	Cryptographic tools

	Modelling composable long-term security
	UC framework
	Long-term UC
	Conventions
	Functionalities

	Commitments
	Impossibility results
	Commitments from zero-knowledge protocols
	Commitment protocols from a PKI
	Statistically hiding UC commitments are not always long-term UC

	Zero-knowledge protocols
	Impossibility when using LTR functionalities
	Impossibility when using offline functionalities
	Generalising LTR

	Possibility results from non-standard setup assumptions
	Trusted devices implementing a random oracle
	Signature cards

	Conclusions
	Technical lemmas
	References
	Index

