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Abstract. We describe a method for enumerating all essentially differ-
ent executions possible for a cryptographic protocol. We call them the
shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are
easy to determine from them, as are attacks and anomalies. cpsa, our
Cryptographic Protocol Shape Analyzer, implements the method.

In searching for shapes, cpsa starts with some initial behavior, and
discovers what shapes are compatible with it. Normally, the initial be-
havior is the point of view of one participant. The analysis reveals what
the other principals must have done, given this participant’s view.

The search is complete, i.e. every shape can in fact be found in a finite
number of steps. The steps in question are applications of two authenti-
cation tests, fundamental patterns for protocol analysis and heuristics for
protocol design. We have formulated the authentication tests in a new,
stronger form, and proved completeness for a search algorithm based on
them.

1 Introduction

The executions of cryptographic protocols frequently have very few essentially
different forms, which we call shapes. By enumerating these shapes, we may
ascertain whether they all satisfy a security condition such as an authentication
or confidentiality property. We may also find other anomalies, which are not
necessarily counterexamples to the security goals, such as involving unexpected
participants, or involving more local runs than expected.

In this paper, we describe a complete method for enumerating the shapes of a
protocol within a pure Dolev-Yao model [7]. If the protocol has only finitely many
essentially different shapes, the enumeration will terminate. From the shapes,
we can then read off the answers to secrecy and authentication questions and
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observe other anomalies. Our software implementation of this method is called
a Cryptographic Protocol Shapes Analyzer (cpsa).

We use the strand space theory [10]. A skeleton represents regular (non-
penetrator) behavior that might make up part of an execution, and a homo-
morphism is an information-preserving map between skeletons. Skeletons are
partially-ordered structures, like fragments of Lamport diagrams [13] or frag-
ments of message sequence charts [12]. A skeleton is realized if it is nonfragmen-
tary, i.e. it contains exactly the regular behavior of some execution. A realized
skeleton is a shape if it is minimal in a sense we will make precise (Definition 14).
We search for shapes using the authentication tests [10] to find new strands to
add when a skeleton is not large enough to be realized.

The main technical result underlying cpsa is completeness, in the sense
that—for any protocol—our authentication test search eventually discovers ev-
ery shape for that protocol (Thm. 3). It cannot terminate for every protocol [8].
It does, however, terminate for reasonably inclusive classes [4, 19].

The type-and-effect system for spi calculus [9] is related to the authenti-
cation tests, but differs from our work in two ways. First, we do not use the
syntactically-driven form of a type system, but instead a direct analysis of behav-
iors. Second, type-and-effect systems aim at a sound approximation, whereas our
work provides actual counterexamples when a security goal is not met. Blanchet’s
ProVerif [1] is also based on a sound approximation, and may thus refuse to cer-
tify a protocol even though there are no counterexamples.

cpsa’s search is related to the second version of Athena [18], which adopted
the authentication tests from [10]. However, cpsa differs from Athena in several
ways. First, it involves the regular behaviors alone; we never represent adversary
activity within a shape. Second, the notion of shape defines a criterion for which
possible executions should be considered, among the infinitely many executions
(of unbounded size) of any protocol. Third, we introduce strong versions of the
authentication tests, for which completeness is true.

The shapes describe protocol executions of all sizes; we do not follow the
widely practiced bounded protocol analysis (e.g. [2, 15]).

Structure of this paper. Section 2 describes the idea of shapes, using the
simplest example. Section 3 summarizes strand space terminology, with new
definitions for replacements and protocols. Section 4 states the new version of
the authentication test theorems as properties of bundles, i.e. complete protocol
executions including adversary behavior. In Section 5 we define skeletons and
homomorphisms, and in Section 6 we infer forms of the authentication tests that
concern homomorphisms from skeletons to realized skeletons.

In Section 7 we illustrate the process using the Yahalom protocol. This anal-
ysis illustrates almost every aspect of the cpsa search method. In Section 8, we
define the search’s control structure. Section 9 establishes completeness.

Finally, the cpsa implementation is the subject of Section 10.
A shorter version of this work, focusing on the search but not its complete-

ness, appears as [6].
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2 The Idea of Shapes

In practice, protocols have remarkably few shapes. The Needham-Schoeder-
Lowe [16, 14] protocol has only one. This holds whether we take the point of
view of a responder B, asking what global behavior must have occurred if B
has had a local run of the protocol, or whether we start from a local run of an
originator A. In either case, the other party must have had a matching run. A,
however, can never be sure that the last message it sends was received by B, as
A is no longer expecting to receive any further messages. Uniqueness of shape is
perhaps not surprising for as strong a protocol as Needham-Schroeder-Lowe.

However, even a flawed protocol such as the original Needham-Schroeder
protocol may have a unique shape, shown in Fig. 1.

A
{|Na ˆA|}pubk(C)- {|Na ˆA|}pubk(B)- B

•
­

�{|Na ˆNb|}pubk(A) � � {|Na ˆNb|}pubk(A) •
­

•
­

{|Nb|}pubk(C) - ≺
{|Nb|}pubk(B) - •

­
Fig. 1. Needham-Schroeder Shape for B (privk(A) uncompromised, Nb fresh)

Terminology. Newly introduced terminology is in boldface.
B’s local behavior is represented by the right-hand column in Fig. 1, consist-

ing of nodes connected by double arrows • ⇒ •. A’s local behavior is represented
by the left-hand column. We call such a column a strand. The nodes represent
message transmission or reception events, and the double arrows represent suc-
cession within a single linearly ordered local activity. The message transmitted
or received on a node n is written msg(n). A regular strand is a strand that
represents a principal executing a single local session of a protocol; it is called a
regular strand because the behavior follows the protocol rules. A local behavior
as used so far refers to a regular strand. (See Section 3.2.)

In the messages, we use {|t|}K to refer to the encryption of t with key K, and
tˆt′ means the pair of the messages t and t′. Messages are constructed freely via
these two operations from atomic values such as principal names A, nonces Na,
keys K, etc. (See Section 3.1.)

The subterm relation is the least reflexive, transitive relation such that t is
a subterm of {|t|}K , t is a subterm of tˆt′, and t is a subterm of t′ˆt (for all K, t′).
We write t v t′ if t is a subterm of t′. Thus, K 6v {|t|}K unless (anomalously)
K v t. Instead, K contributed to how {|t|}K was produced. This terminology has
an advantage: Uncompromised long-term keys are never subterms of messages
transmitted in a protocol; they are used by regular principals to encrypt, decrypt,
or sign messages, but are never transmitted. A value a originates at a node n
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if (1) n is a transmission node; (2) a v msg(n); and (3) if m is any earlier node
on the same strand, then a 6v msg(m). (Section 3.2, Example 3.)

Adversary behavior is represented by strands too. These penetrator strands
codify the basic abilities that make up the Dolev-Yao model. They include trans-
mitting a basic value such as a nonce or a key; transmitting an encrypted message
after receiving its plaintext and the key; and transmitting a plaintext after re-
ceiving ciphertext and decryption key. The adversary can also pair two messages,
or separate the pieces of a paired message. Since a penetrator strand that en-
crypts or decrypts must receive the key as one of its inputs, keys used by the
adversary—compromised keys—have always been transmitted by some partici-
pant. These penetrator strands are independent of the protocol under analysis.
(See Definition 3.)

Suppose that B is a finite, directed acyclic graph whose nodes lie on regular
and penetrator strands, and whose edges are either (a) strand succession edges
n0 ⇒ n1, or else (b) message transmission edges n→ m where msg(n) = msg(m),
n is a transmission node, and m is a reception node.

B is a bundle if (1) if n0 ⇒ n1 and n1 ∈ B, then n0 ∈ B, and (2) for every
reception node m ∈ B, there is a unique transmission node n ∈ B such that
the edge n → m is in B. The conditions (1,2) ensure that B is causally well
founded. A global behavior or execution, as used so far, refers to a bundle. (See
Definition 5.)

The NS Shape. In the Needham-Schroeder protocol, let us suppose that B’s
nonceNb has been freshly chosen and A’s private key privk(A) is uncompromised,
and that B has executed the strand shown at the right in Fig. 1. In protocols
using asymmetric encryption, the private keys are used only by recipients to de-
structure incoming messages. Given that—on a particular occasion—B received
and sent these messages, what must have occurred elsewhere in the network?

A must have had a partially matching strand, with the messages sent and
received in the order indicated by the arrows of both kinds and the connecting
symbols ≺. These symbols mean that the endpoints are ordered, but that other
behavior may intervene, whether adversary strands or regular strands. A’s strand
is only partially matching, because the principal A meant to contact is some C
which may or may not equal B. There is no alternative: Any diagram containing
the responder strand of Fig. 1 must contain at least an instance of the initiator
strand, with the events ordered as shown, or it cannot have happened.

Such a diagram is a shape. A shape consists of the regular strands of some
execution, forming a minimal set containing the initial regular strands (in this
case, just the right-hand column). Possible executions may freely add adversary
behavior. Each shape is relative to assumptions about keys and freshness, in this
case that privk(A) is uncompromised and Nb freshly chosen.

Although there is a single shape, there are two ways that this shape may be
realized in executions. Either (1) C’s private key may be compromised, in which
case we may complete this diagram with adversary activity to obtain the Lowe
attack [14]; or else (2) C = B, leading to the intended run.
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Some protocols have more than one shape, Otway-Rees, e.g., having four. In
searching for shapes, one starts from some initial set of strands. Typically, the
initial set is a singleton, which we refer to as the “point of view” of the analysis.

Skeletons, Homomorphisms, Shapes. A skeleton A is (1) a finite set of
regular nodes, equipped with additional information. The additional information
consists of (2) a partial order �A on the nodes indicating causal precedence; (3)
a set of keys nonA; and (4) a set of atomic values uniqueA. Values in nonA must
originate nowhere in A, whereas those in uniqueA originate at most once in A.1

(See Def. 8.)
A is realized if it has precisely the regular behavior of some execution. Every

message received by a regular participant either should have been sent previously,
or should be constructable by the adversary using messages sent previously. (See
Def. 10.)

Example 1. Fig. 1 shows skeleton Ans , with nonAns = {privk(A)} and uniqueAns
=

{Nb}. Ans is a realized skeleton.
The right-hand strand of Fig. 1, B’s responder strand, also forms a skeleton

Ab with the same choice of non, unique. Ab is not realized.
The first two nodes on Fig. 1 also form a skeleton Ab2 . This skeleton is

realized, as the adversary can prepare the incoming message of its first node,
and discard the outgoing message of its second node.

The result of replacing C by B throughout Ans—hence replacing pubk(C) by
pubk(B)—yields a realized skeleton Ansi , the Needham-Schroeder intended run.

A homomorphism is a map H from A0 to A1, written H : A0 7→ A1. We
represent it as a pair of maps (φ, α), where φ maps the nodes of A0 into those
of A1, and α is a replacement mapping atomic values into atomic values. We
write t ·α for the result of applying a replacement α to a message t. H = (φ, α) is
a homomorphism iff: (1) φ respects strand structure, and msg(n) ·α = msg(φ(n))
for all n ∈ A0; (2) m �A0 n implies φ(m) �A1 φ(n); (3) nonA0 · α ⊆ nonA1 ; and
(4) uniqueA0

· α ⊆ uniqueA1
. (Defs. 1, 12.)

Homomorphisms are information-preserving transformations. Each skeleton
A0 describes the realized skeletons reachable from A0 by homomorphisms. Since
homomorphisms compose, if H : A0 7→ A1 then any realized skeleton accessible
from A1 is accessible from A0. Thus, A1 preserves the information in A0: A1

describes a subset of the realized skeletons described by A0.
A homomorphism may supplement the strands of A0 with additional behavior

in A1; it may affect atomic parameter values; and it may identify different nodes
together, if their strands are compatible in messages sent and positions in the
partial ordering.

Example 2. The mapHns : Ab 7→ Ans embedding the responder strand of Fig. 1
into Ans is a homomorphism. Likewise if we embed the first two nodes of B’s

1 When n ⇒∗ n′ and n′ ∈ A, we require n ∈ A and n �A n′.
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strand (rather than all of Ab) into Ans . Another homomorphism Hi : Ans 7→ Ansi

rewrites each occurrence of C in Ans to B, hence each occurrence of pubk(C)
to pubk(B). It exhibits the Needham-Schroeder intended run as an instance of
Fig. 1. The composition Hnsi = Hi ◦Hns embeds the responder strand into the
intended run.

A homomorphism H = (φ, α) is nodewise injective if the function φ on
nodes is injective. The nodewise injective homomorphisms determine a useful
partial order on homomorphisms: When for some nodewise injectiveH1,H1◦H =
H ′, we write H ≤n H

′. If H ≤n H
′ ≤n H, then H and H ′ are isomorphic.

A homomorphism H : A0 7→ A1 is a shape iff (a) A1 is realized and (b) H
is ≤n -minimal among homomorphisms from A0 to realized skeletons. If H is a
shape, and we can factor H into A0

H07→ A′ H17→ A1, where A′ is realized, then
A′ cannot contain fewer nodes than A1, or identify fewer atomic values. A1 is as
small and as general as possible. (Def. 14.)

We call a skeleton A1 a shape when the homomorphism H (usually an em-
bedding) is understood. In this looser sense, Fig. 1 shows the shape Ans . Strictly,
the embedding Hns : Ab 7→ Ans is the shape. The embedding Hnsi : Ab 7→ Ansi ,
with target the Needham-Schroeder intended run Ansi , is not a shape. Ans iden-
tifies fewer atoms, and the map replacing C with B is a nodewise injective
Hi : Ans 7→ Ansi , so Hns ≤n Hi ◦Hns = Hnsi .

Shapes exist below realized skeletons: If H : A0 7→ A1 with A1 realized, then
the set of shapes H1 with H1 ≤n H is finite and non-empty. (Prop. 8.)

3 Terms, Strands, and Bundles

In this section and Section 5 we give precise definitions, which include a number
of fine points which seemed an unnecessary distraction in Section 2. In this sec-
tion, the definitions of replacement and protocol (Defs. 1, 4) are new versus [10].

3.1 Algebra of Terms

Terms (or messages) form a free algebra A, built from atomic terms via con-
structors. The atoms are partitioned into the types principals, texts, keys, and
nonces. An inverse operator is defined on keys. There may be additional func-
tions on atoms, such as an injective public key of function mapping principals to
keys, or an injective long term shared key of function mapping pairs of principals
to keys. These functions are not constructors, and their results are atoms. For
definiteness, we include here functions pubk(a), ltk(a) mapping principals to (re-
spectively) their public keys and to a symmetric key shared on a long-term basis
with a fixed server S. pubk(a)−1 is a’s private key, where pubk(a)−1 6= pubk(a).
We often write the public key pair as Ka,K

−1
a . By contrast, ltk(a)−1 = ltk(a).

Atoms, written in italics (e.g. a,Na,K
−1), serve as indeterminates (vari-

ables). We assume A contains infinitely many atoms of each type. Terms in A
are freely built from atoms using tagged concatenation and encryption. The tags
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are chosen from a set of constants written in sans serif font (e.g. tag). The tagged
concatenation using tag of t0 and t1 is written tagˆt0ˆt1. Tagged concatenation
using the distinguished tag null of t0 and t1 is written t0ˆt1. Encryption takes a
term t and an atomic key K, and yields a term as result written {|t|}K .

Replacements have only atoms in their range:

Definition 1 (Replacement, Application). A replacement is a function α
mapping atoms to atoms, such that (1) for every atom a, α(a) is an atom of the
same type as a, and (2) α is a homomorphism with respect to the operations on
atoms, i.e., α(K−1) = (α(K))−1 and α(pubk(a)) = pubk(α(a)).

The application of α to t, written t · α, homomorphically extends α’s action
on atoms. More explicitly, if t = a is an atom, then a · α = α(a); and:

(tagˆt0ˆt1) · α = tagˆ(t0 · α)ˆ(t1 · α)
({|t|}K) · α = {|t · α|}K·α

Application distributes through larger objects such as pairing and sets. Thus,
(x, y) · α = (x · α, y · α), and S · α = {x · α : x ∈ S}. If x 6∈ A is a simple value
such as an integer or a symbol, then x · α = x.

3.2 Strands and Origination

Since replacements map atoms to atoms, not to compound terms, unification
is very simple. Two terms are unifiable if and only if they have the same ab-
stract syntax tree structure, with the same tags associated with corresponding
concatenations, and the same type for atoms at corresponding leaves. To unify
t1, t2 means to partition the atoms at the leaves; a most general unifier is a finest
partition that maps a, b to the same c whenever a appears at the end of a path
in t1 and b appears at the end of the same path in t2. If two terms t1, t2 are
unifiable, then t1 · α and t2 · β are still unifiable.

The direction + means transmission, and the direction − means reception:

Definition 2 (Strand Spaces). A direction is one of the symbols +,−. A di-
rected term is a pair (d, t) with t ∈ A and d a direction, normally written +t,−t.
(±A)∗ is the set of finite sequences of directed terms.

A strand space over A is a structure containing a set Σ and two mappings: a
trace mapping tr : Σ → (±A)∗ and a replacement application operator (s, α) 7→
s · α such that (1) tr(s · α) = (tr(s)) · α, and (2) s · α = s′ · α implies s = s′.

By (2), Σ has infinitely many copies of each s, i.e. strands s′ with tr(s′) = tr(s).

Definition 3. A penetrator strand has trace of one of the following forms:
Mt: 〈+t〉 where t ∈text, principal,nonce KK : 〈+K〉
Cg,h: 〈−g, −h, +gˆh〉 Sg,h: 〈−gˆh, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.
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If s is a penetrator strand, then s · α is a penetrator strand of the same kind.
The subterm relation, written v, is the least reflexive, transitive relation

such that (1) t0 v tagˆt0ˆt1; (2) t1 v tagˆt0ˆt1; and (3) t v {|t|}K . Notice,
however, K 6v {|t|}K unless (anomalously) K v t. We say that a key K is used
for encryption in a term t if for some t0, {|t0|}K v t.

A node is a pair n = (s, i) where i ≤ length(tr(s)); strand(s, i) = s; and the
direction and term of n are those of tr(s)(i). We prefer to write s ↓ i for the
node n = (s, i). A term t originates at node n if n is positive, t v msg(n), and
t 6v msg(m) whenever m⇒+ n. Thus, t originates on n if t is part of a message
transmitted on n, and t was neither sent nor received previously on this strand.
If a originates on strand s, we write O(s, a) to refer to the node on which it
originates.

Example 3. Na originates on the first node of the Needham-Schroeder initiator
strand si, so we write O(si, Na) = si ↓ 1. Nb originates on the second node of the
responder strand sr, i.e. O(sr, Nb) = sr ↓ 2. More precisely, O(sr, Nb) = sr ↓ 2
unless Nb = Na, because if the two nonces were the same, then Nb would not
originate on the responder strand at all. Instead, it would have been received
before being re-transmitted. Thus, the replacement β = [Nb 7→ Na] destroys the
point of origination. Even if we have O(sr, Nb) = sr ↓ 2, we have O(sr ·β,Nb ·β)
undefined. In this sense, applying β to sr is a kind of degeneracy that destroys a
point of origination. When we have assumed that a value such as Nb originates
uniquely, we will avoid applying replacements that would destroy its point of
origination. (See Def. 4, regular strands, and Def. 12, homomorphism.)

A listener role is a regular strand Lsn[a] with trace 〈−a〉. It documents that
a is available on its own to the adversary, unprotected by encryption. Since
replacements respect type, atoms of different type must be overheard by different
roles. We assume each protocol Π has listener roles Lsn[N ] and Lsn[K] for nonces
and keys respectively, with traces 〈−N〉 and 〈−K〉.

3.3 Protocols and Bundles

Definition 4 (Protocols). A candidate 〈Π, strand non, strand unique〉 consists
of: (1) a finite set Π of strands—containing the listener strands Lsn[N ], Lsn[K]—
called the roles of the protocol; (2) a function strand non mapping each role r
to a finite set of keys strand nonr, called the non-originating keys of r; and (3) a
function strand unique mapping each role r to a finite set of atoms strand uniquer

called the uniquely originating atoms of r.
A candidate 〈Π, strand non, strand unique〉 is a protocol if (1)K ∈ strand nonr

implies that K does not occur in any node of r, but either K or K−1 is used
for encryption on some term of tr(r); and (2) a ∈ strand uniquer implies that a
originates on r, i.e. O(r, a) is well defined.

The regular strands of 〈Π, strand non, strand unique〉 form the set ΣΠ =

{r · α : r ∈ Π and ∀a ∈ strand uniquer, (O(r, a)) · α = O(r · α, a · α)}.
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The non-originating keys strand nonr and uniquely originating atoms strand uniquer

are used in Defs. 9 and 15, Clauses 1c,d. The condition that constrains r ·α based
on O(r, a) is a non-degeneracy condition. It says that replacement α determines
an instance of r only if it does not cause a value a, assumed uniquely originat-
ing, to collide with another value already encountered in executing r. Since for
a ∈ strand uniquer, the left hand side of (O(r, a)) · α = O(r · α, a · α) is well-
defined, we interpret the equation as meaning that the right hand side is also
well-defined, and has the same value.

Example 4. The Needham-Schroeder protocol has a set Πns of roles containing
the two roles shown in Fig. 1 and two listener roles, to hear nonces and keys.
For each r ∈ Πns, strand nonr = ∅ = strand uniquer.

Setting strand noninit = {privk(B)}, strand nonresp = {privk(A)} reproduces
the original Needham-Schroeder [16] assumption that each peer chosen is un-
compromised. The protocol achieves its goals relative to this assumption.

Setting strand uniqueinit = {Na} would express the assumption that every
initiator uses a strong random number generator to select nonces, so that the
probability of a collision or of an adversary guessing a nonce is negligible.

The set N of all nodes forms a directed graph G = 〈N , (→ ∪ ⇒)〉 with edges
n1 → n2 for communication (with the same term, directed from positive to
negative node) and n1 ⇒ n2 for succession on the same strand.

Definition 5 (Bundle). A finite acyclic subgraph B = 〈NB, (→B ∪ ⇒B)〉 of G
is a bundle if (1) if n2 ∈ NB is negative, then there is a unique n1 ∈ NB with
n1 →B n2; and (2) if n2 ∈ NB and n1 ⇒ n2, then n1 ⇒B n2. When B is a
bundle, �B is the reflexive, transitive closure of (→B ∪ ⇒B).

A bundle B is over 〈Π, strand non, strand unique〉 if for every s ↓ i ∈ B, (1)
either s ∈ ΣΠ or s is a penetrator strand; (2) if s = r ·α and a ∈ strand nonr ·α,
then a does not occur in B; and (3) if s = r · α and a ∈ strand uniquer · α, then
a originates at most once in B.

Example 5. Fig. 1 is a bundle if we replace C with B and then connect arrows
with matching labels. Alternatively, it becomes a bundle by adding penetrator
strands to unpack values encrypted with KC and repackage them encrypted with
KB .

We say that a strand s is in B if s has at least one node in B. Henceforth, assume
fixed some arbitrary protocol 〈Π, strand non, strand unique〉.

Proposition 1. Let B be a bundle. �B is a well-founded partial order. Every
non-empty set of nodes of B has �B-minimal members.

B · α is a bundle if, for every regular strand s = r · β in B, and for every
a ∈ strand uniquer · β, we have (O(s, a)) · α = O(s · α, a · α).

4 Strengthened Authentication Tests in Bundles

To direct the process of searching for realized skeletons, we use the authentication
tests [10] in a strengthened and simplified form.
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4.1 “Occurs Only Within”

An outgoing test node receives a uniquely originating atom in a new form, while
an incoming test node receives an encryption in a new form. A message t occurs
in a new form in msg(n) if it occurs outside a set S of encryptions, whereas
previously t occurred only within members of S:

Definition 6 (Occurs only within/outside). A term t0 occurs only within
S in t, where S is a set of encryptions, if:

1. t0 6v t; or
2. t ∈ S; or
3. t 6= t0 and either (3a) t = {|t1|}K and t0 occurs only within S in t1; or (3b)
t = tagˆt1ˆt2 and t0 occurs only within S in each ti (i = 1, 2).

It occurs outside S in t if t0 does not occur only within S in t.
We say that t exits S passing from t0 to t1 if t occurs only within S in t0

but t occurs outside S in t1. Term t exits S at a node n if t occurs outside S in
msg(n) but occurs only within S in every msg(m) for m ≺ n.

So t0 occurs only within S in t if in the abstract syntax tree, every path from
the root t to an occurrence of t0 as a subterm of t traverses some t1 ∈ S before
reaching t0.2 If it occurs outside S, this means that t0 v t and there is a path
from the root to an occurrence of t0 as a subterm of t that traverses no t1 ∈ S.

Example 6 (Needham-Schroeder Occurrences). Nb occurs only within the
singleton set Sr = {{|NaˆNb|}pubk(A)} in the term {|NaˆNb|}pubk(A). However,
Nb occurs outside Sr in the term {|Nb|}pubk(B), so Nb exits Sr passing from
{|NaˆNb|}pubk(A) to {|Nb|}pubk(B).

4.2 The Tests in Bundles

We say that a is protected in B iff msg(n) 6= a for all n ∈ B. By the definitions
of the penetrator strands for encryption and decryption (Definition 3), if the
adversary uses K for encryption or decryption anywhere in B, then K is not
protected in B. Thus, the adversary cannot create any encrypted term with a
protected key K. If K−1 is protected, it cannot decrypt any term encrypted with
K.

We say that a is protected up to m in B, written a ∈ Protm(B), iff, for all
n ∈ B, if msg(n) = a then m ≺B n. If a key is protected up to a negative node
m, then the adversary cannot use that key to prepare the term received on m.

Proposition 2 (Outgoing Authentication Test). Suppose an atom a orig-
inates uniquely at a regular node n0 in bundle B, and suppose

S ⊆ {{|t|}K : K−1 ∈ Protn1(B)}.
2 In our terminology (Section 3), the K in {|t|}K is not an occurrence as a subterm.
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If, for some n1 ∈ B, a exits S passing from msg(n0) to msg(n1), then a exits
from S at some positive regular m1 �B n1. If n0 and m1 lie on different strands,
then for some negative m0 ∈ B with a v msg(m0),

n0 ≺B m0 ⇒+ m1 �B n1.

Proof. Apply Prop. 1 to T =

{m : m �B n1 and a occurs outside S in msg(m)};

n1 ∈ T , so T has �B-minimal members m1. Since keys K used in S have
K−1 ∈ Protn1(B), m1 cannot lie on a decryption penetrator D-strand. By unique
origination, a does not lie on a M-strand or K-strand. By the definitions of S
and “occurs only within,” m1 does not lie on a S-, C-, or E-strand. Thus, m1

lies on some s ∈ ΣΠ . If n0 does not lie on s, then a does not originate on s, so
a v msg(m0) for some negative m0, with m0 ⇒+ m1. ut

In the outgoing test, we callm0 ⇒+ m1 an outgoing transforming edge for a, S. It
transforms the occurrence of a, causing a to exit S. We call (n0, n1) an outgoing
test pair for a, S when a originates uniquely at n0 and a exits S passing from
msg(n0) to msg(n1). We also sometimes call m1 an outgoing transforming node
and n1 an outgoing test node.

Example 7. In the Needham-Schroeder protocol, with responder role sr, the
nodes (sr ↓ 2), (sr ↓ 3) form an outgoing test pair for Nb, Sr, where Sr is as
given in Example 6. If the initiator role is si, then the edge si ↓ 2 ⇒ si ↓ 3 is a
outgoing transforming edge for Nb, Sr.

Also, the nodes (si ↓ 1), (si ↓ 2) form an outgoing test pair for Na, Si,
where Si is the singleton set {{|NaˆA|}pubk(C)}. Letting s′r = sr · [B 7→ C], then
s′r ↓ 1 ⇒ s′r ↓ 2 forms an outgoing transforming edge for Na, Si.

Proposition 3 (Incoming Authentication Test). Let t = {|t0|}K with K ∈
Protn1(B), and let S ⊆ {{|t′|}K0 : K−1

0 ∈ Protn1(B)}. If t occurs outside S in any
n1 ∈ B, then t exits S at some positive regular m1 �B n1.

Proof. Apply Prop. 1 to the set T =

{m : m �B n1 and t occurs outside S in msg(m)};

n1 ∈ T , so T has minimal members m1. Since keys K0 used in S have K−1
0 ∈

Protn1(B), m1 cannot lie on a decryption D-strand. Since K ∈ Protn1(B), m1

cannot lie on an encryption E-strand. The remaining penetrator strands are
inapplicable by the definition of “occurs only within”. ut

We call m1 an incoming transforming node for t, S, and n1 an incoming test node
for t, S. In our experience with existing protocols, Prop. 3 is always used with
S = ∅, i.e. t does not occur at all before m1. However, one can invent protocols
requiring non-empty S, and completeness requires the stronger form.
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4.3 Penetrator Webs and Test Nodes

We can see that Props. 2–3 have some sort of completeness by considering the
powers of the adversary. In essence, if any negative regular node is neither an
outgoing test node nor an incoming test node, then the adversary can derive the
term on it. Thus, only test nodes in this sense can provide authentication guar-
antees about the presence of regular activity. The rest could be the adversary’s
work.

To make this precise, we define penetrator webs, which characterize what the
adversary can do with fixed inputs from the regular participants.

Definition 7 (Penetrator web, derivable). Let G = 〈NG, (→G ∪ ⇒G)〉 be
a finite acyclic subgraph of 〈N , (→ ∪ ⇒)〉 such that NG consists entirely of
penetrator nodes. G is a penetrator web with support Sspt and result R if Sspt

and R are sets of terms and moreover:

1. If n2 ∈ NG is negative, then either msg(n2) ∈ Sspt or there is a unique n1

such that n1 →G n2.
2. If n2 ∈ NG and n1 ⇒ n2 then n1 ⇒G n2.
3. For each t ∈ R, either t ∈ Sspt or for some positive n ∈ NG, msg(n) = t.

If A is a set of atoms, then term t1 is derivable from Sspt avoiding A if there is
a web G with support SG ⊆ Sspt and t1 ∈ RG, where no atom in A originates
on a penetrator strand in G.

If n ∈ B is a negative node, then B includes a penetrator web G with result
RG = {msg(n)}. Its support SG = {msg(m) : m is positive regular and m ≺B n}.

When Sspt is a set of terms, we say that t exits Senc passing from Sspt to
t1 if for each t0 ∈ Sspt, t exits Senc passing from t0 to t1. Def. 6 says that this
means that t occurs only within the encryptions in Senc in every t0 ∈ Sspt, and
t occurs outside Senc in t1.

Suppose that B is a bundle, and U is the set of atoms that originate uniquely
in B, and on a regular node. In the following proposition, letting A = U ∪
Protn1(B), the first condition says that t1 6= msg(n1) for any outgoing test node
n1 ∈ B. The second condition says that t1 6= msg(n1) for any incoming test node
n1 ∈ B.

Proposition 4. Let A be a set of atoms; let Sspt be a finite set of terms; and let
t1 be a term such that, for any a ∈ A, if a v t1, then a v t0 for some t0 ∈ Sspt.
Suppose the following conditions hold:

1. for all a ∈ A and all sets of encryptions Senc, if a exits Senc passing from
Sspt to t1, then there is some {|t|}K0 ∈ Senc, such that K0

−1 is derivable from
Sspt avoiding A; and

2. for all encryptions {|t|}K , and all sets of encryptions Senc, if {|t|}K exits Senc

passing from Sspt to t1, then either K is derivable from Sspt avoiding A, or
else some K0

−1 with K0 ∈ used(Senc) is derivable from Sspt avoiding A.

Then term t1 is derivable from Sspt avoiding A.
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Proof. The proof is by structural induction on the pair (Sspt, t1), i.e. the ordering
under which (Sspt, t1) ≤ (S′spt, t

′
1) iff t1 v t′1, and for all t ∈ Sspt, there is some

t′ ∈ S′ such that t v t′.

Case t1 = a: If a 6∈ A, then the one-node web originating a satisfies the con-
ditions. Otherwise, Sa = {t ∈ Sspt : a v t} is non-empty. If a ∈ Sa, then
the empty web suffices. If some concatenation t0ˆt′0 ∈ Sa, then apply the
induction hypothesis to Sa \ {t0ˆt′0}∪{t0}∪{t′0}. This asserts the existence
of a penetrator web Ga deriving a. Obtain the desired web by prepending a
separation S-strand above any occurrences of t0 and t′0 in Ga.
Otherwise, Sa consists entirely of encryptions, and a exits Sa passing from
Sspt to a. By condition 1, there is some {|t|}K0 ∈ Sa with K0

−1 derivable
from Sspt avoiding A, using some web GK0

−1 . Thus, applying the induction
hypothesis to (Sa \ {{|t|}K0}) ∪ {t}, we obtain a web G. We may prepend
GK0

−1 and a decryption D-strand before G to obtain the required web.
Case t1 = t′1 ˆ t′′1 : Apply the induction hypothesis to t′1 and t′′1 , and append a

concatenation C-strand after the resulting webs.
Case t1 = {|t′1|}K : Suppose K is derivable from Sspt avoiding A, using some web

GK . Apply the induction hypothesis to t′1, obtaining a web G. Append an
encryption E-strand after GK and G to derive {|t′1|}K .
Otherwise, by condition 2, some K−1

0 with {|t0|}K0 ∈ Senc is derivable from
Sspt avoiding A, using a web GK0

−1 . Apply the induction hypothesis to
(Sspt\{{|t0|}K0})∪{t0}, obtaining a web G. Prepend GK0

−1 and a decryption
D-strand before G. ut

5 Preskeletons, Skeletons, and Homomorphisms

The notion of penetrator web from Section 4.3 extracts parts of the adversary
activity in a bundle, helping us focus on its structure. The notion of a skeleton
is intended to extract parts of the regular behavior of bundles, so that we can
focus our inferences on what regular behavior must also be present.

5.1 Skeletons

A preskeleton is potentially the regular (non-penetrator) part of a bundle or of
some portion of a bundle, and skeletons are the subset that are well-behaved, in
that atoms intended to originate uniquely do so.

A preskeleton consists of nodes annotated with additional information, in-
dicating order relations among the nodes, uniquely originating atoms, and non-
originating atoms. We say that an atom a occurs in a set nodes of nodes if for
some n ∈ nodes, a v msg(n). A key K is used in nodes if for some n ∈ nodes,
{|t|}K v msg(n). We say that a key K is mentioned in nodes if K or K−1 either
occurs or is used in nodes. For a non-key a, a is mentioned if it occurs.

Definition 8. A four-tuple A = (nodes,�, non, unique) is a preskeleton if:
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1. nodes is a finite set of regular nodes; n1 ∈ nodes and n0 ⇒+ n1 implies
n0 ∈ nodes;

2. � is a partial ordering on nodes such that n0 ⇒+ n1 implies n0 � n1;
3. non is a set of keys, and for all K ∈ non, either K or K−1 is used in nodes;
3′. for all K ∈ non, K does not occur in nodes;
4. unique is a set of atoms, and for all a ∈ unique, a occurs in nodes.

A preskeleton A is a skeleton if in addition:

4′. a ∈ unique implies a originates at no more than one node in nodes.

We select components of a preskeleton using subscripts, so, in A = (N,R, S, S′),
�A means R and uniqueA means S′. A need not contain all of the nodes of a
strand, just some initial subsequence. We write n ∈ A to mean n ∈ nodesA, and
we say that a strand s is in A when at least one node of s is in A. The A-height
of s is the largest i with s ↓ i ∈ A. By Clauses 3, 4, uniqueA ∩ nonA = ∅.

Example 8. Ans, shown in Fig 1, is a skeleton with non = {privk(A)}, unique =
{Nb}. Its ordering is generated from the double arrows ⇒, single arrows →, and
precedence signs. Ab, containing only the responder strand sr on the right side
of Fig 1, is also a skeleton (equipped with non = {privk(A)}, unique = {Nb}).
However, if we adjoin a copy s′r = sr · [B 7→ C] to Ans, then the result is not a
skeleton, but only a preskeleton Apre . Nb originates both at sr ↓ 2 and at s′r ↓ 2.
If instead we adjoin s′′r = sr · [B 7→ C,Nb 7→ N ′

b], we obtain a skeleton A′
pre .

The skeletons for a protocol 〈Π, strand non, strand unique〉 are defined like
the bundles for that protocol.

Definition 9. A is a preskeleton for protocol 〈Π, strand non, strand unique〉 iff
for every n ∈ nodesA with n = s ↓ i, (1) s ∈ ΣΠ ; (2) if s = r · α and
a ∈ strand nonr · α, then a does not occur in A; and (3) if s = r · α and
a ∈ strand uniquer · α, then a ∈ uniqueA. A is a skeleton for a protocol if A
is a skeleton, and A is a preskeleton for that protocol.

5.2 Skeletons and Bundles

Bundles correspond to certain skeletons:

Definition 10. Bundle B realizes skeleton A if:

1. The nodes of A are the regular nodes n ∈ B.
2. n �A n

′ just in case n, n′ ∈ nodesA and n �B n
′.

3. K ∈ nonA iff case K or K−1 is used in nodesA but K occurs nowhere in B.
4. a ∈ uniqueA iff a originates uniquely in B.

The skeleton of B is the skeleton that it realizes. The skeleton of B, written
skeleton(B), is uniquely determined. A is realized if some B realizes it.
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By condition (4), B does not realize A if A is a preskeleton but not a skeleton.
Given a skeleton A, methods derived from [10] determine whether A is realized.
Skeleton Ans from Example 8 is realized, but Nb is not.

Definition 11. A term t is derivable before n in A if there is a penetrator web
G with t ∈ RG such that:

1. SG ⊆ {msg(m) : m positive and m �A n};
2. If K ∈ nonA, K does not originate in Gn; and
3. If a ∈ uniqueA and a originates in A, then a does not originate in Gn.

Proposition 5. A skeleton A is realized iff, for every negative n ∈ A, msg(n)
is derivable before n in A.

5.3 Homomorphisms

When A is a preskeleton, we may apply a substitution α to it, subject to the
same condition as in Prop. 1. Namely, suppose α is a replacement, and suppose
that for each regular strand s = r · β such that s has nodes in A, and for each
atom b ∈ ur · β,

(O(s, b)) · α = O(s · α, b · α).

Then A·α is a well defined object. However, it is not a preskeleton when x·α = y·α
where x ∈ nonA while y occurs in A. In this case, no further identifications can
restore the preskeleton property. So we are interested only in replacements with
the property that x · α = y · α and x ∈ nonA implies y does not occur in A. On
this condition, A · α is a preskeleton.

However, A may be a skeleton, while objects built from it are preskeletons but
not skeletons. In a preskeleton, we can sometimes, though, restore the skeleton
unique origination property (4′) by a mapping φ that carries the two points of
origination to a common node. This will be possible only if the terms on them are
the same, and likewise for the other nodes in A on the same strands. We regard
φ, α as an information-preserving, or more specifically information-increasing,
map. It has added the information that a1, a2, which could have been distinct,
are in fact the same, and thus the nodes n1, n2, which could have been distinct,
must also be identified.

Example 9. A′
pre is a skeleton, but the result of applying the replacement

[N ′
b 7→ Nb] yields the preskeleton Apre which is not a skeleton. If the map

φ : nodesApre 7→ nodesAns maps the successive nodes of the strand s′r to the nodes
of the strand sr, then it will identify s′r ↓ 2 with sr ↓ 2, and thus restore the
unique point of origination for Nb.

Definition 12. Let A0,A1 be preskeletons, α a replacement, φ : nodesA0 →
nodesA1 . H = [φ, α] is a homomorphism if

1a. For all n ∈ A0, msg(φ(n)) = msg(n) · α, with the same direction;
1b. For all s, i, if s ↓ i ∈ A then there is an s′ s.t. for all j ≤ i, φ(s ↓ j) = (s′, j);
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2. n �A0 m implies φ(n) �A1 φ(m);
3. nonA0 · α ⊆ nonA1 ;
4. uniqueA0

·α ⊆ uniqueA1
; and φ(O(s, a)) = O(s′, a ·α) whenever a ∈ uniqueA0

,
O(s, a) ∈ A0, and φ(s ↓ j) = s′ ↓ j.

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1. When
a · α = a · α′ for every a that occurs or is used for encryption in dom(φ), then
[φ, α] = [φ, α′]; i.e., [φ, α] is the equivalence class of pairs under this relation.

The condition for [φ, α] = [φ, α′] implies that the action of α on atoms not
mentioned in the A0 is irrelevant. The condition on O in Clause 4 avoids the de-
generacy in which a point of origination is destroyed for some atom a ∈ uniqueA0

.
We stipulate that such degenerate maps are not homomorphisms. For instance,
a replacement α that sends both Na and Nb to the same value would not fur-
nish homomorphisms on Ans . A responder, expecting to choose a fresh nonce,
inadvertently selecting the same nonce Na he has just received, would be an
event of negligible probability. Thus, we may discard this degenerate set. Some
homomorphisms are given in Example 2.

A homomorphism I = [φ, α] : A0 7→ A1 is an isomorphism iff φ is a bijection
and there is an injective α′ such that [φ, α] = [φ, α′]. Two homomorphisms
H1,H2 are isomorphic if they differ by an isomorphism I; i.e. H1 = I ◦H2.

When transforming a preskeleton A into a skeleton, one identifies nodes n, n′

if some a ∈ uniqueA originates on both; to do so, one may need to unify additional
atoms that appear in both msg(n),msg(n′). This process could cascade. However,
when success is possible, and the cascading produces no incompatible constraints,
there is a canonical (universal) way to succeed:

Proposition 6. Suppose H0 : A 7→ A′ with A a preskeleton and A′ a skeleton.
There exists a homomorphism GA and a skeleton A0 such that GA : A 7→ A0

and, for every skeleton A1 and every homomorphism H1 : A 7→ A1, for some H,
H1 = H ◦GA. GA and A0 are unique to within isomorphism.

Definition 13. The hull of A, written hull(A), is the universal map GA given
in Prop. 6, when it exists. We write hullα(·) for the partial map that carries any
skeleton A to hull(A · α).

We sometimes use the word hull to refer also to the target A0 of GA.
We say that a skeleton A0 is live if for some H,A1, H : A0 7→ A1 and A1 is

realized. Otherwise, it is dead. There are two basic facts about dead skeletons:

Proposition 7 (Dead Skeletons). (1) If a ∈ nonA and (Lsn[a]) ↓ 1 ∈ A, then
A is dead. (2) If A is dead and H : A 7→ A′, then A′ is dead.

5.4 Shapes

Shapes are minimal realizable skeletons, or more precisely, minimal homomor-
phisms with realizable targets.
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Definition 14 (Shape). [φ, α] : A0 7→ A1 is nodewise injective if φ is an injec-
tive function on the nodes of A0.

A homomorphism H0 is nodewise less than or equal to H1, written H0≤nH1,
if for some nodewise injective J , J ◦H0 = H1. H0 is nodewise minimal in a set
S if H0 ∈ S and for all H1 ∈ S, H1 ≤n H0 implies H1 is isomorphic to H0.

H : A0 7→ A1 is a shape for A0 if H is nodewise minimal among the set of
homomorphisms H ′ : A0 7→ A′

1 where A′
1 is realized.

The composition of two nodewise injective homomorphisms is nodewise injec-
tive, and a nodewise injective H : A 7→ A is an isomorphism. Thus, H0,H1 are
isomorphic if each is nodewise less than or equal to the other. Hence, the relation
≤n is a partial order on homomorphisms, to within isomorphism.

When we say that A1 is a shape, we mean that it is the target of some shape
H : A0 7→ A1, where a particular A0 is understood from the context.

Proposition 8. Let H : A0 7→ A1. The set S = {H ′ : H ′ ≤n H} is finite (up to
isomorphism). If A1 is realized, then at least one H ′ ∈ S is a shape for A0.

Proof. Letting H = [φ, α], we generate S by making two choices. For each node
n ∈ (A1 \ φ(A0)), we consider whether to omit it and all nodes later than n on
the same strand. Second, we also consider, whenever two strands contain the
same parameter a, whether to assign these parameters different values.

We partition the strands containing a parameter a. A partition is permissible
if it respects identifications already present in A0. By this we mean that s′0, s

′
1

are in the same partition class whenever there are strands s0, s1 with φ(s0) = s′0
and φ(s1) = s′1, and s0, s1 already agree on this parameter. We choose a partition
for each parameter a.

S contains the homomorphisms determined by a choice of nodes to omit and
a family of permissible partitions. We replace each occurrence of a either by a
representative atom from α−1(a) or by a new value not mentioned in A0. There
are only finitely many ways to do this (to within renaming), so S is finite.

H is a member of S, namely the one that omits no nodes and has a single
partition class for each a. Thus, if A1 is realized, S has members with a realized
target. Letting S ′ ⊆ S be the set of H ′ ∈ S such that the target of H ′ is realized,
S ′ is non-empty and finite; hence, S ′ has ≤n -minimal members. ut

Example 10. The process described in this proof, applied to the embedding
Hnsi : Ab 7→ Ansi (see Example 2), discovers that the multiple occurrences of
pubk(B) can be partitioned into those on the responder strand and those on the
initiator strand. These can be distinguished, preserving being realized. Applied
to the embedding of Ab2 (containing the first two responder node, see Example 1)
into Ansi , it discards all the nodes outside Ab2 , since the latter is already realized.

6 The Tests in Skeletons

To adapt the authentication tests of Section 4 to skeletons and homomorphisms,
there are essentially two steps. First, we must “pull back” from bundles or re-
alized skeletons to the skeletons that reach them via homomorphisms. Second,
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we can no longer read off the safe atoms from Prot(B). We have only partial
information about which atoms will turn out to be safe or compromised. Thus,
we speculatively consider both possibilities, i.e. both the possibility that a key
will turn out to be compromised, and also the possibility that the transformed
nodes need to be explained with a transforming edge.

Definition 15 (Augmentations, Contractions). 1. An augmentation is an
inclusion [id, id] : A0 7→ A1 such that:
(a) nodesA1 \ nodesA0 = {s ↓ j : j ≤ i} for some s = r · α;
(b) �A1 is the transitive closure of (i) �A0 ; (ii) the strand ordering of s up

to i; (iii) pairs (n,m) or (n,m) with n ∈ nodesA0 , m = s ↓ j, and j ≤ i;
and (iv) the pair (na,ma), when a originates on a node na ∈ A0 and a
is mentioned in ma = s ↓ j, for any a ∈ uniqueA1

.
(c) nonA1 = nonA0 ∪ (strand nonr · α); and
(d) uniqueA1

= uniqueA0
∪ (strand uniquer · α).

2. An augmentation H : A0 7→ A1 is an outgoing augmentation if there exists
an outgoing test edge n0, n1 ∈ A0 with no outgoing transforming edge in A0,
and s ↓ 1 ⇒∗ m0 ⇒+ s ↓ i, where m0 ⇒+ s ↓ i is the earliest transforming
edge for this test on s. The additional pairs in the ordering (clause 1b(iii))
are the pairs (n0,m0) and ((s ↓ i), n1).

3. It is an incoming augmentation if it adds an incoming transforming edge for
an incoming test node in A0. The pair (m1, n1) in the notation of Prop. 3 is
the additional pair in the ordering.

4. It is a listener augmentation for a if it adds a listener strand Lsn[a], with no
pairs added to the ordering.

5. A replacement α is a contraction for A if there are two distinct atoms a, b
mentioned in A such that a · α = b · α. We write hullα(A) for the canonical
homomorphism from A to hull(A·α), when the latter is defined. (See Prop. 6.)

Example 11. The embeddings Hns ,Hnsi (Example 2) are outgoing augmenta-
tions; the test edge lies between the second and third nodes of the responder
strand. Hns is more general, as Hnsi factors through it.

We use a listener strand Lsn[K], having the form K→ • to mark a keyK as a target
for compromise. Lsn[K] records a commitment, the commitment to somehow
compromise the value K before reaching a realized skeleton, if a transforming
edge has not been chosen. The listener strand thus tests compromise for K.
If K cannot be compromised, the skeleton containing the listener strand will
be dead, and no homomorphism leads from it to a realized skeleton. Listener
strands, lacking transmission nodes, never precede anything else; they are always
maximal in �A.

Since in a realized skeleton listener strands may be freely omitted, or freely
added as long as the skeleton remains realized, we regard realized skeletons as
similar if they differ only in what listener strands they contain. We write A1∼LA2

for skeletons that are similar in this sense. Shapes, being minimal, contain no
listener strands; a homomorphism that simply embeds A1 into a A2 having more
listener strands is nodewise injective.
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We write H1 ∼L H2 if by adding listener strands we can equalize the homo-
morphisms H1,H2. That is, H1 ∼L H2 iff each Hi (for i = 1, 2) is of the form
Hi : A 7→ Ai, and there are embeddings Ei : Ai 7→ A′ such that A1 ∼L A′ ∼L A2

and E1 ◦H1 = E2 ◦H2.
The search-oriented version of Prop. 2 states that when a skeleton A0 with an

unsolved outgoing transformed pair leads to a realized skeleton A1, we can reach
it starting with one of three kinds of steps: (1) a contraction, (2) an outgoing
augmentation, or (3) adding a listener strand witnessing that one of the relevant
keys is in fact not properly protected by the time we reach A1.

Theorem 1 (Outgoing Augmentation). Let H : A0 7→ A1, where A1 is re-
alized. Let n0, n1 ∈ A0 be an outgoing test pair for a, S, for which A0 contains
no transforming edge. Then there exist H ′,H ′′ such that either:

1. H = H ′′ ◦H ′, and H ′ = hullα(A0) for some contraction α; or
2. H = H ′′ ◦H ′, and H ′ is some outgoing augmentation for a, S; or
3. H ∼L H

′′ ◦ H ′, and H ′ is a listener augmentation H ′ : A0 7→ A′
0 adding

Lsn[K−1], for some K ∈ used(S).

Proof. Assuming H = [φ, α] : A0 7→ A1 with A1 realized, say with skeleton(B) =
A1, we have the following possibilities. If α contracts any atoms, then we may
factor H into a contraction followed by some remainder H ′′ (clause 1).

If α does not contract any atoms, then (φ(n0), φ(n1)) is an outgoing test pair
for a ·α, S ·α. There are now two cases. First, suppose used(S) ·α ⊆ Protφ(n1)(B).
Then we may apply Prop. 2 to infer that B and thus also A1 contains an outgoing
transforming edge m0 ⇒+ m1 for a · α, S · α. Since α is injective on atoms
mentioned in A0, we may augment A0 with an edge m′

0 ⇒+ m′
1 such that

msg(m′
0) · α = msg(m0) and msg(m′

1) · α = msg(m1).
Second, if there is some K ∈ used(S) such that K−1 · α 6∈ Protφ(n1)B, then

there is A′
1∼LA1 such that A′

1 contains Lsn[K−1·α], and φ(n1) 6� (Lsn[K−1 · α]) ↓
1. Hence, clause 3 is satisfied.

Protocols have only finitely many roles, hence only finitely many transforming
edges that can solve a given outgoing test pair n0, n1. Each S uses only finitely
many keys. Moreover, each A0 mentions only finitely many atoms. Thus, there
are only finitely many (non-isomorphic) contractions.

Proposition 9. Let n0, n1 ∈ A0 be an outgoing test pair for a, S, for which
A0 contains no transforming edge. There are finite families F = {H ′

j}j≤k of
contractions and augmentations as in Theorem 1, such that for every H : A0 7→
A1, where A1 is realized, H ∼L H

′′ ◦H ′
j for some H ′′ and H ′

j ∈ F .
For each unsolved n0, n1 ∈ A0 and a, S, there is a finite, most general set

F of contractions and augmentations H solving it, meaning that any such H
factors through some member of F .

The outgoing augmentations in a most general family are obtained by unifying
messages in the roles of Π with terms in S. One selects edges lying between a
negative node in which a occurs only within S · α and a positive node in which
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a occurs outside S · α. We need a contraction α only if either (1) n0 · α, n1 · α is
no longer an outgoing transformed pair, or else (2) for some candidate outgoing
augmentation, n0 · α, n1 · α is the most general version of the test that it solves.
This occurs when the protocol role mentions the same atom at several locations
where different atoms are mentioned in n0, n1; α must then identify these atoms.

We call a most general F an outgoing cohort for n0, n1 and a, S.
Incoming augmentations are similar to outgoing ones, except that the key

used for encryption in the test node is also relevant. The proof is similar.

Theorem 2 (Incoming Augmentation). Let H : A0 7→ A1, where A1 is re-
alized. Let n1 ∈ A0 be an incoming test node for t, S with t = {|t0|}K . If there is
no incoming transforming node for t, S in A0, then there exist H ′,H ′′ such that
either:

1. H = H ′′ ◦H ′, and H ′ = hullα(A0) for some contraction α; or
2. H = H ′′ ◦H ′, for H ′ an incoming augmentation emitting {|t0|}K occurring

outside S; or
3. H ∼L H

′′ ◦ H ′, for H ′ a listener augmentation H ′ : A0 7→ A′
0 adding K or

some K−1
0 , for K0 ∈ used(S).

Each incoming test determines a most general family of augmentations and con-
tractions, akin to those in Prop. 9; we refer to them as incoming cohorts.

Evidently, Thms. 1–2 are useful for authentication results. Thm. 1 is also
useful for checking secrecy for atoms a. Starting from A0, we add a listener
Lsn[a] to A0. If a is not penetrator-derivable, then Lsn[a] is an outgoing test
node. Incoming and outgoing augmentations may lead from A0 ∪ Lsn[a] to a
realized skeleton. Success guarantees that a can become compromised, while
failure ensures its safety.

7 The Yahalom Protocol

Yahalom’s protocol is quite compact, but subtle. The shape search for the re-
sponder illustrates almost every aspect of the cpsa search method.

7.1 Protocol Definition

The Yahalom protocol (Fig. 2 [17]) provides a session key K to principals sharing
long-term symmetric keys with a key server. We let ltk(·) map each principal A
to its long term shared key ltk(A). We assume that all participants agree on the
server, which does not also participate as a client.

The protocol contains three roles, the initiator, the responder, and the server.
Each is described by one strand in Fig. 2, each parametrized by A,B,Na, Nb,K.
The parameters are atomic values, and the instances of each role are constructed
by replacing them with other atomic values. The behavior Init of the initiator
consists in transmitting AˆNa followed by receiving some message of the form
{|BˆK ˆNaˆNb|}ltk(A) and finally transmitting {|Nb|}K . The other roles are also
self-explanatory. The key server is trusted to generate a fresh, uniquely originat-
ing session key K in each run, i.e. strand uniqueServ = {K}.
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Init
AˆNa - AˆNa - Resp

�Bˆ{|AˆNa ˆNb|}ltk(B) •
­

•
­
wwwww

� {|BˆK ˆNa ˆNb|}ltk(A)

{|AˆK|}ltk(B) - •
­
wwwww

•
­
wwwww

{|Nb|}K - {|Nb|}K - •
­

Serv �Bˆ{|AˆNa ˆNb|}ltk(B)

�{|BˆK ˆNa ˆNb|}ltk(A) •
­
•
­

{|AˆK|}ltk(B) -

Fig. 2. Yahalom protocol (forwarding removed)

7.2 A Search: Shapes for the Responder

Suppose an execution contains a local run sr of the responder’s role as in the
upper right column of Fig. 2. We assume the long term keys ltk(A), ltk(B) are
uncompromised, as no authentication can be achieved otherwise. Similarly, we
assume the responder’s nonce Nb to be fresh and unguessable.

So let the initial skeleton A0 consist of sr, with nonA0 = {ltk(A), ltk(B)} and
uniqueA0

= {Nb}. What skeletons are shapes for A0? Or more precisely, for what
realized skeletons A is there a shape H : A0 7→ A?

We will find only one possibility, the skeleton A4 (Fig. 5). Any realized A
containing any responder strand s′r—with uncompromised long-term keys and
a fresh nonce—has a subskeleton A′ containing s′r, with J : A4 7→ A′. J is both
nodewise injective and surjective, i.e. an isomorphism on nodes, although it may
identify atoms. In this sense, A′, the portion of A containing s′r, resembles A4.

Transforming the Nonce. B chooses a fresh nonce Nb in node n0 (see Fig. 3),
and transmits it within the encrypted unit {|AˆNaˆNb|}ltk(B). In B’s node n2,
it is received outside that unit, in the form {|Nb|}K . So n0, n2 is an outgoing test
pair for Nb, S1 where S1 =

{{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key}.

1. The only outgoing transforming edges for Nb, S1 lie on initiator strands.
Unifying node 2 of the role with messages in S1 shows that the parameters
must be A,B,Na, Nb, and some K ′. We ask later whether K ′ = K.

2. Alternatively some decryption key may be compromised. Since used(S1) =
{ltk(A), ltk(B)} contains symmetric (self-inverse) keys, this means we con-
sider adding Lsn[ltk(A)] or Lsn[ltk(B)].
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No contraction is relevant. Thus, these three embeddings—adding to A0 either an
initiator strand si, or a listener strand Lsn[ltk(A)], or a listener Lsn[ltk(B)]—form
an outgoing cohort. When adding si, we know that n0 ≺ (si ↓ 2) ⇒ (si ↓ 3) ≺ n2.

A : si B : sr

S : s<3
s

�............................ n0

­w

•
­
wwwwwwww

�.................................. m1

­w

?

­w
n1

­
wwwwwwww

•
­
wwwwwwww

.................................................................................- n2

­w
A, B, Na, Nb, K

′ A, B, Na, Nb, K
′ A, B, Na, Nb, K

Fig. 3. Skeleton A1, with nonA1 = {ltk(A), ltk(B)} and uniqueA1
= {Nb, K

′}.

Since nonA0 = {ltk(A), ltk(B)}, Prop. 7 says that A0 ∪ Lsn[ltk(A)] and A0 ∪
Lsn[ltk(B)] are unrealizable. No bundle B can ever contain a listener strand
for a value that originates nowhere. Thus, the embeddings of Case 2 are dead.
Thus, every homomorphism from A0 to a realized skeleton factors through the
embedding A0 7→ A0 ∪ {si} of Case 1.

We again have an outgoing test edge between n0 and si ↓ 2, for Nb, S2 where

S2 = {{|AˆNaˆNb|}ltk(B)} ∪ {{|BˆK ′′ˆNaˆNb|}ltk(A) : K ′′ 6= K ′}.

Nb originates only at n0, where it occurs only within S2; however, in msg(si ↓ 2),
Nb occurs outside S2 in the form {|BˆK ′ˆNaˆNb|}ltk(A).

3. The only outgoing transforming edges for Nb, S2 lie on server strands ss.
Unifying node 1 of the role with messages in S2 shows that the parameters
must be A,B,Na, Nb, and some K ′′. Since Nb must occur outside S2 in
ss ↓ 2, we have K ′′ = K ′; so that the last parameter is K ′. The last node
ss ↓ 3 may not be included; we will write s<3

s for the initial segment of ss.
4. Alternatively a decryption key in used(S1) = {ltk(A), ltk(B)} may be com-

promised. However, the listener strands produce dead skeletons, as in Case 2.

Thus, any homomorphism from A0 to a realized skeleton must factor through the
embedding A0 7→ A0 ∪ sr ∪ s<3

s . We call this skeleton A1, shown in Fig 3, which
also shows how the ordering relation extends. Since the server always provides
a fresh session key, we also have K ′ ∈ uniqueA1

.
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Does K′ = K? The server generated K ′ on strand ss and delivers it to A on
si ↓ 2. B receives K on n1, and on n2 finds K also used to encrypt the nonce
Nb. Must the keys K ′,K be the same, or could they be distinct?

Nodes n0, n2 form an outgoing test pair for Nb and the set

S3 = { {|AˆNaˆNb|}ltk(B), {|BˆK ′ˆNaˆNb|}ltk(A), {|Nb|}K′ }.

The resulting outgoing cohort consists of Cases 5–7:

5. Under the contraction β that maps K ′ 7→ K and is elsewhere the identity,
no new edge is needed, as {|Nb|}K′ · β = {|Nb|}K · β.

6. Another server strand s′s could receive Nb in its original form and transmit
Nb and a new session key K ′′ as {|BˆK ′′ˆNaˆNb|}ltk(A).

7. used(S3) = {ltk(A), ltk(B),K ′}. Although adding Lsn[ltk(A)] and Lsn[ltk(B)]
lead to dead skeletons, perhaps adding Lsn[K ′] does not, i.e. K ′ may become
compromised.

However, we can prune Case 6, because K ′′ is not usefully different from K ′. The
adversary cannot use messages transmitted by s′s differently from the messages
transmitted by the existing ss. In Section 9, we formalize this pruning principle
(Prop. 11). Discarding Case 6, there are two live possibilities: either K ′ = K or
else K ′ becomes compromised. We consider Case 7 next.

Case 7: K ′ becomes compromised. Consider the skeleton A1 ∪ Lsn[K ′]. K ′ origi-
nates uniquely at m1, so m1, (Lsn[K ′] ↓ 1) is an outgoing transformed pair for K ′

and S4 = { {|BˆK ′ˆNaˆNb|}ltk(A), {|AˆK ′|}ltk(B) }. Thus, we have the outgoing
cohort 8–9:

8. Some role Init,Resp,Serv provides a transforming edge for K ′, S4. However,
no Yahalom role retransmits it as a subterm of any new message. The initia-
tor uses K ′ to encrypt a message, but in our model, this discloses nothing.
For finer models, see e.g. [3, 5].

9. One of the keys that protects K ′ in S4, i.e. a key K0 ∈ used(S4), becomes
compromised; but used(S4) = { ltk(A), ltk(B) }.

So neither Case 8 nor Case 9 is possible. We discard Case 7, as the whole co-
hort 8–9 is unrealizable or “dead.”

Hence, all homomorphisms to realized skeletons must factor through Case 5.
Let A2 = A1 · β be the result of replacing K ′ by K wherever mentioned in A1.
If any homomorphism H : A0 7→ A′ has A′ realized, then H factors through the
embedding A0 7→ A2.

B’s Source for K. The responder B receives {|AˆK|}ltk(B) on node n1. We
apply the Incoming Test Principle, with cohort:
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A : si B : sr

S : s<3
s

�........................... n0

­ww
S : s′s

•
­
wwwwwwwww

�................................. m1

­ww
m′

1

­w

?

­ww
n1

­
wwwwwwwwww

�................................ m′
2

­w

•
­
wwwwwwwwww

...............................................................................- n2

­ww
A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K A, B, N ′

a, N ′
b, K

Fig. 4. Preskeleton A3, with nonA3 = {ltk(A), ltk(B)} and uniqueA3
= {Nb, K}.

10. A server strand s′s, with parameters A,B,K, transmits {|AˆK|}ltk(B); possi-
bly different nonces appear in s′s. The embedding yields A3 in Fig. 4.

11. Alternatively, ltk(B) has been compromised and {|AˆK|}ltk(B) is generated
by the adversary. However, ltk(B) ∈ nonA2 , excluding this case.

A3 is not a skeleton, but only a preskeleton, because of an anomaly.K ∈ uniqueA3

is intended to originate at just one node, but in fact originates at both m1 and
m′

1. Therefore, in any skeleton obtained by a homomorphism H = [φ, α] jointly

A : si B : sr

S : ss
�............................. n0

­w

•
­
wwwwwwww

�................................. m1

­w

m2

­w
................................- n1

­
wwwwwwww

•
­
wwwwwwww

...............................................................................- n2

­w
A, B, Na, Nb, K A, B, Na, Nb, K A, B, Na, Nb, K

Fig. 5. Skeleton A4, with nonA4 = {ltk(A), ltk(B)} and uniqueA4
= {Nb, K}.

from the union A2∪{s′s} = A3, necessarily φ(m1) = φ(m′
1), equating the strands

ss and s′s. H must then factor through skeleton A4 (Fig. 5), where consequently
Na · α = N ′

a · α and Nb · α = N ′
b · α, and the height of φ(ss) is 3.

Skeleton A4 is realized : every message received is sent, even without adversary
activity. Moreover, A4 is a shape. First, if we leave out any nodes, then either B’s
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original strand is no longer embedded in the result, or else the result is no longer
realized. Second, we cannot make it more general: If two different strands share
a parameter, and we alter that parameter in one of the strands, then the result
is no longer realized. For instance, the diagram would no longer be realized if
A’s parameter Nb were altered to some N ′

b. Since all homomorphisms from A0

to realized skeletons factor through A4, it is the only shape for A0.

8 Search Strategy

The goal of cpsa is defined using the following notions:

step(A, C) which holds if the finite set C of skeletons is an outgoing or incom-
ing cohort for A. Any homomorphism from A to a realized skeleton passes
through some Ak ∈ C. The principles of Section 6 imply that the tests and
their cohorts may be used in any order, while still finding all shapes.

realized(A) which holds if A is realized; we can determine this directly.
min realA0(A′) which is defined if A′ is realized. Its value is the finite, non-empty

set of shapes A such that (1) there is a homomorphism from A0 to A; (2)
A is realized; (3) there is a nodewise injective homomorphism from A to A′;
and (4) A is ≤n -minimal among skeletons satisfying (1–3). min realA0(A′)
implements the procedure described in the proof of Prop. 8.

We say child(A,A′) if for some C, step(A, C) and A′ ∈ C. Let descendent be
the reflexive, transitive closure of child. The goal of the search, given a starting
skeleton A0, is to determine the set

shapes(A0) = {A2 : ∃A1 . descendent(A0,A1) ∧ A2 ∈ min realA0(A1)}.

To do so, we use the search algorithm in Fig 6. We also need some auxiliaries:

dead(A) means A cannot be realized, i.e. there is no realized A′ with H : A 7→ A′.
Dead(A) follows from any of the following: (1) A contains Lsn[a] where a ∈
nonA; (2) dead(A0) and H : A0 7→ A; or (3) step(A, C) where C consists of
dead skeletons. Condition (1) was used repeatedly and condition (3) was
used to discard Case 7, as the cohort 8–9 consisted of dead skeletons.

redundant strand(A) tests whether A contains a redundant strand that can be
identified with some other strand by a homomorphism from A to a proper
subskeleton. We discarded a redundant strand in Case 6 (see Prop. 11).

step applies(A) tests if an unsolved outgoing or incoming step exists in A.
apply step(A) selects an unsolved step, finds a cohort, updates the step relation,

and then returns the cohort (assuming step applies(A) is true).
targets(H) = {Ak : k ≤ j}, if H is a set of j homomorphisms Hk : A 7→ Ak.

We assume select S selects a member of S if it is non-empty; and filter p S takes
the subset of S satisfying p. The failure marked “Impossible” in Fig. 6 cannot
be reached, because completeness (Thm. 3) ensures that when A is not realized,
then some authentication test step applies.
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F := {A0}; shapes found := ∅; seen := F ;
while F 6= ∅ begin

A := select(F); F := F \ {A};
if realized(A)

then shapes found := shapes found ∪min realA0(A)
else if redundant strand(A) then skip
else if step applies(A) then begin

let new = targets(apply step(A)) \ seen in
F := F ∪ new; F := F \ (filter dead F);
seen := seen ∪ new
end

else fail “Impossible.”
end;

return shapes found

Fig. 6. cpsa Search Algorithm

9 Completeness of the Authentication Tests

If a skeleton A is not realized, does it necessarily contain an outgoing test node
or an incoming test node, with no matching transforming node? Yes, it does,
and this is the core reason why every shape can be reached with finitely many
applications of the authentication tests.

Prop. 4 from Section 4.3 essentially isolates the inductive property of pene-
trator webs on this depends; we may formalize the conclusion for derivability in
skeletons (using Def. 11) as follows.

Proposition 10. Suppose that for all a ∈ uniqueA, if a originates at any m ∈ A
and a v msg(n), then m �A n. If n1 is negative and msg(n1) is not derivable
before n1 in A, then either:

1. (n0, n1) is an unsolved outgoing test pair with respect to some a, S:
I.e. there exist (i) a node n0 �A n1, (ii) an atom a ∈ uniqueA originating
at n0, (iii) a set S of encryptions such that a occurs only within S in t in
positive nodes preceding n1, and for each K ∈ used(S), K−1 is not derivable
before n1 in A; or else

2. n1 is an unsolved incoming test node for some t, S where t = {|t0|}K :
I.e., (i) t occurs only within S in positive nodes before n1 in A, (ii) t occurs
outside S in msg(n1), (iii) K is not derivable before n1 in A, and (iv) for
all K1 ∈ used(S) K−1

1 is not derivable before n1 in A.

Proof. If msg(n) is not derivable before n, we can use Prop. 4, letting A =
nonA ∪ (uniqueA ∩ {a : a originates in A}). If Prop. 4 Clause 1 (resp. Clause 2) is
false, there is an unsolved outgoing test (resp. an unsolved incoming test). ut
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Shapes, being minimal, do not contain unnecessary listener strands. Thus, a
sequence of contractions and augmentations leading to a shape, as in Theo-
rems 1, 2, does not contain listener augmentations. The augmentations it con-
tains are outgoing and incoming augmentations.

Theorem 3 (Authentication Tests Completeness). Let J = [φJ , αJ ] : A 7→
As be a shape. J is isomorphic to Hi ◦ . . . ◦H0 for some sequence of homomor-
phisms {Hj}0≤j≤i, where

1. For some α′ and some subskeleton A′ of A, H0 : A 7→ hullα′(A′) is surjective;
2. For each j with 1 ≤ j ≤ i, Hj : Aj−1 7→ Aj is a contraction or an augmen-

tation as in Theorem 1 or Theorem 2, Clauses 1, 2.

Proof. We define a sequence {Hj}0≤j≤i of homomorphisms satisfying (1,2), and
a sequence {Lj}0≤j≤i such that for every j, (3) Lj is nodewise injective, and (4)
J = Lj ◦Hj ◦ . . . ◦H0 (see Fig. 7). By the definition of shape, if any composition
Hj ◦ . . . ◦H0 is realized, then Lj is an isomorphism, so we may take i = j and
stop.

A0
H1→ A1

H2→ · · ·
Hi→ Ai

· · ·

A

H0

↑

J
→ As

Li
↓

L
1

→
L

0

→

Fig. 7. Augmentations, contractions Hj+1, and nodewise injective Lj .

For L0 to be nodewise injective, with J = L0 ◦ H0, we define H0 to prune
unnecessary strands in A. Partition strands in A by their image under φJ ; i.e.

es = {s′ : φJ(s′ ↓ 1) = φJ(s ↓ 1)}.

For each partition element es, choose a representative r(es) of maximal height.
We let β0 be a most general unifier for all the pairs msg(s ↓ `),msg(s′ ↓ `) where
es = es′ and ` is no greater than both their heights. Such a mgu β0 exists,
because αJ unifies all these pairs. If φ0 is the map s 7→ r(es), let H0 = [φ0, β0].
L0 is defined to send each φ0(n) to φJ(n) and each β0(a) to αJ(a).

Next, suppose H0 . . .Hj and L0 . . . Lj are defined, with Hj : Aj−1 7→ Aj , but
Aj is not realized. Let Lj = [ψj , βj ] : Aj 7→ As. Choose n1 ∈ Aj be a negative
node with msg(n1) not penetrator derivable before n1 in Aj (Prop. 5).

By Prop. 10, n1 is an incoming or outgoing test node, for some set of en-
cryptions S and term t, where for an incoming test node t = {|t0|}K0 and for an
outgoing test node t = a. However, n1 has no corresponding transformed node.
Consider its image under Lj ; there are three essential possibilities.
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ψj(n1) has a corresponding transforming node: We select a most general
preimage of the strand up to the transforming node, and add the preimage
strand as an incoming or outgoing augmentation.

ψj(n1) is no longer a transformed node: If n1 is a transformed node rela-
tive to S, t but ψj(n1) is not a transformed node relative to S ·βj , t ·βj , then
we let Hj+1 be a most general contraction with this property.

ψj(n1) has no corresponding transforming node: By Props. 2, 3, some rel-
evant key K is compromised in the bundle realizing As. However, by the
choice of n1, K is not derivable in Aj . Thus, in As there is an outgoing
transforming edge for Lsn[K · βj ], and we may augment Aj with the listener
strand Lsn[K] and a most general preimage of this transforming edge. ut

There a couple of fine points to mention about this proof. One is that the most
general preimage that we augment with in the first and third case above may be
less general than the test node. If so, we first apply a contraction as Hj+1, and
then do the augmentation as Hj+2; see the discussion after Prop. 9. Another
fine point concerns the third case. The point of origination for a key K0 may
not yet exist in Aj , but be added in some later augmentation Hk with k > j.
Possibly K0 6∈ uniqueAj

, although K0 · βj ∈ uniqueAs
. However, K0 is derivable

then, although its image in As is not derivable using only the regular nodes of
As that are in the image of Aj . The choice of n1 ensures that we do not select
such a K0 for the key K in the third case.

A Pruning Condition The nodewise injective sequence {Lj}0≤j≤i in the proof
of Thm. 3 ensures that each augmentation in the sequence {Hj}0≤j≤i is actually
contributing to the eventual result. No node is added, only to be identified later
with any other node on the way to the shape As.

By contrast, suppose an augmentation introduces a new strand that could be
identified with an existing strand. The following proposition shows that it will
be identified with some existing strand before a shape is reached. Thus, we do
not miss any shapes if we never add a strand that is redundant in this sense.

Proposition 11. Let A be a subskeleton of A′ with idempotent I = [ψ, β] : A′ 7→
A. If J ′ = [φ′, α′] : A′ 7→ A′

s is a shape, then ψ(m) = n implies φ′(m) = φ′(n).

Proof. Since A is a subskeleton of A′, there is an embedding E : A 7→ A′. Let

A′ H ′
0→ A′

0

H ′
1→ · · ·

H ′
i→ A′

i = A′
s

A

E
↑

H0→ A0

E0

↑

H1→ · · ·
Hi → Ai

Ei

↑

Fig. 8. Homomomorphisms and embeddings justifying pruning
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H ′
i ◦ . . . ◦H ′

0, as shown in Fig. 8, be the decomposition of J ′ as in Thm. 3, with
successive targets A′

j . We construct a corresponding sequence Hi ◦ . . .◦H0 : A 7→
Ai, together with a sequence of embeddings Ej : Aj 7→ A′

j . For H0, we identify
any two strands in A0 if they are identified by H ′

0, and contract atoms mentioned
in A0 if they are contracted by H ′

0. If H ′
j+1 augments or contracts to solve a

node n1 ∈ Aj , then Hj+1 applies the same augmentation or contraction. If
n1 ∈ A′

j \Aj , then we let Hj+1 be the identity. Evidently, we can construct Ej+1

from Ej since augmentations to Aj have also been applied to A′
j .

Derivability is preserved, since for any node in n ∈ Aj whose derivation in
A′

j uses a positive node m ∈ nodesA′j \ nodesAj , we use ψ(m) instead.
Thus, the target Ai of Hi ◦ . . . ◦ H0 is a realized substructure of A′

s. So
Hi ◦ . . . ◦H0 ◦ I : A′

0 7→ Ai. Since the embedding Ei : Ai 7→ A′
s is node injective,

and J ′ is a shape, Ei is an isomorphism. ut

10 Implementing CPSA

We discuss here two aspects of the cpsa implementation. They are: (1) finding
candidate transforming edges in protocols, and using unification in applying
them; and (2) choosing sets S for outgoing tests, and representing the sets.

Finding transforming edges. When cpsa reads a protocol description in its
input format, it identifies all the potential transforming edges. For the outgoing
tests, it locates all candidate pairs of a reception node m0 and a transmission
node m1 later on the same role such that a key or nonce is received in one or
more encrypted forms on m0 and retransmitted outside these forms in m1. For
incoming tests, cpsa notes all transmission nodes m1 that send encrypted units.

To find outgoing transforming edges for a ∈ uniqueA and a set S, cpsa
considers each candidate edge m0 ⇒+ m1. Suppose an encrypted sub-message
t of msg(m0) unifies with a member of S using a replacement α. If a · α occurs
in msg(m0) · α, but only within S · α, then we check msg(m1) · α. If it occurs
outside S · α in msg(m1) · α, then m0 ⇒+ m1 is a successful candidate. If α
contracts atoms, then we apply the Outgoing Test Principle twice, once to apply
this contraction, and once to add the instance of m0 ⇒+ m1.3 We also check
whether a contraction eliminates the outgoing test edge entirely, as in Case 5.

For incoming tests, we do a unification on the candidate nodes m1.

Selecting sets S for outgoing tests. To select sets S in the outgoing test
principle, we use a trick we call the “forwards-then-backwards” technique. cpsa
plans a sequence of applications of the outgoing test until no further transforming
edge is found, as in Yahalom cases 3 and 1. It follows the transmission of the
uniquely originating value—Nb in that case—forwards. Newly introduced atoms

3 This and the incoming test with S 6= ∅ are the only aspects of the authentication
test search that do not occur in the Yahalom analysis.
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like K ′ are implicitly universal. Originally, Nb occurs only in {|AˆNaˆNb|}ltk(B);
after a server strand it also occurs in {|BˆK ′ˆNaˆNb|}ltk(A). After an initiator
strand, no other transforming edges can succeed.

cpsa uses the sets in the opposite order. The set S1 = {{|AˆNaˆNb|}ltk(B)}∪
{{|BˆK ′ˆNaˆNb|}ltk(A) : K ′ a key} is used first to introduce the initiator trans-
forming edge. Then the smaller set {{|AˆNaˆNb|}ltk(B)} is used to introduce the
(earlier) server transforming edge.4

The forwards-then-backwards technique suggested cpsa’s representation for
the sets S. These sets are not necessarily finite; S1 e.g. is not. The family is closed
under union and set difference. The primitive members are singletons {t0} and
sets that represent all the instances of a term t1 as some of t1’s parameters vary.
Thus, we can represent all candidate sets are as finite unions and differences
of values of the form λv . t, where the vector v binds 0 or more atoms in t.
Completeness requires only sets S representable in this form.

This representation fits also nicely with our use of unification to provide an
extremely focused search, leading to good runtimes on a variety of protocols.
Samples run on a Thinkpad X31, with a 1.4 GHz Pentium M processor and 1
GB store, under Linux, are shown in Fig. 9. cpsa is implemented in OCaml.

Protocol Point of view Runtime Shapes

iso reject responder 0.193s 2
Kerberos client 1.443s 1
Needham-Schroeder responder 0.055s 1
Needham-Schroeder-Lowe responder 0.124s 1
Yahalom responder 2.709s 1

Fig. 9. Protocols with cpsa runtimes

Conclusion

In this paper, we have developed the theory of skeletons and homomorphisms.
We used it together with the strong form of the authentication tests (Props. 2–3)
to establish search-oriented versions of the tests (Thms. 1–2). We described how
to use these ideas to mechanize protocol analysis. Finally, we showed that these
tests have a form of completeness (Thm. 3).

The soundness of the search algorithm does not require the bare-bones Dolev-
Yao model used here. One can augment cpsa with Diffie-Hellman operations, as
studied for an earlier strand-based method in [11]. One can also allow keys to
be complex messages, typically the result of hashing. In our current framework,
replacements map atoms to other atoms only, but it should be possible to map

4 The cleverer set S2 we used in Case 3 is an optimization. To ensure that the server
and initiator agree on the session key, cpsa uses instead a cohort similar to Cases 6–7.
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atoms to terms in general, at the cost of using more sophisticated methods
to check whether skeletons are realized (e.g. [15]). Indeed, the skeletons-and-
homomorphisms approach may remain useful in a cryptographic, asymptotic
probabilistic context.
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