Another class of quadratic APN binomials over Fon:
the case n divisible by 4

Lilya Budaghyan? Claude Carlet! Gregor Leander?

Abstract

We exhibit an infinite class of almost perfect nonlinear quadratic binomials from
Fon to Fon with n = 4k and k odd. We prove that these functions are CCZ-
inequivalent to known APN power functions when k£ # 1. In particular it means
that for n = 12,20, 28, they are CCZ-inequivalent to any power function.

Keywords. Affine equivalence, Almost bent, Almost perfect nonlinear, CCZ-
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1 Introduction

A function F' : F} — F% is called almost perfect nonlinear (APN) if, for every a # 0
and every b in F3, the equation F'(z) + F(x + a) = b admits at most two solutions (it is
also called differentially 2-uniform). Vectorial Boolean functions used as S-boxes in block
ciphers must have low differential uniformity to prevent from the differential cryptanalysis
(see [4, 31]). In this sense APN functions are optimal. The notion of APN function is closely
connected to the notion of almost bent (AB) function. A function F' : Fy — F7 is called
AB if the minimum Hamming distance between all Boolean functions v - F, v € F3 \{0}
(where “” denotes the usual inner product in F%, note that any other choice of an inner
product would lead to the same notion) and all affine Boolean functions on F% is maximal
(this distance is called the nonlinearity of F' and this maximum equals 2"~! — 2%1). AB
functions oppose an optimum resistance to the linear cryptanalysis (see [30, 15]). Besides,
every AB function is APN [15], and in case n odd any quadratic function is APN if and
only if it is AB [14].

Until recently the only known constructions of APN and AB functions were EA-
equivalent to power functions over finite fields. Recall that functions F' and F” are called
extended affine equivalent (EA-equivalent) if F/ = A o F'o Ay + A, where the mappings
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A, Ay, Ay are affine, and where A;, A; are permutations. Table 1 gives all known values
of exponents d (up to multiplication by a power of 2 modulo 2" — 1, and up to taking
the inverse when a function is a permutation) such that the power function z¢ over Fon is
APN. For n odd the Gold, Kasami, Welch and Niho APN functions from Table 1 are also
AB (for the proofs of AB property see [11, 12, 24, 26, 28, 31]).

Table 1
Known APN power functions % on Fan.
Functions ‘ Exponents d ‘ Conditions | Proven in ‘
Gold 20 +1 ged(i,n) =1 | [24, 31]
Kasami 220 — 21 41 ged(i,n) =1 | [27, 28]
Welch 2+ 3 n=2t+1 [20]
Niho 20 +27 — 1, ¢ even n=2+1 [19]
2t +2°5% — 1, t odd
Inverse 22t —1 n=2t+1 3, 31]
Dobbertin | 24 + 23t 422t 4 2t — 1 n =5t [21]

When using S-boxes EA-equivalent to power functions the advantage is the low im-
plementation complexity in hardware environments. On the other hand the properties of
power functions could be exploited in an attack (see [1]). A first well known property
of a power permutation F' is that all its component functions tr(cF'), ¢ € F5., are affine
equivalent. A second consequence is that the rich algebraic structure of the field Fo» can be
extensively used, probably in a simpler manner for a power function than for a polynomial
with many terms. The impact of the choice of power functions on algebraic attacks is an-
other open question [16]. Probably, some of the potential weaknesses of S-boxes based on
power functions can be avoided by using S-boxes EA-inequivalent or even CCZ-inequivalent
(see below) to power mappings.

Applying the stability properties studied in [14] and more recently called CCZ-equivalence
(cf. definition at Section 2), classes of APN functions EA-inequivalent to power functions
are constructed in [8, 9]. They are presented in Table 2. When n is odd these functions
are also AB. However they are, by construction, CCZ-equivalent to Gold mappings.

Table 2
Known APN functions EA-inequivalent to power functions on Fon.
Functions ‘ Conditions ‘ Alg. degree
n>4
22 4 (22 o+ tr(1) + 1) tr(22 T+ 2 tr(1)) ged(i,n) = 1 3
n divisible by 6
[+ tr,, )3 (@2 D) 4 224D | tr () tr,, (0 +! 4 22 QD)2 ged(i,n) =1 4
m#n
22+ 4 £ /m (x2i+1) + xT’. trym () + trnl/m (1)21 . n odd
Htrr, /m (z)?+! 4 T /m (1) 4 tT /i (1) 2741 (2 + T /m ()% 4+ 1) | n divisible by m m+ 2
b0 ()2t (22 1) 1 (2)] 76 (2t (1)) ged(i,n) = 1
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The first examples of APN functions CCZ-inequivalent to power mappings are intro-
duced in [23]. These are two quadratic binomials:

6

o % + wa% over Fyo, where w has the order 3 or 93,

28

o a® + wa?® over Fqi2, where w has the order 273 or 585.

The second of these two functions has been proven being part of an infinite sequence of
quadratic APN binomials given in Table 3 (see [6, 7]) while the first function from [23] is
not explained yet by any infinite family.

Table 3
Known APN functions CCZ-inequivalent to power functions on Fon.
‘ ‘ Functions ‘ Conditions ‘ Proven in ‘
n = 3k, ged(k, 3) = ged(s, 3k) =1
The case n | 22"+ + wa? 2™ | k>4, i=sk mod 3, m=3—i 6, 7]
divisible by 3 w has the order 22 4+ 2F 41
n = 4k, ged(k,2) = ged(s, 2k) = 1
The case n | 22" +1 4+ a2 +2" " k>3, i=sk mod4, m=4—1 Theorem 1 of
divisible by 4 w has the order 23% 4-22F 4-2F 11 | the present paper

The class of functions from Table 3 which corresponds to the case n divisible by 3 is
constructed in [6, 7]. It is proven that these functions are APN for n even and in case n
odd they are AB permutations [6, 7]. Until now this case has been the only known class of
APN functions CCZ-inequivalent to power mappings. The present paper introduces a new
infinite family of quadratic APN binomials which corresponds to the case n divisible by 4
in Table 3. It is proven (in [6] for n divisible by 3 and in the present paper for n divisible by
4) that all these functions are EA-inequivalent to power functions and CCZ-inequivalent
to the Gold and Kasami mappings. This implies that for n even they are CCZ-inequivalent
to all known APN functions, and for n = 12, 15,20, 24,28 they are CCZ-inequivalent to
any power mappings. We conjecture CCZ-inequivalence of these functions to any power
functions for all n > 12.

Though quadratic APN functions are used in some Feistel ciphers (see for instance
[34, 35]) functions of low algebraic degree are not the best choices for S-boxes (see [5]).
However, the APN functions from Table 3 can be viewed as the first necessary steps to
construct maximum nonlinear S-boxes of a larger algebraic degree CCZ-inequivalent to
power functions. Note that, applying CCZ-equivalence to quadratic APN functions it is
possible to construct nonquadratic APN mappings CCZ-inequivalent to power functions.
The existence of APN functions CCZ-inequivalent to power functions and to quadratic
functions is still an open problem.

2 Preliminaries

Let F be the n-dimensional vector space over the field Fy. Any function F' from F7} to
itself can be uniquely represented as a polynomial on n variables with coefficients in F3,
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whose degree with respect to each coordinate is at most 1:

F(ry,onmn) =Y cw)(J]z),  cw) e Fy.

uelFy =1

This representation is called the algebraic normal form of F and its degree d°(F') the
algebraic degree of the function F.

Besides, the field Fon can be identified with F as a vector space. Then, viewed as a
function from this field to itself, F' has a unique representation as a univariate polynomial
over Fyn of degree smaller than 2":

2" —1

F(x) = Z cix’, ¢ € Fon.
i=0

For any k, 0 < k£ < 2™ — 1, the number wy(k) of the nonzero coefficients k, € {0,1} in
the binary expansion ZZ:_S 2%k, of k is called the 2-weight of k. The algebraic degree of
F' is equal to the maximum 2-weight of the exponents i of the polynomial F'(x) such that
C; % 0, that iS, dO(F) = MaXp<i<n—1,¢;#0 U)Q(Z) (see [14])

A function F : Fy — F7 is linear if and only if F'(x) is a linearized polynomial over

an, that iS,
n—1
2t F
T, C; € lton.
=0

The sum of a linear function and a constant is called an affine function.

Let F' be a function from Fy. to itself and A, Ay : Fon — Fan be affine permutations.
The functions I’ and A;oFo A, are then called affine equivalent. Affine equivalent functions
have the same algebraic degree (i.e. the algebraic degree is affine invariant).

As recalled in introduction, we say that the functions F' and F’ are extended affine
equivalent if F' = A; o F o Ay + A for some affine permutations A;, A, and an affine
function A. If F is not affine, then F' and F’ have again the same algebraic degree.

Two mappings F' and F”’ from Fay» to itself are called Carlet-Charpin-Zinoviev equivalent
(CCZ-equivalent) if the graphs of F' and F’, that is, the subsets {(x, F(x)) | z € Fan} and
{(z,F'(x)) | © € Fan} of Fon X Fon, are affine equivalent. Hence, F' and F’ are CCZ-
equivalent if and only if there exists an affine automorphism £ = (L1, Ls) of Fon X Fan such
that

y=F(z) & La(z,y) = F'(Li(z,y)).

Note that since £ is a permutation then the function L,(z, F'(z)) has to be a permutation
too (see [6]). As shown in [14], EA-equivalence is a particular case of CCZ-equivalence and
any permutation is CCZ-equivalent to its inverse.

For a function F': Fon — Fon and any elements a,b € Fan we denote
dr(a,b) = {x € Fy : F(x +a) + F(x) = b}|
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and
Ar ={dr(a,b) : a,b € Fon,a # 0}.

F'is called a differentially J-uniform function if maxuers, per,n dr(a,b) < §. Note that
0 > 2 for any function over Fon. Differentially 2-uniform mappings are called almost
perfect nonlinear.

For any function F' : Fon — Fan we denote

)\F(a> b) _ Z (_1)tr(bF(x)+a:c)’ a, be an,

z€Fon

where tr(z) = x + 22 4+ 2* + ... + 22" is the trace function from Fy. into Fy. The set
Ap ={Ar(a,b) : a,b € Fan,b# 0} is called the Walsh spectrum of the function F' and the
multiset {|Ar(a,bd)| : a,b € Fon,b # 0} is called the extended Walsh spectrum of F. The

value )
Fy=2""1—-- Mr(a,b
NL(F) 3 i 8%, [Ar(a0)
equals the nonlinearity of the function F. The nonlinearity of any function F' satisfies the
inequality

n—1

NL(F)<2mt —272

([15, 33]) and in case of equality F' is called almost bent or mazimum nonlinear.

It is shown in [14] that, if F' and G are CCZ-equivalent, then F'is APN (resp. AB) if
and only if G is APN (resp. AB). More general, CCZ-equivalent functions have the same
differential uniformity and the same extended Walsh spectrum (see [8]).

Obviously, AB functions exist only for n odd. It is proven in [15] that every AB function
is APN and its Walsh spectrum equals {0, j:QnTH}. If n is odd, every APN mapping which
is quadratic (that is, whose algebraic degree equals 2) is AB [14], but this is not true for
nonquadratic cases: the Dobbertin and the inverse APN functions are not AB (see [12, 14]).
When n is even, the inverse function 2" =2 is a differentially 4-uniform permutation [31]
and has the best known nonlinearity [29], that is 2"~ — 23 (see [12, 18]). This function
has been chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [17]. A comprehensive survey on APN and AB functions can be found in [13].

3 A new family of APN functions

Theorem 1 Let s and k be positive integers such that s < 4k —1, ged(k, 2) = ged(s, 2k) =
1, and i = sk mod 4, m =4—1i, n=4k. If w € F5. has the order 2% + 22 + 2% + 1 then
the function F(z) = 22+ + w2 2™ s APN on Fon.

Proof. Since w has the order 23% 4 226 4 9% 4 1 then w = o2~ for some primitive
element a of F5,. We have to show that for every u,v € Fon, u # 0, the equation

F(2) + Flz+u) = v (1)
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has at most 2 solutions. We have

Flz)+ Flz+u) = o2t <x2ik+2mk+s +(x+u)2ik+2mk+8) g (4 w) P
. 2ik 2mk+s
_ 212t ((f) + <E) )
u u

s X 2¢ X k__ 1k mk-+s s
L ((_) X (_)) 12t 12 12!
u u

As this is a linear equation in x it is sufficient to study the kernel. To simplify notation
we denote
k ik mk+s s
a = o2 1221

2541

After replacing = by ux and dividing by u* ™', we see the equation (1) admits 0 or 2

solutions for every u € F5, if and only if, denoting
AJ(z)=a <x2ik + x2m}€+s> + 2% 4z,

the equation A,(z) = 0 has the only solutions 0 and 1.
From now on we consider the cases ¢ = 1 and ¢ = 3 separately.

Case 1 (i = 3,m = 1): If we denote y = 2%, z = 42, t = 22" and b = a®", ¢ = V*",
d = ¢ the equation A,(z) = 0 can be rewritten as

a(t +y* )+ 2% +2=0.

Since 2k 4 gmk+s _ 95 1 = 23k 4 ok¥s 95 1 = (28 — 1)(22F 4 2% 4 2° 4+ 1) then the
element a is always a (2% — 1)-th power and thus abed = 1. Considering also the conjugated
equations we derive the following system of equations

fi= AJz) =alt+y*)+2¥ +z =0
fo= 8 =br+)+y¥+y =0
fs= f3"  =cly+t) 4+ +z =0

0

fr= abef? =z+a2¥ +abe(t* +1) =

The aim is now to eliminate y, z and ¢ from these equations to get an equation in x only.
First we compute

R, = bCfl + abcf2 + abf3 + f4
= ab(bc + 1)z + (ab+ 1)z + (be + 1)z* 4 be(ab + 1)z

and

Ry = cff +a”c(fy + fo) +a* f3
= a2V ¥ (be+1)22 4+ a¥ 2+ i + clab+1)* 2% + o bex
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to eliminate t and y. To eliminate 22 we compute

Rg = CR%S + (bC + 1)2SR2
= (clab+1)* +a* (be + 1)* ™) 2% +a* (be + 1)¥ 2 + c(ab + 1) 2% + a* be(be + 1) .

Using equations R; and R3 we can eliminate z2° by computing
R4 = ab(bc + 1)R3 + (C(ab + 1)25 + a2s(bc + 1)2S+1)R1
= P(a)(z + (be+ 1)2* + bex),

where
P(a) = c(ab+ 1)* ! + a* (be + 1)

Below we shall show that P(a) # 0, thus we can denote

Rs; = PR(z) =2+ (be+ 1)a* + bex.

Computing

R = R, +ab(bc+1)RE
= (ab+ 1)z + ab(bc + 1)¥ 2% + (ab®” ¥ + 1) (be + 1)z + be(ab + 1)z

we finally get our desired equation

R7 = (CLb + 1)R5 + R6
= ab(bc +1)* ! <x22$ - ZE2S) .

Obviously if z is a solution of A,(x) = 0 then R;(x) = 0. For P(a) # 0 and be +1 # 0
this is equivalent to z = 0, 1. Thus to prove the theorem we have to show that P(a) and
bc + 1 do not vanish for elements a fulfilling the equation

k__ 3k k4+s_os_
a = a2 1u2 +2 2 1' (2)

22k+

Assume be = 1, that is, a2 2" =1 or equivalently a2"t1 = 1. We have

o\ 2%k-1
a2t — (au2k+2 )
because
(23F 4 okts 25 1) (2F + 1) = (22 — 1)(2% + 2°) mod (2% —1).

Since a2t = 1 then au2+2" should be (22 + 1)-th power of an element of the field. We
have
ok 198 =252k 1 1) =25(2% + 1)
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with some p odd. Indeed, ks mod 4 = 3, then
k- mod4#s mod4

for odd k, s, and k — s = 2p for some p odd.

Numbers 2% 4+ 1 and 2% + 1 are divisible by 5 because p, k are odd. We get that u2"+2°
is fifth power of an element of the field and au? 2" is not (since « is a primitive element).
Therefore au? 2" is not (2% + 1)-th power of an element of the field. A contradiction.

Let c(ab+ 1)* ™' + a* (bc + 1)> T = 0. Since bc+ 1 # 0 then ab+ 1 # 0 and we get

c bc+1 2
a?  \ab+1 ’

Note that since n is even and s is odd then 2" — 1 and 2° + 1 are divisible by 3. Therefore
c/a* is third power of an element of the field. We have

s 2k _9s s(92k—s __
c/a2 _ g2 2 1)

and

23k + 2k+s —95 1= 28(23k—s _ 1) + (2k+s . 1)

The numbers 2% — 1 and 2¥* — 1 are divisible by 3 since 3k — s and k + s are even. On
the other hand 2¥ — 1 and 22*=% — 1 are not divisible by 3 since k and 2k — s are odd. We
get

s(92k—s __ s(92k—s __ k__ s(92k—s __ 3k k+s_o9s__
a2 ) _ 2 D2k -1),,2°(2 1)(23k 42 2°-1)

Obviously ¢/a®" is not third power of an element of the field and therefore it is not (2°+1)-th
power. A contradiction.

Case 2 (i = 1,m = 3): Since 2% 4 2mkts _ 25 1 =2k 4 23k+s _9s 1 = (2F —1)(1+
22k+s 4 okts 1 9%) then a is always a (2% — 1)-th power and thus again abed = 1.

In this case the equation A,(z) = 0 can be transformed into the following system of
equations

fi= aly+t¥)+2¥ +x=
fo= blz+a¥)+y* +y=
fs= clt+y")+2* +z=
fi= x4 2% +abe(t* +1) =

o o o o
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We get

Ry = bcfi +abefs + abfs + fa
= (ab+ 1)2* +ab(bc + 1)z + be(ab + 1)z* + (be + 1)z,
& fitac” (f5 + f2) +afi
az?’ +a(be + 1)¥ 2% 4+ ab® 2 4 ab® ¥ + & (ab + 1)1 + F'a,
Ry = aRy + (ab+ 1) Ry
= a(bc+1)* 2% +abc® (ab+ 1) 2z + (a(be + 1) + * (ab + 1)* ™)z 4+ * (ab + 1)*
Ry = (ab+1)R3+a(bc+ 1) )Ry
= P(a)(abz + (ab+ 1)z + z),

Ry

where
P(a) = c¢* (ab+1)* +a(be + 1)+
Assuming that P(a) # 0 we continue
Ry = L abz + (ab + 1)a* + 1,
P(a)

Re = a”b* Ry + (ab+ 1)RZ

= aZT  be + 1)z + (ab+ DF 2 4+ (@0 e+ 1) (ab + 12 + a¥ b (be + 1)z,
R; = a* V¥ (bc+1)Rs + Ry

= (ab+1)**! (17225 + :)323> .

We see now that the equation A,(x) = 0 has the only solutions 0 and 1 if P(a) # 0 and
ab+1#0.
Assume that ab = 1, that is, a*** = 1. We have

(28 4 2%%Fs _ 95 _1)(2F 1 1) = (2% — 1)(28** + 1) mod (2% — 1)

and

2k 11 22k _q
k k__ k 3k+s_9s__ k+s
a2t ( 261, 2842 2 1) ( u> +1) .

Because a2t = 1, the element cu? "' should be (22% +1)-th power of an element of the
field. Since ks mod 4 = 1 then k¥ mod 4 = s mod 4 and 2F7° + 1 = 2?7 4+ 1 for some p
odd. Thus 2¥*% + 1 and 22 + 1 are divisible by 5. Therefore au2" “+! is not fifth power of
an element of the field and then it is not (2% + 1)-th power. A contradiction.

Let ¢® (ab+ 1) + a(bc + 1)1 = 0. Since ab + 1 # 0 then

& (be+1\*T

a \ab+1 '
We show that the element ¢2*/a = a2~ is not third power of an element of the field. A
contradiction.




Indeed, for n even and s odd the numbers 2° + 1 and 2" — 1 are divisible by 3. On the
other hand

22k:+s_1
G221 (azk—1u2k+23k+3—2s—1> — @ -D@teo1), (2 423kts_ge_1)(22k+e 1)

and
2k 4 23k+s - 28 . 1 — 28(2k—s . 1) 4 (23k+s o 1)

Since 287 — 1 and 23%+5 — 1 are divisible by 3 then «®@*+2*""*=2-D@***~1) ig third power
of an element of the field. The number (2F — 1)(22*"* — 1) is not divisible by 3 because k
and 2k + s are odd. Therefore, a2 =1 ig not third power of an element of the field. O

4 On CCZ-inequivalence of the introduced APN func-
tions to power functions

To prove CCZ-inequivalence of APN functions of Theorem 1 to the Gold and Kasami
functions we use results from [6].

Theorem 2 ([6]) Let n be a positive integer and let s, j,q be three nonzero elements of
707 such that q # +s, j # £s,+q,2s,s+£q. Then the function F(z) = 2* ! + az¥ ?'+1)
with a € T, is EA-inequivalent to power functions on Fon.

Theorem 3 ([6]) Let n be a positive integer and r, s, q be three nonzero elements of Z/nZ
and j an element of Z/nZ such that s # *q, j # s—r, j # —r, j+q#s—r, j+q# —r. If
for a € B, the function F(x) = 2! + ax? "+ is APN on Fyn and it is CCZ-equivalent
to the function G(x) = 2* ! then F and G are EA-equivalent.

Theorem 4 ([6]) Let n be a positive integer and r,s,q,j be nonzero elements of Z/nZ
such that ged(r,n) =1, n >4, s # +q, s # +£3q, ¢ # £3s, s # +j, ¢ # +j, 3¢+ j # 0,
JHraqF# Es, jFs+q, 2qF# £j, 29 F# s—J,25# j, 25 # j+q. Then for a € 3, the
functions F(z) = 2% + ax? @+ and K(z) = 2 =2+ are CCZ-inequivalent on Fan.

Proposition 1 The function F' of Theorem 1 is EA-inequivalent to power functions when
k> 3.

Proof. The function F' satisfies the conditions of Theorem 2. If i = 1 then j = k and
q = 2k+s. The conditions q # +s, j # +s, +q, +2s, s+ q are satisfied when k > 3 because
k,s are odd, n = 4k, ged(s,4k) = 1. The same is with the case i = 3. O

Proposition 2 The function F' of Theorem 1 is CCZ-inequivalent to the Gold mappings
when k > 3.
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Proof. The proof is based on Proposition 1 and Theorem 3. Let ¢ = 1, then j = k and
q = 2k + s satisfy the conditions q # +s,7 #s—r,j# —r,j+q#s—r,j+q#* —r for
any r satisfying 1 < r < n/2 and ged(r,n) = 1. Indeed, ¢ = £s is in contradiction with
ged(s,4k) = 1, n = 4k. If k = s—r then it contradicts to the fact that & is odd and s —7 is
even. If k = —r then it would contradict to ged(r,4k) = 1. If 3k +s = s —r then 3k = —r
and ged(r, k) # 1, a contradiction. If 3k + s = —r then s+ r = k while s, r, k are odd. By
Theorem 3 and Proposition 1 the function F is CCZ-inequivalent to 2% 1. For the case
1 = 3 the proof is similar. O

Proposition 3 The function F' of Theorem 1 is CCZ-inequivalent to the Kasami mappings
when k > 3.

Proof. Obviously, when k > 3 the function F satisfies the conditions of Theorem 4 because
k,s are odd, n = 4k, ged(s, 4k) = 1. O

If n is even then for any quadratic APN mapping F the number 22 divides all the
values in the Walsh spectrum of F (see [32]). Besides, it is proven in [11] that 25+ cannot
be a divisor of all the values in the Walsh spectrum of the Dobbertin function. Since the
extended Walsh spectrum of a function is invariant under CCZ-equivalence then we can
make the following conclusion from Propositions 1-3.

Corollary 1 The function F of Theorem 1 is CCZ-inequivalent to all known power APN
functions when k > 3.

For n = 12,20, 28 Corollary 1 implies that the introduced APN binomials are CCZ-
inequivalent to all power functions. When n > 20 and n is not divisible by 3 then the
function F' is CCZ-inequivalent to all known APN functions.

Problem 1 Construct APN polynomials CCZ-inequivalent to power functions and to quadratic
functions.
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