
Balanced Boolean Functions with (more than)
Maximum Algebraic Immunity

Deepak Kumar Dalai and Subhamoy Maitra
Applied Statistics Unit, Indian Statistical Institute,

203, B T Road, Calcutta 700 108, INDIA
Email: {deepak r, subho}@isical.ac.in

Abstract

In this correspondence, construction of balanced Boolean functions with maxi-
mum possible algebraic (annihilator) immunity (AI) is studied with an additional
property which is necessary to resist fast algebraic attack. The additional property
considered here is, given an n-variable (n even) balanced function f with maximum
possible AI n

2
, and given two n-variable Boolean functions g, h such that fg = h,

if deg(h) = n
2
, then deg(g) must be greater than or equal to n

2
. Our results can

also be used to present theoretical construction of resilient Boolean functions having
maximum possible AI.
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1 Introduction

In recent time, algebraic and fast algebraic attacks have received a lot of interest in cryp-
tographic literature [3, 12, 13, 20]. An important property for Boolean functions to be
used in cryptosystems, called algebraic immunity [20, 15] has been evolved in this area.
Good algebraic immunity (of a Boolean function used in a cryptosystem) provides certain
kind of resistance against algebraic attacks done in a particular way, i.e., using lineariza-
tion. Further, based on some recent works related to fast algebraic attacks [2, 13, 5, 1],
one should concentrate more carefully on the design parameters of Boolean functions for
proper resistance. The weakness of algebraic (annihilator) immunity against fast algebraic
attack has been demonstrated in [14] by mounting an attack on SFINKS [4]. In one of the
recent papers [17], the term annihilator immunity is used instead of algebraic immunity.

Let Bn be the set of all Boolean functions {0, 1}n → {0, 1} on n input variables. One
may refer to [15] for the definitions of truth table, algebraic normal form (ANF), algebraic
degree (deg), weight (wt), nonlinearity (nl) and Walsh spectrum of a Boolean function.

It has been shown in [12] that given any n-variable Boolean function f , it is always
possible to get a Boolean function g with degree at most ⌈n

2
⌉ such that fg has degree at
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most ⌈n
2
⌉. Thus, while choosing a function f , the cryptosystem designer should be careful

that it should not happen that the degree of fg falls much below ⌈n
2
⌉ with a nonzero

function g whose degree is also much below ⌈n
2
⌉.

Definition 1 Given f ∈ Bn, define AN(f) = {g ∈ Bn| f ∗ g = 0}. Any function
g ∈ AN(f) is called an annihilator of f .

We are mostly interested in the lowest degree nonzero annihilators.

Definition 2 Given f ∈ Bn, its algebraic immunity is defined as [15] the minimum degree
of all nonzero annihilators of f or 1 + f , and it is denoted by AIn(f).

Note that AIn(f) ≤ deg(f), since f ∗ (1 + f) = 0. It can also be deduced from [12]
that AIn(f) ≤ ⌈n

2
⌉. Boolean functions and related results with algebraic (annihilator)

immunity has currently received serious attention [6, 7, 10, 8, 15, 16, 17, 20, 19] and
the first two constructions of Boolean functions having maximum algebraic (annihilator)
immunity is presented in [16, 17] (independently, little later, the construction of [17], with
more examples of symmetric functions, has been studied in [6]).

Let us now discuss the situation with respect to fast algebraic attack. Take f ∈ Bn with
maximum possible AI ⌈n

2
⌉. It may very well happen that fg = h, where deg(h) = ⌈n

2
⌉, but

deg(g) < ⌈n
2
⌉. In that case the lower degree of g may be exploited to mount a fast attack

(well known as fast algebraic attack) even if the algebraic immunity of f is the maximum
possible. In fact, there are examples, where one can get a linear g too. Initial study of
Boolean functions in this area has been started in [5, 1]. Since algebraic immunity is now
understood as a necessary (but not sufficient) condition against resisting algebraic and
fast algebraic attacks, we feel there is a need to consider the functions with full algebraic
immunity for their performance in terms of fg = h relationship. That is for the functions f

with full algebraic immunity we consider deg(h) ≥ ⌈n
2
⌉, and then after fixing the degree of

h, we try to get the minimum degree g. Even after this concept, the necessary condition of
using functions with maximum possible AI stays, but one needs to check the profile of the
functions for other fg = h relations before using that in a cryptosystem. One should be
aware that only checking these fg = h relationships are not sufficient in terms of resistance
to (fast) algebraic attacks as there are number of scenarios to mount algebraic and fast
algebraic attacks which are available in details in [12, 13].

It is always meaningful to consider fg = h only when deg(g) ≤ deg(h) as otherwise
fg = h will imply fh = h. So for all the discussion we will consider deg(g) ≤ deg(h) for a
relation fg = h unless mentioned otherwise.

In this correspondence, we present a specific class of balanced functions f for even
number of input variables n having algebraic immunity n

2
such that for any fg = h re-

lation if deg(h) = n
2

then deg(g) cannot be less than n
2
. This class of functions was not

known earlier. Further we show that existence of these functions has direct implication
towards existence of resilient functions with maximum possible algebraic immunity. A few
important open questions are also raised based on our work. The main contribution of this
correspondence is presented in Subsection 2.3.
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2 Functions with additional constraint over maximum

AI

In this section we consider the functions f ∈ Bn with maximum possible AI ⌈n
2
⌉ with the

following property. Given fg = h relation such that deg(h) = ⌈n
2
⌉, deg(g) ≥ ⌊n

2
⌋. This

is the additional constraint. These functions are indeed better than any functions with
only maximum AI with respect to fast algebraic attacks since one can not get a g having
deg(g) < ⌊n

2
⌋ when deg(h) is fixed at ⌈n

2
⌉. This is the best possible case when deg(h) is

fixed at ⌈n
2
⌉ as from [13, Theorem 7.2.1], there always exist g, h, such that fg = h, with

deg(g) + deg(h) ≤ n.

2.1 Some Basic results

First concentrate on functions having full algebraic immunity as presented in [16, 17].
For such a function f ∈ B2k, the lowest degree annihilators are at degree k and for its
complement 1 + f , the lowest degree annihilators are at degree k + 1 and hence it can
be shown that these functions cannot have fg = h relation such that deg(h) = k and
deg(g) < k. Now one can also check that the (2k + 1)-variable function F = x2k+1 + f is
of algebraic immunity k + 1; further F is balanced. One can also check that the function
x2k+2 + x2k+1 + f has algebraic immunity k + 1 and it is also an 1-resilient function. We
summarize these results below.

Theorem 1

1. For any even n, it is possible to get unbalanced f ∈ Bn with maximum possible AI n
2

such that given any fg = h relation having deg(h) = n
2
, deg(g) 6< n

2
.

2. For any even n it is possible to get 1-resilient function having full algebraic immunity.

With respect to Theorem 1(1), it is open to get such balanced functions fb when n is
even. We solve this problem in Subsection 2.2 for all even n except when n is an exact
power of 2 and then considering xn+1 + fb the corresponding case for Theorem 1(2) will
be solved for n + 1 (odd) variable functions. Note that experimental evidences of resilient
functions with full algebraic immunity are available in [15], but no theoretical result is
available in the literature.

Note that the results in Theorem 1 are proved using the functions available in [16, 17]
which are of the property that only one of f, 1 + f has minimum degree annihilators at
AIn(f) and the other one has minimum degree annihilators at degree 1 + AIn(f). For
such functions [18, Proposition 5], wt(f) = 22k−1 −

(

2k−1

k

)

(i.e., these functions are not

balanced) and nl(f) ≤ 22k−1 −
(

2k−1

k

)

.
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2.2 Annihilators of f, 1 + f at the same degree

Now we will concentrate on the functions such that the minimum degree annihilators of
the function and its complement are at the same degree but they never cancel out when
added. We formally define this as below.

Definition 3 Suppose f ∈ B2k be such that AI2k(f) = k, the maximum possible; the
lowest degree annihilators of both f and 1 + f are at degree k. Further there is no two
nonzero k-degree annihilators g and h of f and 1+f respectively, such that deg(g+h) < k.
We denote such functions by P2k functions.

Theorem 2 Suppose f be a P2k function. Then

1. AI2k+1(x2k+1 + f) = k + 1, which is the maximum possible;

2. if for f1, f2 ∈ B2k, ff1 = f2 where deg(f1) ≤ deg(f2) = k then deg(f1) = k;

3. nl(f) ≥ 22k−1 −
(

2k−1

k−1

)

.

Proof : Let us denote F = x2k+1 + f . Any nonzero annihilator of F is of the form
g1 +x2k+1(g1 + g2), where g1 ∈ AN(f) and g2 ∈ AN(1+ f) and both g1, g2 are not 0 at the
same time. Similarly any nonzero annihilator of 1 + F is of the form g2 + x2k+1(g1 + g2).
As g1 6= g2 and their highest degree terms can not cancel out in g1 + g2, their degree of the
annihilators can not be ≤ k. Thus AI2k+1(F ) = k + 1.

Now we prove item 2. Consider we have some f1, f2 such that ff1 = f2 with deg(f1) ≤
k, deg(f2) = k. Note that ff1 = f2 iff f(f1 + f2) = 0 and (1 + f)f2 = 0 [5]. So,
f1 = (f1 +f2)+f2 is the sum of the two k degree annihilators f1 +f2 and f2 of f and 1+f

respectively. As their highest degree terms never cancel out we have deg(f1) = k.
Next we prove the last item. Since x2k+1 + f is of full algebraic immunity k + 1,

following [19, Corollary 1], one gets nl(x2k+1 + f) ≥ 22k −
(

2k

k

)

. As for every 2k-variable

function f , we have nl(x2k+1 + f) = 2nl(f), we get nl(f) ≥ 22k−1 −
(

2k−1

k−1

)

.
This kind of function provides the best possible relationship when we use functions f

on n variables and consider fg = h relationship with deg(h) = n
2

as in that case deg(g)
can not be less than n

2
. This is the optimum situation when deg(h) = n

2
.

Now consider the following construction from [17, 18].

Construction 1 Consider ζ2k ∈ B2k, k ≥ 0, as follows:

ζ2k(x) =











0 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1},

1 for wt(x) > k.

We will specifically consider the case where the outputs ax corresponding to weight k

inputs take both the distinct values 0, 1 and the function becomes non symmetric. One can
get a balanced ζ2k(x) if the outputs corresponding to half of the weight k inputs are 0 and
the outputs corresponding to half of the weight k inputs are 1.
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Note that there are
( (2k

k
)

1

2(
2k

k
)

)

many balanced functions of the form ζ2k in Construction 1.

From ζ2k(x), the following construction is attempted [17, 18] to get balanced functions.

Construction 2

G(x1, . . . , x2k) = 0 for wt(x1, . . . , x2k) < k,

= 1 for wt(x1, . . . , x2k) > k,

= b(x1, . . . , x2k) for wt(x1, . . . , x2k) = k,

where b(x1, . . . , x2k) is a Maiorana-McFarland type bent function.

1. If wt(G) < 22k−1, then we choose 22k−1 − wt(G) points randomly from the inputs
having weight k and output 0 of G and toggle those outputs to 1 to get ζ2k.

2. If wt(G) > 22k−1, then we choose wt(G) − 22k−1 points randomly from the inputs
having weight k and output 1 of G and toggle those outputs to 0 to get ζ2k.

Thus one gets balanced ζ2k.

Now we like to point out the problems with the Constructions 1, 2 where the annihilators
of f and 1 + f are at the same degree.

1. The constructions are randomized and hence the exact nonlinearity of the functions
cannot be calculated. In fact, the experimental results show that the nonlinearity of
the functions are slightly less than 22k−1 −

(

2k−1

k−1

)

.

2. Experimental results [18, Table 3] show that there exists g having deg(g) < k such
that ζ2kg = h, where deg(h) = k.

We solve these problems in the construction presented in the following subsection where
the functions will have nonlinearity not less than 22k−1 −

(

2k−1

k−1

)

and there cannot be any
deg(g) < k.

2.3 The exact construction

We present the following construction.

Construction 3 Consider η2k ∈ B2k, as follows:

η2k(x) =











1 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1}, with the constraint ax = ax,

0 for wt(x) > k,

where x is the bitwise complement of the vector x. Further all the ax’s are not same,
i.e., they take both the values 0, 1.

Theorem 3 The functions η2k(x) as in Construction 3 are P2k functions.
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Proof : Using the similar proof technique used in [17, Theorem 1], one gets that both η2k

and 1 + η2k has no annihilators at degree less than k. Further,
∑k

i=0

(

n

i

)

is greater than
both wt(η2k) and wt(1 + η2k) and hence from [15, Theorem 1], both η2k and 1 + η2k must
have annihilator at degree less than or equal to k. Hence both η2k(x) and 1 + η2k(x) have
minimum degree annihilators exactly at degree k.

Any k degree function g ∈ B2k can be written as

a0 +
n

∑

i=0

aixi + · · ·+
∑

1≤<i1<···<ik≤n

ai1,...,ikxi1 . . . xik ,

where the coefficients a’s are either 0 or 1. If g is an annihilator of η2k then g(x) = 0
when η2k(x) = 1. Since η2k(x) = 1 for wt(x) < k, we can eliminate all the coefficients (a’s)
associated to monomials of degree ≤ k − 1 of g. Then we have η2k(x) = 1 for some input
vectors x of weight k. For such an x = (b1, . . . , bn), where bi1 = · · · = bik = 1 and rest
0, one can eliminate the coefficient ai1,...,ik . Thus the k degree independent annihilators of
η2k form the set S1 = {xj1 . . . xjk

: η2k(b1, . . . , bn) = 0 and bj1 = · · · = bjk
= 1, rest are 0}.

Here any k-degree annihilator of η2k does not contain any monomial of degree < k.
Define f ′(x) = 1+η2k(x). Following the similar proof for η2k(x), one can prove that the

space of k degree annihilators of f ′ is generated by the basis set {xj1 . . . xjk
: f ′(b1, . . . , bn) =

0 and bj1 = · · · = bjk
= 1, rest are 0}. Hence, the k degree annihilator space of f ′(x) =

1 + η2k(x) is generated by the basis set {(1 + xj1) . . . (1 + xjk
) : f ′(1 + b1, . . . , 1 + bn) =

1 + η2k(b1, . . . , bn) = 0 and bj1 = · · · = bjk
= 0, rest are 1}. So, the subspace of k degree

monomials of k degree annihilators of 1+η2k is generated by the basis set S2 = {xj1 . . . xjk
:

η2k(b1, . . . , bn) = 1 and bj1 = · · · = bjk
= 0, rest are 1}. One can check that these two sets

S1 and S2 are disjoint iff η2k(x) = η2k(x) for wt(x) = k.
Since the basis sets S1, S2 are disjoint, the k degree terms of any annihilator of η2k and

the k degree terms of any annihilator of 1 + η2k cannot be the same. Thus the proof.

Corollary 1 One can get a balanced η2k iff 2k is not a power of 2 and the count of such

balanced functions is
(

1

2(
2k

k
)

1

4(
2k

k
)

)

.

Proof : For a 2k-variable function, there are
(

2k

k

)

many input vectors of weight k and

there are 1

2

(

2k

k

)

many (x, x) distinct pairs of weight k. One can construct a balanced η2k if

and only if 1

2

(

2k

k

)

is even, i.e.,
(

2k

k

)

is divisible by 4. Since
(

2k

k

)

= 2
(

2k−1

k−1

)

, we need to test

whether
(

2k−1

k−1

)

is even.
Suppose the t = ⌊log2 2k⌋ + 1 bit binary representations of 2k, k, 2k − 1 and k − 1 are

as follows (most significant bit at the left most position):

2k = bt bt−1 . . . bl+1 bl = 1 0 0 . . . 0,
k = 0 bt . . . bl+2 bl+1 bl = 1 0 . . . 0,

2k − 1 = bt bt−1 . . . bl+1 1 + bl = 0 1 1 . . . 1,
k − 1 = 0 bt . . . bl+2 bl+1 1 + bl = 0 1 . . . 1,
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where 1 < l ≤ t, bi ∈ {0, 1} and bt = bl = 1. Now following Lucas’ theorem [11, Page 79]
with the prime 2, we have

(

2k−1

k−1

)

≡
(

bt

0

)(

bt−1

bt

)

. . .
(

0

bl+1

)(

1

0

)(

1

1

)

. . .
(

1

1

)

mod 2. If 2k is a power

of 2, then t = l. So,
(

2k−1

k−1

)

≡
(

1

0

)(

1

1

)

. . .
(

1

1

)

mod 2, i.e.,
(

2k−1

k−1

)

≡ 1 mod 2. Hence
(

2k−1

k−1

)

is
odd.

If 2k is not a power of 2, then
(

2k−1

k−1

)

≡
(

bt−1

bt

)

. . .
(

bl+1

bl+2

)(

0

bl+1

)

mod 2. At some place we

will get bs = 0 and bs+1 = 1 for l ≤ s < t because bt = 1. Hence
(

2k−1

k−1

)

is even if 2k is not
a power of 2.

Thus
(

2k

k

)

is divisible by 4, when 2k is not exactly a power of 2. In such a case, there

will be 1

2

(

2k

k

)

many distinct pairs of (x, x), where x is a 2k bit binary pattern of weight k.

One can choose 1

4

(

2k

k

)

many distinct pairs and in such inputs of η2k, output 1 is assigned

and for the rest of 1

4

(

2k

k

)

many distinct pairs of inputs, output 0 is assigned. This provides

a balanced η2k. Note that the number of such distinct balanced η2k is
(

1

2(
2k

k
)

1

4(
2k

k
)

)

.

Now an important question is whether there exist balanced P2k functions when 2k is a
power of 2. We have checked that for 2k = 4 = 22, there is no balanced P4 function by
running exhaustive computer program.

2.4 Functions on odd number of input variables

Now let us study the functions f on odd number of input variables 2k+1 having maximum
possible algebraic immunity k + 1. That is the functions must be balanced. Consider the
following balanced symmetric functions [17, 6, 5] on 2k + 1 variables having full algebraic
immunity k + 1.

Construction 4 Consider τ2k+1 ∈ B2k+1, as follows:

τ2k+1(x) =

{

1 for wt(x) ≤ k,

0 for wt(x) ≥ k + 1,

We list a few experimental values of minimum degree of g when τ2k+1g = h and deg(h) =
k + 1. In the format < 2k + 1, deg(g), deg(h) > these values are < 5, 1, 3 >, < 7, 1, 4 >,
< 9, 1, 5 >, < 11, 2, 6 >. Note that the minimum degree of g is substantially less than k and
hence the functions τ2k+1 are not interesting in resistance against fast algebraic attacks.

To get a better resistance against fast algebraic attack, we are interested about the
balanced functions with the following additional property. Given any fg = h relation
having deg(h) = k + 1, we require that deg(g) ≥ k.

We run exhaustive search for 2k + 1 = 5 variable functions and found such functions.
One example is the truth table 00000001000101110001101111011111 which is of nonlinear-
ity 10 and algebraic degree 4. Note that there is no nonlinearity 12 function on 5 variables
with such property. Existence of such functions for 7 variables onwards is an open question.
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