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Abstract

Cryptographic protocols are often designed and analyzed under some trusted setup assump-
tions, namely in settings where the participants have access to global information that is trusted
to have some basic security properties. However, current modeling of security in the presence
of such setup falls short of providing the expected security guarantees. A quintessential exam-
ple of this phenomenon is the deniability concern: there exist natural protocols that meet the
strongest known composable security notions, and are still vulnerable to bad interactions with
rogue protocols that use the same setup.

We extend the notion of universally composable (UC) security in a way that re-establishes
its original intuitive guarantee even for protocols that use globally available setup. The new
formulation prevents bad interactions even with adaptively chosen protocols that use the same
setup. In particular, it guarantees deniability. While for protocols that use no setup the pro-
posed requirements are the same as in traditional UC security, for protocols that use global
setup the proposed requirements are significantly stronger. In fact, realizing Zero Knowledge
or commitment becomes provably impossible, even in the Common Reference String model.
Still, we propose reasonable alternative setup assumptions and protocols that allow realizing
practically any cryptographic task under standard hardness assumptions even against adaptive
corruptions.
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1 Introduction

The trusted party paradigm is a fundamental methodology for defining security of cryptographic pro-
tocols. The basic idea (which originates in [28]) is to say that a protocol securely realizes a given
computational task if running the protocol amounts to “emulating” an ideal process where all par-
ties secretly hand their inputs to an imaginary “trusted party” who locally computes the desired
outputs and hands them back to the parties. One potential advantage of this paradigm is its strong
“built in composability” property: The fact that a protocol π emulates a certain trusted party F
can be naturally interpreted as implying that any system that includes calls to protocol π should,
in principle, behave the same if the calls to π were replaced by ideal calls to the trusted party F .

Several formalizations of the above intuitive idea exist, e.g. [26, 33, 3, 11, 22, 38, 12, 37]. These
formalizations vary in their rigor, expressibility, generality and restrictiveness, as well as security
and composability guarantees. However, one point which no existing formalism seems to handle
in a fully satisfactory way is the security requirements in the presence of “global trusted setup
assumptions”, such as a public-key infrastructure (PKI) or a common reference string (CRS),
where all parties are assumed to have access to some global information that is trusted to have
certain properties. Indeed, as pointed out in [35], the intuitive guarantee that “running π has the
same effect as having access to the trusted party” no longer holds.

As a first indication of this fact, consider the “deniability” concern, namely, allowing party A
to interact with party B in a way that prevents B from later “convincing” a third party C that
the interaction took place. Indeed, if A and B interact via an idealized “trusted party” that
communicates only with A and B then deniability is guaranteed in a perfect, idealized way. Thus,
intuitively, if A and B interact via a protocol that emulates the trusted party, then deniability
should hold just the same. When the protocol in question uses no global setup, this intuition
works, in the sense that emulating a trusted party (in most existing formalisms) automatically
implies deniability. However, when global setup is used, this is no longer the case: There are
protocols that emulate such a trusted party but do not guarantee deniability.

For instance, consider the case of Zero-Knowledge protocols, i.e. protocols that emulate the
trusted party for the “Zero-Knowledge functionality”: Zero-Knowledge protocols in the plain
model are inherently deniable, but most Zero-Knowledge protocols in the CRS model are com-
pletely undeniable whenever the reference string is public knowledge (see [35]). Similarly, most
authentication protocols (i.e., most protocols that emulate the trusted party that provides ideally
authenticated communication) that use public key infrastructure are not deniable, in spite of the
fact that ideal authenticated communication via a trusted party is deniable.

One might think that this “lack of deniability” arises only when the composability guarantees
provided by the security model are weak. However, even very strong notions of composability do
not automatically suffice to ensure deniability in the presence of global setup. For example, consider
the Universal Composability (UC) security model of [12], which aims to achieve the following, very
strong composability guarantee:

A UC-secure protocol π implementing a trusted party F does not affect any other
protocols more than F does — even when protocols running concurrently with π are
maliciously constructed.

When F is the Zero-Knowledge functionality, this property would seem to guarantee that deniability
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will hold even when the protocol π is used in an arbitrary manner. Yet, even UC-secure ZK
protocols that use a CRS are not deniable whenever the reference string is globally available. This
demonstrates that the UC notion, in its present formulation, does not protect a secure protocol π
from a protocol π′ that was maliciously designed to interact badly with π, in the case where π′ can
use the same setup as π.

Deniability is not the only concern that remains un-captured in the present formulation of security
in the CRS model. For instance, even UC-secure Zero-Knowledge proofs in the CRS model may
not be “adaptively sound” (see [24]), so perhaps a malicious prover can succeed in proving false
statements after seeing the CRS, as demonstrated in [1]. As another example, the protocol in
[17] for realizing the single-instance commitment functionality becomes malleable as soon as two
instances use the same reference string (indeed, to avoid this weakness a more involved protocol was
developed, where multiple commitments can explicitly use the same reference string in a specific
way). Note that here, a UC-secure protocol can even affect the security of another UC-secure
protocol if both protocols make reference to the same setup.

This situation is disturbing, especially in light of the fact that some form of setup is often
essential for cryptographic solutions. For instance, most traditional two-party tasks cannot be UC-
realized with no setup [17, 12, 18], and authenticated communication is impossible without some
sort of setup [14]. Furthermore, providing a globally available setup that can be used throughout
the system is by far the most realistic and convenient way to provide setup.

A new formalism. This work addresses the question of how to formalize the trusted-party
definitional paradigm in a way that preserves its intuitive appeal even for those protocols that use
globally available setup. Specifically, our first contribution is to generalize the UC framework to deal
with global setup, so as to explicitly guarantee that the original meaning of “emulating a trusted
party” is preserved, even when the analyzed protocol is using the same setup as other protocols
that may be maliciously and adaptively designed to interact badly with it. In particular, the new
formalism called simply generalized UC (GUC) security guarantees deniability and non-malleability
even in the presence of global setup. Informally,

A GUC-Secure protocol π implementing a trusted party F using some global setup does
not affect any other protocols more than F does — even when protocols running con-
currently with π are maliciously constructed, and even when all protocols use the same
global setup.

In a nutshell, the new modeling proceeds as follows. Recall that the UC framework models setup
as a “trusted subroutine” of the protocol that uses the setup. This implicitly means that the setup
is local to the protocol instance using it, and cannot be safely used by any other protocol instance.
That modeling, while mathematically sound, certainly does not capture the real-world phenomenon
of setup that is set in advance and publicly known throughout the system. The UC with joint state
theorem (“JUC Theorem”) of [20] allows several instances of specifically-designed protocols to use
the same setup, but it too does not capture the case of public setup that can be used by arbitrary
different protocols at the same time.

To adequately capture global setup our new formalism models the setup as an additional (trusted)
entity that interacts not only with the parties running the protocol, but also with other parties (or,
in other words, with the external environment). This in particular means that the setup entity exists
not only as part of the protocol execution, but also in the ideal process, where the protocol is replaced
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by the trusted party. For instance, while in the current UC framework the CRS model is captured
as a trusted setup entity that gives the reference string only to the adversary and the parties
running the actual protocol instance, here the reference string is globally available, i.e. the trusted
setup entity also gives the reference string directly to other parties and the external environment.
Technically, the effect of this modeling is that now the simulator (namely, the adversary in the ideal
process) cannot choose the reference string or know related trapdoor information.

In a way, proofs of security in the new modeling, even with setup, are reminiscent of the proofs
of security without setup, in the sense that the only freedom enjoyed by the simulator is to control
the local random choices of the uncorrupted parties. For this reason we often informally say that
GUC-secure protocols that use only globally available setup are “fully simulatable”. We also remark
that this modeling is in line with the “non-programmable CRS model” in [35].

One might thus suspect that achieving GUC-security “collapses” down to UC-security without
any setup (and its severe limitations). Indeed, as a first result we extend the argument of [17]
to show that no two-party protocol can GUC-realize the ideal commitment functionality Fcom
(namely, emulate the trusted party that runs the code of Fcom according to the new notion), even
in the CRS model, or in fact with any global setup that simply provides public information. On the
one hand this result is reassuring, since it means that those deniable and malleable protocols that
are secure in the (old) CRS model can no longer be secure according to the new notion. On the
other hand, this result brings forth the question of whether there exist protocols for commitment
(or other interesting primitives) that meet the new notion under any reasonable setup assumption.
Indeed, the analyses of all existing UC-secure commitment protocols seem to use in an essential
way the fact that the simulator has control over the value of the setup information.

New setup and constructions. Perhaps surprisingly, we answer the realizability question in
the affirmative, in a strong sense. Recall that our impossibility result shows that a GUC protocol
for the commitment functionality must rely on a setup that provides the parties with some private
information. We consider two alternative setup models which provide such private information in
a minimal way, and show how to GUC-realize practically any ideal functionality in any one of the
two models.

The first setup model is reminiscent of the “key registration with knowledge (KRK)” setup from
[6], where each party registers a public key with some trusted authority in a way that guarantees
that the party can access the corresponding secret key. However, in contrast to [6] where the
scope of a registered key is only a single protocol instance (or, alternatively, several instances of
specifically designed protocols), here the registration is done once per party throughout the lifetime
of the system, and the public key can be used in all instances of all the protocols that the party
might run. In particular, it is directly accessible by the external environment.

We first observe that one of the [6] protocols for realizing Fcom in the KRK model can be shown
to satisfy the new notion, even with the global KRK setup, as long as the adversary is limited to
non-adaptive party corruptions. (As demonstrated in [19], realizing Fcom suffices for realizing any
“well-formed” multi-party functionality.) However, when adaptive party corruptions are allowed,
and the adversary can observe the past internal data of corrupted parties, this protocol becomes
insecure. In fact, the problem seems inherent, since the adversary is now able to eventually see all
the secret keys in the system, even those of parties that were uncorrupted when the computation
took place.

Still, we devise a new protocol that realizes Fcom in the KRK model even in the presence of
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adaptive party corruptions, and without any need for data erasures. The high level idea is to use
the [17] commitment scheme with a new CRS that is chosen by the parties per commitment. The
protocol for choosing the CRS will make use of the public keys held by the parties, in a way that
allows the overall simulation to go through even when the same public keys are used in multiple
instances of the CRS-generation protocol. Interestingly, our construction does not realize a CRS
that is “strong” enough for the original analysis to go through. Instead, we provide a “weaker” CRS,
and provide a significantly more elaborate analysis. The protocol is similar in spirit to the coin-
tossing protocol of [21], in that it allows the generated random string to have different properties
depending on which parties are corrupted. Even so, their protocol is not adaptively secure in our
model.

Augmented CRS. Next we formulate a new setup assumption, called “augmented CRS (ACRS)”
and demonstrate how to GUC-realize Fcom in the ACRS model, in the presence of adaptive adver-
saries. As the name suggests, ACRS is reminiscent of the CRS setup, but is somewhat augmented
so as to circumvent the impossibility result for plain CRS. That is, as in the CRS setup, all parties
have access to a short reference string that is taken from a pre-determined distribution. In addition,
the ACRS setup allows corrupted parties to obtain “personalized” secret keys that are derived from
the reference string, their public identities, and some “global secret” that’s related to the public
string and remains unknown. It is stressed that only corrupted parties may obtain their secret keys.
This means that the protocol may not include instructions that require knowledge of the secret
keys and, therefore, the protocol interface tn the ACRS setup is identical to that of the CRS setup.

The main tool in our protocol for realizing Fcom in the ACRS model is a new identity-based
trapdoor commitment (IBTC) protocol. IBTC protocols are constructed in [2, 39], in the Random
Oracle model. Here we provide a construction in the standard model based on one way functions.
The construction is secure against adaptive corruptions, and is based on the Feige construction
of commitment from Sigma protocols [23], where the committer runs the simulator of the Sigma
protocol.

Realizing the setup assumptions. “Real world implementations” of the ACRS and KRK setups
can involve a trusted entity (say, a “post office”) that only publicizes the public value. The trusted
entity will also agree to provide the secret keys to the corresponding parties upon request, with
the understanding that once a party gets hold of its key then it alone is responsible to safeguard
it and use it appropriately (much as in the case of standard PKI). In light of the impossibility of a
completely non-interactive setup (CRS), this seems to be a minimal “interactiveness” requirement
from the trusted entity.

Another unique feature of our commitment protocol is that it guarantees security even if the
“global secret” is compromised, as long as this happens after the commitment phase is completed.
In other words, in order to compromise the overall security, the trusted party has to be actively
malicious during the commitment phase. This point further reduces the trust in the real-world
entity that provides the setup.

Despite the fact that the trusted entity need not be constantly available, and need not remain
trustworthy in the long term, it may still seem difficult to provide such an interactive entity in many
real-world settings. Although it is impossible to achieve true GUC security with a mere CRS, we
observe that the protocols analyzed here do satisfy some notion of security even if the setup entity
remains non-interactive (i.e. when our ACRS setup functionality is instead collapsed to a standard
CRS setup). In fact, although we do not formally prove a separation, protocols proven secure in
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the ACRS model seem intuitively more secure than those of [17, 19] even when used in the CRS
model! Essentially, in order to simulate information that could be obtained via a real attack on
the protocols of [17, 19], knowledge of a “global trapdoor” is required. This knowledge enables
the simulator to break the security of all parties (including their privacy). On the other hand,
simulating the information obtained by real attacks on protocols that are proven secure in the
ACRS model merely requires some specific “identity-based trapdoors”. These specific trapdoors
used by the simulator allow it to break only the security of corrupt parties who deviate from the
protocol. Of course, when using a CRS setup in “real life” none of these trapdoors are available
to anyone, so one cannot actually simulate information obtained by an attacker. Nevertheless, it
seems that the actual advantage gained by an attack which could have been simulated using the
more minimal resources required by protocol simulators in the ACRS model (i.e. the ability to
violate the security only of corrupt parties, as opposed to all parties) is intuitively smaller.

A New Composition Theorem. We present two formulations of GUC security: one formulation
is more general and more “intuitively adequate”, while the other is simpler and easier to work
with. In particular, while the general notion directly considers a multi-instance system, the simpler
formulation (called EUC) is closer to the original UC notion that considers only a single protocol
instance in isolation. We then demonstrate that the two formulations are equivalent. As may be
expected, the proof of equivalence incorporates much of the argumentation involved in the proof
of the universal composition theorem. We also demonstrate that GUC security is preserved under
universal composition.

Related work. Relaxed variants of UC security are studied in [37, 10]. These variants allow
reproducing the general feasibility results without setup assumptions other than authenticated
communication. However, these results provide significantly weaker security properties than UC-
security. In particular, they do not guarantee security in the presence of arbitrary other protocols,
which is the focus of this work.

Alternatives to the CRS setup are studied in [6]. As mentioned above, the KRK setup used here
is based on the one there, and the protocol for GUC-realizing Fcom for non-adaptive corruptions is
taken from there. Furthermore, [6] informally discuss the deniability properties of their protocol.
However, that work does not address the general concern of guaranteeing security in the presence
of global setup. In particular, it adopts the original UC modeling of setup as a construct that is
internal to each protocol instance.

In a concurrent work, Hofheinz et. al [30] consider a notion of security that is reminiscent of
EUC, with similar motivation to the motivation here. They also formulate a new setup assumption
and show how to realize any functionality given that setup. However, their setup assumption
is considerably more involved than ours, since it requires the trusted entity to interact with the
protocol in an on-line, input-dependent manner. Also, they do not consider adaptive corruptions.

Future work. This work develops the foundations necessary for analyzing security and compos-
ability of protocols that use globally available setup. It also re-establishes the feasibility results for
general computation in this setting. Still, there are several unexplored research questions here.

One important concern is that of guaranteeing authenticated communication in the presence of
global PKI setup. As mentioned above, this is another example where the existing notions do
not provide the expected security properties (e.g., they do not guarantee deniability, whereas the
trusted party solution is expressly deniable). We conjecture that GUC authentication protocols
(namely, protocols that GUC-realize ideally authentic communication channels) that use a global

6



PKI setup can be constructed by combining the techniques of [31, 17]. However, we leave full
exploration of this problem out of scope for this work.

The notions of key exchange and secure sessions in the presence of global PKI setup need to be
re-visited in a similar way. How can universal composability (and, in particular, deniability) be
guaranteed for such protocols? Also, how can existing protocols (that are not deniable) be proven
secure with globally available setup?

Organization. Section 2 outlines the two variants of GUC security, states their equivalence, and
re-asserts the UC theorem with respect to GUC secure protocols. Section 3 presents the formal
impossibility of realizing Fcom in the presence of a globally available common reference string,
and highlights the need for alternative setup assumptions. Sections 4 and 5 present new globally
available setup assumptions, as well as our protocols for realizing any well-formed functionality.
Finally, Section 5.2 describes the efficient construction of a useful tool employed in our protocols.

2 Generalized UC Security

Before providing the details for our new security framework, we begin with a high-level overview.

2.1 Overview of Generalized UC Security

We now briefly review the concepts behind the original UC framework of [12] (henceforth referred to
as “Basic UC”) before proceeding to outline our new security frameworks. To keep our discussion at
a high level of generality, we will focus on the notion of protocol “emulation”, wherein the objective
of a protocol π is to emulate another protocol φ. Here, typically, π is an implementation (such as
the actual “real world” protocol) and φ is a specification (where the “ideal functionality” F that
we wish to implement is computed directly by a trusted entity). Throughout our discussion, all
entities and protocols we consider are “efficient” (i.e. polynomial time bounded Interactive Turing
Machines, in the sense detailed in [13]).

The Basic UC Framework. At a very high level, the intuition behind security in the basic
UC framework is that any adversary A attacking a protocol π should learn no more information
than could have been obtained via the use of a simulator S attacking protocol φ. Furthermore, we
would like this guarantee to be maintained even if φ were to be used a subroutine of (i.e. composed
with) arbitrary other protocols that may be running concurrently in the networked environment,
and we plan to substitute π for φ in all instances. Thus, we may set forth a challenge experiment
to distinguish between actual attacks on protocol π, and simulated attacks on protocol φ (referring
to these protocols as the “challenge protocols”). As part of this challenge scenario, we will allow
adversarial attacks to be orchestrated and monitored by a distinguishing environment Z that is
also empowered to control the inputs supplied to the parties running the challenge protocol, as
well as to observe the parties’ outputs at all stages of the protocol execution. One may imagine
that this environment represents all other activity in the system, including the actions of other
protocol sessions that may influence inputs to the challenge protocol (and which may, in turn, be
influenced by the behavior of the challenge protocol). Ultimately, at the conclusion of the challenge,
the environment Z will be tasked to distinguish between adversarial attacks perpetrated by A on
the challenge protocol π, and attack simulations conducted by S with protocol φ as the challenge
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protocol instead. If no environment can successfully distinguish these two possible scenarios, then
protocol π is said to “UC emulate” the protocol φ.

Specifying the precise capabilities of the distinguishing environment Z is crucial to the meaning
of this security notion. The environment must be able to choose the challenge protocol inputs and
observe its outputs, in order to enable the environment to capture the behavior of other activity
in the network that interacts with the challenge protocol (which may even be used as a subroutine
of another network protocol). Of course, we must also grant Z the ability to interact with the
attacker (which will be either the adversary, or a simulation), which models the capability of the
attacker to coordinate attacks based on information from other network activity in the environment.
As demonstrated in [12], granting precisely these capabilities to Z (even if we allow it to invoke
only a single session of the challenge protocol) is sufficient to achieve the strong guarantees of
composition theorem, which states that any arbitrary instances of the φ that may be running in the
network can be safely substituted with a protocol π that UC emulates φ. Thus, even if we constrain
the distinguisher Z to such interactions with the adversary and a single session of the challenge
protocol (without providing the ability to invoke other protocols at all), we can already achieve the
strong security guarantees we intuitively desired. Notably, although the challenge protocol may
invoke subroutines of its own, it was not necessary to grant Z any capability to interact with such
subroutines.

In order to conceptually modularize the design of protocols, the notion of “hybrid models” is
often introduced into the basic UC framework. A protocol π is said to be realized “in the G-hybrid
model” if π invokes the ideal functionality G as a subroutine (perhaps multiple times). (As we will
soon see below, the notion of hybrid models greatly simplifies the discussion of UC secure protocols
that require “setup”.) A high-level conceptual view of UC protocol emulation in a hybrid model is
shown in Figure 1.

Limitations of Basic UC. Buried inside the intuition behind the basic UC framework is the
critical notion that the environment Z is capable of utilizing its input/output interface to the chal-
lenge protocol to mimic the behavior of other (arbitrary) protocol sessions that may be running in
a computer network. Indeed, as per the result of [12] mentioned in our discussion above, this would
seem to be the case when considering challenge protocols that are essentially “self-contained”. Such
self-contained protocols, which do not make use of any “subroutines” (such as ideal functionalities)
belonging to other protocol sessions, are called subroutine respecting protocols – and the basic UC
framework models these protocols directly. On the other hand, special considerations would arise
if the challenge protocol utilizes (or transmits) information that is also shared by other network
protocol sessions. An example of such information would be the use of a global setup, such as
a public “common reference string” (CRS) that is reused from one protocol session to the next,
or a standard Public Key Infrastructure (PKI). Such shared state is not directly modeled by the
basic UC framework discussed above. In fact, the composition theorem of [12] only holds when
considering instances of subroutine respecting protocols (which do not share any state information
with other protocol sessions). Unfortunately, it is impossible to produce UC secure realizations of
most useful functionalities without resorting to some setup. However, to comply with the require-
ments of the UC framework, the setup would have to be done on a per-instance basis. This does
not faithfully represent the common realization, where the same setup is shared by all instances.
Therefore, previous works handled such “shared state” protocol design situations via a special proof
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Figure 1: The Basic UC Experiment in the G-hybrid model. A simulator S attacks a single session
of protocol φ running with an ideal subroutine G, whereas an arbitrary “real” adversary A attacks
a session of π running with an ideal subroutine G. The dashed box encloses protocols where S or
A control the network communications, whereas the solid lines represent a direct Input/Output
relationship. (In a typical scenario, φ would be the ideal protocol for a desired functionality F ,
whereas π would be a practical protocol realizing F , with G modeling some “setup” functionality
required by π. Observe that the environment can never interact directly with G, and thus, in this
particular scenario, G is never invoked at all in the ideal world since we are typically interested in
the case where ideal protocol for F does not make use of G.)

technique, known as the JUC Theorem [20].

Yet, even the JUC Theorem does not accurately model truly global shared state information.
JUC Theorem only allows for the construction of protocols that share state amongst themselves.
That is, an a-priori fixed set of protocols can be proven secure if they share state information only
with each other. No security guarantee is provided in the event that the shared state information is
also used by other protocols which the original protocols were not specifically designed to interact
with. Of course, malicious entities may take advantage of this by introducing new protocols that use
the shared state information if the shared state is publicly available. In particular, protocols sharing
global state (i.e. using global setups) which are modeled in this fashion may not resist adaptive
chosen protocol attacks, and can suffer from a lack of deniability, as we previously mentioned
regarding the protocols of [17], [19], and as is discussed in further detail in Section 3.2.

The Generalized UC Framework. To summarize the preceding discussion, the environment
Z in the basic UC experiment is unable to invoke protocols that share state in any way with the
challenge protocol. This limitation is unrealistic in the case of global setup, when protocols share
state information with each other (and indeed, it was shown to be impossible to realize UC-secure
protocols without resort to such tactics [17, 12, 18]). To overcome this limitation, we propose the

9



Generalized UC (GUC) framework. The GUC challenge experiment is similar to the basic UC
experiment, only with an unconstrained environment. In particular, we will allow Z to actually
invoke and interact with arbitrary protocols, and even multiple sessions of its challenge protocol
(which may be useful to Z in its efforts to distinguish between the two possible challenge protocols).
Some of the protocol sessions invoked by Z may share state information with challenge protocol
sessions, and indeed, they can provide Z with information about the challenge protocol that it
could not have obtained otherwise. The only remaining limitation on Z is that we prevent it from
directly observing or influencing the network communications of the challenge protocol sessions,
but this is naturally the job of the adversary (which Z directs). Thus, the GUC experiment allows
a very powerful distinguishing environment capable of truly capturing the behavior of arbitrary
protocol interactions in the network, even if protocols can share state information with arbitrary
other protocols. Of course, protocols that are GUC secure are also composable (this fact follows
almost trivially from a greatly simplified version of the composition theorem proof of [13], the
simplifications being due to the ability of the unconstrained environment to directly invoke other
protocol sessions rather than needing to “simulate” them internally).

The Externalized UC Framework. Unfortunately, since the setting of GUC is so complex, it
becomes extremely difficult to prove security of protocols in our new GUC framework. Essentially,
the distinguishing environment Z is granted a great deal of freedom in its choice of attacks, and any
proof of protocol emulation in the GUC framework must hold even in the presence of other arbitrary
protocols running concurrently. To simplify matters, we observe that in practice protocols which are
designed to share state do so only in a very limited fashion (such as via a single common reference
string, or a PKI, etc.). In particular, we will model shared state information via the use of “shared
functionalities”, which are simply functionalities that may interact with more than one protocol
session (such as the CRS functionality). For clarity, we will distinguish the notation for shared
functionalities by adding a bar (i.e. we use Ḡ to denote a shared functionality). We call a protocol
π that only shares state information via a single shared functionality Ḡ a Ḡ-subroutine respecting
protocol. Bearing in mind that it is generally possible to model “reasonable” protocols that share
state information as Ḡ-subroutine respecting protocols, we can make the task of proving GUC
security simpler by considering a compromise between the constrained environment of basic UC
and the unconstrained environment of GUC. An Ḡ-externally constrained environment is subject
to the same constraints as the environment in the basic UC framework, only it is additionally
allowed to invoke a single “external” protocol (specifically, the protocol for the shared functionality
Ḡ). Any state information that will be shared by the challenge protocol must be shared via calls
to Ḡ (i.e. challenge protocols are Ḡ-subroutine respecting), and the environment is specifically
allowed to access Ḡ. Although Z is once again constrained to invoking a single instance of the
challenge protocol, it is now possible for Z to internally mimic the behavior of multiple sessions of
the challenge protocol, or other arbitrary network protocols, by making use of calls to Ḡ wherever
shared state information is required. Thus, we may avoid the need for JUC Theorem (and the
implementation limitations it imposes), by allowing the environment direct access to shared state
information (e.g. we would allow it to observe the Common Reference String when the shared
functionality is the CRS functionality). We call this new security notion Externalized UC (EUC)
security, and we say that a Ḡ-subroutine respecting protocol π Ḡ-EUC-emulates a protocol φ if π
emulates φ in the basic UC sense with respect to Ḡ-externally constrained environments.
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We show that if a protocol π Ḡ-EUC-emulates φ, then it also GUC emulates φ (and vice versa,
provided that π is Ḡ-subroutine respecting).

Theorem 2.1. Let π be any protocol which invokes no shared functionalities other than (possibly)
Ḡ, and is otherwise subroutine respecting (i.e. π is Ḡ-subroutine respecting). Then protocol π
GUC-emulates a protocol φ, if and only if protocol π Ḡ-EUC-emulates φ.

That is, provided that π only shares state information via a single shared functionality Ḡ, if it
merely EUC-emulates φ with respect to that functionality, then π is a full GUC-emulation of φ! As
a special case, we obtain that all basic UC emulations (which may not share any state information)
are also GUC emulations.

Corollary 2.2. Let π be any subroutine respecting protocol. Then protocol π GUC-emulates a
protocol φ, if and only if π UC-emulates φ.

The corollary follows by letting Ḡ be the null functionality, and observing that the Ḡ-externally
constrained environment of the EUC experiment collapses to become the same environment as that
of the basic UC experiment when Ḡ is the null functionality. Thus, it is sufficient to prove basic
UC security for protocols with no shared state, or Ḡ-EUC security for protocols that share state
only via Ḡ, and we will automatically obtain the full benefits of GUC security. The proof of the
theorem is given in Section 2.2.

Figure 2 depicts the differences in the experiments of the UC models we have just described, in
the presence of a single shared functionality Ḡ (of course, the GUC framework is not inherently
limited to special case of only one shared functionality). In Section 2.2 we elaborate the technical
details of our new models, in addition to proving the equivalence of GUC and EUC security.

We are now in a position to state a strong new composition theorem, which will directly incor-
porate the previous result (that proving EUC security is sufficient for GUC security). Let ρ be
an arbitrary protocol (not necessarily subroutine respecting!) which invokes φ as a sub-protocol.
We will write ρπ/φ to denote a modified version of ρ that invokes π instead of φ, wherever ρ had
previously invoked φ. We prove the following general theorem in Section 2.2 below:

Theorem 2.3 (Generalized Universal Composition). Let ρ, π, φ be PPT multi-party protocols, and
such that both φ and π are Ḡ-subroutine respecting, and π Ḡ-EUC-emulates φ. Then ρπ/φ GUC-
emulates protocol ρ.

We stress that π must merely Ḡ-EUC-emulate φ, but that the resulting composed protocol ρπ/φ

fully GUC-emulates ρ, even for a protocol ρ that is not subroutine respecting.

2.2 Details of the Generalized UC Framework

We now present more formal details of our new generalized UC (GUC) framework, and discuss its
relationship to basic UC Security. (Here we will refer to the formulation of UC security in [13]).
We also present a simplified variant of the new notion called Externalized UC (EUC), and prove
its equivalence. Finally, we re-assert the universal composition theorem with respect to the new
notion. Many of the low-level technical details, especially those that are essentially identical to
those of the basic UC framework, are omitted. A full treatment of these details can be found in
[13]. In particular, we do not discuss the proper modeling of polynomial runtime restrictions, the
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Figure 2: Comparison of models. Using Basic UC with JUC Theorem to share state, only copies
of the challenge protocol (or other protocols which may be jointly designed a priori to share G)
are allowed to access the common subroutine G, and Z may only interact with the “multi-session”
version of the challenge protocol. In the EUC paradigm, only a single session of the challenge
protocol is running, but the shared functionality Ḡ it uses is accessible by Z. Finally, in the GUC
setting, we see the full generality of arbitrary protocols ρ1, ρ2, . . . running in the network, alongside
multiple copies of the challenge protocol. Observe that both Z, and any other protocols invoked by
Z (such as ρ1), have direct access to Ḡ in the GUC setting. Intuitively, the GUC modeling seems
much closer to the actual structure of networked protocol environments.
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order of activations, etc. These issues are handled as in the basic UC framework, which we now
briefly review.

2.2.1 Basic UC Security

The basic UC framework is built around the notion of UC emulation. A protocol is a UC secure
realization of an ideal functionality (which models the security goal), if it UC-emulates the ideal
functionality, in the sense that executing the protocol is indistinguishable for an external environ-
ment from an interaction with a trusted party running the ideal functionality. Before reviewing
the actual “UC experiment” that defines the notion of UC emulation, we first briefly review the
basic model of distributed computation, using interactive Turing machines (ITMs). While we do
not modify this model, familiarity with it is important for understanding our generalization.

Systems of ITMs. To capture the mechanics of computation and communication in computer
networks, the UC framework employs an extension of the Interactive Turing Machine (ITM) model
[27] (see [13] for precise details on the additional extensions). A computer program (such as for
a protocol, or perhaps program of the adversary) is modeled in the form of an ITM (which is an
abstract notion). An execution experiment consists of a system of ITMs which are instantiated and
executed, with multiple instances possibly sharing the same ITM code. (More formally, a system
of ITMs is governed by a control function which enforces the rules of interaction among ITMs as
required by the protocol execution experiment. Here we will omit the full formalisms of the control
function, which can be found in [13], and which require only minor modifications for our setting.)

A particular executing ITM instance running in the network is referred to as an ITI (or “ITM
Instance”), and we must have a means to distinguish individual ITIs from one another even if they
happen to be running identical ITM code. Therefore, in addition to the program code of the ITM
they instantiate, individual ITIs are parameterized by a party ID (pid) and a session ID (sid). We
require that each ITI can be uniquely identified by the identity pair id = (pid, sid), irrespective of
the code it may be running. All ITIs running with the same code and session ID are said to be
a part of the same protocol session, and the party IDs are used to distinguish among the various
ITIs participating in a particular protocol session. (By the uniqueness of ITI identities, no party is
allowed to participate in more than one protocol session using the same session ID.) For simplicity
of exposition, we assume that all sids are unique, i.e. no two sessions have the same SID. (The
treatment can be generalized to the case where the same SID is used by different protocol codes,
at the price of somewhat more complicated formalism.) We also refer to a protocol session running
with ITM code π as an instance of protocol π. ITMs are allowed to communicate with each
other via the use of three kinds of I/O tapes: local input tapes, local subroutine output tapes, and
communication tapes. The input and subroutine output tapes model “trusted communication”,
say communication within a single physical computer. The communication tape models “untrusted
communication”, say communication over an open network. Consequently, writes to the local input
tapes of a particular ITI must include both the identity and the code of the intended target ITI, and
the ITI running with the specified identity must also be running the specified code, or else an error
condition occurs. Thus, input tapes may be used to invoke local “trusted” subroutines, and indeed,
new ITIs must be introduced into the currently executing system by means of such invocations.
That is, if a target ITI with the specified identity does not exist, it is created (“invoked”), and
given the specified code. We also require that when an ITI writes to the local subroutine output
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tape of another ITI, it must provide its own code, and thus these tapes are useful for accepting
output from such local “trusted” subroutines. Finally, all “untrusted” communications are passed
via the communication tapes, which guarantee neither the code of the intended recipient ITI, nor
the code of the sending ITI (but merely their identities).

The UC Protocol Execution Experiment. The UC protocol execution experiment is defined
as a system of ITMs that’s parameterized by three ITMs. An ITM π specifies the code of the
challenge protocol for the experiment, an ITM A specifies the code of the adversary, and an ITM Z
provides the code of the environment. The protocol execution experiment places precise conditions
on the order in which ITIs are activated, and which ITIs are allowed to invoke or communicate
with each other. The precise formal details of how these conditions are defined and imposed (i.e.
the control function and related formalisms) can be found in [13], but we shall describe some of the
relevant details informally. The experiment initially launches only an ITI running Z. In turn, Z is
permitted to invoke only a single ITI running A, followed by (multiple) ITIs running the “challenge
protocol” π provided that those ITIs running π all share the same sid. This sid, along with the pids
of all the ITIs running π, may be chosen arbitrarily by Z.

It is stressed that the environment may not invoke any additional ITIs, and it is only allowed to
write to the input tapes of ITIs which it has directly invoked (or to receive outputs from those ITIs
via its subroutine output tape). The environment may not interact with any of the communication
tapes, nor the tapes of ITIs that it did not directly invoke. In summary, the environment can
communicate only with the ITI running the code of the adversary A, and ITIs participating in
a single session of protocol π. We thus refer to the execution experiment as being a constrained
one, and, in particular, the environment Z as being a constrained environment. The output of the
environment Z in this basic UC protocol execution experiment is denoted by EXECπ,A,Z .

Ideal Functionalities. We say an ITM F is an ideal functionality if its code represents a desired
(interactive) function to be computed by parties or other protocols which may invoke it as a
subroutine (and thus, in a perfectly secure way). The pid of any ITI running F is set to the special
value ⊥, indicating that the ITI is an ideal functionality. F accepts input from other ITIs that
have the same sid as F , and may write outputs to multiple ITIs as well.

Every ideal functionality F also induces an ideal protocol IDEALF . Parties running IDEALF

with the session ID sid act as dummy parties, simply forwarding their inputs to the input tape of
an ITI running F with the same sid, and copying any subroutine output received from F to the
subroutine output tape of the ITI which invoked the party (typically, the environment Z).

UC Emulation and Realizations. In the basic UC framework, a protocol π is said to UC-
emulate another protocol φ if, for any adversary A, there exists a simulator S such that for all
environments Z it holds that EXECφ,S,Z ≈ EXECπ,A,Z . That is, no environment behaves signifi-
cantly differently in the protocol execution experiment when interacting with the challenge protocol
π, under any given attack, than it does when interacting with the challenge protocol φ, under a
simulation of that same attack.Intuitively, this means that the protocol π is “at least as secure as”
the protocol φ, since the effect of any attack on π can also be emulated by attacking φ. A protocol
π is said to UC-realize an ideal functionality F if π UC-emulates IDEALF . Furthermore, if the
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protocol π is a G-hybrid protocol, then we say that π is a UC-secure realization of F in the G-hybrid
model.

2.2.2 Generalized UC Security

We present the generalized variant of UC security. Technically, the difference is very small; however,
its effect is substantial. The essential difference here from the basic UC security notion is that here
the environment Z is allowed to invoke ITIs with arbitrary code and arbitrary SIDs, including
multiple concurrent instances of the challenge protocol π and other protocols. We stress that these
ITIs are even allowed to share state with each other across multiple sessions (which is a significant
departure from prior models). To simplify the presentation and analysis, we will still assume that Z
invokes only a single instance of the adversary A.1 We call such an environment unconstrained, since
it need not obey any constraints in regards to which protocols it may invoke.2 To distinguish from
the basic UC experiment, we denote the output of an unconstrained environment Z attempting to
distinguish a challenge protocol π in the GUC protocol execution experiment, with an adversary
A, as GEXECπ,A,Z . GUC emulation, is now defined as follows, analogously to the definition of
basic UC emulation outlined above:

Definition 1 (GUC-Emulation). Let π and φ be PPT multi-party protocols. We say that π GUC-
emulates φ if, for any PPT adversary A there exists a PPT adversary S such that for any (uncon-
strained) PPT environment Z, we have:

GEXECφ,S,Z ≈ GEXECπ,A,Z

As long as the protocol in question makes sure that no instance shares any subroutines with
other protocol instances, GUC security is equivalent to basic UC security. This statement, which
intuitively follows from the universal composition theorem, will be formalized later. However,
we are primarily interested in protocols that do share some modules, or subroutines, with other
protocol instances. For such protocols the generalized formulation differs radically from the basic
one. Specifically, we are interested in modeling “shared trusted modules”, which are captured via
the shared functionality construct.

Shared Functionalities. In addition to the notion of ideal functionalities inherited from the
basic UC security setting, we coin the notion of shared functionalities. A shared functionality Ḡ
is completely analogous to an ideal functionality, only it may additionally accept inputs from ITIs
with arbitrary session IDs. Thus, a shared functionality is just an ideal functionality that may
communicate with more than one protocol session. In order to distinguish shared functionalities
from ideal functionalities, we require the sid of a shared functionality to begin with the special

1Although it is conceptually interesting to consider scenarios where the environment may invoke separate adver-
saries to attack separate instances of the challenge protocol, particularly when there is some shared state, it can be
shown that this notion is equivalent to our simplified single adversary model.

2More formally, the control function for the GUC protocol execution experiment allows Z to invoke ITIs running
arbitrary ITM code, and with arbitrary (but unique) identities. In particular, the environment may invoke many
ITIs with a special code ⊥ (even with different sids), which the control function will substitute for ITIs running π.
Thus, the reason for our departure with the convention of [13] (which replaces the code of all ITIs invoked by Z with
instances of π) is to provide Z with the ability to invoke ITIs running arbitrary code (other than π), yet still enable
it to invoke instances of the challenge protocol without having access to its code.
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symbol # (which is used exclusively in the sid of shared functionalities). As a shorthand notation,
we denote the portion of the sid of a shared functionality which follows the # symbol by shsid
(and thus, shared functionalities have sid = #‖shsid). Similarly to ideal functionalities, shared
functionalities also have # as their fixed pid, and thus all shared functionalities have fixed identities
(and can be invoked only by specifying the code of their corresponding ITM).

Discussion. Recall that in the basic UC definition, Z is constrained in its ability to invoke
protocols: it may only invoke precisely those parties participating in the one single session of
the challenge protocol it is attempting to distinguish, and aside from its ability to invoke and
communicate with an adversary it may not invoke any other ITIs (e.g. representing other parties
and protocol sessions concurrently running in the network) of any sort. Intuitively, it would seem
that if this constraint were removed and Z were allowed to invoke arbitrary ITIs running arbitrary
protocols (including multiple concurrent sessions of the challenge protocol itself), that Z would
become a more powerful distinguisher (strengthening the security requirements for protocols to
remain indistinguishable). As we will see, in reality, since basic UC security does not allow protocols
to share state3 with each other, any concurrent protocol executions that Z might wish to run
can simply be simulated by Z internally with no need to actually invoke the ITIs. Thus, the
constraint that Z may only invoke parties running a single instance of the protocol it is attempting
to distinguish is not a true limitation, and indeed this is where the power of UC security comes
from (e.g. the ability for Z to conduct this kind of internal simulation is why UC security holds
even in the presence of concurrent protocol executions).

Unlike this basic UC security setting, we wish to consider definitions of security even for protocols
that may share state information externally with other (concurrently executing) sessions of the same
protocol, or even with other (independently designed) protocols. In such a setting, it is no longer
possible for Z to simulate other protocol executions internally, since some of those protocols may
share state with the protocol that Z is attempting to distinguish. Thus, the constraints placed on Z
in the basic UC setting are of great concern for us, since they would prevent Z from ever seeing the
effects of other protocol executions that share state externally with the protocol Z is attempting to
distinguish, whereas protocol executions in the real world would certainly involve such effects. In
order to properly capture interactions between protocols which share state information externally,
we introduce the notion of Generalized UC (GUC) security, which builds off the basic UC security
concepts outlined above.

Here we note that the differences between GUC-emulation and basic UC-emulation are in the
use of an unconstrained environment, and the ability of π and φ to invoke shared functionalities
(which is not allowed in the basic UC setting). As an important intuition, we observe that since
Z may invoke ITIs with arbitrary code, it may invoke ITIs which communicate with any shared
functionalities invoked by π (or φ). Thus, Z may essentially access shared functionalities in an
arbitrary manner (the primary restriction being the uniqueness of the identities of the ITIs which
Z may invoke).

Intuitively, we call this security notion Generalized UC since the challenge protocol may interact
with external protocols in an arbitrary manner. Whereas in the basic UC security setting, external

3The typical example of protocols sharing state occurs when using the CRS model. Multiple instances of a protocol
may all share the same CRS, which certainly implies a relationship between those protocol executions which is not
captured by standard UC security.
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protocols were viewed as being independent of the challenge protocol itself, in the GUC setting
shared functionalities may link the “state” of the challenge protocol to the state of other protocols
running in the network which may seem completely external to the challenge protocol session under
consideration.

2.2.3 Externalized UC Security

Since the unconstrained environment in GUC security setting we have just described is able to
invoke arbitrary ITIs (and thus cause arbitrary interactions with shared functionalities, etc.), it
becomes difficult to directly prove that a protocol GUC-emulates another protocol, i.e. to show
that a simulated adversary S attacking a protocol φ behaves indistinguishably from an actual
adversary A attacking protocol π. In particular, such analysis seems to directly involve arguing
about systems where multiple instances of multiple protocols run concurrently. This stands in
contrast to the situation with basic UC security, where it suffices to analyze a single instance of the
protocol in isolation, and security in a multi-instance system follows from a general composition
theorem.

We alleviate this situation in two steps: As a first step, we formulate another notion of protocol
emulation, called externalized UC emulation, which is considerably simpler and in particular considers
only a single instance of the protocol in question. We then show that this simplified notion is
equivalent to the above general notion. In a second step, we re-assert the universal composition
theorem with respect to GUC-emulation.

We remark that in the basic UC framework these two conceptual steps are demonstrated via the
same technical theorem (namely, the UC theorem). We find that in the present framework it is
clearer to separate the two issues.

Subroutine respecting protocols. Before proceeding to define externalized UC emulation, we
coin the following terminology. We say that an ITI M is a subroutine of another ITI M ′ if M either
receives inputs on its input tape from M ′ (and does not explicitly ignore them), or writes outputs
to the subroutine output tape of M ′. Recursively, we also say that if M is a subroutine of a party
(ITI) running protocol π or a sub-party of protocol π, then M is a sub-party of protocol π. By
uniqueness of session identifiers, if there is an instance of protocol π running with session ID sid,
all ITIs running with session ID sid are running π or are sub-parties of π.

A protocol π is said to be Ḡ-subroutine respecting if none of the sub-parties of an instance of π
provides output to or receives input from any ITI that is not also party/sub-party of that instance of
π, except for communicating with a single instance of the shared ITI Ḡ. In other words, an instance
of a Ḡ-subroutine respecting protocol π has the property that all sub-parties of this instance of π
are only allowed to communicate with parties or sub-parties of this same instance of π (they do not
share themselves with other protocol instances in any way), with the sole exception that calls to
a shared functionality Ḡ are allowed. Using this terminology, we can now define externalized UC
emulation.

The Externalized UC Protocol Execution Experiment. Rather than allowing the environ-
ment to operate completely unconstrained as in the GUC experiment, we constrain the environment
so that it may only invoke particular types of ITIs. Specifically, the environment is only allowed to
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invoke a single instance of the challenge protocol (as in the constrained environment of basic UC),
plus a single ITI running the code of a shared functionality (i.e., a shared subroutine) Ḡ. In other
words, the EUC experiment is the same as the basic UC experiment, except the (otherwise con-
strained) environment is also allowed to provide input to and obtain output from a single instance
of a shared functionality (which is specified by the challenge protocol under consideration). We say
that such an environment is Ḡ-externally constrained if it is allowed such extra access to a shared
functionality Ḡ. (Note that although we consider only one shared functionality at a time for the
sake of simplicity, it is also reasonable to define the notions of “subroutine respecting” and “EUC
security” with respect to multiple shared functionalities.) Given a Ḡ-subroutine respecting proto-

col π, we denote the output of the environment in the Ḡ-EUC protocol experiment by EXECḠ
π,A,Z .

EUC-emulation is defined analogously to the notion of GUC-emulation:

Definition 2 (EUC-Emulation). Let π and φ be PPT multi-party protocols, where π is Ḡ-subroutine
respecting. We say that π EUC-emulates φ with respect to shared functionality Ḡ (or, in shorthand,
that π Ḡ-EUC-emulates φ) if for any PPT adversary A there exists a PPT adversary S such that
for any Ḡ-externally constrained environment Z, we have:

EXECḠ
φ,S,Z ≈ EXECḠ

π,A,Z

Ḡ-EUC Secure Realization. We say that a protocol π realizes an ideal functionality F if π Ḡ-
EUC-emulates IDEALF . Notice that the formalism implies that the shared functionality Ḡ exists
both in the model for executing π and also in the model for executing the ideal protocol for F ,
IDEALF .

We remark that the notion of Ḡ-EUC-emulation can be naturally extended to protocols that use
several different shared functionalities (instead of only one).

2.2.4 Equivalence of GUC to EUC and a generalized UC theorem

We show that Ḡ-EUC-emulation is, surprisingly, equivalent to full GUC-emulation for any Ḡ-
subroutine respecting protocol. Perhaps unsurprisingly, the proof of the equivalence theorem incor-
porates most of the arguments of the universal composition theorem. In particular, the “quality” of
security degrades linearly with the number of instances of π invoked by Z in the GUC experiment.

The formal statement of this equivalence is given in Theorem 2.1 above. The proof of the theorem,
which we now give, makes use of a hybrid argument (akin to that in the universal composition
theorem of [13]) to show that security for the single-instance setting of EUC is sufficient to ensure
security under the more strenuous multi-instance setting of GUC.

Proof of Theorem 2.1. It is trivial to observe that protocols which GUC-emulate each other also
Ḡ-EUC-emulate each other (since any simulation that is indistinguishable to unconstrained envi-
ronments is certainly indistinguishable to the special case of Ḡ-externally constrained environments
as well), but the other direction is non-obvious. The basic idea of the proof is that an Ḡ-externally
constrained environment can simulate the same information available to an unconstrained environ-
ment, even while operating within its constraints. The proof technique is essentially the same as the
proof of composition theorem, only in this case multiple sessions must be handled directly without
going through an intermediate protocol. (That is, the proof of composition theorem considers a
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protocol π which emulates a protocol a φ, and shows that a protocol ρ which may invoke multiple
copies of π emulates a protocol ρ which invokes φ instead. Here, we essentially need to demonstrate
that if a single copy of π emulates φ then multiple copies of π emulate multiple copies of φ.)

Applying the technique of [13], we observe that there are equivalent formulations of protocol
emulation with respect to dummy adversaries (this needs to be proven separately, but the proofs
are identical to those for the original notion of UC emulation), and we will use those formulations
here to simplify the proof. Let D denote the fixed “dummy adversary” (which simply forwards
messages to and from the environment). For the remainder of the proof, we shall refer to the
“simulator S” as the “adversary”, in order to avoid confusion (roughly speaking, S attempts to
simulate the attack of an adversary, so this terminology is appropriate).

Suppose that π Ḡ-EUC-emulates φ. This means there exists some adversary S that will satisfy
EXECḠ

π,D,Z ≈ EXECḠ
φ,S,Z for any Ḡ-externally constrained environment Z. To prove our claim,

we will need to show that the existence of such S is sufficient to construct a new adversary S̃ such
that GEXECπ,D,Z̃ ≈ GEXECφ,S̃,Z̃ holds for any unconstrained environment Z̃ .

We construct an adversary S̃ in a similar fashion to the construction of Aπ in the proof of
composition theorem in [13], using multiple instances of S that are simulated by Aπ internally.
That is, to ensure that each instance of φ mimics the corresponding instance of π, S̃ will run
separate copies of S for each instance of π (and S̃ then simply forwards messages between Z̃ and
the corresponding copy of S for that instance when necessary). We now prove that S̃ satisfies the
requirement for GUC-emulation via a hybrid argument (again, as is done in the proof of composition
theorem).

Assume for the purpose of contradiction that EXECḠ
π,D,Z̃

6≈ EXECḠ
φ,S̃,Z̃

(in particular, assume

the distinguishing advantage of Z̃ is ǫ). Let m be an upper bound on the number of instances
of π which are invoked by Z̃. For l ≤ m, let S̃l denote the adversary for a modified execution
EXl = EXEC(l, φ)Ḡ

π,S̃l,Z̃
in which the first l instances of π are simulated4 using instances of S and

φ (as would be done by S̃), but the remaining invocations of π by Z̃ are in fact handled by genuine
instances of π (with S̃l simply forwarding messages directly to and from those instances, as D
would). In particular, we observe that the modified interaction EX0 is just the interaction with π,
and EXl is the unmodified interaction with S̃ and φ replacing D and π. Then, by our assumption
that the interactions with EX0 and EXm are distinguishable, there must be an 0 < l ≤ m such
that Z̃ distinguishes between the modified interactions with EXl and EXl−1 with advantage at
least ǫ/m. We can construct an Ḡ-externally constrained environment Z∗ from such a Z̃ which

succeeds in distinguishing the ensembles EXECḠ
π,D,Z∗ and EXECḠ

φ,S,Z∗ with probability at least

ǫ/m, contradicting the fact that π Ḡ-EUC-emulates φ.

The construction of Z∗ is slightly involved, but on a high level, Z∗ internally simulates the
actions of Z̃ including all ITIs activated by Z̃ (other than those for Ḡ and the l-th instance of
π), but forwards all communications sent to the l-th instance of π to its own external interaction
instead (which is either with a single instance of π and D, or φ and S). We observe that since π is
subroutine respecting, the only way ITIs activated by the simulated Z̃ may somehow share state
information with the challenge instance of π is via access to the shared functionality Ḡ. Whenever

4Technically, we must modify the execution experiment here, since it is the environment which attempts to invoke
the challenge protocol π, which is beyond the control of the adversary S̃. Thus l and φ need to be specified as part
of the execution experiment itself.
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an ITI invoked by the internal simulation of Z̃ wishes to communicate with Ḡ, Z∗ invokes a
corresponding dummy party with the same pid and sid, and then forwards communications between
the internally simulated ITI and the actual shared functionality Ḡ in Z∗’s external interaction via
the dummy party. Z∗ then outputs whatever the internally simulated copy of Z̃ outputs. This
interaction results in the simulated Z̃ operating with a view that corresponds to either EXl−1 or
EXl (which Z̃ can distinguish with probability at least ǫ/m), and thus Z∗ successfully distinguishes
with probability at least ǫ/m, as claimed, completing the contradiction.

We observe that if a protocol π does not use any shared functionalities (i.e., π is Ḡ-subroutine
respecting for a null functionality that generates no output) then a corollary of the above claim
states that π UC-emulates φ if and only if π GUC-emulates φ. This equivalence shows the power of
the basic UC emulation security guarantee, since it is indeed equivalent to the seemingly stronger
notion of GUC emulation (for any protocols which exist in the more limited basic UC setting).

Universal Composition. Finally, we generalize the universal composition theorem to hold also
with respect to GUC-emulation. That is, consider a Ḡ-subroutine respecting protocol φ that is
being used as a subroutine in some (arbitrary) larger protocol ρ. The new composition theorem
guarantees that it is safe to replace a protocol φ with a different protocol π that merely Ḡ-EUC-
emulates φ, and yet the resulting implementation of ρ (which now invokes π instead of φ) will fully
GUC-emulate the original version (which had invoked φ).

The formal composition theorem is stated in Theorem 2.3 above, which we now prove. The proof
is similar in spirit to the proof of universal composition theorem (but here we no longer require the
hybrid argument, since multiple protocol instances are already taken care of by the GUC setting).

Proof of Theorem 2.3. Since the notions of Ḡ-EUC-emulation and GUC-emulation are equivalent
for subroutine respecting protocols which do not use shared functionalities other than Ḡ, it suffices
to prove that if π GUC-emulates φ then ρπ/φ GUC-emulates ρ (of course, there is a corresponding
loss of exact security as per Theorem 2.1). Thus, it suffices to prove that the composition theorem
holds for subroutine respecting protocols that GUC-emulate each other. For the remainder of the
proof, we shall refer to the “simulator S” as the “adversary”, in order to avoid confusion (roughly
speaking, S attempts to simulate the attack of an adversary, so this terminology is appropriate).

The proof that GUC-emulation is composable follows the same general approach as the composi-
tion theorem for basic UC in [13], with some simplifications resulting from the use of unconstrained
environments. We begin by noting that there is an equivalent formulation of GUC-emulation with
respect to dummy adversaries (the proof of this claim is entirely analogous to the proof of the same
statement for basic UC security). Thus, denoting the dummy adversary by D, we wish to construct
an adversary Aρ such that

GEXECρπ/φ,D,Z ≈ GEXECρ,Aρ,Z (1)

for any unconstrained environment Z.

Since π GUC-emulates φ there is an adversary S such that GEXECπ,D,Zπ ≈ GEXECφ,S,Zπ for
any unconstrained environment Zπ. That is, S expects to interact with with many instances of
φ, with the goal of translating them to mimic the action of corresponding instances of π from the
viewpoint of any environment Zπ. We will use S to construct Aρ satisfying (1) above. Unlike the
construction in the basic UC composition theorem, it is not necessary for Aρ to run multiple copies
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of S (one for each session of π), since the GUC adversary S already deals with the scenario where
multiple sessions of π are executing (as unconstrained environments may invoke multiple instances
of the challenge protocol). Thus the construction of Aρ here is simpler.

Aρ will simply run a single copy of S internally, forwarding all messages intended for instances
of π (which are sub-parties to instances of the challenge protocol ρ) sent by Aρ’s environment Z to
its internal simulation of S, as well as forwarding any messages from S back to Z as is appropriate.
(Note that Aρ need not simulate any interactions with instances of π that are invoked directly
by Z rather than an instance of ρ, since those are not associated with the challenge protocol.)
Additionally, Aρ forwards S’s interactions with instances of φ between the external instances of φ
(again, only those which are sub-parties to instances of the challenge protocol ρ) and its internal
copy of S as well. (Intuitively, Aρ acts as the environment for S by forwarding some of its own
interactions with Z concerning instances of π, and also copying its own interactions with external
instances of φ. The reason S is not employed directly in place of Aρ is that Aρ must translate the
“challenge protocol” sessions ρ to isolate their sub-protocol invocations of φ, which is the challenge
protocol S expects to interact with. Thus, effectively, the instances of ρ itself simply become part
of the environment for S. Note that there may be many instances of ρ which are being translated,
and each of those instances may invoke many instances of φ.)

In order to prove that Aρ satisfies (1) we perform a standard proof by contradiction. Assume
there exists an environment Z capable of distinguishing the interaction with Aρ and ρ from the
interaction withD and ρπ/φ. We show how to construct an environment Zπ capable of distinguishing
an interaction between S and φ from an interaction with D and π, contradicting the fact that π
GUC-emulates φ.

The construction of Zπ is again analogous to the technique applied in [13], with some additional
simplification (since there is no hybrid argument here, we may simply treat all instances of φ the
same way). As a useful tool in describing the construction of Zπ, we briefly define an “internal
simulation adversary” Âρ, which will be run internally by Zπ alongside an internally simulated
copy of Z. Whenever Âρ receives a message, it performs the same function as Aρ, only replacing
Aρ’s communications with its internal simulation of the adversary S (along with its corresponding
challenge protocol φ) by communications with the external adversary for Zπ (and its corresponding
challenge protocol, which will either be π if the adversary is D or φ if the adversary is S). We
observe that if Zπ’s adversary is D, then Âρ also acts like D, since it will merely forward all
messages. Similarly, if Zπ’s external adversary is S, then Âρ will function identically to Aρ.

On a high level, the environment Zπ will internally simulate the environment Z and adversary
Âρ, externally invoking copies of any ITIs that are invoked by the simulations (with the exception
of instances of Z’s challenge protocol π, and any invocations of Zπ’s challenge protocol made by
Âρ), appropriately forwarding any messages between those ITIs and its internal copies of Z and
Aρ. Whenever the internal copy of Z wishes to invoke an instance of the challenge protocol ρ, the
environment Zπ internally simulates the instance (by modeling an ITI running ρ with the specified
identity), forwarding any communications between ρ and shared functionalities to external instances
of those shared functionalities (such forwarding may be accomplished by Zπ externally invoking
dummy parties the with same identities as the sub-parties of ρ that wish to communicate with the
shared functionalities, and then forwarding communications through the dummy parties). Because
ρ is subroutine respecting, it is safe to conduct such an internal simulation, as instance of ρ do not
share state with any ITIs external to Zπ except via the shared functionalities (which are handled
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appropriately). Of course, whenever the internal simulation of Âρ wish to communicate with an
instance of its challenge protocol, Zπ will forward the communications to the correct instance of its
own challenge protocol, as described above. When the internally simulated Z halts and provides
output, Zπ similarly halts, copying the same output.

Now, we can observe that GEXECπ,D,Zπ = GEXECρπ/φ,D,Z by considering that the internal
simulation conducted by Zπ will be a faithful recreation of the latter experiment. In particular, by
its construction, the simulation of Âρ will simply act as the dummy adversary D. Furthermore,
the internal simulation of ρ is correctly replacing all invocations of φ by invocations of π (and
thus is a perfect simulation of ρπ/φ), while the rest of the experiment proceeds identically. A
similar argument yields that GEXECφ,S,Zπ = GEXECρ,Aρ,Z . Previously, we assumed for the sake
of contradiction that there exists an environment Z such that GEXECρπ/φ,D,Z 6≈ GEXECρ,Aρ,Z .
Combining this statement with the previous two equations yields the result that there exists an
environment Zπ such that GEXECπ,D,Zπ 6≈ GEXECφ,S,Zπ , contradicting the fact that π GUC-
emulates φ, completing our proof.

3 Insufficiency of the Global CRS Model

In this section we demonstrate that a global CRS setup is not sufficient to GUC-realize even the
basic two-party commitment functionality. We then further elaborate the nature of this insufficiency
by considering some weaknesses in the security of previously proposed constructions in the CRS
model. Finally, we suggest a new “intuitive” security goal, dubbed full simulatability, which we
would like to achieve by utilizing the GUC-security model (and which was not previously achieved
by any protocols in the CRS model).

3.1 Impossibility of GUC-realizing Fcom in the Ḡcrs model

This section shows that the simple CRS model is insufficient for GUC-realizing Fcom. Let us
elaborate.

Recall that many interesting functionalities are unrealizable in the UC framework without any
setup assumption. For instance, it is easy to see that the ideal authentication functionality, Fauth,
is unrealizable in the plain model. Furthermore, many two party tasks, such as Commitment, Zero-
Knowledge, Coin-Tossing, Oblivious Transfer and others cannot be realized in the UC framework
by two-party protocols, even if authenticated communication is provided [17, 18, 12].

As a recourse, the common reference string (CRS) model was used to re-assert the general
feasibility results of [28] in the UC framework. That is, it was shown that any “well-formed” ideal
functionality can be realized in the CRS model [17, 19]. However, the formulation of the CRS model
in these works postulates a setting where the reference string is given only to the participants in
the actual protocol execution. That is, the reference string is chosen by an ideal functionality, Fcrs,
that is dedicated to a given protocol execution. Fcrs gives the reference string only to the adversary
and the participants in that execution. Intuitively, this formulation means that, while the reference
string need not be kept secret to guarantee security, it cannot be safely used by other protocol
executions. In other words, no security guarantees are given with respect to executions that use a
reference string that was obtained from another execution rather than from a dedicated instance
of Fcrs. (The UC with joint state theorem of [20] allows multiple executions of certain protocols
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to use the same instance of the CRS, but it requires all instances that use the CRS to be carefully
designed to satisfy some special properties.)

In contrast, we are interested in modeling a setting where the same CRS is globally available to
all parties and all protocol executions. This means that a protocol π that uses the CRS must take
into account the fact that the same CRS may be used by arbitrary other protocols, even protocols
that were specifically designed to interact badly with π. Using the GUC security model defined in
Section 2, we define this weaker setup assumption as a shared ideal functionality that provides the
value of the CRS not only to the parties of a given protocol execution, but rather to all parties, and
even directly to the environment machine. In particular, this global CRS functionality, Ḡcrs, exists
in the system both as part of the protocol execution and as part of the ideal process. Functionality
Ḡcrs is presented in Figure 3.

Functionality Ḡcrs

Parameterized by a distribution PK, Ḡcrs proceeds as follows, when activated by any party:

1. If no value has been previously recorded, choose a value MPK
$
← PK, and record the value

MPK .

2. Return the value MPK to the activating party.

Figure 3: The Global Common Reference String functionality. The difference from the Common
Reference String functionality Fcrs of [12, 17] is that Fcrs provides the reference string only to the
parties that take part in the actual protocol execution. In particular, the environment does not
have direct access to the reference string.

We demonstrate that Ḡcrs is insufficient for reproducing the general feasibility results that are
known to hold in the Fcrs model. To exemplify this fact, we show that no two-party protocol
that uses Ḡcrs as its only setup assumption GUC-realizes the ideal commitment functionality, Fcom
(presented in Figure 4). The proof follows essentially the same steps as the [17] proof of impossibility
of realizing Fcom in the plain model. The reason that these steps can be carried out even in the
presence of Ḡcrs is, essentially, that the simulator obtains the reference string from an external
entity (Ḡcrs), rather than generating the reference string by itself. We conjecture that most other
impossibility results for UC security in the plain model can be extended in the same way to hold
for GUC security in the presence of Ḡcrs.

Functionality Fcom

Commit Phase: Upon receiving a message (commit, sid, Pc, Pr, b) from party Pc, where b ∈ {0, 1},
record the value b and send the message (receipt, sid, Pc, Pr) to Pr and the adversary. Ignore
any future commit messages.

Reveal Phase: Upon receiving a message (reveal, sid) from Pc: If a value b was previously
recorded, then send the message (reveal, sid, b) to Pr and the adversary and halt. Otherwise,
ignore.

Figure 4: The Commitment Functionality Fcom (see [17])
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Theorem 3.1. There exists no bilateral, terminating protocol π that GUC-realizes Fcom and uses
only the shared functionality Ḡcrs. This holds even if the communication is ideally authentic.

Proof. Intuitively, the proof of the impossibility of UC commitments (for the plain model) described
in [17] holds here as well, since an Ḡcrs-externally constrained environment Z is able to obtain a
copy of the global CRS directly from Ḡcrs by invoking a separate dummy party specifically to obtain
the reference string, preventing the simulator S from choosing the CRS on its own (in order to
arrange knowledge of a trapdoor).

More formally, suppose that there exists a commitment protocol π (for a party Pc committing a
bit b to a party Pr) and a simulator S such that EXECFcom,S,Z ≈ EXECπ,A,Z for any adversary A
and any Ḡcrs-externally constrained environment Z (here we may even allow S to depend on the
choice of A and Z). We will arrive at a contradiction.

We accomplish this by constructing a new Ḡcrs-externally constrained environment Z ′ and a new
adversary A′ such that there is no simulator S ′ which can satisfy EXECFcom,S′,Z′ ≈ EXECπ,A′,Z′ .
Recall that an Ḡcrs-externally constrained environment may invoke dummy parties running IDEALḠcrs

using any unique (pid, sid), and thus may obtain a copy of the global CRS.

Our A′ is constructed so as to corrupt the recipient Pr at the beginning of the protocol. During
the protocol, A′ will run the algorithm for S using the same CRS as obtained from Ḡcrs (via Z ′)
to respond to all of S’s Ḡcrs queries, and using the same party and session identities for Pc and
Pr in this “virtual” run of S. Furthermore, while acting as the environment for this copy of S, A
will “corrupt” the party “Pc” in the virtual view of S. Whenever A′ receives protocol messages
from the honest party Pc in the real protocol execution, it sends the same messages on behalf of
the “corrupt party Pc” in the virtual view of S. Whatever messages S would send on behalf of the
“honest” virtual recipient “Pr”, A

′ will send on behalf of the real party Pr (which it has previously
corrupted). At some point, S must send the message (commit, sid, Pc, Pr, b

′) to the commitment
functionality. At this point, the adversary A′ will output the bit b′, and halt.

We define the environment Z ′ to choose a random bit b, and provide it as the input for the honest
committer Pc. If the adversary outputs b′ such that b′ = b, then Z ′ outputs 1 (and 0 otherwise).
(Additionally, we implement any trivial interface for Z ′ to pass a copy of the CRS to A′.) Observe
that no decommitment ever occurs, and thus the view of S ′ must be independent of the choice of
b (meaning that S ′ must be correct with probability 1/2). However, as S must produce a bit b′

that matches b with all but negligible probability (since we assumed it simulates the protocol π
correctly), A′s guess b′ must match b with high probability, and thus Z ′ will clearly distinguish
between the guesses of A′ and those of S ′ (which are correct with probability exactly 1/2).

In fact, it is easy to see that the above impossibility result extends beyond the mere availability
of Ḡcrs to any circumstance where the shared functionality will only provide information globally
(or, yet more generally, the impossibility holds whenever all the shared information available to
protocol participants can also be obtained by the environment). For instance, this impossibility
will hold even in the (public) random oracle model, which is already so strong that it cannot truly
be realized without the use of a fully interactive trusted party. Another interpretation of this
result is that no completely non-interactive global setup can suffice for realizing Fcom. The next
section studies the problem of realizing Fcom using setup assumptions with minimal interaction
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requirements.

3.2 Deniability and Full Simulatability

To demonstrate that the problems with using a global CRS to realize Fcom, in the fashion of [19],
are more than skin deep technicalities that arise only in the GUC framework we now consider the
issue of deniability. Intuitively, a protocol is said to be “deniable” if it is possible for protocol
participants to deny their participation in a protocol session by arguing that any “evidence” of
their participation (as obtained by other, potentially corrupt protocol participants) could have
been fabricated.

Recalling the intuition outlined in the introduction, we would like realized protocols to guarantee
the same security as the ideal functionalities they realize, meaning that the adversary will learn
nothing more from attacking the protocol than could be learned from attacking its corresponding
ideal functionality. Protocols realized with such a guarantee are inherently deniable, since a protocol
participant can accurately argue that any information sent during the protocol session could have
been obtained by an adversary using only the output from the ideal functionality5 in an attack
simulation conducted entirely without his or her actual participation.

For instance, if we consider the ideal functionality for Zero Knowledge (ZK), we expect that
any secure realization of that functionality should reveal no information to the adversary beyond
the output of the ideal functionality (which contains only a single bit). In particular, the ideal
functionality output can easily be generated entirely without the help of the prover, and thus
the prover should be able to deny his participation in any proof protocols, since they reveal no
information that could not have been obtained independently. However, we already know from the
result of [35] that it is impossible to achieve such deniability for ZK in the CRS model. Indeed,
we may see that the UC simulator for ZK functionality in [19] chooses a fresh CRS, and generates
the simulated protocol transcripts with respect to that, instead of the published real-world CRS.
Thus, if a protocol transcript makes use of the real-world CRS, it could not have been obtained via
simulation (so a successful prover is indeed incriminated by the transcript).

When there is no deniability, the adversary is truly able to obtain valuable information by
observing protocol interactions that would not be revealed by the ideal functionality. Thus we
have found a practical example of an actual security loss that direct results from the relaxations of
UC security inherent in the CRS technique of [19]. We can now clearly see that the impossibility
of realizing Fcom via the CRS model in the GUC setting is due to a meaningful strengthening of
security guarantees (since deniability is guaranteed in the GUC setting, and that guarantee is not
achieved by protocols realized in the CRS model).

On an intuitive level, it might be helpful to consider the issue of deniability in light of the “real
world” resources required in order to run the GUC simulator to simulate a given protocol session. If
the resources required to simulate a protocol session are readily available, then we say the protocol
session is plausibly deniable (since it is plausible that information obtained from the protocol was
the result of a simulation). If the resources required to simulate are difficult or impossible to obtain,
then there is no guarantee of plausible deniability (since it will be difficult to convince others that

5Of course, if the output of the ideal functionality “incriminates” a user by revealing some of his secrets, the
resulting protocol does not meet our intuitive understanding of the word “deniable”. Still, the protocol itself may be
said to be “as deniable” as the functionality it realizes.
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an incriminating protocol transcript was the result of a simulation). We wish to employ simulation
techniques that require only minimal resources to conduct a simulation, increasing the plausibility
of denials (as well as decreasing the value of any information that an adversary might obtain by
attacking a secure protocol). Thus, we use the term fully simulatable to refer to any plausibly
deniable protocol realized in the GUC framework.

From this vantage point, we observe that the resource required to conduct the protocol simu-
lations in [19] is a “trapdoor” for the CRS. In particular, the CRS must be “rigged” with such a
trapdoor a priori. Such rigging is certainly not plausible when there is a trusted party choosing
the CRS, and this is in fact the root of the deniability problem for the CRS model. Furthermore,
knowledge of this trapdoor implies the ability to completely violate security of any protocol con-
structed using the techniques of [19], and thus there would be no security against any entity capable
of simulating protocols. Similarly, in the “imaginary angel” model of [37], the simulator requires
access to super-polynomial time functionalities that are certainly not plausibly available in the real
world (and thus, the deniability problem arises there as well). Indeed, if the “imaginary angels” of
[37] were to somehow be made practical in the real world, all security would be lost.

We comment that, although we do not make any attempt to formalize a “general” notion of
deniability here, the guarantee we seek to provide is that protocols are “as deniable” in the real world
as they would have been in the ideal world (past works did not satisfy even this basic requirement).
In fact, as we will see, our particular realization of fully simulatable security will guarantee that
even “on line” (interactive) deniability is preserved, since the simulator can very practically be run
in real time. Indeed, as long as an honest party P never deviates from the protocol, it is not possible
for other (even corrupt) protocol participants to conclusively demonstrate P ’s participation in the
fully simulatable protocol session to a third party, even while the protocol is ongoing!

4 Fully Simulatable General Computation

We now turn our attention to the problem of constructing fully simulatable GUC-secure protocols.
That is, we would like it to be possible for a real-world adversary to simulate the effects of any
attack on a protocol (in a computationally indistinguishable manner), without actually conducting
the attack on the protocol (instead utilizing only the information that would be revealed by an
ideally secure realization). The impossibility result of Section 3 implies that we cannot do this in
the standard CRS model (if we correctly model the global availability of the CRS). Thus, we must
consider alternatives to the CRS model if we hope to achieve our goal.

Since we must somehow avoid the impossibility result of Section 3 for the CRS model, we would
like to find reasonable alternative global setup assumptions that allow for realizing interesting tasks.
That is, we are looking for shared functionalities Ḡ (as defined in Section 2), so that on the one
hand Ḡ will be implementable in reality with reasonable trust assumptions, and on the other hand
we will have protocols that GUC-realize interesting functionalities and still use no setup (i.e., no
ideal functionalities) other than Ḡ. We say that such GUC-secure protocols are “fully simulatable”
since the GUC-simulator for attacking the ideal protocol can, in a very practical sense, be run
directly by the adversary. This allows the adversary to simulate the same information that can
be gotten by attacking any session of the real protocol, without the need to actually perform an
attack. (Of course, this simulated information is inherently useless to the adversary, since the ideal
protocol attacked by the simulation is secure by definition.)
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We first observe that if the system is equipped with a “fully interactive trusted party” that
realizes, say, Fmcom, the multi-session variant of Fcom, by interacting separately and privately
with each session, then we can directly use the protocol of [19] to GUC-realize any “well-formed”
functionality. However, we would like to find more reasonable global setup assumptions, and in
particular assumptions that require less interaction from the trusted entity. (Indeed, this realization
requires the trusted party to perform strictly more work than it would by directly computing the
desired functionalities, i.e. the trivial realization of ideal model functionalities). Although it is
clear that we can achieve fully simulatable protocols by using highly interactive trusted parties to
compute functionalities, it seems to be a more difficult problem to realize GUC-secure protocols
using an “offline” shared functionality. Indeed, by our earlier impossiblity results, some degree of
interaction would seem to be essential, so we begin by considering the idea of limiting the interaction
to a “registration phase”.

4.1 The KRK Model

We observe that the “key registration with knowledge (KRK)” setup of [6], can be modified to
serve as a shared functionality, allowing us to realize any “well-formed” ideal functionality against
non-adaptive (“static”) adversaries using the techniques of that work. Although the setup phase
is interactive (parties must register their public keys with registration authorities), it is possible
to show (with some minor modifications) that the protocol of [6] can allow the trusted party to
remain “offline” for all subsequent protocol activity.

Functionality Gkrk

Gkrk proceeds as follows, given a (deterministic) key generation function Gen (with security parameter
λ), running with parties P1, . . . , Pn and an adversary S:

Registration: When receiving a message (register, sid, r) from party Pi that has not previously
registered, compute (PK i,SK i)← Genλ(r) and record the tuple (Pi,PK i,SK i).

Retrieval: When receiving a message (retrieve, sid, Pi) from party Pj (where j 6= i), if there is a
previously recorded tuple of the form (Pi,PK i,SK i), then return (sid, Pi,PK i) to Pj . Other-
wise return (sid, Pi,⊥) to Pr. When receiving a message (retrieve, sid, Pi) from party Pi, if
there is a previously recorded tuple of the form (Pi,PK i,SK i), then return (sid, Pi,PK i,SK i)
to Pi. Otherwise, return (sid, Pi,⊥) to Pi.

Figure 5: The Knowledge-based Key Registration Functionality (similar to that of [6]). Note that
each instance of Gkrk can only be invoked by the parties of a single protocol session (i.e. with a
fixed sid). After converting this ideal functionality to a shared functionality, Ḡkrk, and restricting
retrieval of private keys to corrupt parties only, it is possible GUC-realize any functionality using
only a single public key per-party.

Recall that the KRK setup of [6] is an ideal functionality Gkrk (shown in Figure 5), that chooses
a private and public key pair for each registered party (namely, each registered ITI), and lets all
parties know the value of the public key. In the natural version of the KRK setup, parties are
also allowed to retrieve their own secret keys. Since Gkrk is not a shared functionality, we have
that each instance of a protocol has its own instance of Gkrk, which does not lend itself to easy
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implementation. To fix this, we re-formulate Gkrk as a shared functionality, Ḡkrk, that chooses a
public key per PID rather than per ITI – that is, all ITIs that have the same PID also have the
same public key. (This modeling makes Ḡkrk significantly easier to implement in a real system,
since only one key is required for each party.) Furthermore, we add a simple modeling restriction:
we only allow parties to learn their own secret keys if they are corrupt.6 Using this new Ḡkrk setup,
the protocol of [6] works (with minor modifications) even in the GUC-security model, provided
that (a) party corruptions are non-adaptive, and (b) all parties with the same PID are corrupted
together – we call such corruption pattern PID-wise.

Theorem 4.1. The [6] protocol GUC-realizes Fzk, even when given access only to Ḡkrk, as long as
the party corruptions are non-adaptive and PID-wise.

The proof of this theorem is by a natural extension of the proof in [6] to the EUC framework
(which is, of course, equivalent to GUC), but surprisingly, we can achieve a much stronger goal
than non-adaptive GUC security with interactive setup.

4.2 The Augmented CRS Model

Although it may seem that at least an interactive “registration phase” is required in order to avoid
our earlier impossibility result, we show that something even less interactive will suffice. We propose
a further simplification of Ḡkrk, denoted Ḡacrs, and a protocol that GUC-realizes Fcom (and thus any
well-formed functionality) having access only to Ḡacrs. Unlike Ḡkrk, the Ḡacrs shared functionality
does not require any interaction (much like Fcrs), but merely offers a one-time use interactive “key
retrieval” service to those who choose to use it. Therefore, we refer to this new setup assumption
as the Augmented CRS (ACRS) model. In particular, protocols realized in the ACRS model will
not actually make use of the key retrieval service, since the model only allows corrupt parties to
retrieve their keys. Thus, we are assured that honest parties need never communicate interactively
with Ḡacrs.

Somewhat counter-intuitively, it is even crucial that uncorrupted parties in ACRS model never
“bother” to obtain their secret keys from the trusted authority (since even an honest party may
inadvertently execute a rogue protocol, which might expose the secret key). Similarly, it is crucial
that corrupted parties have access to their secret keys, since otherwise they would be unable to
conduct attack simulations. (On a side note, security is still guaranteed to honest parties who
obtain their keys and use them to conduct attack simulations provided that they only use their keys
for simulation purposes. This is a direct consequence of the “equivalence” between the information
revealed by attack simulations, and the information that can be obtained via real-world attacks.)
To enforce the protocol design criteria that honest parties should not require access to their secret
keys, we directly define the Ḡacrs functionality so that it refuses to supply secret keys to honest
parties. (Of course, a direct realization of Ḡacrs by a trusted party cannot actually determine which
parties are honest, yet intuitively this modeling should still suffice. In fact, it is not problematic
even if the real-world trusted party gives keys to honest parties, as long as they are careful to
protect their own security by keeping their keys secret.)

More formally, our new shared functionality Ḡacrs is parameterized by two functions, Setup and
Extract. It first chooses a random secret value MSK and a public value PK ← Setup(MSK ), and

6The reason for this restriction, and its meaning, will be discussed in further detail in Section 4.2.

28



publicizes PK (as a CRS). Next, whenever a corrupted party with PID pid asks for its secret key,
Ḡacrs returns the value SK pid ← Extract(PK ; pid;MSK ). The functionality is presented in Figure 6.

Functionality ḠSetup,Extract
acrs

Initialization Phase: At the first activation, compute a CRS (PK) ← Setup(MSK) for a ran-
domly chosen λ-bit value MSK, and record the pair (PK,MSK).

Providing the public value: Whenever activated, by any party requesting the CRS, return PK
to the requesting party and to the adversary.

Dormant Phase: Upon receipt of a message (retrieve, sid, P ) from a corrupt party P , return
the value SKP ← Extract(PK;P ;MSK) to P . (Receipt of this message from honest parties
is ignored.)

Figure 6: The Identity-Based Augmented CRS Functionality

Comparing Ḡkrk and Ḡacrs. The main difference between Ḡacrs and Ḡkrk (the global variant of
Gkrk) is that in Ḡacrs there is a single public value, whereas in Ḡkrk an extra public value must be
given per party identity. Using a paradigm analogous to the identity-based encryption of [7], we
avoid the use of per-party public keys and replace them with a single short “master public key”
(and indeed our constructions use short public keys that depend only on the security parameter).
This property, combined with the fact that the parties who follow their protocols never obtain their
secret keys, makes Ḡacrs very close in spirit to a global CRS setup as in Ḡcrs. In fact, in light of the
far-reaching impossibility result for Ḡcrs, Ḡacrs can be regarded as a “minimum interaction” global
setup.

We note that, as pointed out in [6], Ḡkrk can be naturally implemented by multiple “registration
authorities”, where no single authority needs to be fully trusted by all. (However, we once again
stress that Ḡkrk requires all parties, even those who honestly follow their protocols, to interactively
register with a some authority and obtain a public key.) Similarly, although Ḡacrs with a short
public key would naturally seem to call for a realization by a single trusted entity, the same
technique applies and several instances of Ḡacrs may be run by different trusted authorities. Unlike
Ḡkrk, however, parties may participate in protocols while placing their trust in an arbitrary trusted
authority, without ever having registered with any authority. This is extremely useful for settings
where PKIs are not desirable or easy to implement, and where no single “global” authority is
available (see e.g. [5]).7

In the next section, we will prove the following result:

7In fact, the protocol we will describe in Section 5 can also support a “graceful failure” approach similar to that
outlined in [6], in the scenario where protocol participants do not mutually trust any single authority. That is, by
using suitable “graceful” tools (in the case of our protocol, a “graceful” IBTC) , we can ensure full GUC security if
trustworthy authorities are used by all parties, and ordinary stand-alone security for party P in the case where only
party P ’s authority is trustworthy (even if party P ’s own authority is made completely unavailable after publishing
its reference string and/or is later corrupted subsequent to the completion of the protocol!). The proof of this claim
is a straightforward consequence of our protocol in Section 5, combined with the fact that our IBTC construction
in Section 5.2 guarantees hiding even for maliciously chosen public keys (as long as it remains possible to verify the
existence of the Σ-protocol with HVZK property for the signature scheme). Of course, all IBTCs addressed to party
P should make use of the reference string published by the authority that P trusts.
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Theorem 4.2. There exists a protocol that GUC-realizes Fcom given access to Ḡacrs. Party cor-
ruptions can be adaptive (and in the non-erasure model), as long as they are PID-wise.

Finally, we note that a GUC secure realization of Fcom is indeed sufficient to GUC-realize any
“well-formed” multi-party functionality. This may be accomplished by first using Fcom to realize
Fzk (as in [19]), and then using Fzk to realize the “one-to-many” Zero-Knowledge functionality,
F1:M
zk (via the technique of [36]). The multi-party protocol compiler from [19] can then be used

to yield a UC-secure realization of any well-formed multi-party functionality in the F1:M
zk -hybrid

model, without using any shared state (thus it is also a GUC-secure realization by Corollary 2.2).

5 GUC-Realizing Fcom using the Ḡacrs Global Setup

We now describe the construction of a protocol satisfying the conditions of Theorem 4.2, above.
When combined with the compiler from [19], such a fully simulatable realization of Fcom yields a
fully simulatable realization of any well-formed two-party or multi-party functionality. Furthermore,
we show that, in addition to requiring only the more minimal Ḡacrs setup, our protocol achieves
significantly stronger properties than the fully simulatable protocol from [6] realized in the Ḡkrk
model. (Of course, our protocol can also be trivially modified for use in the Ḡkrk model, where it
will enjoy the same strengthened security guarantees.)

Firstly, our protocol realizing Fcom in the Ḡacrs model remains secure even in the presence of
adaptive corruptions (whereas the protocol of [6] does not). Intuitively, adaptive security seems to
be difficult to attain in either the Ḡkrk or Ḡacrs models, since an adaptive adversary is eventually
able to learn nearly all secrets in the system (save only for the random coins of the trusted party).
Since the simulator relies on these same secrets to “break” privacy of (corrupt) parties during attack
simulations, it would seem that an adversary provided with access to all secrets should be able to
violate the privacy of past protocol transcripts (allowing it to discern simulated “information-less”
interactions from genuine ones). Our protocol manages to avoid this problem through the use of
some additional interactivity.

Remarkably, our protocol for realizing Fcom will also maintain security of past protocol executions
even when the trusted party implementing Ḡacrs is later corrupted (revealing the random coins used
to generate the CRS, and leaving the overall system with no secrets at all)! That is, our protocol
will guarantee that past transcripts of protocol interactions can never be used to compromise the
security or deniability of honest parties even if the trusted party is later corrupted. Security is
only lost when the trusted party acts maliciously prior to, or during protocol execution. This kind
of “forward security” with respect to the trusted party further minimizes the trust assumptions
required to realize Ḡacrs in the real-world. For instance, an adversary cannot later coerce the
trusted party into breaking the security of an honest party after the completion of the protocol.
Such forward security cannot be achieved using the protocol of [6] since knowledge of the secret key
allows “extraction” from past commitments, breaking privacy. Similarly, the protocol of [19] also
loses all privacy of past transcripts if the trusted party implementing the CRS setup later reveals
a trapdoor.
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5.1 High-level description of the protocol

Our protocol for realizing Fcom in the Ḡacrs shared hybrid model, which we call Protocol UAIBC
(for UC Adaptive Identity-Based Commitment), relies on two new techniques. First, we construct
an identity-based trapdoor commitment (IBTC) which enjoys adaptive security. Then we provide
a general transformation from any IBTC into a protocol that securely implements Fcom.

Constructing IBTC. In the setting of IBTC a single “master-key” is made public. Additionally,
all parties can obtain a private-key that is associated to their party identifier. (Note that this
setting corresponds exactly to the interface of Ḡacrs.) Intuitively, an IBTC is a commitment scheme
with the additional property that a committer who knows the receiver’s secret-key can equivocate
commitments (i.e., it can open up commitments to any value, breaking the binding property of
the commitment). Furthermore, it should hold that an adversary that obtains the secret-keys of
multiple parties, still should not be able to violate the binding property of commitments sent to
parties for which it has not obtained the secret-key.

Constructions of IBTCs were previously known in the Random Oracle Model [2, 39]. Here we
provide a conceptually simple approach to constructing an adaptively secure IBTC from any one-
way function, in the standard model. Our approach relies on the use of Sigma protocols [15], in an
approach based on that of [23] (and perhaps surprisingly can result in a very practical protocol).
On a very high-level (and very oversimplified) the general idea is as follows: 1) let the master-key
be a public-key for a signature scheme, 2) let the secret-key for a party be a signature on its party
identifier, and 3) construct a commitment scheme where the reveal phase consists of a “proof”
that either the revealed value is consistent with the value committed to, or the committer knows
a signature on the receiver’s party identifier (this “proof” must also “hide” which of these two
statements actually holds). We mention that the actual instantiation of this idea is somewhat more
involved, in order to guarantee adaptive security, and we provide the full details of our construction
in Section 5.2.

From IBTC to GUC Commitments. Recall that a protocol for realizing Fcom must intu-
itively satisfy two properties (in addition to the traditional binding and hiding properties of any
commitment scheme): 1) it must be equivocable, and 2) it must be extractable. We show how to
transform any “equivocable” commitment scheme (such as an IBTC) into a protocol for securely
realizing Fcom (for single bit commitments). Previously similar types of transformations have ap-
peared in the literature (e.g., [19], [8]). Unfortunately all such transformations either require some
additional non-global setup (and are thus not applicable in out setting), or only work in the case
of static security. We now turn our focus to the protocol UAIBC, which GUC-realizes the Fcom
functionality via a novel transformation of an IBTC from a mere equivocable commitment (in the
standard model), to an equivocable and extractable commitment secure against adaptive corrup-
tions in the GUC-security model. We remark that our transformation technique can be employed
by substituting any merely equivocable commitment scheme (such as standard public key based
trapdoor commitments) in place of the IBTC in our protocol, and will yield a scheme that is both
equivocable and extractable, a general approach that may prove useful in many other contexts.

We now describe some of the details and intuition for our protocol UAIBC. We will show that
UAIBC realizes the Fcom ideal functionality in a fully simulatable manner (even against adaptive
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adversaries in the non-erasure setting). Furthermore, the protocol UAIBC is forward secure, so
that past protocol sessions will remain secure even if the trusted party implementing Ḡacrs is
later corrupted. We refer to this latter property as “strong full simulatability”, since the output
transcript of a GUC-simulation will be indistinguishable from a real transcript even to parties in
possession of all keys (indeed, even if the parties possess all the random coins used to generate the
CRS!). The protocol is given in the combined secure and authenticated channels model (formally
denoted as the Fsmt and Fauth hybrid models, respectively). In particular, UC-secure channels are
used crucially in the proof of security of UAIBC, detailed in Section 5.

On a high-level, protocol UAIBC proceeds as follows. The committer Pc and receiver Pr first
perform a coin-tossing to generate a public-key ρ for a dense crypto-system. This coin-tossing
requires the receiver to use an IBTC, and has the property that if the committer is corrupted, the
outcome of the coin-tossing can be set to any value. After a completed coin-tossing, the committer
commits to a single bit b using an IBTC (let c denote this commitment), and additionally sends an
auxiliary string e: e is either a random string in case b = 1, and an encryption to the decommitment
information of c if b = 0. (We here require that the encryption scheme used has pseudo-random
ciphertexts.) In the reveal phase, the committer is required to provide correct decommitment
information for c, and additionally reveal the value encrypted in e in case b = 0. We graphically
illustrate the operation of this protocol in Figure 7.

We now take a brief detour to specify the security properties of the IBTC scheme and the dense
crypto-system required by our protocol, before proceeding with more in-depth discussion of the
protocol.

5.2 Identity-based Trapdoor Commitments

The tool we now define, which we dub Identity-based Trapdoor Commitments (IBTCs), represents
a slight generalization of the identity-based chameleon hash functions first introduced in [2]. Any
Identity-Based Chameleon Hash function is sufficient (but not necessary) to yield an IBTC. We
introduce IBTCs in order to accommodate our suggested constructions in Section 4.

Definition 3 ( IBTC). An Identity-based Trapdoor Commitment scheme IC is given by a 5-tuple
of ppt algorithms IC = (Setup,Extract,Com,ECom,Eqv), with the following basic properties:

• Setup: A deterministic algorithm which takes as input a (uniformly random) “master secret
key” MSK ∈ {0, 1}λ (where λ is a security parameter), and outputs a public key PK .

• Extract: On input (ID ,MSK ) outputs a trapdoor SK ID for identity ID .

• Com: A deterministic algorithm which takes as input a tuple of the form (PK , ID , d,m),
and outputs a commitment κ for message m under identity ID using random input d. The
domain from which d is chosen is denoted by D. As a shorthand, we may write ComID (d,m)
to denote Com(PK , ID , d,m).

• ECom: On input (PK , ID ,SK ID) outputs a pair (κ, α), to be used with Eqv.

• Eqv: On input (PK , ID ,SK ID, κ, α,m) produces a value d ∈ D such that ComID(d,m) = κ.
That is, d makes κ appear to be a commitment to m.
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Following conventional terminology, we refer to κ as a “commitment” for identity ID and the pair
(d,m) as the corresponding “decommitment”. A commitment c for identity ID is said to “open
to” a certain message m using the decommitment pair (d,m) if Com(PK , ID , d,m).

Remark: Throughout this work, we focus on obtaining security in the presence of adaptive
corruptions. Therefore, we only consider IBTCs that utilize the random input to Com as the
decommitment, rather than a more general notion that allows for Com to generate a separate
decommitment value. Similarly, we require all the random coins input to Setup to come from MSK
in order to enable forward security (i.e. to tolerate adaptive corruption of the trusted setup party).

We are now ready to state the formal security properties of Identity-based Trapdoor Commit-
ments. Roughly speaking, they consist of two natural computational security properties known
as “binding” and “equivocability”. The binding property states that any adversary, given only

Step # Pc(b) Pr

Commit Phase

(1)
commit,sid,Pc,Pr

//

(2)
κ1

oo

ρ1
$

← Φ

d1
$

← D
κ1 ← ComPc(d1, ρ1)

(3) ρ2
$

← Φ
ρ2

//

(4)
d1,ρ1

oo ρ← ρ1 · ρ2

(5)

κ1
?
=ComPc(d1, ρ1)
ρ← ρ1 · ρ2

d
$

← D
κ← ComPr(d, b)

if b = 0 ψ ← Eρ(r, d)
if b = 1 ψ ← random

κ, ψ
//

Reveal Phase

(1&2) if b = 0
if b = 1

b=0, d, r
//

b=1, d
//

if b = 0 Eρ(r, d)
?
=ψ

κ
?
=ComPr(d, b)⇒ b

Figure 7: Operation of Protocol UAIBC, with party Pc committing bit b to party Pr. Note that Com
is the commitment operation of an IBTC (the subscript is the identity of the intended recipient),
and Eρ is a Dense PRC secure encryption using public key ρ (the first input is the random coins fed
to the encryption operation, and the second is the plaintext). Steps 2 to 4 of the Commit phase
are essentially a coin-tossing protocol, whereas the subsequent steps are similar to the protocol of
[19].
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knowledge of PK and the secret keys of some users other than ID , cannot produce a commitment
for ID with two different openings. The equivocability property guarantees that the output of Eqv
is indistinguishable from a uniformly random choice of d, even to an adversary who knows MSK
(this is required for forward security reasons). In other words, Eqv allows one to open a special
“equivocable commitment” κ produced by ECom in such a way that κ is indistinguishable from a
normal commitment to m generated via Com(PK , ID , d,m) (rather than ECom), even though m
had not yet been specified when κ was actually produced using ECom.

We give a general construction of IBTCs in Section 5.2.2, and we observe that they can be
built from one-way functions (although more efficient number-theoretic constructions are possible
as well).

Security of Identity-based Trapdoor Commitments. Identity-based Trapdoor Commitment
schemes must satisfy the following security requirements.

• Binding - Every ppt adversary A wins the following game with negligible probability:

1. The challenger computes MSK
$

← {0, 1}λ, PK ← Setup(MSK ), and then sends PK to
A.

2. A is allowed to query an oracle for Extract(PK , ·,MSK ) (many times).

3. A outputs (ID , d,m, d′,m′).

4. A wins if ID was not submitted to the Extract oracle in Step 2 and m 6= m′, but
ComID(d,m) = ComID(d′,m′).

Attack Game 1: Binding Attack Game (for IBTCs)

• Equivocability - Every ppt adversary A has at most negligible advantage in the following
game:

1. The challenger computes MSK
$

← {0, 1}λ, PK ← Setup(MSK ), and then sends MSK to
A (unlike the previous game, where only PK was provided to A).

2. A chooses an identity ID and a message m, and sends (ID ,m) to the challenger.

3. The challenger chooses b ∈ {0, 1} at random, and computes d ∈ D in one of two ways,
depending on b:

– if b = 0, then d
$

← D;

– if b = 1, then SK ID ← Extract(PK , ID ,MSK ), (κ, α)← ECom(PK , ID ,SK ID ),
d← Eqv(PK , ID ,SK ID , κ, α,m).

The challenger then sends d to A.

4. A outputs a “guess” b̂ ∈ {0, 1}.

5. A’s advantage is defined to be |Pr[ b̂ = b ]− 1/2|.
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Attack Game 2: Equivocability Attack Game (for IBTCs)

Constructions of Identity-based Trapdoor Commitments. The following theorem summa-
rizes the results of our IBTC construction technique:

Theorem 5.1. There exists an efficient construction of an IBTC from any signature scheme with
an “augmented Σ-protocol”. In particular, such signature schemes exist if one-way functions exist,
and can be efficiently constructed under the Strong RSA assumption.

The proof follows directly from the details of the construction, which we now outline.

5.2.1 Augmented Σ-Protocols

Our approach is based on the technique from [23] for constructing commitment schemes from
“Σ-protocols”. In particular, the basic tool we use to construct IBTCs is a modified form of
standard Σ-protocols (see [34, 21]) that we call augmented Σ-protocols. Intuitively, Σ-protocols
are three move protocols for proving some relation in zero knowledge. The augmented definition
adds a “reverse state construction” property that enables the commitment schemes we construct
to tolerate adaptive adversaries (who are able to learn the internal state of corrupted parties). We
do this by constructing “fake” state information for honest runs of the Σ-protocol (which require
the prover to know the witness), in order to make them appear as if they were instead output
by the zero-knowledge simulator (which does not require knowledge of the witness).Augmented Σ-
protocols are closely related to the “non-erasure” Σ-protocols of [21], but require a slightly different
state construction property (one that is roughly the “reverse” of the corresponding property in [21]).

Definition 4. Let X,W , and L ⊂ X be finite sets. We refer to an element x ∈ X as an “instance”,
an element w ∈W as a “witness”, and the set L as a “language”. Furthermore, assume there is an
efficiently testable binary relation R, such that for all x ∈ L we have (x,w) ∈ R for some w ∈ W .
(Here we define “efficiently testable” to mean R runs in time polynomial in |x|, and therefore we
must also have that |w| ≤ poly(|x|).)

Consider a three move protocol run between a prover P , with input (x,w) ∈ R, and a verifier V
with input x, executed as follows. P chooses some random coins ra, computes a← A(x,w, ra), and
sends a to V . V then chooses a random string c (the “challenge”), and sends it to P . Finally, P
computes and responds with z ← Z(x,w, ra, c). The verifier V then computes and outputs the result
of B(x, a, c, z), which returns either accept or reject. We require that A, Z, and B be (deterministic)
poly-time algorithms, and that |c| ≤ poly(|x|). Such a protocol is called an Augmented Σ-Protocol
for the language L if it satisfies the following properties:

• Completeness - If (x,w) ∈ R then an interaction between P (x,w) and V (x) – following the
procedure outlined above – causes the verifier to output accept with overwhelming probability.

• Special HVZK (Honest Verifier Zero Knowledge) - There exists a ppt algorithm
ZKSim (a “Zero-Knowledge simulator”), such that every ppt distinguisher D has at most
negligible advantage in the following game:
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1. D computes (x,w) ∈ R along with a challenge c, and sends (x,w, c) to the challenger.

2. The challenger chooses b ∈ {0, 1} and some coins r at random, and computes the follow-
ing:

if b = 0: a← A(x,w, r), z ← Z(x,w, r, c)

if b = 1: (a, z)← ZKSim(x, c, r)

The challenger then sends (a, z) to D.

3. D outputs a guess b̂ ∈ {0, 1}.

4. D’s advantage is defined to be |Pr[ b = b̂ ]− 1/2|.

Attack Game 3: Special HVZK Attack Game

To simplify analysis, we additionally require that ZKSim must always output either a “valid”
pair (a, z) (i.e. such that B(x, a, c, z) outputs accept), or an error condition.8

Intuition: Essentially, this means that for any efficiently computable challenge c, it is pos-
sible to produce a protocol transcript computationally indistinguishable from an actual run
with a prover (who knows w), even without knowledge of w. Furthermore, we require that the
indistinguishability holds even if the distinguisher knows the witness w. (This additional re-
quirement is slightly stronger than the usual HVZK property.) We chose to define the HVZK
security property in the form of an interactive game in order to ensure that the challenge is
generated computationally, which facilitates the use of certain number theoretic assumptions
(such as Strong RSA) for constructing Augmented Σ-protocols.

• Reverse State Construction -

There exists a ppt algorithm RSC such that every ppt distinguisher D has at most negligible
advantage in the following game:

1. D computes (x,w) ∈ R along with a challenge c, and sends (x,w, c) to the challenger.

2. The challenger chooses some coins ra and rs at random, and computes (a, z) ←
ZKSim(x, c, rs), a

′ ← A(x,w, ra), z
′ ← Z(x,w, ra, c), and r′s ← RSC(x,w, ra, c). Then

the challenger chooses b ∈ {0, 1}, and proceeds as follows:

if b = 0: Send (a, z, rs) to D.

if b = 1: Send (a′, z′, r′s) to D.

3. D outputs a guess b̂ ∈ {0, 1}.

4. D’s advantage is defined to be |Pr[ b = b̂ ]− 1/2|.

Attack Game 4: Reverse State Construction Attack Game
8Note that this requirement does not further restrict the class of languages with Augmented Σ-protocols.
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N.B.: For the case b = 1, the values of a′ and z′ being supplied to D come from the
outputs of A and Z, not ZKSim. Therefore, in order for the values of a′ and z′ observed
by D to remain consistent with r′s, it must be true with overwhelming probability that
ZKSim(x, c,RSC(x,w, ra, c)) (the “simulation” output resulting from the coins produced by
the Reverse State Construction procedure) yields the same choice of a′ and z′ as are produced
by A and Z when using the random coins ra. Otherwise, D could easily observe the incon-
sistency and would correctly guess that b̂ = 1 whenever a discrepancy occurs, allowing D to
achieve a non-negligible advantage.

Intuition: This property is not typically required of Σ-protocols, hence we specify that
the protocols are “Augmented” in the nomenclature. This additional requirement ensures
that after a standard run of the Σ-protocol, it is possible for the prover to find a pseudo-
random input for the simulator that causes it output the same transcript. Furthermore,
even a distinguisher who knows the witness cannot determine whether those pseudo-random
coins were chosen using this reconstruction procedure or not (i.e. if they are truly random).
It is easy to verify that this property actually implies the above Special HVZK property
of Σ-protocols as well, but we state it separately to clarify the relationship with standard
Σ-protocols (which instead feature the Special HVZK property, or perhaps a slightly weaker
HVZK property). The reasons for this additional requirement will become clear in Section 5.2.

• Special Soundness - There exists a ppt algorithm Erw (a “rewinding extractor”), such that
every ppt adversary D wins the following game with at most negligible probability:

1. D computes (x, a, c, z, c′, z′), where c 6= c′, and sends it to the challenger.

2. The challenger computes w← Erw(x, a, c, z, c′, z′).

3. D wins if both B(x, a, c, z) and B(x, a, c′, z′) return accept, but (x,w) 6∈ R.

Attack Game 5: Special Soundness Attack Game

5.2.2 An IBTC from Signature Schemes with Augmented Σ-Protocols

Let Υ = (Gen,Sig,Ver) denote any signature scheme that is existentially unforgeable against chosen
message attack (i.e. it is UF-CMA secure). Define a relation RΥ(x,w) such that (x,w) ∈ RΥ if
either 1) x = 〈VK ,m〉 and w = σ such that Ver(VK ,m, σ) = accept; or 2) w = rg such that
(VK ,SK ) = Gen(rg, 1

λ) and SK is a valid signing key corresponding to VK (that is, w contains
all the random coins used by the Gen algorithm when producing VK and SK ). We say that Υ has
an Augmented Σ-Protocol if there is an Augmented Σ-Protocol for the relation RΥ.

Remark: The second case of RΥ, which allows rg to be used as a witness, is necessary to ensure
that the properties of the Augmented Σ-protocol for the signature scheme are preserved even with
respect to adversaries who eventually learn rg. We ultimately rely on this property for “forward
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security” purposes, in case the trusted setup party who generates VK is later corrupted. Of
course, since Gen(rg, 1

λ) yields the signing key SK , if the witness is rg we can use it to compute
a signature witness σ satisfying the form of the first case. Therefore, if there is an Augmented
Σ-protocol for signatures, we can easily transform it into an Augmented Σ-protocol for RΥ by
simply having provers with a witness rg compute the appropriate signature witness, and then run
the original Augmented Σ-protocol using the signature witness (and, of course, a prover with a
signature witness simply runs the original protocol). This transformation does not at all impact
the efficiency of the original protocol, and it is easily verified that all properties of Augmented Σ-
protocols hold for the transformed protocol with respect to the relation RΥ. Therefore, we observe
that it is sufficient to have an Augmented Σ-protocol for the signature scheme alone, despite our
use of the slightly more involved relation RΥ.

Given such a signature scheme, we can construct an Identity-based Trapdoor Commitment
scheme as follows:

• Setup(1λ): Compute (VK ,SK ) ← Gen(rg; 1
λ), where rg denotes the random coins used by

the Gen algorithm. Return the pair (PK = VK ,MSK = rg).

• Extract(PK , ID ,MSK ): Run Gen(MSK , 1λ) to obtain SK . Compute σID = Sig(SK , ID).
Return SK ID = σID .

• Com(PK , ID , d,m): Compute (a, z) ← ZKSim(x = 〈PK , ID〉, c = m, rs = d), where ZKSim
is the Σ-protocol simulator for RΥ. Return the commitment κ = a.

• ECom(PK , ID ,SK ID): Choose random coins ra and compute a = A(x = 〈PK , ID〉, w =
SK ID , ra). Return the pair (κ = a, α = ra).

• Eqv(PK , ID ,SK ID , κ, α,m): Compute rs = RSC(x = 〈PK , ID〉, w = SK ID , ra = α, c = m).
Return d = rs.

Intuition: The message m is used as the “challenge” flow on which to run the Zero-Knowledge
simulator for the Σ-protocol, producing the prover’s first flow a and a response z. Only the first
value, a, is used to form the commitment κ. The decommitment d consists of exactly the random
coins rs used to conduct the simulation. The prover’s response flow z is not used at all. This is a
slight departure from the technique of [23], which instead uses z as the decommitment and requires
the recipient to verify that B(a, c, z) outputs accept. In this work, we allow the eventual (adaptive)
corruption of the committer, in which case all random coins used in the HVZK simulation must be
revealed. Since security must hold against an adversary who can eventually learn the random coins
rs (used by the HVZK simulation algorithm ZKSim to produce the pair (a, z) for the Σ-protocol), we
can simplify our protocols by allowing the random coins rs to serve directly as the decommitment.
Never the less, when considering specific instantiations, in practice it may be more efficient to send
z as the decommitment (using the approach of [23]) rather than rs (even though rs must still be
provided to the adversary when the committer is corrupted).

Equivocation of a commitment is achieved by using knowledge of the witness w (i.e. the equivo-
cation trapdoor SK ID ) to “honestly” conduct the Σ-protocol proof (instead of simulating) so that
the prover can later respond to any “challenge” (thus opening the commitment to any message),
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even though the first flow was already sent as the commitment. Once again, we avoid the need to
send the response flow z by sending the random coins rs as the decommitment instead, and, there-
fore, we make use of the Reverse State Construction algorithm to produce the decommitment.

Theorem 5.2. The construction described above yields a secure IBTC scheme.

Proof. It is easy to verify the correctness of the above IBTC implementation. We now proceed to
prove the security properties.

• Binding. Suppose there is an adversary A breaking the binding property of the commitment
scheme. We describe a reduction that forges signatures for Υ (in the UF-CMA attack game)
by acting as the challenger for A in the security game for the binding property of the IBTC
as follows:

1. To forge a signature in a UF-CMA attack game with verification key VK , the challenger
sets PK = VK and sends PK to A.

2. The challenger then responds to A’s queries to the Extract(PK , ·,MSK ) oracle by sim-
ply forwarding them to the signature oracle in the UF-CMA game, and returning the
responses. (It is easy to verify that this yields the correct output.)

3. Wait until A outputs a tuple (ID , d,m, d′,m′).

4. If A wins the binding attack game, then ID was never queried to the oracle, and κ =
ComID(d,m) = ComID(d′,m′). In this case, we may compute (κ, z)← ZKSim(〈PK , ID〉,m, d)
and (κ, z′) ← ZKSim(〈PK , ID〉,m′, d′). That is, we now have two accepting tran-
scripts for the Augmented Σ-protocol which begin with the same first flow, enabling
us to use the rewinding extractor (from the soundness property) to obtain: w ←
Ext(〈PK , ID〉, κ,m, z,m′, z′). With overwhelming probability, w is a valid witness and
therefore either contains a signature σID such that Ver(PK , ID , σID ) accepts, or the ran-
dom coins needed to recover the signing key itself (in which case it is easy to produce
a forgery). Since ID was never queried to the oracle in the binding attack game, the
reduction never queried it to the signing oracle in the UF-CMA game, and thus the
reduction may output σID as a new forgery.

That is, whenever A succeeds in breaking the binding property of our IBTC construction,
the reduction outputs a forgery with overwhelming probability. Clearly then, if the signature
scheme is unforgeable, the binding property must hold.

• Equivocability. Equivocability of commitments follows immediately from the Reverse State
Construction property of Augmented Σ-protocols. Clearly, any adversary capable of distin-
guishing the output of Eqv from random coins (when given access to MSK ), can also be
used to distinguish the output of RSC (when using a witness containing rg). That is, set
x = 〈PK , ID〉 and w = rg in the Reverse State Construction game, and feed the resulting
challenge to the adversary who breaks the equivocability of the commitment scheme, then
output the same guess as the equivocability adversary. It is easy to verify that the result-
ing advantage in the Reverse State Construction game is the same as that of the adversary
attacking the equivocability property of the commitment scheme.
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5.2.3 Signature Schemes with Augmented Σ-Protocols

To complete the construction of IBTCs, it remains to construct a signature scheme with an aug-
mented Σ-protocol for the knowledge of the signature. First, we observe that every NP -relation
is known to have such a Σ-protocol if one-way functions exist [25, 29, 4]. Specifically, the protocol
of [4] (where the prover commits to a permutation of a graph with a Hamiltonian cycle, and is
challenged to reveal either a cycle or the permutation) is easily shown to support the requirements
of augmented Σ-protocols when using pseudo-random commitments. In particular, the reverse
state construction property can be achieved by simply producing random coins corresponding to
the graph opened by the simulator, along with coins yielding the same random commitment values
used by all the unopened commitments to edges in the graph (relying on the pseudo-randomness
of the commitments).

Since signature schemes can also be constructed from one-way functions, we immediately obtain
a generic construction of IBTCs based on one-way functions. We also notice that we can have
more efficient constructions if we use certain signature schemes based on specific number-theoretic
assumptions. For example, we can use any “signature scheme with efficient protocols”, such as the
one of [16] based on strong RSA.

5.3 Dense PRC Secure Encryption

The commitment protocol of [19] (which uses a common reference string) requires the use of a
CCA secure public key encryption scheme with Pseudo-Random Ciphertexts (PRC). The CCA
security requirement arises due to the fixed nature of the global public encryption key, which is
reused during every run of the protocol. Our protocol, on the other hand, will not make use of
any fixed public keys for encryption. Instead, we will be using a coin-flipping protocol to choose a
fresh public key for each run of our commitment protocol (this is discussed in more detail below).
One advantage of doing this is that we will require only semantically secure encryption with PRC,
since each key is used only once. However, there is also a disadvantage: the public key is chosen
as the result of a fair coin-flipping protocol (which will be uniformly random in some finite group),
so the encryption scheme must have “dense” public keys. Informally, this means we require public
keys to be computationally indistinguishable from random. Fortunately, schemes satisfying these
requirements exist under widely used computational assumptions, such as the DDH assumption
(in fact, standard El-Gamal encryption suffices). The formal definition of security for Dense PRC
encryption provided below has the flavor of “left-or-right” security, which is most convenient for
the proof of security of our protocol.

Definition 5 (Dense PRC Encryption). A public key encryption scheme PRC = (G,E,D), satis-
fying the standard correctness properties for public key encryption, is said to be Dense PRC secure
if it satisfies the following additional constraints:

1. Public keys produced by G lie within some abelian group Φ, with efficiently computable inverse
and group operations.

2. Membership in Φ is efficiently testable.

3. The uniform distribution on Φ is efficiently samplable.
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4. The distribution of public keys produced by G is computationally indistinguishable from the
uniform distribution on Φ.

5. For all ppt adversaries A:

Pr[ALR(·,0)(1λ) = 1]− Pr[ALR(·,1)(1λ) = 1] ≤ negl(λ),

where the answer to a query of the oracle LR(m, b) is computed by obtaining (K,K−1) ←
G(1λ) and returning the pair 〈K,EK(m)〉 if b = 0, or returning the uniformly random pair
〈U,R〉 if b = 1 (where U is chosen from a group Φ, and R from {0, 1}|EU (m)|). We need not
allow A to query the oracle more than once, but this restriction is unimportant as long as
fresh keys are computed on each query to the oracle.

Intuition: The final condition in the definition captures the main security property of Dense PRC:
an honestly generated public key (output by G) and an honestly generated ciphertext (output by
E) are indistinguishable from a randomly chosen public key and a random bit string of appropriate
length. Note that it must be possible to encrypt messages to random public keys, and that the result
ciphertexts must still appear to be random (since otherwise we would have a way to distinguish
random public keys from honestly generated ones). This is important for our purposes, since
our protocol requires parties to encrypt messages under a randomly generated public key. The
remaining properties of Dense PRC schemes are merely technical requirements that enable two
parties to jointly select a random public key via a standard “coin-flipping protocol”.

5.4 Details and Design of Protocol UAIBC

A full description of the protocol UAIBC in the Ḡacrs (Augmented CRS) model is shown in Figure 8
below.

Intuitively, the final flow of the commit phase of the UAIBC protocol is very similar to the UAHC
protocol of [19] and the CLOS-KR protocol of [6]. The actual structure of the last flow in UAIBC is
slightly different from the UAHC and CLOS-KR protocols since it uses a single ciphertext, rather
than two ciphertexts as the UAHC and CLOS-KR protocols do. The only purpose of this minor
change is to further simplify the presentation of the protocol and the proof, and indeed it would
seem that the same change can be safely made to the UAHC and CLOS-KR protocols.

The novelty of protocol UAIBC is its use of a coin-flipping protocol to choose the public key for
the encryption scheme (used when producing ψ), rather than using a globally fixed key as in [19], or
public keys belonging to the individual parties as in [6]. The net result of this coin-flipping protocol
is that no party (trusted or otherwise) should ever be in possession of the decryption key, unless
perhaps some “cheating” occurred during the coin-flipping process (as we will discuss below).

Of course, the use of this coin-flipping protocol makes the commitment phase of the protocol
interactive (whereas in [19] it was not). We remark that some interactivity is unavoidable when
constructing adaptively secure GUC commitment schemes in the Augmented CRS model.9

Simulation of the UAIBC protocol is slightly involved. On a high level, as with all UC-secure
realizations of Fcom, the simulator must be able to extract the actual committed values being sent

9This claim will be proven formally in an extended version of this paper.
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Protocol UAIBC

Let (G,E,D) be a Dense PRC secure encryption scheme. We denote the key-space of the dense
encryption scheme by Φ, and the security parameter by λ. Then Protocol UAIBC proceeds as follows,
with party Pc committing a bit b to party Pr, in the shared ḠSetup,Extract

acrs hybrid model. (Note, we
also assume ideal private and authenticated channels for all communications.)

Common Reference String: All parties are initialized with the common reference string pro-
duced by ḠSetup,Extract

acrs (the public key for the IBTC scheme produced by Setup, which is an
implicit parameter to the Com and Open algorithms). In particular, we note that ḠSetup,Extract

acrs

is a shared subroutine of Protocol UAIBC.

Commit Phase:

1. On input (commit, sid, Pc, Pr, b) where b ∈ {0, 1}, party Pc sends (com0, sid, Pc, Pr) to
Pr. It then waits to receive a message of the form (com1, sid, Pc, Pr, κ1) from Pr.

2. Pr receives (com0, sid, Pc, Pr) and records it, ignoring any later com0 messages from Pc

with the same sid. Pr chooses a random ρ1 ∈ Φ and a decommitment d1

$
← D, and

records them. Pr then computes κ1 ← ComPc
(d1, ρ1), sends (com1, sid, Pc, Pr, κ1) to Pc

and waits to receive the message of the form (com2, sid, Pc, Pr, ρ2) from Pc in response.

3. Pc receives and records (com2, sid, Pc, Pr, κ1), ignoring any later com2 messages from
Pc with the same sid. Pc then chooses a random ρ2 ∈ Φ, sends the mes-
sage (com3, sid, Pc, Pr, ρ2) to Pr, and waits to receive of a message of the form
(com3, sid, Pc, Pr, d1, ρ1) from Pr.

4. Pr receives (com2, sid, Pc, Pr, ρ2) and records it, ignoring any later com2 messages
from Pc with the same sid. Pr computes and stores ρ ← ρ1 · ρ2, and then
sends (com3, sid, Pc, Pr, d1, ρ1) to Pc and waits to receive a message of the form
(com4, sid, Pc, Pr, κ, ψ) from Pc.

5. Pc receives and records (com3, sid, Pc, Pr, d1, ρ1) from Pr, ignoring any later com3 mes-
sages from Pc with the same sid. Pc then verifies that κ1 = ComPc

(d1, ρ1), and ignores
the message if verification fails. If verification succeeds, Pc computes ρ ← ρ1 · ρ2, then
chooses d← D and records it along with ρ. Additionally, if b = 0, Pc chooses and records
random coins r, and then computes ψ ← Eρ(r, d); otherwise, when b = 1, Pc chooses ψ
at random. Pc then sends (com4, sid, Pc, Pr, κ, ψ) to Pr.

6. Pr receives (com4, sid, Pc, Pr, κ, ψ) from Pc and records it, ignoring any later com4 mes-
sages from Pc with the same sid. Pr then outputs (receipt, sid, Pc, Pr).

Reveal Phase:

1. On input (reveal, sid) party Pc retrieves the necessary records and, if b = 0, sends
(rev, sid, Pc, Pr, d, 0, r) to Pr; otherwise, Pc sends (rev, sid, Pc, Pr, d, 1) to Pr.

2a. When receiving a message of the form (rev, sid, Pc, Pr, d, 0, r), Pr records it, ignoring all
subsequent messages from Pc with the same sid. Pr then retrieves the values of ρ, κ, and
ψ corresponding to sid from its records and verifies that Eρ(r, d) = ψ and ComPr

(d, 0) =
κ. If the verification succeeds, Pr outputs (reveal, sid, Pc, Pr, 0). Otherwise, Pr ignores
the message.

2b. When receiving a message of the form (rev, sid, Pc, Pr, d, 1), Pr records it, ignoring
all subsequent messages from Pc with the same sid. Pr then retrieves the value of κ
corresponding to sid from its records and verifies that ComPr

(d, 1) = κ. If the verification
succeeds, Pr outputs (reveal, sid, Pc, Pr, 1). Otherwise, Pr ignores the message.

Figure 8: Protocol UAIBC for realizing Fcom in the Ḡacrs-Externalized UC setting
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by corrupt parties during the commit phase, while simultaneously being capable of equivocating
commitments that are sent by honest parties (for which the simulator must generate the protocol
flows). On the surface, these properties seem to conflict – if a specific value can be extracted from
a flow of the commitment protocol, then the flow must be binding, and yet, the simulator must also
be able equivocate flows, so they are not always binding. This conflict is particularly striking in the
Augmented CRS model, where the adversary is allowed to learn all the same trapdoor information
as the simulator. When no trapdoor information is available exclusively to the simulator, it is
difficult to imagine how commitments can be binding for the adversary, but remain equivocable
for the simulator. In other words, it would seem that if the simulator has the power to extract
committed values and to equivocate commitments, an equally powerful real-world adversary should
also have these capabilities. Indeed, that difficulty is precisely what causes the UAHC protocol to
fail in our setting. Fortunately, there is one crucial advantage that the simulator is allowed to have
that enables us to overcome these conflicts: the simulator is allowed to choose the random coins
used to generate the protocol flows of honest parties, whereas the real-world adversary has no such
control (although it may learn the random coins upon later corruption of the honest party). The
coin-flipping technique is a method for leveraging this advantage.

The coin-flipping protocol executed in Steps 1-4 of the UAIBC commitment protocol is designed
so that the simulator can program the outcome of the coin-flip whenever party Pc is corrupt. By
using the Pc’s IBTC key, SKPc , to equivocate the commitment sent in Step 2, the simulator can
arrange the public key ρ to be any string of its choosing. Of course, the simulator will choose a
public key ρ for which it knows the corresponding secret key, ρ−1. Thus, if party Pc is corrupt, the
simulator is able to decrypt the ciphertext sent in Step 5, extracting the committed value.

To equivocate commitments sent to a corrupt party Pr, the simulator uses the IBTC key belong-
ing to Pr, SKPr , in order to generate an equivocable commitment to be sent in the final flow (Step
5). The ciphertext sent contains a legitimate opening to 0, but will later be passed off as a random
ciphertext in the event that the simulator must open to 1. While such an equivocation could be
detected by someone with knowledge of ρ−1, in this instance, no one (not even the simulator) can
have such knowledge, as the coin-flipping process will be fair.

Proving that the simulation described above is indeed indistinguishable from the real-world
interaction requires the use of a rewinding technique. We stress that the UC simulation itself does
not employ any rewinding (which is of critical importance, since a UC simulator may not rewind the
environment). However, the use of a rewinding technique is required whenever we must “program”
the coin-flipping results in the case where the adversary corrupts party Pr. In particular, this
scenario is encountered only in the reduction to the security of the encryption scheme used for one
of the simulation indistinguishability hybrid arguments. In order to show that the encryption can
be broken if the hybrid experiments can be distinguished, we must arrange for the encryption key
being attacked by the reduction to appear in the outcome of the coin-flipping (even when Pr is
corrupted).

In summary, protocol UAIBC introduces a technique for transforming trapdoor commitments
(which are merely equivocable) to full-fledged (adaptive and forward secure!) UC commitments
(which must be both equivocable and extractable) by using a simulatable coin-flipping protocol.
In particular, the simulatable coin-flipping protocol makes use of both rewinding and trapdoors to
achieve simulatability. (We employ only the trapdoor based simulation technique when constructing
the UC simulator itself, while relying on the ability to rewind the coin-flipping protocol only for the
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proof of the simulation’s indistinguishability.) Our general approach to constructing adaptively UC
secure commitments from standard trapdoor commitments is of independent interest, and indeed,
the problem was implicit in many prior works (e.g. [19, 17, 8]) which either resort to impractical
techniques (such as per-session CRS) or are forced to settle for static (non-adaptive) security.

5.5 Security Proof for Protocol UAIBC

In this section, we will prove that protocol UAIBC is a GUC-secure realization of Fcom in the Ḡacrs
shared hybrid model. Before proceeding with the details of the proof, we first state and prove a
general lemma regarding coin-tossing protocols that is used in our proof of security. Our lemma
is analogous to the Reset Lemma of [9], but unlike the Reset Lemma it aims to guarantee not
only that certain events will occur after rewindings, but that the output distribution of the entire
experiment remains computationally indistinguishable.

Lemma 5.3 (Coin-tossing Lemma – due to Victor Shoup). Consider a general “indistinguisha-
bility” task, X. The task is represented as a ppt algorithm that may take as input a system
parameter Λ, a random reference parameter ρ, a bit string x, and challenge bit b. The system
parameter Λ is generated by some designated ppt parameter generation algorithm. The reference
parameter ρ must be drawn from an abelian group Φ (which possibly depends on the choice of Λ)
with efficiently computable inverse and group operations (which we write multiplicatively). The
uniform distribution on Φ must be efficiently samplable, and membership in Φ should be efficiently
decidable. The task X is said to be computationally indistinguishable if every ppt distinguisher D
has at most negligible advantage in the following attack game:

1. The challenger first generates a system parameter Λ (in accordance with the parameter

generation algorithm). The challenger then samples ρ
$

← Φ, and sends the pair (Λ, ρ) to
D.

2. D computes an arbitrary value x, and sends x to the challenger.

3. The challenger chooses b
$

← {0, 1}, computes y ← X(Λ, ρ, x, b), and sends y to D.

4. D outputs a guess b̂ ∈ {0, 1}.

5. D’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 6: Task Indistinguishability Attack Game

Suppose that, instead of selecting the reference parameter at random from Φ, we generate the
reference parameter using a simple “coin tossing” protocol that takes place between the challenger
and the distinguisher. The coin tossing makes use of a string commitment Com that is computa-
tionally binding with respect to the distinguisher (this security property is formally described in
Section 5.2). For the sake of generality, we allow both Com and Φ to be parameterized by Λ. We
claim that the computational indistinguishability of X holds, even though ρ is now being chosen
with some participation by the distinguisher itself.

More formally, for any computationally indistinguishable task X, the advantage of any ppt

distinguisher D′ is at most negligible in the following attack game:
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1. The challenger first generates a system parameter Λ (in accordance with the parameter
generation algorithm). The challenger then sends Λ to D′.

2. D′ sends a commitment κ1 to the challenger.

3. The challenger samples ρ2
$

← Φ, and sends ρ2 to D′.

4. D′ computes an arbitrary value x, along with an opening (d1, ρ1), and sends the triple
(d1, ρ1, x) to the challenger.

5. The challenger verifies that κ1 = Com(d1, ρ1), and that ρ1 ∈ Φ. The challenger then com-

putes ρ
$

← ρ1 ·ρ2. Finally, the challenger chooses b
$

← {0, 1}, computes y ← X(Λ, ρ, x, b),
and sends y to D′. If the verification step fails, the challenger sends the error message
⊥ to D′ instead.

6. D′ outputs a guess b̂ ∈ {0, 1}.

7. D′’s advantage is defined to be |Pr[b = b̂]− 1/2|.

Attack Game 7: Coin-tossing Attack Game (for general tasks)

To summarize, subject to some minor and natural technical qualifications, the Coin-tossing
Lemma states that: Experiments that are computationally indistinguishable when fed with a ran-
domly sampled reference parameter will remain indistinguishable when the reference parameter is
substituted by the output of a (three round) two-party coin-tossing protocol (where the second flow
of the protocol is assumed to be generated honestly).

Proof. Suppose that D′ is an efficient distinguisher for the game described in Attack Game 7 that
succeeds with a non-negligible advantage α. In particular, we have that α ≥ 1/p for some polyno-
mial p (at infinitely many values of the security parameter). We show how to construct an efficient
distinguisher D that succeeds with non-negligible advantage in Attack Game 6, contradicting the
computational indistinguishability of the task. The distinguisher D operates as follows:

1. D runs a copy of D′ internally, acting as the challenger for D′, and begins by passing along
the value of Λ it receives in Step 1 of Attack Game 6. The value ρ that D also receives in
Step 1 is recorded for later use.

2. After receiving a commitment κ1 from the internal copy of D′, D samples ρ∗2
$

← Φ and sends
it to D′.

3. If D′ does not respond with a valid opening of κ1, then D outputs 0 and halts. Otherwise,
if D′ responds with a value x∗ and a valid opening of κ1 to the value ρ1, then D proceeds as
follows:
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ω
$

← {1, . . . , p}
for i← 1 to p do

if i = ω // Pray ω is the “right” guess

then ρ2 ← ρ · ρ−1
1

else ρ2
$

← Φ
rewind D′ back to Step 3 of Attack Game 7 and send ρ2 to D′

if D′ responds with x and a valid opening of κ1 to the value ρ′1, then
if i 6= ω then output 0 and halt // Prayers unanswered
if ρ′1 6= ρ1 then output 0 and halt // Commitment broken!
D passes x to its challenger in Step 2 of Attack Game 6
D receives a response y from its challenger, and forwards y to D′

when D′ outputs b̂, D outputs b̂ and halts
output 0 and halt // rewinding failed to produce second opening

We claim that this D will have advantage at least 1/4p2 at game Attack Game 6. To see this,
will consider a series of modifications to Attack Game 7.

Game G0. This game is modified version of Attack Game 7 that plays out identically unless
the verification in Step 5 succeeds. In this case, instead of simply sending the value y, the
challenger will rewind D′ to Step 3 and feed it with another (freshly sampled) value of ρ2, as
many times as it takes to get a second run with a successful opening of the commitment. That
is, after rewinding, the game proceeds normally to Step 5, only now if the verification fails,
we will rewind D′ to Step 2 again and repeat until the verification in Step 5 has succeeded
for a second time, after which the game continues as in the original version.

What is the advantage of D′ in G0? If the advantage of D′ was α in Attack Game 7, then the
advantage of D′ at G0 is also α. To see why, let C and C ′ be random variables representing
the value of ρ2 chosen on the first and last runs (respectively), and let R be the random
variable representing all the random coins used in Step 1 and the random tape of D′ (note
that the value of R is unaffected by any number of rewindings). Let Succ(r, ρ2) be a predicate
denoting whether the verification in Step 5 succeeds when R = r and C = ρ2 (i.e. it indicates
whether D′ gives a valid opening of the commitment with those outcomes). Together, R
and C represent all the random coins used in Attack Game 7. We will show that, for any
fixed choice of R, the distribution of C ′ is the same as the distribution of C, and therefore
distribution of the modified experiment is unchanged from that of the original. Fixing our
choice of R and expanding the distribution of C ′ by total probability theorem yields:

Pr[C ′ = ρ2 | R = r] = Pr[C ′ = ρ2 | R = r,Succ(r, C)] · Pr[Succ(r, C)]

+ Pr[C ′ = ρ2 | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

= Pr[C = ρ2 | R = r,Succ(r, C)] · Pr[Succ(r, C)]

+ Pr[C = ρ2 | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

The equality of the first terms in the sums follows from simply observing that C ′ = C in
the event that D′ fails to open the commitment on the first run, since no rewinding occurs
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in that case (the first run is the last run). The equality of the second terms follows by
observing that, conditioned on Succ(r, C), the variable C ′ is uniformly distributed among
the values of ρ2 such that Succ(r, ρ2) is true, since in this case we will “rewind” by feed-
ing uniformly random choices of ρ2 into the experiment until Succ(r, ρ2) holds. (Of course,
C is also uniformly distributed among those same values when conditioned on Succ(r, C).)
Applying total probability theorem again to the last line in the equation above, we obtain:
Pr[C ′ = ρ2 | R = r] = Pr[C = ρ2 | R = r]. Thus, the distributions of the pair (R,C) and the
pair (R,C ′) are identical. We conclude that the output distribution of the original experiment
in Attack Game 7 and the output distribution in Game G0 are the same.

Game G1. This is a minor modification of Game G0. In the event that rewindings occur, G1 is
identical to G0 for the first p rewindings. After p rewindings have occurred, G1 proceeds from
Step 3 as in the original version of Attack Game 7, without making any further attempts to
rewind. G1 is otherwise identical to G0.

To analyze what happens to G0 if we bound the number of rewindings by p, we first calculate
the expected number of rewindings in G0. Let N denote the number of rewindings that occur
in a run of G0. Using our previously established notation, we will analyze the E[N ] by first
fixing the choice of R. We can then compute the expected number of rewindings E[N | R = r]
with a simple application of total probability theorem (combined with the linearity property
of expectation):

E[N | R = r] = E[N | R = r,Succ(r, C)] · Pr[Succ(r, C)]

+ E[N | R = r,¬Succ(r, C)] · Pr[¬Succ(r, C)]

= (1/Pr[Succ(r, C)]) · Pr[Succ(r, C)]

+ 0 · Pr[¬Succ(r, C)]

= 1 ( for Pr[Succ(r, C)] 6= 0 )

The second equality follows by observing that, for a fixed value of R, the probability that any
of the rewindings succeeds is exactly the same as Pr[Succ(r, C)] (the initial probability with
which a rewinding occurs). Of course, conditioned on ¬Succ(r, C), there are no rewindings
at all. In case Pr[Succ(r, C)] = 0, we will have that E[N | R = r] = 0, since no rewindings
can occur. For any fixed choice of r we have shown that E[N | R = r] ≤ 1, and therefore, we
may conclude that E[N ] ≤ 1.

Now we are in a position to analyze the advantage of D′ in G1. Since the expected number
of rewinding attempts in G0 is at most 1, the overall probability that there will be more
than p rewinding attempts is at most 1/p, by Markov’s inequality. Therefore, with all but
probability 1/p, the rewinding procedure of G1 perfectly simulates G0, wherein D′ has the
same advantage α as in the original setting of Attack Game 7. In the event that G1 differs
from G0, the distinguisher D′ learns no information about b, so the probability that b̂ = b
is 1/2 (by independence). Therefore, the overall advantage of D′ in Game G1 is at least
α− (1/2)(1/p) ≥ 1/p− 1/2p = 1/2p.

Game G2. This is the same as Game G1, except that whenever a second opening of the com-
mitment is obtained, it is checked against the original opening. If the commitment has been
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opened in two different ways, the game is halted. Since opening the commitment in two
different ways must occur with negligible probability (by the binding property of the com-
mitment scheme), for sufficiently large choices of the security parameter, this abort happens
with probability at most 1/4p. Therefore, the advantage of D′ in G2 differs from that of G1

by at most 1/4p, so we have that D′ has advantage at least 1/2p− 1/4p = 1/4p in Game G2.

Game G3. Finally, we modify Game G2 to exactly match the procedure we described above for
constructed D from D′. Namely, G3 differs from G2 in that if we must rewind, we first select
a uniformly random “guess” at one of the p possible rewindings, and if the “guess” does not
correspond to the rewinding on which the second opening of the commitment occurs, the
game is halted (and the advantage is computed as if D′ had output 0). Since the “guess” for
the rewinding instance is accurate with probability 1/p, the experiment plays out as in Game
G2 with probability at least 1/p. In the event that a halt occurs, we will have that b̂ = b with
probability 1/2 (again, by independence). Therefore, the overall advantage of D′ in Game G3

will be at least (1/p)(1/4p) = 1/4p2.

This concludes our analysis of the advantage of D in our construction, showing that D indeed has
a non-negligible advantage if distinguisher D′ can succeed at Attack Game 7 with non-negligible
advantage.

Proof of Theorem 4.2. We now prove the security of protocol UAIBC, by showing that it is a GUC-
secure realization of Fcom. We describe a technique for simulating the protocol flows of UAIBC
in the ideal-world with Fcom, and give a proof that the simulation in the ideal-world setting is
indistinguishable from a real-world execution of UAIBC, even if the adversary is allowed to corrupt
the trusted party implementing Ḡacrs at the end of the game. Recall that we need only prove that
UAIBC will Ḡacrs-EUC-emulate Fcom, and thus we will be proving with respect to a Ḡacrs-externally
constrained environment Z. To model this, we may imagine that Z is provided with SKPa , for
any corrupt party Pa, at the moment of corruption. (In reductions to the security of the IBTC, we
make an oracle query to obtain the key SKPa, which, as can be seen below, will never correspond
to the key under attack by the reduction.)

Initialization - All parties are initialized with a copy of the common reference string PK
published by ḠSetup,Extract

acrs during its honestly executed global initialization step. That is, the
simulation we describe below merely expects the initialization step to be completed prior to
the start of the simulation (no special setup is required on behalf of the simulator itself).

Simulating Communication with Z - S simply forwards communications between A and Z.

Simulating the commit phase for honest parties (Strategy 1) - Since we are in the
secure channels model, the simulator need only send null messages of appropriate length
for each of the messages passed in UAIBC. Nothing more need be done unless one of the
parties is corrupted at some later time. If the sender is later corrupted, the simulator receives
the sender’s input and can construct internal state for the sender representing an honestly
generated transcript. If the recipient is later corrupted (prior to the reveal phase, which
would again provide the simulator with the correct input) then the simulator must follow the
strategy we now describe for the case of a recipient corrupted prior to the sender.
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Simulating the commit and reveal phases for corrupt recipients (Strategy 2) - If
the recipient is corrupted at any point during the commit phase while the sender is still
honest, the simulator conducts the following strategy. We note that, once again, we depend
critically on the secure channels model to allow the simulator to choose the content of the
prior transcript only after corrupting the recipient in the ideal model. Since only the recipient
has been corrupted, the simulator must be able to complete the commit phase of the protocol
on behalf of the sender without actually knowing the committed bit b (which Fcom will not
disclose until the reveal phase is initiated). Thus, the simulator needs to be able equivocate
the commitment so that it can be opened to the proper value b in the subsequent reveal phase.
Before generating any of the protocol flows, S issues a retrieve request to ḠSetup,Extract

acrs on
behalf of the corrupt Pr in order to obtain SKPr . All flows will be honestly generated except
the final message sent by Pc in Step 5 of the commit phase of the protocol. S computes

(κ̂, α)← ECom(Pr;SK Pr) and d(b̂) ← Eqv(Pr,SK Pr , κ̂, α, b̂) for b̂ = 0, 1 and stores the results.
Instead of the honest flow, S sends (com4, sid, Pc, Pr, κ̂, ψ̂) where ê is the encryption of d(0)

(computed exactly as though committing to b = 0 in Step 5).

When performing the reveal phase, S can simply open to b = 0 using the decommitment d(0)

honestly (including opening ψ̂ correctly). If S must open to b = 1 it can use the decommitment
d(1), and by the pseudo-random property of the encryption scheme, it can “pretend” that ψ̂
was chosen at random.

Simulating the commit and reveal phases for corrupt senders (Strategy 3) - If the
sender is corrupted while the recipient is honest during the commit phase, the simulator
will need to learn the committed bit b from the sender in order to correctly provide the
corresponding commit phase input to Fcom. Once again, we note that the simulator need
not generate any actual protocol flows until the actual time of corruption, so the following
strategy may be employed irrespective of the particular step in the protocol of the commit
phase at which Pc is corrupted. Upon the initial corruption of Pc, S will issue a retrieve

request to ḠSetup,Extract
acrs on Pc’s behalf in order to retrieve SKPc . The simulation strategy will

replace the flows sent by Pr in Steps 2 and 4 with specially “rigged” flows. S first generates
and stores a valid key-pair for the dense encryption scheme (ρ, ρ−1)← G(1λ). For Step 2, S
computes and stores (κ̂1, α)← ECom(Pc,SK Pc), sending κ̂1 in place of the honestly computed
κ1 (on behalf of the honest party Pr). In Step 4, S computes and stores ρ̂1 ← ρ · ρ−1

2 and

d̂1 ← Eqv(Pc,SK Pc , ρ̂1). S replaces the legitimate decommitment d1 that would normally be
sent in Step 4 with d̂1, and the result is that κ1 = ComPc(d̂1, ρ̂1). This procedure ensures that
S knows the decryption key for the ciphertext ψ sent by Pc in Step 5, and can thus decrypt ψ
if b = 0 and it was legitimately formed. If S is able to decrypt ψ to obtain a valid d such that
κ = ComPr(d, 0), then S proceeds by invoking Fcom as if Pc had committed to 0, otherwise it
invokes it with a commitment to 1 (since Pc cannot possibly produce a valid opening of the
commitment to 0 in this case).

Notice that in this scenario, the simulator will not need to send any message during the reveal
phase, since the sender is corrupted and is the only party sending messages during a reveal
operation. The simulation will only fail (and halt) if a valid reveal phase message is sent from
Pc (who is corrupt, and controlled by A) which opens to a different bit b than the simulator
chose when invoking Fcom at the end of the commit phase.
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Message delivery - S will merely deliver messages from Fcom whenever A delivers the corre-
sponding protocol messages in the simulated UAIBC interaction, in the obvious manner.

Given the above simulation strategies, we must prove that the environment Z’s interactions with
S will be indistinguishable from Z’s interactions with A in the real-world, even if A is allowed
to corrupt the trusted party TḠacrs at the end of the experiment. To show this, we consider the
following hybrid experiments.

I0 - Real-world interaction. Protocol UAIBC running in the “real-world” (in this case, the Ḡacrs-
Relativized setting), interacting with the real-world adversary A.

I1 - Employing the commitment part of Strategy 2. The interaction proceeds exactly as in
the real-world, except that wherever Step 5 of the protocol is executed with a corrupt receiver
Pr, the honest sender Pc computes (κ̂, α)← ECom(Pr,SKPr) (for now, we will simply imagine
that that Pc is somehow provided with SKPr). Pc then computes d← Eqv(Pr,SK Pr , κ̂, α, b).
The remainder of the protocol is then conducted as usual. In the event that Pc is later
corrupted, its internal state is constructed to be consistent with a random selection process
for the same value of d.

Lemma 5.4. I1 is computationally indistinguishable from I0.

Proof. The proof is by reduction to the equivocability property of IBTCs, since the only
difference from I0 is the use of an equivocable commitment. We observe that if there is
an adversary A such that Z can distinguish interactions in I0 from I1, there is a (simple)
reduction which breaks the equivocability property of the IBTC. This indistinguishability
holds even for adversaries in the strong fully simulatable setting, since the reduction is given
MSK (containing the random coins used by Setup) as part of its input. Thus, it is easy for
the reduction to properly simulate even the corruption of the trusted party. We omit the
trivial details of the reduction.

I2 - Employing only Strategy 2. This interaction is the same as I1, only Pc will perform Step
5 completely as described in Strategy 1. That is, in addition to the change made in I1, the
only difference between I2 and I1 is the computation of the value of ψ. In the event that the
honest party commits a bit b = 1, the value of ψ now contains Eρ(r, d

(0)), whereas it would
have been random in I1.

Lemma 5.5. I2 is computationally indistinguishable from I1.

Proof. The proof is by reduction to the pseudo-random property of ciphertexts from E. Un-
fortunately, it is not obvious how to build a reduction attacking the security of a particular
public key ρ∗, as we must do in order to achieve the reduction. In fact, we must use a
“rewinding” technique in order to accomplish this. While it is critical that UC secure proto-
cols be straight-line simulatable (i.e. they may not use rewinding techniques for simulation
purposes, see [32] for details), we stress that here we are using the rewinding only in the proof
of indistinguishability for the simulator. The simulator itself does not perform any rewinding.

Therefore, our reduction makes use of Lemma 5.3 (the Coin-tossing Lemma) to abstract away
the complicated analysis of the rewinding procedure. Observe that the first three flows of
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UAIBC are a simple Coin-tossing protocol, satisfying all the conditions of Lemma 5.3, provided
that the GUC experiment we are running does not require access to Pc’s trapdoor (which
is relevant for the binding property of the commitment used in the coin-tossing phase) until
after the coin-tossing has completed. Since Pc is an honest party in this scenario, we can be
sure that the neither A nor Z (nor, of course, the simulator itself) will expect access to Pc’s
trapdoor, and the conditions of the Coin-tossing Lemma are thus satisfied. Accordingly, we
may substitute the coin-flipped public key ρ with any randomly generated public key (as if the
coin-flipping phase of the protocol had never happened, in either the real or ideal/simulated
views). In particular, we may substitute a challenge key ρ∗ that our reduction to the security
of E is attempting to break. If the resulting versions of I2 and I1 are indistinguishable (when
using such a random challenge key ρ∗), then we know that the unmodified versions of I2 and
I1 (where ρ is the outcome of the coin-flipping protocol) are also indistinguishable.

In fact, it is easy to see that I2 and I1 must indeed be indistinguishable if the public key ρ∗

(challenged to the reduction) is used instead of the coin-flipping protocol output – after all,
the reduction to the security of E is now a direct one: the only change between I2 and I1 is
the substitution of a ciphertext encrypted under ρ∗ for a random string. Indistinguishability
of this substitution is precisely the guarantee provided by Dense PRC encryption. Given that
I2 and I1 are indistinguishable when the parties are fed with a random key ρ∗, we may apply
the Coin-tossing Lemma to obtain indistinguishability of the full-fledged versions of I2 and
I1 (which use the coin-tossing protocol).

Once again, we observe that providing the adversary with MSK at the end of the game does
not help the adversary to distinguish ciphertexts, since it is too late to use it to equivocate
any of the commitments, and thus the adversary cannot “rig” any public keys.

I3 - Adding Strategy 3. This interaction is the same as I2 only now Pr also employs Strategy 2.
We first note that it is not a problem that the simulator is revealing commitments to κ̂1 instead
of κ1 since the distributions are indistinguishable by the “dense” public key property of the
encryption scheme. The only remaining difference is the use of an equivocable commitment,
and thus we prove indistinguishability of I3 and I2 using the same technique as Lemma 5.4.

I4 - Adding Strategy 1. This interaction is the same as I3, only we now employ Strategy 1 as
well. This is, in fact, just a conceptual change to I3, since Strategy 1 merely delays the actual
computation of protocol flows until they are observable by A. Indistinguishability follows
immediately in the secure channels model.

I5 - Simulated interaction. This is the same as I5 unless the simulation fails and halts, which
can only occur if a reveal phase successfully opens a commit phase to for the bit b′ 6= b, where
b is the bit the simulation invoked Fcom with after the commit phase. This can occur in one of
two ways. 1) The simulator was unable to decrypt ψ to yield a valid d in Step 5, yet the reveal
phase shows that ψ contains a correct encryption of a valid d. This would violate correctness
property of the encryption scheme, so this case never occurs. 2) The simulator decrypted ψ,
yielding a valid d such that κ = ComPr(d, 0), but the reveal phase showed a decommitment d′

such that κ = ComPr(d
′, 1). This breaks the binding property of the IBTC, and a reduction

to this property can be built in the obvious way (we observe that the binding property is
broken at “runtime”, so the reduction will not need to simulate the corruption of the trusted
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party in the strong fully simulatable setting, which is critical since it will not know MSK).
Thus I5 must be indistinguishable from I4.
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